
Learning Deep Kernels for Exponential Family Densities

Li K. Wenliang * 1 Dougal J. Sutherland * 1 Heiko Strathmann 1 Arthur Gretton 1

Abstract
The kernel exponential family is a rich class of
distributions, which can be fit efficiently and with
statistical guarantees by score matching. Being
required to choose a priori a simple kernel such as
the Gaussian, however, limits its practical applica-
bility. We provide a scheme for learning a kernel
parameterized by a deep network, which can find
complex location-dependent features of the local
data geometry. This gives a very rich class of den-
sity models, capable of fitting complex structures
on moderate-dimensional problems. Compared
to deep density models fit via maximum likeli-
hood, our approach provides a complementary
set of strengths and tradeoffs: in empirical stud-
ies, deep maximum-likelihood models can yield
higher likelihoods, while our approach gives bet-
ter estimates of the gradient of the log density, the
score, which describes the distribution’s shape.

1. Introduction
Density estimation is a foundational problem in statistics
and machine learning (??), lying at the core of both super-
vised and unsupervised machine learning problems. Clas-
sical techniques such as kernel density estimation, how-
ever, struggle to exploit the structure inherent to complex
problems, and thus can require unreasonably large sample
sizes for adequate fits. For instance, assuming only twice-
differentiable densities, the L2 risk of density estimation
with N samples in D dimensions scales as O(N−4/(4+D))
(?, Section 6.5).

One promising approach for incorporating this necessary
structure is the kernel exponential family (???). This model
allows for any log-density which is suitably smooth under a
given kernel, i.e. any function in the corresponding repro-

*Equal contribution 1Gatsby Computational Neuroscience Unit,
University College London, London, U.K.. Correspondence to:
Li K. Wenliang <wenliang2012@gmail.com>, D. J. Sutherland
<dougal@gmail.com>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

ducing kernel Hilbert space. Choosing a finite-dimensional
kernel recovers any classical exponential family, but when
the kernel is sufficiently powerful the class becomes very
rich: dense in the family of continuous probability densities
on compact domains in KL, TV, Hellinger, and Lr distances
(?, Corollary 2). The normalization constant is not avail-
able in closed form, making fitting by maximum likelihood
difficult, but the alternative technique of score matching
(?) allows for practical usage with theoretical convergence
guarantees (?).

The choice of kernel directly corresponds to a smoothness
assumption on the model, allowing one to design a kernel
corresponding to prior knowledge about the target density.
Yet explicitly deciding upon a kernel to incorporate that
knowledge can be complicated. Indeed, previous appli-
cations of the kernel exponential family model have ex-
clusively employed simple kernels, such as the Gaussian,
with a small number of parameters (e.g. the length scale)
chosen by heuristics or cross-validation (e.g. ??). These
kernels are typically spatially invariant, corresponding to
a uniform smoothness assumption across the domain. Al-
though such kernels are sufficient for consistency in the
infinite-sample limit, the induced models can fail in practice
on finite datasets, especially if the data takes differently-
scaled shapes in different parts of the space. Figure 1 (left)
illustrates this problem when fitting a simple mixture of
Gaussians. Here there are two “correct” bandwidths, one for
the broad mode and one for the narrow mode. A translation-
invariant kernel must pick a single one, e.g. an average
between the two, and any choice will yield a poor fit on at
least part of the density.

In this work, we propose to learn the kernel of an exponen-
tial family directly from data. We can then achieve far more
than simply tuning a length scale, instead learning location-
dependent kernels that adapt to the underlying shape and
smoothness of the target density. We use kernels of the form

k(x,y) = κ(φ(x),φ(y)), (1)

where the deep network φ extracts features of the input
and κ is a simple kernel (e.g. a Gaussian) on those features.
These types of kernels have seen success in supervised learn-
ing (??) and critic functions for implicit generative models
(????), among other settings. We call the resulting model a
deep kernel exponential family (DKEF).

Learning Deep Kernels for Exponential Family Densities

−2 0 2 4
x

0.0

0.2

0.4

0.6

0.8
p(
x)

, k
(⋅,

x)
true pdf
KEF-G
kernel

−2 0 2 4

true pdf
DKEF
kernel

Figure 1: Fitting few samples from a Gaussian mixture, using kernel exponential families. Black dotted lines show k(−1,x),
k(0,x), and k(1,x). (Left) Using a location-invariant Gaussian kernel, the sharper component gets too much weight.
(Right) A kernel parameterized by a neural network learns length scales that adapt to the density, giving a much better fit.

We can train both kernel parameters (including all the
weights of the deep network) and, unusually, even regu-
larization parameters directly on the data, in a form of
meta-learning. Normally, directly optimizing regularization
parameters would always yield 0, since their beneficial ef-
fect in preventing overfitting is by definition not seen on the
training set. Here, though, we can exploit the closed-form
fit of the kernel exponential family to optimize a “held-out”
score (Section 3). Figure 1 (right) demonstrates the success
of this model on the same mixture of Gaussians; here the
learned, location-dependent kernel gives a much better fit.

We compare the results of our new model to recent general-
purpose deep density estimators, primarily autoregressive
models (???) and normalizing flows (???). These models
learn deep networks with structures designed to compute
normalized densities, and are fit via maximum likelihood.
We explore the strengths and limitations of both deep like-
lihood models and deep kernel exponential families on a
variety of datasets, including artificial data designed to il-
lustrate scenarios where certain surprising problems arise,
as well as benchmark datasets used previously in the lit-
erature. The models fit by maximum likelihood typically
give somewhat higher likelihoods, whereas the deep ker-
nel exponential family generally better fits the shape of the
distribution.

2. Background
Score matching Suppose we observe D = {xn}Nn=1, a
set of independent samples xn ∈ RD from an unknown
density p0(x). We posit a class of possible models {pθ}, pa-
rameterized by θ; our goal is to use the dataD to select some
θ̂ such that pθ̂ ≈ p0. The standard approach for selecting θ
is maximum likelihood: θ̂ = arg maxθ

∏N
n=1 pθ(xn).

Many interesting model classes, however, are defined as
pθ(x) = p̃θ(x)/Zθ, where the normalization constant
Zθ =

∫
x
p̃θ(x)dx cannot be easily computed. In this set-

ting, an optimization algorithm to estimate θ by maximum

likelihood requires estimating (the derivative of) Zθ for each
candidate θ considered during optimization. Moreover, the
maximum likelihood solution may not even be well-defined
when θ is infinite-dimensional (??). The intractability of
maximum likelihood led ? to propose an alternative objec-
tive, called score matching. Rather than maximizing the
likelihood, one minimizes the Fisher divergence J(pθ‖p0):

1

2

∫
p0(x)‖∇x log pθ(x)−∇x log p0(x)‖22 dx. (2)

Under mild regularity conditions, this is equal to∫
x

p0(x)

D∑
d=1

[
∂2
d log pθ(x) +

1

2
(∂d log pθ(x))2

]
dx, (3)

up to an additive constant depending only on p0, which
can be ignored during training. Here ∂nd f(x) denotes
∂n

(∂yd)n f(y)|y=x. We can estimate (3) with Ĵ(pθ,D):

1

N

N∑
n=1

D∑
d=1

[
∂2
d log pθ(xn) +

1

2
(∂d log pθ(xn))2

]
. (4)

Notably, (4) does not depend onZθ , and so we can minimize
it to find an unnormalized model p̃θ̂ for p0. Score matching
is consistent in the well-specified setting (?, Theorem 2),
and was related to maximum likelihood by ?, who argues it
finds a fit robust to infinitesimal noise.

Unnormalized models p̃ are sufficient for many tasks (?), in-
cluding finding modes, approximating Hamiltonian Monte
Carlo on targets without gradients (?), and learning dis-
criminative features (?). If we require a normalized model,
however, we can estimate the normalizing constant once,
after estimating θ; this will be far more computationally effi-
cient than estimating it at each step of an iterative maximum
likelihood optimization algorithm.

Kernel exponential families The kernel exponential fam-
ily (??) is the class of all densities satisfying a smooth-
ness constraint: log p̃(x) = f(x) + log q0(x), where q0

Learning Deep Kernels for Exponential Family Densities

is some fixed function and f is any function in the repro-
ducing kernel Hilbert spaceH with kernel k. This class is
an exponential family with natural parameter f and suf-
ficient statistic k(x, ·), due to the reproducing property
f(x) = 〈f, k(x, ·)〉H:

p̃f (x) = exp (f(x)) q0(x) = exp (〈f, k(x, ·)〉H) q0(x).

Using a simple finite-dimensional H, we can recover any
standard exponential family, e.g. normal, gamma, or Pois-
son; if H is sufficiently rich, the family can approximate
any continuous distribution with tails like q0 arbitrarily well
(?, Example 1 and Corollary 2).

These models do not in general have a closed-form normal-
izer. For some f and q0, p̃f may not even be normalizable,
but if q0 is e.g. a Gaussian density, typical choices of φ and
κ in (1) guarantee a normalizer exists (Appendix A).

? proved good statistical properties for choosing f ∈
H by minimizing a regularized form of (4), f̂ =
arg minf∈H Ĵ(p̃f ,D) + λ‖f‖2H, but their algorithm has
an impractical computational cost of O(N3D3). This can
be alleviated with the Nyström-type “lite” approximation
(??): select M inducing points zm ∈ RD, and select f ∈ H
as

fkα,z(x) =

M∑
m=1

αmk(x, zm), p̃kα,z = p̃fkα,z . (5)

As the span of {k(z, ·)}z∈RD is dense inH, this is a natural
approximation, similar to classical RBF networks (?). The
“lite” model often yields excellent empirical results at much
lower computational cost than the full estimator. We can
regularize (4) in several ways and still find a closed-form
solution for α. In this work, our loss Ĵ(fkα,z,λ,D) will be

Ĵ(p̃kα,z,D)+
λα
2
‖α‖2 +

λC
2N

N∑
n=1

D∑
d=1

[
∂2
d log p̃kα,z(xn)

]2
.

? used a small λα for numerical stability but primarily
regularized with λH‖fkα,z‖2H. As we change k, however,
‖f‖H changes meaning, and we found empirically that this
regularizer tends to harm the fit. The λC term was recom-
mended by ?, encouraging the learned log-density to be
smooth without much extra computation; it provides some
empirical benefit in our context. Given k, z, and λ, Propo-
sition 3 (Appendix B) shows we can find the optimal α by
solving anM×M linear system inO(M2ND+M3) time:
the α which minimizes Ĵ(fkα,z,λ,D) is

α(λ, k, z,D) = − (G+ λαI + λCU)
−1
b (6)

Gm,m′ =
1

N

N∑
n=1

D∑
d=1

∂dk(xn, zm) ∂dk(xn, zm′)

Um,m′ =
1

N

N∑
n=1

D∑
d=1

∂2
dk(xn, zm) ∂2

dk(xn, zm′)

bm =
1

N

N∑
n=1

D∑
d=1

∂2
dk(xn, zm) + ∂d log q0(xn) ∂dk(xn, zm)

+λC∂
2
d log q0(xn) ∂2

dk(xn, zm).

3. Fitting Deep Kernels
All previous applications of score matching in the kernel
exponential family of which we are aware (e.g. ????) have
used kernels of the form k(x,y) = exp

(
− 1

2σ2 ‖x− y‖2
)
+

r
(
xTy + c

)2
, with kernel parameters and regularization

weights either fixed a priori or selected via cross-validation.
This simple form allows the various kernel derivatives re-
quired in (6) to be easily computed by hand, and the small
number of parameters makes grid search adequate for model
selection. But, as discussed in Section 1, these simple ker-
nels are insufficient for complex datasets. Thus we wish to
use a richer class of kernels {kw}, with a large number of
parameters w – in particular, kernels defined by a neural
network. This prohibits model selection via simple grid
search.

One could attempt to directly minimize Ĵ(fkwα,z,λ,D)
jointly in the kernel parameters w, the model parameters α,
and perhaps the inducing points z. Consider, however, the
case where we simply use a Gaussian kernel and {zm} = D.
Then we can achieve arbitrarily good values of (3) by taking
σ → 0, drastically overfitting to the training set D.

We can avoid this problem – and additionally find the best
values for the regularization weights λ – with a form of
meta-learning. We find choices for the kernel and reg-
ularization which will give us a good value of Ĵ on a
“validation set” Dv when fit to a fresh “training set” Dt.
Specifically, we take stochastic gradient steps following
∇λ,w,zĴ(p̃kwα(λ,kw,z,Dt),z,Dv). We can easily do this be-
cause we have a differentiable closed-form expression (6)
for the fit to Dt, rather than having to e.g. back-propagate
through an unrolled iterative optimization procedure. As we
used small minibatches in this procedure, for the final fit we
use the whole dataset: we first freezew and z and find the
optimal λ for the whole training data, then finally fit α with
the new λ. This process is summarized in Algorithm 1.

Computing kernel derivatives Solving for α and com-
puting the loss (4) require matrices of kernel second deriva-
tives, but current deep learning-oriented automatic differenti-
ation systems are not optimized for evaluating tensor-valued
higher-order derivatives at once. We therefore implement
backpropagation to computeG, U , and b of (6) as Tensor-
Flow operations (?) to obtain the scalar loss Ĵ , and used
TensorFlow’s automatic differentiation only to optimizew,

Learning Deep Kernels for Exponential Family Densities

Algorithm 1: Full training procedure
input: Dataset D; initial inducing points z, kernel

parameters w, regularization λ = (λα, λC)
Split D into D1 and D2;
Optimize w, λ, z, and maybe q0 params:
while Ĵ(p̃kwα(λ,kw,z,D1),z,D2) still improving do

Sample disjoint data subsets Dt,Dv ⊂ D1;
f(·) =

∑M
m=1 αm(λ, kw, z,Dt)kw(zm, ·);

Ĵ= 1
|Dv|

∑|Dv|
n=1

∑D
d=1

[
∂2
df(xn) + 1

2 (∂df(xn))2
]
;

Take SGD step in Ĵ for w, λ, z, maybe q0 params;
end
Optimize λ for fitting on larger batches:
while Ĵ(p̃kwα(λ,kw,z,D1),z,D2) still improving do

f(·) =
∑M
m=1 αm(λ, kw, z,D1)kw(·, zm);

Sample subset Dv ⊂ D2;
Ĵ= 1

|Dv|
∑|Dv|
n=1

∑D
d=1

[
∂2
df(xn) + 1

2 (∂df(xn))2
]
;

Take SGD steps in Ĵ for λ only;
end
Finalize α on D1:
Find α = α(λ, kw, z,D1);
return: log p̃(·) =

∑M
m=1 αmkw(·, zm) + log q0(·);

z, λ, and q0 parameters.

Backpropagation to find these second derivatives requires
explicitly computing the Hessians of intermediate layers of
the network, which becomes quite expensive as the model
grows; this limits the size of kernels that our model can use.
A more efficient implementation based on Hessian-vector
products might be possible in an automatic differentiation
system with better support for matrix derivatives.

Kernel architecture We will choose our kernel kw(x,y)
as a mixture of R Gaussian kernels with length scales σr,
taking in features of the data extracted by a network φwr (·):

R∑
r=1

ρr exp

(
− 1

2σ2
r

‖φwr (x)− φwr (y)‖2
)
. (7)

Combining R components makes it easier to account for
both short-range and long-range dependencies. We con-
strain ρr ≥ 0 to ensure a valid kernel, and

∑R
r=1 ρr = 1 for

simplicity. The networks φw are made of L fully connected
layers of width W . For L > 1, we found that adding a skip
connection from data directly to the top layer speeds up
learning. A softplus nonlinearity, log(1 + exp(x)), ensures
that the model is twice-differentiable so (3) is well-defined.

3.1. Behavior on Mixtures

One interesting limitation of score matching is the following:
suppose that p0 is composed of two disconnected compo-
nents, p0(x) = πp1(x) + (1− π)p2(x) for π ∈ (0, 1) and
p1, p2 having disjoint, separated support. Then ∇ log p0(x)
will be ∇ log p1(x) in the support of p1, and ∇ log p2(x)
in the support of p2. Score matching compares ∇ log p̃θ to
∇ log p1 and∇ log p2, but is completely blind to p̃θ’s rela-
tive mass between the two components; it is equally happy
with any reweighting of the components.

If all modes are connected by regions of positive density,
then the log density gradient in between components will
determine their relative weight, and indeed score matching
is then consistent. But when p0 is nearly zero between two
dense components, so that there are no or few samples in
between, score matching will generally have insufficient
evidence to weight nearly-separate components.

Proposition 4 (Appendix C) studies the the kernel exponen-
tial family in this case. For two components that are com-
pletely separated according to k, (6) fits each as it would if
given only that component, except that the effective λα is
scaled: smaller components are regularized more.

Appendix C.1 studies a simplified case where the kernel
length scale σ is far wider than the component; then the
density ratio between components, which should be π

1−π ,

is approximately exp
(

D
2σ2λα

(
π − 1

2

))
. Depending on the

value of D
2σ2λα

, this ratio will often either be quite extreme,
or nearly 1. It is unclear, however, how well this result
generalizes to other settings.

A heuristic workaround when disjoint components are sus-
pected is as follows: run a clustering algorithm to identify
disjoint components, separately fit a model to each clus-
ter, then weight each model according to its sample count.
When the components are well-separated, this clustering is
straightforward, but it may be difficult in high-dimensional
cases when samples are sparse but not fully separated.

3.2. Model Evaluation

In addition to qualitatively evaluating fits, we will eval-
uate our models with three quantitative criteria. The
first is the finite-set Stein discrepancy (FSSD; ?), a mea-
sure of model fit which does not depend on the nor-
malizer Zθ. It examines the fit of the model at J
test locations V = {vb}Bb=1 using an kernel l(·, ·),
as 1

DB

∑B
b=1‖Ex∼p0 [l(x,vb)∇x log p(x)+∇xl(x,vb)]‖2.

With randomly selected V and some mild assumptions, it
is zero if and only if p = p0. We use a Gaussian kernel
with bandwidth equal to the median distance between test

Learning Deep Kernels for Exponential Family Densities

points,1and choose V by adding small Gaussian noise to
data points. ? construct a hypothesis test to test which of p
and p′ is closer to p0 in the FSSD. We will report a score –
the p-value of this test – which is near 0 when model p is
better, near 1 when model p′ is better, and around 1

2 when
the two models are equivalent. We emphasize that we are
using this as a model comparison score on an interpretable
scale, but not following a hypothesis testing framework.
Another similar performance measure is the kernel Stein
discrepancy (KSD) (?), where the model’s goodness-of-fit
is evaluated at all test data points rather than at random
test locations. We omit the results as they are essentially
identical to that of the FSSD, even across a wide range of
kernel bandwidths.

As all our models are twice-differentiable, we also compare
the score-matching loss (4) on held-out test data. A lower
score-matching loss implies a smaller Fisher divergence
between model and data distributions.

Finally, we compare test log-likelihoods, using importance
sampling estimates of the normalizing constant Zθ:

Ẑθ =
1

U

U∑
u=1

ru where ru :=
p̃θ(yu)

q0(yu)
, yu ∼ q0,

so E Ẑθ =
∫ p̃θ(yu)
q0(yu) q0(yu) = Zθ. Our log-likelihood

estimate is log p̂θ(x) = log p̃θ(x) − log Ẑθ. This esti-
mator is consistent, but Jensen’s inequality tells us that
E log p̂θ(x) > log pθ(x), so our evaluation will be over-
optimistic. Worse, the variance of log Ẑθ can be mislead-
ingly small when the bias is still quite large; we observed
this in our experiments. We can, though, bound the bias:
Proposition 1. Suppose that a, s ∈ R are such that
Pr(ru ≥ a) = 1 and Pr(ru ≤ s) ≤ ρ < 1

2 . Define
t := (s + a)/2, ψ(q, Zθ) := log Z

q + q
Z − 1, and let

P := max (ψ(a, Zθ), ψ(t, Zθ)). Then

logZθ−E log Ẑθ ≤
ψ (t, Zθ)

(Zθ − t)2

Var[ru]

U
+P (4ρ(1− ρ))

U
2 .

(Proof in Appendix D.) We can find a, s because we propose
from q0, and thus we can effectively estimate the bound
(Appendix D.1). This estimate of the upper bound is itself
biased upwards (Proposition 6), so it is likely, though not
guaranteed, that the estimate overstates the amount of bias.

3.3. Previous Attempts at Deep Score Matching

? used score matching to train a (one-layer) network to
output an unnormalized log-density. This approach is es-

1This reasonable choice avoids tuning any parameters. We do
not optimize the kernel or the test locations to avoid a situation in
which model p is better than p′ in some respects but p′ better than
p in others; instead, we use a simple default mode of comparison.

sentially a special case of ours: use the kernel kw(x,y) =
φw(x)φw(y), where φw : RD → R. Then the function
fkwα,z(x) from (5) is

M∑
m=1

αmφw(zm)φw(x) =

[
M∑
m=1

αmφw(zm)

]
φw(x).

The scalar in brackets is fit analytically, so log p is deter-
mined almost entirely by the network φw plus log q0(x).

? recently also attempted parameterizing the unnormaliz-
ing log-density as a deep network, using an approximation
called Parzen score matching. This approximation requires
a global constant bandwidth to define the Parzen window
size for the loss function, fit to the dataset before learning
the model. This is likely only sensible on datasets for which
simple fixed-bandwidth kernel density estimation is appro-
priate; on more complex datasets, the loss may be poorly
motivated. It also leads to substantial oversmoothing visi-
ble in their results. As they did not provide code for their
method, we do not compare to it empirically.

4. Experimental Results
In our experiments, we compare to several alternative meth-
ods. The first group are all fit by maximum likelihood, and
broadly fall into (at least) one of two categories: autoregres-
sive models decompose p(x1, . . . , xD) =

∏D
d=1 p(xd|x≤d)

and learn a parametric density model for each of these con-
ditionals. Normalizing flows instead apply a series of in-
vertible transformations to some simple initial density, say
standard normal, and then compute the density of the over-
all model via the Jacobian of the transformation. We use
implementations2 of the following several models in these
categories by ?:

MADE (?) masks the connections of an autoencoder so
it is autoregressive. We used two hidden layers, and each
conditional a Gaussian. MADE-MOG is the same but with
each conditional a mixture of 10 Gaussians.

Real NVP (?) is a normalizing flow; we use a general-
purpose form for non-image datasets.

MAF (?). A combination of a normalizing flow and MADE,
where the base density is modeled by MADE, with 5 au-
toregressive layers. MAF-MOG instead models the base
density by MADE-MOG.

For the models above, we used layers of width 30 for exper-
iments on synthetic data, and 100 for benchmark datasets.
Larger values did not improve performance.

KCEF (?). Inspired by autoregressive models, the density
is modeled by a cascade of kernel conditional exponential

2github.com/gpapamak/maf

https://github.com/gpapamak/maf

Learning Deep Kernels for Exponential Family Densities

family distributions, fit by score matching with Gaussian
kernels.3

DKEF. On synthetic datasets, we consider four variants of
our model with one kernel component, R = 1. KEF-G
refers to the model using a Gaussian kernel with a learned
bandwidth. DKEF-G-15 has the kernel (7), with L = 3
layers of width W = 15. DKEF-G-50 is the same with
W = 50. To investigate whether the top Gaussian kernel
helps performance, we also train DKEF-L-50, whose kernel
is kθ(x,y) = φw(x) · φw(y), where φw has W = 50.
To compare with the architecture of ?, DKEF-L-50-1 has
the same architecture as DKEF-L-50 except that we add an
extra layer with a single neuron, and use M = 1. In all
experiments, q0(x) =

∏D
d=1 exp

(
−|xd − µd|βd/(2σ2

d)
)
,

with βd > 1. On benchmark datasets, we use DKEF-
G-30 and KEF-G with three kernel components, R =
3. Code for DKEF is at github.com/kevin-w-li/
deep-kexpfam.

4.1. Behavior on Synthetic Datasets

We first demonstrate the behavior of the models on several
two-dimensional synthetic datasets Funnel, Banana, Ring,
Square, Cosine, Mixture of Gaussians (MoG) and Mixture
of Rings (MoR). Together, they cover a range of geometric
complexities and multimodality.

We visualize the fit of various methods by showing the log
density function in Figure 2. For each model fit on each
distribution, we report the normalized log likelihood (left)
and Fisher divergence (right). In general, the kernel score
matching methods find cleaner boundaries of the distribu-
tions, and our main model KDEF-G-30 produces the lowest
Fisher divergence on many of the synthetic datasets while
maintaining high likelihoods.

Among the kernel exponential families, DKEF-G outper-
formed previous versions where ordinary Gaussian kernels
were used for either joint (KEF-G) or autoregressive (KCEF)
modeling. DKEF-G-50 does not substantially improve over
DKEF-G-15; we omit it for space. We can gain additional
insights into the model by looking at the shape of the learned
kernel, shown by the colored lines; the kernels do indeed
adapt to the local geometry.

DKEF-L-50 and DKEF-L-50-1 show good performance
when the target density has simple geometries, but had trou-
ble in more complex cases, even with much larger networks
than used by DKEF-G-15. It seems that a Gaussian kernel
with inducing points provides much stronger representa-
tional features than a using linear kernel and/or a single
inducing point. A large enough network φw would likely
be able to perform the task well, but, using currently avail-
able software, the second derivatives in the score matching

3github.com/MichaelArbel/KCEF

loss limit our ability to use very large networks. A similar
phenomenon was observed by ? in the context of GAN crit-
ics, where combining some analytical RKHS optimization
with deep networks allowed much smaller networks to work
well.

As expected, models fit by DKEFs generally have smaller
Fisher divergences than likelihood-based methods. For Fun-
nel and Banana, the true densities are simple transforma-
tions of Gaussians, and the normalizing flow models per-
form relatively well. But on Ring, Square, and Cosine, the
shape of the learned distribution by likelihood-based meth-
ods exhibits noticeable artifacts, especially at the boundaries.
These artifacts, particularly the “breaks” in Ring, may be
caused by a normalizing flow’s need to be invertible and
smooth. The shape learned by DKEF-G-15 is much cleaner.

On multimodal distributions with disjoint components,
likelihood-based and score matching-based methods show
interesting failure modes. The likelihood-based models
often connect separated modes with a “bridge”, even for
MADE-MOG and MAF-MOG which use explicit mixtures.
On the other hand, DKEF is able to find the shapes of the
components, but the weighting between modes is unstable.
As suggested in Section 3.1, we also fit mixtures of all mod-
els (except KCEF) on a partition of MoR found by spectral
clustering (?); DKEF-G-15 produced an excellent fit.

Another challenge we observed in our experiments is that
the estimator of the objective function, Ĵ , tends to be more
noisy as the model fit improves. This happens particularly
on datasets where there are “sharp” features, such as Square
(see Figure 4 in Appendix E.1), where the model’s curvature
becomes extreme at some points. This can cause higher vari-
ance in the gradients of the parameters, and more difficulty
in optimization.

4.2. Results on Benchmark Datasets

Following recent work on density estimation (????), we
trained DKEF and the likelihood-based models on five UCI
datasets (?); in particular, we used RedWine, WhiteWine,
Parkinson, HepMass, and MiniBoone. All performances
were measured on held-out test sets. We did not run KCEF
due to its computational expense. Appendix E.2 gives fur-
ther details.

Figure 3 shows results. In gradient matching as measured
by the FSSD, DKEF tends to have the best values. Test
set sizes are too small to yield a confident p-value on the
Wine datasets, but the model comparison test confidently
favors DKEF on datasets with large-enough test sets. The
FSSD results agree with KSD, which is omitted. In the
score matching loss4 (3), DKEF is the best on Wine datasets

4The implementation of ? sometimes produced NaN values for
the required second derivatives, especially for MADE-MOG. We

https://github.com/kevin-w-li/deep-kexpfam
https://github.com/kevin-w-li/deep-kexpfam
https://github.com/MichaelArbel/KCEF

Learning Deep Kernels for Exponential Family Densities

Figure 2: Log densities learned by different models. Our model is DKEF-G-15 at the bottom row. Columns are different
synthetic datasets. The rightmost columns shows a mixture of each model (except KCEF) on the same clustering of MoR.
We subtracted the maximum from each log density, and clipped the minimum value at −9. Above each panel are shown the
average log-likelihoods (left) and Fisher divergence (right) on held-out data points. Bold indicates the best fit. For DKEF-G
models, faint colored lines correspond to contours at 0.9 of the kernel evaluated at different locations.

Learning Deep Kernels for Exponential Family Densities

0.0

0.2

0.4

FS
SD

2 s
ta

tis
tic

RedWine (D=11)

0.00

0.05

0.10

WhiteWine (D=11)

0.0

0.5

1.0
Parkinsons (D=15)

0.0

0.5

HepMass (D=22)

0.0

0.5

1.0

MiniBoone (D=43)

0.0

0.5

1.0

p-
va

lu
e

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

−50

0

50

sc
or

e
m

at
ch

in
g

lo
ss

−50

0

−500

−250

0

−2000

−1000

0

−2000

−1000

0

DKE
F
KE

F-G
MADE

MADE-M
OG

MAF

MAF-M
OG

NVP

−14

−12

lo
g

lik
el

ih
oo

d

DKE
F
KE

F-G
MADE

MADE-M
OG

MAF

MAF-M
OG

NVP
−15

−14

−13

−12

DKE
F
KE

F-G
MADE

MADE-M
OG

MAF

MAF-M
OG

NVP
−16

−14

−12

DKE
F
KE

F-G
MADE

MADE-M
OG

MAF

MAF-M
OG

NVP

−30

−20

DKE
F
KE

F-G
MADE

MADE-M
OG

MAF

MAF-M
OG

NVP
−60

−50

−40

−30

Figure 3: Results on the real datasets; bars show medians, points show each of 15 individual runs, excluding invalid values.
(1st row) The estimate of the squared FSSD, a measure of model goodness of fit based on derivatives of the log density;
lower is better. (2nd row) The p-value of a test that each model is no better than DKEF in terms of the FSSD; values near 0
indicate that DKEF fits the data significantly better than the other model. (3nd row) Value of the loss (4); lower is better.
(4th row) Log-likelihoods; higher is better. DKEF estimates are based on 1010 samples for Ẑθ, with vertical lines showing
the upper bound on the bias from Proposition 1 (which is often too small to be easily visible).

and most runs on Parkinson, but worse on Hepmass and
MiniBoone. FSSD is a somewhat more “global” measure
of shape, and is perhaps more weighted towards the bulk
of the distribution rather than the tails.5 In likelihoods,
DKEF is comparable to other methods except MADE on
Wines but worse on the other, larger, datasets. Note that we
trained DKEF while adding Gaussian noise with standard
deviation 0.05 to the (whitened) dataset; training without
noise improves the score matching loss but harms likelihood,
while producing similar results for FSSD.

Results for models with a fixed Gaussian q0 were similar
(Figure 6, in Appendix E.2).

5. Discussion
Learning deep kernels helps make the kernel exponential
family practical for large, complex datasets of moderate
dimension. We can exploit the closed-form fit of the α vec-
tor to optimize kernel and even regularization parameters
using a “held-out” loss, in a particularly convenient instance
of meta-learning. We are thus able to find smoothness as-

discarded those runs for these plots.
5With a kernel approaching a Dirac delta, the FSSD2 is similar

to KSD2 ≈
∫
p0(x)

2 ‖∇ log p(x)−∇ log p̃θ(x)‖2dx; compare
to J = 1

2

∫
p0(x)‖∇ log p(x)−∇ log p̃θ(x)‖2dx.

sumptions that fit our particular data, rather than arbitrarily
choosing them a priori.

Computational expense makes score matching with deep ker-
nels difficult to scale to models with large kernel networks,
limiting the dimensionality of possible targets. Combining
with the kernel conditional exponential family might help
alleviate that problem by splitting the model up into several
separate but marginally complex components. The kernel
exponential family, and score matching in general, also
struggles to correctly balance datasets with nearly-disjoint
components, but it seems to generally learn density shapes
better than maximum likelihood-based deep approaches.

ACKNOWLEDGMENTS

This work was supported by the Gatsby Charitable Founda-
tion. We thank Heishiro Kanagawa for helpful discussions.

Learning Deep Kernels for Exponential Family Densities

Learning Deep Kernels for Exponential Family Densities:
Supplementary material

A. DKEFs can be normalized
Proposition 2. Consider the kernel k(x,y) = κ(φ(x),φ(y)), where κ is a kernel such that κ(a,a) ≤ Lκ‖a‖2 + Cκ and
φ a function such that ‖φ(x)‖ ≤ Lφ‖x‖+ Cφ. Let q0(x) = Qr0(V −1(x− µ)), where Q > 0 is any scalar and r0 is a
product of independent generalized Gaussian densities, with each βd > 1:

r0(z) =

D∏
d=1

βd

2 Γ
(

1
βd

) exp
(
−|zd|βd

)
.

(For example, N (µ,Σ) for strictly positive definite Σ could be achieved with βd = 2 and V the Cholesky factorization of
Σ.) Then, for any function f in the RKHSH corresponding to k,∫

exp(f(x)) q0(x) dx <∞.

Proof. First, we have that f(x) = 〈f, k(x, ·)〉H ≤ ‖f‖H
√
k(x,x), and

k(x,x) = κ(φ(x),φ(x)) ≤ Lκ‖φ(x)‖2 + Cκ ≤ Lκ(Lφ‖x‖2 + Cφ) + Cκ.

Combining these two yields

f(x) ≤ ‖f‖H
√
LκLφ‖x‖2 + LκCφ + Cκ ≤ ‖f‖H

√
LκLφ‖x‖+ ‖f‖H

√
LκCφ + Cκ ≤ C0 + C1‖x‖,

defining C1 := ‖f‖H
√
LκLφ, C0 := ‖f‖H

√
LκCφ + Cκ.

Let z = V −1(x− µ), and let Cr be the normalizing constant of r0, Cq :=
∏D
d=1

βd

2αd Γ
(

1
βd

) . Then

∫
exp(f(x)) q0(x) dx ≤

∫
exp (C0 + C1‖x‖) q0(x)dx

= Q exp(C0)Ez∼r0 [exp (C1‖V z + µ‖)]
≤ Q exp(C0 + C1‖µ‖)Ez∼r0 [exp (C1‖V ‖‖z‖)]

≤ Q exp(C0 + C1‖µ‖)Ez∼r0

[
exp

(
C1‖V ‖

D∑
d=1

|zd|
)]

= Q exp(C0 + C1‖µ‖)
D∏
d=1

Ez∼r0 [exp (C1‖V ‖|zd|)] .

We can now show that each of these expectations is finite: letting C = C1‖V ‖,

Ez∼r0 [exp (C|zd|)] =

∫ ∞
−∞

exp (C|z|) · β

2Γ(1/β)
exp

(
−|z|β

)
dz

= 2
β

2Γ(1/β)

∫ ∞
0

exp
(
Cz − zβ

)
dz

= 2
β

2Γ(1/β)

(∫ s

0

exp
(
Cz − zβ

)
dz +

∫ ∞
s

exp
(
Cz − zβ

)
dz

)
for any s ∈ (0,∞). The first integral is clearly finite. Picking s = (2|C|) 1

β−1 , so that |Cz| < 1
2z
β for z > s, gives that∫ ∞

s

exp
(
Cz − zβ

)
dz ≤

∫ ∞
s

exp
(
− 1

2z
β
)

dz <
1

β
2

1
β Γ

(
1

β

)
<∞,

so that
∫

exp(f(x))q0(x)dx <∞ as desired.

Learning Deep Kernels for Exponential Family Densities

The condition on φ holds for any φ given by a deep network with Lipschitz activation functions, such as the softplus function
we use in this work. The condition on κ also holds for a linear kernel (where Lκ = 1, Cκ = 0), any translation-invariant
kernel (Lκ = 0, Cκ = κ(0, 0)), or mixtures thereof. If κ is bounded, the integral is finite for any function φ.

The given proof would not hold for a quadratic κ, which has been used previously in the literature; indeed, it is clearly
possible for such an f to be unnormalizable.

B. Finding the optimal α
We will show a slightly more general result than we need, also allowing for an ‖f‖2H penalty. This result is related to Lemma
4 of ?, but is more elementary and specialized to our particular needs while also allowing for more types of regularizers.
Proposition 3. Consider the loss

Ĵ(fkα,z,λ,D) = Ĵ(pkα,z,D) +
1

2

[
λα‖α‖2 + λH‖fkα,z‖2H + λC

1

N

N∑
n=1

D∑
d=1

[
∂2
d log p̃kα,z(xn)

]2]
where

Ĵ(pkα,z,D) =
1

N

N∑
n=1

D∑
d=1

[
∂2
d log p̃kα,z(xn) +

1

2

(
∂d log p̃kα,z(xn)

)2]
.

For fixed k, z, and λ, as long as λα > 0 then the optimal α is

α(λ, k, z,D) = arg min
α

Ĵ(fkα,z,λ,D) = − (G+ λαI + λHK + λCU)
−1
b

Gm,m′ =
1

N

N∑
n=1

D∑
d=1

∂dk(xn, zm) ∂dk(xn, zm′)

Um,m′ =
1

N

N∑
n=1

D∑
d=1

∂2
dk(xn, zm) ∂2

dk(xn, zm′)

Km,m′ = k(zm, zm′)

bm =
1

N

N∑
n=1

D∑
d=1

∂2
dk(xn, zm) + ∂d log q0(xn) ∂dk(xn, zm) + λC∂

2
d log q0(xn) ∂2

dk(xn, zm).

Proof. We will show that the loss is quadratic in α. Note that

1

N

N∑
n=1

D∑
d=1

∂2
d log p̃kα,z(xn) =

1

N

N∑
n=1

D∑
d=1

[
M∑
m=1

αm∂
2
dk(xn, zm) + ∂2

d log q0(xn)

]

= αT

[
1

N

N∑
n=1

D∑
d=1

∂2
dk(xn, zm)

]
m

+ const

1

N

N∑
n=1

D∑
d=1

1

2

(
∂d log p̃kα,z(xn)

)2
=

1

N

N∑
n=1

D∑
d=1

1

2

 M∑
m,m′=1

αmαm′∂dk(xn, zm)∂dk(xn, zm′)

+2

M∑
m=1

αm∂d log q0(xn)∂dk(xn, zm) + (∂d log q0(xn))
2

)

=
1

2
αTGα+αT

[
1

N

N∑
n=1

D∑
d=1

∂d log q0(xn)∂dk(xn, zm)

]
+ const.

The λC term is of the same form, but with second derivatives:

1

2N

N∑
n=1

D∑
d=1

(
∂2
d log p̃kα,z(xn)

)2
=

1

2
αTUα+αT

[
1

N

N∑
n=1

D∑
d=1

∂2
d log q0(xn)∂2

dk(xn, zm)

]
+ const.

