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A Hybrid Integrated Deep Learning Model for Citywide Spatio-

temporal Flow Volume Prediction

Abstract

Recently, the spatio-temporal residual network (ST-ResNet) has leveraged the 

power of deep learning (DL) to predict citywide spatio-temporal flow volume. 

However, this model, neglects the dynamic dependency of the input series in 

the temporal dimension, which affects the captured spatio-temporal features. 

The present study introduces the long short-term memory (LSTM) neural 

network into ST-ResNet, to form a hybrid integrated DL model for citywide 

spatio-temporal flow volume prediction (called HIDLST). The new model is 

capable of dynamically learning the temporal dependency via the feedback 

connection of the LSTM, improving the accuracy of the spatio-temporal 

features. We test the HIDLST model by predicting the citywide taxi flow 

volume in Beijing, China. We tune the hyperparameters of the HIDLST model 

to optimize the prediction accuracy. Comparative experiments indicate that the 

proposed model consistently outperforms ST-ResNet and several other typical 

DL-based models with regard to prediction accuracy. Additionally, we also 

discuss the distribution of prediction errors and the contributions of different 

spatio-temporal patterns.

Keywords: spatio-temporal flow volume; prediction; deep learning; LSTM; 

ResNet

1 Introduction

1.1 Background and purpose

Human mobility is a central theme in human geography and urban analytics. People 

Page 1 of 48

http://mc.manuscriptcentral.com/tandf/ijgis

International Journal of Geographical Information Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

constantly interact with the urban space through various spatio-temporal activities, 

such as taking buses, driving, and walking (Zhu et al. 2018). Most of the trajectories 

generated by these activities can be recorded (Shaw et al. 2016, Zhang and Weghe 

2018), resulting in abundant datasets that provide spatial and temporal knowledge 

(Guo et al. 2012, Gao et al. 2013, Gong et al. 2016, Shen and Cheng 2016). Spatio-

temporal flow volume data is generated via statistical analyses of these trajectories 

(Zhu and Guo 2014). As shown in Figure 1(a), for the spatial unit i, objects 1 and 2 

are two inflow objects, and object 3 is an outflow object. Hence, the inflow volume is 

two, and the outflow volume is one. Given a city divided into a grid with M rows and 

N columns, a time interval t, and a trajectory dataset, the inflow and outflow volume 

of each grid cell can be calculated (Zhang et al. 2016). The three-dimensional tensor

 represents the citywide flow volume, where “2” corresponds to inflow and  𝑋2 × 𝑀 × 𝑁
𝑡

outflow, as shown in Figure 1(b) (Zhang et al. 2018). Herein, the term “spatio-

temporal flow volume” refers to the separate inflow and outflow volumes. Figure 1(c) 

shows an instance generated from taxi trajectories in Beijing, China with a 32 × 32 

grid partition and a 30-min time interval.

Figure 1. Citywide spatio-temporal flow volume

The citywide spatio-temporal flow volume quantitatively reflects the 

distribution of moving objects over space and time (Zheng et al. 2014). Predicting the 

future volumes of traffic or crowds on a citywide scale helps the urban manager to 

prevent traffic congestion and stampedes (Silva et al. 2015, Chen et al. 2015, Hoang 

et al. 2016). The objective of this study is to construct a prediction model that can 
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learn features from historical observations and accuratly predict the citywide spatio-

temporal flow volume according to these features. 

In the machine learning (ML) domain, a feature is an individual measurable 

property of the phenomenon being observed (Bishop 2006). The key to achieving a 

high-accuracy prediction system is capturing features as accurately as possible 

(LeCun et al. 2015). For citywide spatio-temporal flow volume prediction, the most 

important feature is the spatio-temporal dependency (Zhang et al. 2018, Chen et al. 

2018). The spatial dependency refers to the interactions between the inflow and 

outflow of near and distant neighbors. For example, the traffic flow on a road that 

crosses another affects the traffic on the second road. Numerous individuals drive to 

offices over various distances, generating distant dependency. The temporal 

dependency may arise from different patterns. For example, the traffic flow at 7:00 

am may have a strong correlation with that at 6:00 am. It may also be very similar to 

the flow at 7:00 am on the previous day or that at 7:00 am on the same day of the 

previous week, because human activities have daily and weekly periodicities. The 

biggest challenge for spaito-temporal flow volume prediction is capturing spatio-

temporal dependency.

Recently, the convolution neural network (CNN), a well-known deep learning 

(DL) method, has been employed to automatically capture the citywide spatio-

temporal dependency. While the CNN is effective for modeling spatial dependency, it 

is not suitable for capturing dynamic temporal dependency, which is significant in 

spatio-temporal prediction (Cheng and Wang 2009). In contrast, the long short-term 
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memory (LSTM) neural network is a dynamic deep neural network for capturing 

temporal dependency. The purpose of this study is to introduce LSTM into the CNN 

to form a hybrid integrated DL model for citywide spatio-temporal flow volume 

prediction (called HIDLST). The proposed model can capture both the dynamic 

temporal dependency and the spatial dependency automatically and consistently, 

improving the prediction accuracy for flow volumes.

1.2 Related work and existing problem

Most existing spatio-temporal prediction models derive from statistical and ML 

methods, including the space-time autoregressive integrated moving average (Wang et 

al. 2010, Cheng et al. 2014), the space-time support vector regression (Wang et al. 

2007), and the space-time artificial neural network (ANN) models (Wang et al. 2016, 

Chen et al. 2018). However, these conventional models are incapable of accepting 

raw input datasets. When constructing an ML model including the aforementioned 

ones, the feature extraction requires careful engineering and considerable domain 

expertise for transforming raw data into a proper internal representation for spatio-

temporal dependency detection. This procedure is called “feature engineering” 

(LeCun et al. 2015). In the Big Data era, the feature engineering is particularly 

challenging.

DL addresses this challenge (Hinton and Salakhutdinov 2006). A typical DL 

model can accept raw input data and automatically discover the required features. 

This is called “end-to-end” learning and enormously simplifies the feature 
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engineering process. The LSTM (Hochreiter and Schmidhuber 1997) is a special type 

of deep recurrent neural network (RNN) that dynamically feeds the output of the 

previous step back into the input layer of the current step, which is called a dynamic 

feedback connection. The output depends on both the current input and the previous 

features. The feedback connection makes LSTM particularly suitable for capturing the 

dynamic temporal dependency occurring in a time series (Cheng and Wang 2009). 

Hence, researchers have proposed several LSTM-based models for obtaining better 

accuracy than traditional methods for predicting traffic data (Ma et al. 2015, Wang et 

al. 2017). However, LSTM cannot capture spatial dependency, which is extremely 

important for spatio-temporal flow volume prediction. 

To address this issue, researchers have introduced the CNN into spatio-

temporal flow volume prediction. A CNN unit is a neural network that connects to the 

local patches in the feature maps of the previous layer through a set of weights called 

convolution kernels (LeCun et al. 2015). Stacking multiple CNN layers allows distant 

spatial dependency to be captured. Zhang et al. (2016) used a grid map to represent 

the citywide spatio-temporal flow volume. They designed a multi-layer CNN 

structure (called DeepST) to receive historical observations from hourly, daily, and 

weekly patterns for learning the spatial and temporal dependencies simultaneously. 

DeepST can achieve “end-to-end” predictions for an entire city. Zhang et al. (2018) 

integrated the deep residual network (He et al. 2016a) into DeepST, forming the deep 

spatio-temporal residual network (ST-ResNet). The residual network significantly 

increases the depth of the neural network model (He et al. 2016a). A deeper CNN 
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structure forms a broader spatial receptive field to capture the spatial dependency 

from distant regions. ST-ResNet exhibited an accuracy higher than that of DeepST 

(by 7.09%) for predicting the citywide taxi flow volume in Beijing, China (Zhang et 

al. 2018). 

The CNN is a typical static neural network without a dynamic feedback 

connection, and it is difficult to capture the dynamic dependency occurring in time 

series. Therefore, the CNN-based model ST-ResNet has limited prediction accuracy 

for the spatio-temporal flow volume. Several studies have confirmed the advantage of 

capturing temporal dependency dynamically in spatio-temporal prediction (Cheng and 

Wang 2008, Cheng et al. 2008, Cheng and Wang 2009).

1.3 Proposed solution

LSTM is an RNN that has a feedback connection and is capable of capturing the 

dynamic temporal dependency in a time series. The residual CNN (ResNet) can 

capture the spatial dependency well. We combine these two models to capture the 

spatio-temporal dependency more accurately. First, the LSTM structure captures the 

temporal dependency, and then the deep ResNet captures the spatio-temporal 

dependency from the LSTM outputs. The temporal dependency captured by the 

LSTM structure contains the dynamic dependency occurring in the time series, which 

can characterize the data more accurately than CNN-based models. Finally, the 

spatio-temporal dependency captured by ResNet is suitable for achieving better 

prediction accuracy. 
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This study proposes a hybrid integrated DL model for citywide spatio-

temporal flow volume prediction (HIDLST) by integrating LSTM and ResNet. 

Compared with the existing models, the proposed model can automatically and 

accurately capture both the spatial and dynamic temporal dependencies in spatio-

temporal flow volume data. 

The remainder of this paper is organized as follows. Section 2 defines the 

problem of citywide spatio-temporal flow volume prediction and details the structure 

of the proposed HIDLST model. Section 3 introduces a case study involving 

prediction of the citywide taxi flow volume in Beijing, China. Section 4 discusses the 

distribution of prediction errors and the contributions from different spatio-temporal 

patterns. Finally, Section 5 presents the conclusions and directions for future work.

2 Methodology

2.1 Problem definition 

For the prediction of the citywide spatio-temporal flow volume, the most important 

feature is the spatio-temporal dependency. Other relevant factors include the weather 

conditions, temperature, and holidays, as these factors influence the travel paths, time, 

and types of human activities (Hoang et al. 2016, Ke et al. 2017).

Equation (1) defines the citywide spatio-temporal flow volume prediction 

problem.

                          (1)𝑋𝑇 = 𝐹𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋𝑆𝑇, 𝑋𝐸, 𝑊)

Here, XT represents the prediction target (spatio-temporal flow volume data at the Tth 
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time interval), Fpredict represents the prediction model to be constructed, XST represents 

the set of historical spatio-temporal flow volume observations, XE represents the 

external factors, and W represents the parameters to be learned. Figure 2 shows an 

example procedure of Fpredict, which is used to learn the spatio-temporal dependency 

and the external impacts (W) from historical sets XST and XE and make predictions 

regarding future flow volumes.

Figure 2. Problem definition of citywide spatio-temporal flow volume prediction

2.2 Hybrid integrated DL model for citywide spatio-temporal flow volume 

prediction

Figure 3 shows the general framework of the proposed HIDLST. The spatio-temporal 

dependency arises from different patterns (Ma et al. 2014, Wang et al. 2017, Zhang et 

al. 2018). We divide the historical spatio-temporal flow volume data into hourly, 

daily, and weekly patterns and construct three sub-models with the same structure to 

capture the features. 

First, an LSTM structure receives the raw spatio-temporal flow volume grids 

to capture the dynamic temporal dependency occurring in the time series, forming 

candidate feature maps. A multi-layer ResNet model simultaneously captures the 

spatio-temporal dependency by performing convolutions on the candidate feature 

maps, resulting in three spatio-temporal feature maps (ST-maps). Next, we merge the 

ST-maps into a two-channel raster map (final ST-map). The final ST-map combines 

the external factors to obtain prediction results. Finally, the model calculates the loss 
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and optimizes the parameters via back-propagation. The following sections detail the 

main modules of HIDLST. 

Figure 3. Framework of HIDLST

2.2.1 Input datasets

The input datasets consist of spatio-temporal flow volume data from hourly, daily, 

and weekly patterns. Hourly inputs refer to historical observations that are close to the 

target time. Daily and weekly inputs refer to historical observations at the same time 

point as the prediction target but with daily or weekly periodicity. For example, 

assume that the prediction target is the spatio-temporal flow volume at 9 am on 

Thursday and the lengths of the hourly, daily, and weekly patterns are three, one, and 

one, respectively. The hourly inputs are the historical observations at 8:30 am, 8:00 

am, 7:30 am, and so on. The daily inputs are the observations at 9 am on the days 

prior, and the weekly inputs are the observations at 9 am on the previous Thursdays. 

To eliminate the fluctuation in adjacent time intervals, we add a time buffer to the 

daily and weekly patterns (Wu and Tan 2016). Let t represent the target time. The 

number of time intervals in 1 d is m, and the radius of the time buffer is b. The spatio-

temporal flow volume data at the ith time interval are represented by Xi, which is a 

three-dimensional tensor, as mentioned in Section 1.1. The three input datasets XH, 

XD, and XW are four-dimensional tensors whose dimensions are h × 2× M × N, d × 2 

× M × N and w × 2 × M × N, respectively, as indicated by Equation (2).
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𝑋ℎ × 2 × 𝑀 × 𝑁
𝐻 = ( 𝑋𝑡 ― ℎ ,…,𝑋𝑡 ― 𝑖 ,…,𝑋𝑡 ― 2 , 𝑋𝑡 ― 1),{i ∈ Z│1 ≤ i ≤ h}

𝑋𝑑 × 2 × 𝑀 × 𝑁
𝐷 = ( 𝑋𝑡 ― 𝑗 ∙ 𝑚 ― 𝑏 …  𝑋𝑡 ― 𝑗 ∙ 𝑚 ― 1, 𝑋𝑡 ― 𝑗 ∙ 𝑚, 𝑋𝑡 ― 𝑗 ∙ 𝑚 + 1… 𝑋𝑡 ― 𝑗 ∙ 𝑚 + 𝑏),{j ∈ Z|1 ≤ j ≤ d}

𝑋𝑤 × 2 × 𝑀 × 𝑁
𝐷

= (𝑋𝑡 ― 𝑘 ∙ 7 ∙ 𝑚 ― 𝑏…𝑋𝑡 ― 𝑘 ∙ 7 ∙ 𝑚 ― 1 , 𝑋𝑡 ― 𝑘 ∙ 7 ∙ 𝑚,𝑋𝑡 ― 𝑘 ∙ 7 ∙ 𝑚 + 1…𝑋𝑡 ― 𝑘 ∙ 7 ∙ 𝑚 + 𝑏),
{k ∈ Z│1 ≤ k ≤ w}

Here, h, d, and w refer to the numbers of time intervals corresponding to 

hourly, daily, and weekly patterns, respectively, and Xi has the dimensions 2 × 

M × N. Figure 3(a) shows an instance with h = 3, d = 1, w = 1, and b = 1.

(2)

2.2.2 Integrally capturing spatio-temporal dependency

The core procedure of HIDLST includes two components: capturing the temporal 

dependency using the LSTM structure(Figure 3-(b)) and capturing the spatio-temporal 

dependency using ResNet (Figure 1 (c)). We take the hourly pattern as an example to 

detail the procedure.

Figure 4. Integrally capturing the spatio-temporal dependency

(1) Capturing temporal dependency using LSTM 

An LSTM module receives the raw spatio-temporal flow volume grids. Figure 

4(a) unfolds the feedback connection of the LSTM and details its structures. The 

memory cell of the ith time step (Ci) is accessed, written, and cleared by the input gate 

(ii), forget gate (fi), and output gate (oi), respectively (Hochreiter and Schmidhuber 

1997, Graves et al. 2013). Taking the second time step input X2 as an example, if i2 is 

activated, the temporal dependency of the current step is accumulated to C2. 

Similarly, f2 determines whether C2 forgets the dependency of the previous step stored 
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in C1, and o2 determines whether the dependency in C2 is propagated to the current 

output Y2, which will be the input for both the next time step and the next LSTM 

layer. For a time series, the step-by-step feedback captures the dynamic temporal 

dependency between all time steps and the target. The output of the last step (t-1) 

forms the candidate feature map CO×M×N, where O represents the number of hidden 

neurons in the LSTM layer, and M × N represents the grid map. These candidate 

feature maps contain the temporal dependency and spatial information used to capture 

the spatio-temporal dependency. The transformation is summarized by Equation (3).

                  (3)𝐶𝑂 × 𝑀 × 𝑁 = 𝐹𝐿𝑆𝑇𝑀(𝑋𝐻, 𝑊𝐿𝑆𝑇𝑀)

Here, FLSTM represents the transformation of the LSTM model, and WLSTM represents 

all the parameters learned during the procedure. 

(2) Capturing spatio-temporal dependency using ResNet 

The multi-layer ResNet module accepts the outputs of the LSTM to capture 

the spatio-temporal dependency (Figure 4b). Each ResNet unit comprises a stack of 

two “Rectified Linear Unit (ReLU) + CNN” layers with a shortcut connection linking 

the input and output of the second CNN layer (He et al. 2016b, Zhang et al. 2018) ( 

Figure 4c). As CO×M×N contains the temporal dependency and spatial information, the 

following CNN units execute convolution to capture the spatio-temporal dependency. 

The ReLU (Nair and Hinton 2010) performs activation to model non-linear features. 

The shortcut connection of the ResNet unit requires that the input grids and 

the output grids have the same shape (He et al. 2016b). The shape of the output grids 

is determined by the number of convolution kernels (denoted as K) in the ResNet unit. 
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Thus, a convolution layer (denoted as CNN1), converts the output of LSTM CO×M×N to 

the shape of the ResNet output (denoted as CK×M×N
) according to Equation (4).

             (4)𝐶𝐾 × 𝑀 × 𝑁 = 𝐹𝑐𝑜𝑛𝑣1(𝐶𝑂 × 𝑀 × 𝑁,𝐾,𝑊1)

Here, Fconv1 represents the convolution operation, and W1 is the trainable parameter.

Assuming that the convolution kernel size is r, after L ResNet units, Equation 

(5) calculates the spatial radius of the accumulated receptive field S. As the length of 

the raw input series is h, for each grid cell, ResNet captures the features that are 

integrally spatio-temporally correlated with its S-1 spatial orders and h temporal 

orders, outputting the feature maps STK×M×N (Figure 4(d)). The procedure is described 

by Equation (6). 

                    (5)𝑆 = (𝑟 ― 1) ∙ 𝐿 + 1

(6)𝑆𝑇𝐾 × 𝑀 × 𝑁 = 𝐹𝑟𝑒𝑠𝑛𝑒𝑡(𝐶𝐾 × 𝑀 × 𝑁, 𝑊𝑟𝑒𝑠𝑛𝑒𝑡)                              

Here,  represents the ResNet transformation, and Wresnet represents all the 𝐹𝑟𝑒𝑠𝑛𝑒𝑡

parameters learned during the procedure. Finally, we convert STK×M×N  to a two-

channel grid STFMH (hourly ST-map) by CNN2 to calculate the loss directly, as 

indicated by Equation (7).

             (7)𝑆𝑇𝐹𝑀2 × 𝑀 × 𝑁
𝐻 = 𝐹𝑐𝑜𝑛𝑣2(𝑆𝑇𝐾 × 𝑀 × 𝑁,2, 𝑊2)

Here, Fconv2 represents the convolution operation, and W2 is the trainable parameter.

2.2.3 Feature fusion

The feature fusion procedure includes two steps: spatio-temporal feature fusion and 

external factor fusion. We adopt the same fusion method used in ST-ResNet (Zhang et 
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al. 2018). STFMH, STFMD, and STFMW represent the spatio-temporal feature maps of 

the hourly, daily, and weekly patterns, respectively. As confirmed by Zhang et al. 

(2018), the influence varies across temporal patterns and regions. The parametric-

matrix-based method (Zhang et al. 2018) fuses the three maps into a final spatio-

temporal feature map (Equation (8)). STFMA represents the fusion result; WH, WD, and 

WW represent three parameter matrices with the same shapes as STFMH, STFMD, and 

STFMW, respectively; and “∘” represents the Hadamard product. The final spatio-

temporal feature map fuses the external factors. The external factors in this study 

include weather, temperature, wind speed, and holidays. A two-layer ANN module 

embeds all the external factors (Zhang et al. 2018) in a two-channel grid E2×M×N. 

Finally, the model fuses  and E2×M×N directly. The tanh function 𝑆𝑇𝐹𝑀2 × 𝑀 × 𝑁
𝐴

activates the fusion result to obtain the final prediction values, which are represented 

by  in Equation (9). 𝑋2 × 𝑀 × 𝑁
𝑡

       (8)𝑆𝑇𝐹𝑀2 × 𝑀 × 𝑁
𝐴 = 𝑆𝑇𝐹𝑀𝐻 ∘ 𝑊𝐻 + 𝑆𝑇𝐹𝑀𝐷 ∘ 𝑊𝐷 + 𝑆𝑇𝐹𝑀𝑊 ∘ 𝑊𝑊

              (9)𝑋2 × 𝑀 × 𝑁
𝑡 = tanh (𝑆𝑇𝐹𝑀2 × 𝑀 × 𝑁

𝐴 + 𝐸2 × 𝑀 × 𝑁)

2.2.4 Model training

The mean-squared error (MSE) is the loss function. In Equation (10),  represents 𝑦𝑖

the ground truth,  represents the prediction value, and N represents the number of y′i

values to be predicted. We divide all the samples into three sub-datasets: a training 

set, a validation set, and a testing set. We feed the training set into the model in 

batches. For each batch, the model calculates the loss after forward propagation. 
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Then, an optimizer updates all the training parameters via back-propagation. An 

Adam (Kingma and Ba 2014) optimizer generates adaptive learning rates for different 

parameters. By minimizing the loss, all the trainable parameters are trained.

          (10)Loss = MSE =  
1
𝑁∑𝑁

𝑖 = 1(𝑦𝑖 ― 𝑦′𝑖)
2

3 Case Study

3.1 Experiment data and environment 

We validate the HIDLST with a spatio-temporal flow volume dataset generated from 

taxi GPS trajectories in Beijing, China from November 1st 2015 to April 9th 2016 

(Zhang et al. 2018). The study area is a 32-km2 square region located in the main 

districts of Beijing (Figure 5(a)). We divide the area into a 32 × 32 grid, with a cell 

size of 1 km2. The time interval is 30 min. Figure 5(b) shows the main roads in the 

study area.

Figure 5. Study area

A week is the smallest unit that contains both workdays and a weekend. We 

selected the data from the last week (April 3rd 2016 to April 9th 2016) as the testing 

set. Similar to most supervised learning systems (LeCun et al. 2015), to tune the 

hyperparameters, we divide the remaining data into a training set and a validation set, 

with a proportion of 9:1. To increase the convergence speed, we normalize the values 

of the spatio-temporal flow volume into the range [-1, 1] for the training (Ioffe and 

Szegedy 2015) and transforms all prediction values into the normal values for 
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evaluation. The external factors are weather conditions, temperature, wind speed, and 

holidays. The pre-processing procedure is identical to that used in a previous study 

(Zhang et al. 2018). We employ the root-mean-square error (RMSE), i.e., the square 

root of the MSE given by Equation (10), as the evaluation metric. We adopt the early-

stopping strategy (Caruana et al. 2001) to avoid overfitting. When the RMSE of the 

validation set does not decay for five iterations, the training procedure will be 

stopped.

We code the model in Python 3.5, using Keras (Chollet 2015) and TensorFlow 

(Abadi et al. 2016) as the DL packages. The LSTM module is the Keras layer called 

ConvLSTM (Shi et al. 2015), which is a model integrating convolution operations 

into an LSTM unit. A ConvLSTM layer can process two-dimensional grid data (such 

as an image), similar to a CNN layer. We set the kernel size of the ConvLSTM unit to 

one; thus, such that the LSTM module can directly accept and output spatio-temporal 

flow volume girds. We perform all experiments using a graphics unit (GPU) platform 

(NVIDIA GeForce GTX 1080 with 8GB of GPU memory).

3.2 Tuning parameters

Parameter tuning is essential for identifying the optimal parameters for DL-based 

models (Ma et al. 2017, Ke et al. 2017, Zhang et al. 2018). We tune the 

hyperparameters to obtain the optimal prediction results of HIDLST. There are four 

main hyperparameters: the number of hidden neuron units, number of hidden layers, 

lengths of different input patterns, and convolution kernel size. 
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3.2.1 Number of hidden neuron units

FNLSTM and FNResNet represent the numbers of hidden units in LSTM and ResNet, 

respectively. To test the LSTM, FNResNet is fixed at 64, and FNLSTM varies between 

four, eight, 16, and 32. Correspondingly, for testing ResNet, FNLSTM is fixed at 32, and 

FNResNet varies between four, eight, 16, 32, and 64. The LSTM has two hidden layers, 

and the number of ResNet units increases from one to 13. We record the minimum 

RMSE. Figure 6 shows the results. The model exhibits the best prediction accuracy 

(RMSE 14.6) when FNLSTM is 32 and FNResNet is 64. 

(a) (b)

Figure 6. Experimental results for different hidden neuron units

3.3.2 Number of hidden layers

We perform two experiments to determine the optimal depth (number of hidden 

layers) for HIDLST. We investigate the depths of the LSTM and ResNet separately, 

which are denoted as DLSTM and DResNet, respectively. The other parameters remain the 

same. First, with DLSTM = 2, DResNet varies from one to 13 in step two. The RMSE 

initially decreases with the increase in DResNet, reaching its minimum value when 

DResNet is five. Subsequently, the RMSE increases (Figure 7(a)). Adding layers 

introduces training difficulty and noise at the fringe of the city. For the LSTM, DResNet 

is 5, and DLSTM varies from one to four in step one. The overall trend is similar to that 

for ResNet, and the minimum RMSE is obtained with two LSTM layers (Figure 7(b)). 
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Thus, the optimal depths of HIDLST are two LSTM layers and five ResNet units.

(a) (b)

Figure 7. Experimental results for different model depths

3.3.3 Lengths of different input patterns

We define LH, LD, and LW as the lengths of the hourly, daily, and weekly patterns, 

respectively. The other parameters remain the same. First, with LD = 1 and LW = 1, LH 

varies from zero to eight in step two. Figure 8(a) presents the results. The RMSE is 

the largest when LH is zero (when the model omits the hourly pattern). Thus, the 

hourly pattern is crucial. The RMSE is minimized at LH = 4. For LH = 4, LW = 1, and 

LD = {0, 1, 2, 4, 6} (Figure 8(b)), the trend is similar to that for the hourly pattern. The 

RMSE is minimized at LD = 1. The RMSE increases when LD is larger than one. For 

example, the situation at 9:00 am on Sunday is not closely related to that at 9:00 am 

on Monday (LD = 6) but is closely related to that at the same time on Saturday (LD = 

1). Lastly, regarding the weekly patterns, Figure 8(c) shows that the optimal length is 

LW = 1. The best lengths for the hourly, daily, and weekly input patterns are four, one, 

and one, respectively.

(a) (b) (c)

Figure 8. Experimental results for different input lengths
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3.3.4 Convolution kernel size

To identify the optimal kernel size, we change the kernel sizes to 3 × 3, 5 × 5, and 7 

× 7. The depth of ResNet increases gradually, as before, and the minimum RMSE is 

recorded. The other settings are the same. As indicated by Table 1, the best 

convolution kernel size for the model is 3 × 3. Although a larger kernel covers a 

larger spatial region, the number of trainable parameters increases with the kernel 

size. With the same receptive field, stacking small multi-layer kernels allow the 

detection of more complex non-linear features compared with the case of a single-

layer larger kernel. Many image-processing applications employ the 3 × 3 kernel 

(Simonyan and Zisserman 2014, He et al. 2016a). For HIDLST, 3 × 3 is the optimal 

kernel size. 

Table 1. Experimental results for different convolution kernel sizes

No. Kernel Size RMSE

1 3 × 3 14.6

2 5 × 5 14.91

3 7 × 7 16.32

Table 2 presents the optimal hyperparameters for HIDLST. The model obtains 

the minimum RMSE (14.6) with the optimal setting.

Table 2. Optimal hyperparameters for HIDLST

Number of hidden 

neuron units

Number of 

hidden layers

Lengths of input 

patterns

Convolution 

kernel size

FNLSTM = 32 DLSTM = 2 LH = 4, LD = 1, LW K = 3
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FNResNet = 64 DResNet = 5 = 1

3.3 Comparative experiments

We compare HIDLST with five other DL-based models (Table 3). All these models 

take the hourly, daily, and weekly data as three separate inputs and fuse the feature 

maps of the three patterns later. The external factors are fused via the same method. 

The Adam optimizer is used for all the models. To avoid overfitting, if the RMSE of 

the validation dataset does not decrease after five loops, the training procedure will 

stop. 

Table 3. Descriptions of the different models

No. Model Description

1 LSTM It consists of multiple stacked LSTM layers, without ResNet.

2 ConvLSTM

A stacked multi-layer ConvLSTM model (Xingjian et al. 

2015). The ConvLSTM unit can perform convolution 

operations in the LSTM memory block. 

3 ST-ResNet
It consists of multiple ResNet layers, without an LSTM filter. 

It is a state-of-the-art model (Zhang et al. 2018).

4
ST-ResNet-

TB

It has the same main structure as ST-ResNet, except for the 

input data. It has time buffers for the daily and weekly inputs, 

similar to the HIDLST model.

5 Hybrid-LR

It is a hybrid model including LSTM and ResNet modules. 

However, the inputs are fed into a ResNet model and an LSTM 

model separately, and the outputs are merged via a parametric-
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matrix-based method (similar to Equation (8)). It is similar to 

the model proposed by Wu and Tan (2016), except that the 

CNN is replaced with ResNet.

6 HIDLST The proposed hybrid spatio-temporally integrated DL model. 

Similar to the case of the HIDLST model, we tune the hyperparameters for the 

other five baseline models and record the minimum RMSEs. Table 4 presents the 

optimal hyperparameters settings, minimum RMSE, and convergence time and 

iterations for each model. FNLSTM represents the number of hidden neurons of one 

LSTM layer. FNResNet represents the number of hidden neurons of one ResNet unit. 

DLSTM, DConvLSTM, and DResNet represent the numbers of hidden layers in LSTM, 

ConvLSTM, and ResNet, respectively. LH, LD, and LW represent the lengths of the 

hourly, daily, and weekly patterns, respectively. K represents the convolution kernel 

size. For the ST-ResNet model, to keep the inputs the same as those of the original 

model, the time buffer (denoted b) is zero in the daily and weekly inputs. For the other 

five models, b was one.

Table 4. RMSE values of the different models

No. Model Optimal hyperparameters RMSE Iterations/ Time

1 LSTM
FNLSTM = 64

DLSTM = 3

LH = 4, LD = 1, LW = 1

16.59 118/5005 s

2 ConvLSTM
FNConvLSTM = 64

DConvLSTM = 4
15.76 201/10940 s
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LH = 4, LD = 1, LW = 1

K = 3

3 ST-ResNet

FNResNet = 64

DResNet = 10

LH = 3, LD = 1, LW = 1

K = 3

15.81 101/1798 s

4
ST-ResNet-

TB

FNResNet = 64

DResNet = 10

LH = 3, LD = 1, LW = 1

K = 3

15.32 87/1602 s

5 Hybrid-LR

FNLSTM = 64, FNResNet = 64

DLSTM = 2, DResNet = 8

LH = 4, LD = 1, LW = 1

K = 3

15.37 101/2651 s

6 HIDLST

FNLSTM = 32, FNResNet = 64

DLSTM = 2, DResNet = 5

LH = 4, LD = 1, LW = 1

K = 3

14.60 120/2903 s

As shown in Table 4, HIDLST has the smallest RMSE among the models. 

Compared with the LSTM model, HIDLST exhibits a reduction of 11.99% in the 

RMSE. For the citywide spatio-temporal flow volume, it is difficult to achieve 

accurate predictions by only capturing the temporal dependency.

The RMSE of the classical ST-ResNet model is 15.81. ST-ResNet -TB 

reduces the RMSE to 15.32 by adding time buffers; thus, the time buffers are 
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effective. Compared with these two ST-ResNet-based models, the HIDLST exhibits 

reductions of 7.65% and 4.70%, respectively, in the RMSE. We employ the 

Independent-Sample T Test (Heeren and D'Agostino 1987) to determine whether 

there is a statistically significant difference between the errors of ST-ResNet-TB and 

HIDLST. The null hypothesis is that there is no significant difference. Table 5 shows 

that the p-value is 2.53E-71 (less than 0.05); thus, the null hypothesis is rejected. 

Therefore, the difference between the errors of these two models is significant. To 

investigate this further, for HIDLST and ST-ResNet-TB, we calculate the RMSE of 

each time interval based on 2,048 (2 × 32 × 32) values, and then plot the 

distributions covering 336 predicted time intervals (Figure 9). HIDLST outperforms 

ST-ResNet-TB in nearly 70% of the time intervals (the exact number is 234), with a 

smaller RMSE. We select three representative cells with a high mean ground truth 

(MGT) labeled as cells 1, 2, and 3 in Figures 10(a) and (b) to plot the ground truths, 

predictions of HIDLST, and predictions of ST-ResNet-TB, as shown in Figure (c)-(h). 

The MGT is defined by Equation (11), where yi represents the ground truth, and T 

represents the number of time intervals in the sub-dataset. Generally, HIDLST fit the 

ground truths better, particularly at the points marked by circles. 

                       (11)MGT =  
1
𝑇∑𝑇

𝑖 = 1𝑦𝑖

Therefore, compared with the ST-ResNet model, the new proposed model 

significantly improved the capturing of spatio-temporal features by dynamically 

capturing the temporal dependency with LSTM. Thus, it achieves a higher prediction 

accuracy. 
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Table 5. Independent-Samples T test results for ST-ResNet-TB and HIDLST

t-value p-value

17.86 2.53E-71

Figure 9. RMSEs of HIDLST and ST-ResNet-TB for all the predicted time intervals

Figure 10. Ground truths, predictions of HIDLST, and predictions of ST-ResNet-TB

Moreover, the HIDLST model exhibits an RMSE reduction of 5.01% 

compared with the Hybrid-LR model. By separately capturing the temporal and 

spatial dependencies and recombining them, the advantages of LSTM and ResNet 

cannot be fully exploited, because there is no direct interaction between the two 

models. Conversely, the integrated method employer by HIDLST fully exploits the 

advantages of the two models.

Lastly, the HIDLST model exhibits a distinct advantage over the ConvLSTM 

model. We obtain the minimum RMSE (15.76) with four stacked ConvLSTM layers. 

Although ConvLSTM performs convolution and LSTM operations simultaneously, it 

is difficult to train the model in a deep mode, which limits the range of the spatially 

receptive field for capturing the spatio-temporal dependency. The ResNet in the 

HIDLST model solves this problem.
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ConvLSTM spends the longest time and requires the largest number of steps 

to achieve convergence. LSTM spends the second-longest time. The two ST-ResNet-

based models spend less time. This is mainly because the convolution operation can 

be fully parallelized during execution, but the LSTM operation cannot (Lei et al. 

2017). Thus, the computation time of HIDLST (2903 s) is longer than those of the 

ST-ResNet-based models; however, it is reasonable. 

In summary, by integrating LSTM and ResNet, the HIDLST model can 

capture the spatio-temporal dependency more accurately than several existing DL-

based spatio-temporal flow volume prediction models, with a reasonable computation 

time.

4 Discussion

4.1 Distribution of errors

To analyze the spatio-temporal distribution of prediction errors, we divide the test 

dataset into four segments: workday non-sleeping hours (07:00–24:00), workday 

sleeping hours (00:00–07:00), weekend (holiday) non-sleeping hours (07:00–24:00), 

and weekend (holiday) sleeping hours (0:00–7:00). The workdays are from Tuesday 

to Friday. Monday (April 3rd 2016) is a holiday, and Saturday and Sunday are the 

weekend. For each sub-dataset, we calculate the MGT and RMSE for each grid cell.

Figure 11. Distributions of the MGT and RMSE
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Figure 11 shows the results. From a temporal perspective, although the MGTs 

for the sleeping hours are significantly lower than those for the non-sleeping hours, 

the corresponding RMSEs do not exhibit the same pattern. Figure 12(a) displays the 

relationship between the RMSE and MGT. For most cells, the errors for the sleeping 

hours are larger than those for the non-sleeping hours. To investigate the reason for 

this, for each grid cell, we calculate the variances of the MGT for the sleeping and 

non-sleeping hours. We examine the relationship between the RMSE and the 

variances of the MGT, as well as the relationship between the variances of MGT and 

the MGT. The RMSE exhibits a strong positive correlation with the variance of the 

MGT (Figure 12(b)). As shown in Figure 12(c), the variances of the MGT for the 

sleeping hours are larger than those for the non-sleeping hours. Consequently, the 

lower MGTs for the sleeping hours generate larger RMSEs. The larger MGT 

variances correspond to more variable human activities occurring during sleeping 

hours, which are more difficult to characterize using the prediction model. 

Figure 12. Relationships between the MGT and RMSE, between the RMSE and the 

variance of the MGT, and between the variance of the MGT and the MGT

For a spatial perspective, the errors along the airport expressway (cells located 

in the upper-right light rectangle in Figure 11(b)) are larger than those for other areas, 

particularly for the sleeping hours. This is possibly due to the weak connectivity of 

the airport expressway with the surrounding cells. Because the airport expressway 

connects the central urban area to the airport and has several fixed entrances and exits, 
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the interactions between the cells on this road and the adjacent cells off of this road 

only occur at fixed intersections; thus, the connection is sparse. Most of the cells 

surrounding the airport expressway are urban suburbs with a very small flow volume, 

particularly during the sleeping hours. All the surrounding cells are included in the 

convolution, introducing noise. Consequently, the airport expressway regions exhibit 

relatively large RMSE values (Figures 11(b) and (d)). 

The HIDLST model does not perform well with activities that are variable and 

regions where the spatial connectivity is weak. 

4.2 Contributions from three spatio-temporal patterns

In the feature fusion stage (Section 2.2.3), we create three weight maps (WH, WD, and 

WW) to merge the spatio-temporal features learned from the hourly, daily, and weekly 

patterns (Equation (8)). To analyze the contributions of the different patterns, we 

normalize the weights of the inflow and outflow to [0, 1] for each cell and plot their 

distributions, as shown in Figure 13. Figures 13(a)-(f) exhibit that the weights of each 

temporal pattern present varying degrees of spatial heterogeneity. While the hourly 

weights vary relatively little among different grid cells, the daily and weekly weights 

vary significantly. The heterogeneity does not exhibit obvious spatial patterns. 

However, for the hourly pattern of the inflow volume, the cells whose weights are 

<0.25 account for 17.68% of the total number of cells, and for the daily and weekly 

patterns, the percentages are 33.89% and 30.47%, respectively (Figure 13(g)). The 

weights of >70% of the cells for the hourly pattern are between 0.25 and 0.50 (far 
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higher than those for the other two patterns, as shown in Figure 13(g)), which is 

consistent with the small spatial variations in Figure 13(a). The outflow exhibits 

similar patterns to the inflow (Figure 13(h)). Thus, the contribution of the hourly 

pattern is relatively important for most cells. 

Figure 13. Weight matrix distributions for the hourly, daily, and weekly patterns

5 Conclusions and future work

This study proposes a new method, i.e., HIDLST, to predict the citywide spatio-

temporal flow volume by integrating two DL methods:LSTM and ResNet. A major 

advantage of this hybrid model over the state-of-the-art ST-ResNet model (Zhang et 

al. 2018) is its capability to dynamically capture the temporal dependency in spatio-

temporal flow volume series. We test the proposed model via a case study involving 

prediction of the citywide taxi flow in Beijing, China for a week. The experimental 

results indicate that the HIDLST model significantly outperforms several existing DL-

based models (LSTM, ConvLSTM, Hybrid-LR, and ST-ResNet) and has a reasonable 

computation time. A detailed comparison between HIDLST and ST-ResNet-TB 

reveals that HIDLST has higher performance in nearly 70% of the time intervals. For 

key regions with high flow volumes, HIDLST fits the ground truths better. In 

summary, HIDLST can automatically and accurately capture both the spatial and 

dynamic temporal dependencies in citywide spatio-temporal flow volume data. 

Accurate prediction of the citywide spatio-temporal flow volume can help urban 
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managers make effective plans to deal with various situations. The prediction results 

can also provide references for people’s travel time and travel choice. 

The hourly pattern exhibit relatively important contributions to more areas 

than the daily and weekly patterns. The weights of each temporal pattern exhibit 

varying degrees of spatial heterogeneity. However, the variations do not exhibit 

obvious spatial patterns.

This study has several limitations. First, the prediction errors of HIDLST are 

relatively large for sleeping hours and areas with sparse spatial connections (e.g., the 

airport expressway). Second, in this study, the size of the grid cell is 1 km2, and the 

time interval is 30 min. The relationship between the spatio-temporal resolutions and 

the prediction errors is not fully explored. In the future, we will address these 

limitations. We will also investigate the applicability of HIDLST to other types of 

flows, such as crowd flows, bike flows, and passenger flows of public transport.
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Figure 1. Citywide spatio-temporal flow volume 
The citywide spatio-temporal flow volume quantitatively reflects the 
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Figure 2. Problem definition of citywide spatio-temporal flow volume prediction 
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Figure 3. Framework of HIDLST 
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Figure 4. Integrally capturing the spatio-temporal dependency 
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Figure 5. Study area 
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Figure 6. Experimental results for different hidden neuron units 
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Figure 6. Experimental results for different hidden neuron units 
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Figure 7. Experimental results for different model depths 
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Figure 7. Experimental results for different model depths 

102x73mm (600 x 600 DPI) 

Page 40 of 48

http://mc.manuscriptcentral.com/tandf/ijgis

International Journal of Geographical Information Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

 

Figure 8. Experimental results for different input lengths 
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Figure 8. Experimental results for different input lengths 
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Figure 8. Experimental results for different input lengths 
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Figure 9. RMSEs of HIDLST and ST-ResNet-TB during of all predicted time intervals 
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Figure 10. Comparisons about ground truths, predictions of HIDLST and predictions of ST-ResNet-TB 
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Figure 11. Distribution of MGT and RMSE 
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Figure 12. Relationships of MGT and RMSE, RMSE and variance of MGT, and variance of MGT and MGT 
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Figure 13. Weight matrices’ distribution of hourly, daily and weekly patterns 
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