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1 Introduction

Panel data is popularly used in program evaluation studies to control for unobserved fixed

effects. There exist many panel data methods that enable one to do so by relying on func-

tional form restrictions or restrictions on the distribution of unobserved variables. However,

when treatment effects are heterogeneous depending on unobserved fixed effects, existing

panel data methods cannot identify and consistently estimate the average treatment effect

(ATE) for the entire population. This paper proposes a new panel data approach that

can identify and estimate the ATE for the entire population, even when treatment effect

heterogeneity depends on unobserved fixed effects.

In program evaluation studies, treatment effects are often heterogeneous among indi-

viduals with different characteristics, and this heterogeneity often depends on unobserved

fixed effects. For example, in job training evaluations, the effect of training on wages may

be heterogeneous among individuals with different levels of unobserved ability. When treat-

ment effect heterogeneity depends on unobserved fixed effects, existing panel data methods

cannot identify and consistently estimate the ATE for the entire population. The frequently

used fixed effects (FE) estimator, based on a conditional independence assumption, is bi-

ased in this case.1 The difference-in-differences (DID) method, based on a common trend

assumption, can identify and estimate the ATE for the treated (ATT), but not for the

entire population. In many cases, however, estimating the ATE is often more desirable in

terms of the external validity of estimation results, which has been capturing increasing

attention in empirical studies (e.g., Athey and Imbens, 2017). For example, if we consider

expanding an existing policy intervention from the present treated subpopulation to the

entire population, the ATE should be the parameter of interest.

This paper proposes a new panel data approach that can identify and estimate the ATE

for the entire population, while allowing for treatment effect heterogeneity that depends on

unobserved fixed effects. The identification relies on the linear fixed effects specification of

the treated and untreated potential outcome equations, wherein a scalar fixed effect enters

additively the two equations with different coefficients. This specification allows treatment

effect heterogeneity to depend on unobserved fixed effects, albeit it imposes some parametric

restrictions. The approach also allows the ATE to be time-varying and can identify and

estimate the ATE in each time period. Note, however, that it does not allow for the dynamic

1In the context of group fixed effects, Gibbons et al. (2018) presented a number of empirical examples
where the FE estimator is biased because treatment effect heterogeneity depends on group fixed effects.
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structures in treatment effects, unlike Callaway and Sant’Anna (2018).

Under the specified model, we identify the ATE by predicting the unobserved potential

outcome for each treated and untreated individual using the following three steps. First, we

identify the coefficients of the observed covariates in the regression functions for the treated

and untreated potential outcomes by applying the within-transformation to each regression

function to difference out the fixed effects. Next, by looking at the residuals from the first

step, we identify the ratio of the fixed effects terms between the two regression functions.

To do that, we use changes over time in the treatment and control groups, which are

observed in the subpopulation of individuals called movers,2 and exogenous variables that

are correlated with the fixed effects conditional on the treatment assignment. As discussed

later, finding such exogenous variables is usually not difficult. Finally, we identify the ATE

by combining observed data with the identified parameters to predict unobserved potential

outcomes for each treated and untreated individual. Building on the identification result,

the ATE can be estimated by a generalized method of moments (GMM) estimator.

The limitation of this approach is that it relies on the scalar and additive fixed-effects

specification for the regression functions of the potential outcomes. Under nonseparable

panel data models, Chernozhukov et al. (2013) considered identification and estimation

of the average and quantile treatment effects based on the time homogeneity condition of

the period-specific disturbance terms. With the same type of time homogeneity condition,

Jun et al. (2016) derived the sharp identified bounds of the potential outcomes distribu-

tions. Sakaguchi (2016) proposed an approach to identify and estimate the ATE for the

entire population as an extension of the DID approach. That approach exploits uniquely

structured panel data, wherein the treatment exposure expands from no individuals to all

individuals across time periods. Unlike those works, although the approach proposed in

this paper relies on the scalar and additive fixed-effects specification, it does not require

the time homogeneity condition or a specific data structure.

This paper also relates to the literature on the correlated random coefficient (CRC)

panel data model. The CRC panel data model captures treatment effect heterogeneity that

depends on unobserved fixed effects, and the average partial effect (APE) of the individual-

specific slope in the model generally corresponds to the ATE.3 One common approach used

to identify and estimate the APE in the model is a generalized within-group approach

(e.g., Chamberlain, 1992), which identifies and estimates the APE for a subpopulation

2Movers are individuals who experience both treatment and no-treatment across observed time periods.
3This is illustrated in Wooldridge (2010, p. 968).
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of movers. In contrast, in this paper we assume scalar fixed effects; instead, we identify

and estimate the whole ATE. Other works studying the CRC panel data model include

Wooldridge (2005), Arellano and Bonhomme (2012), and Graham and Powell (2012).

As an empirical application, I apply the approach to study the impact of a mother’s

smoking during pregnancy on her child’s birth weight using the matched panel data con-

structed by Abrevaya (2006). By applying the proposed approach, we can allow the effect of

mothers’ smoking to be heterogeneous depending on the mother’s unobserved fixed effects,

and we can estimate the average smoking effect on the entire population of mothers. In the

application, I find that a mother’s smoking has a negative average effect at each of three

birth times, and the effect worsens with additional birth time.

The remainder of this paper is structured as follows. Section 2 describes the setting,

specification of potential outcomes, and assumptions required for identification. Section

3 describes the identification approach and estimation method. Section 4 presents Monte

Carlo simulation results to show the finite sample behavior of the estimator. Section 5

describes the empirical application. Section 6 concludes this paper with some remarks. An

online Appendix contains all the proofs and additional simulation results.

2 Setup and Model

We suppose that {Yit, Dit, Xit, Zit} is observed for N individuals (i = 1, 2, . . . , N) across

T time periods (t = 1, . . . , T ), where T ≥ 2. We assume N is large, while T is small. Yit

is an observed outcome. Dit ∈ {0, 1} is a binary treatment indicator, such that Dit = 1 if

individual i is treated in period t and Dit = 0 otherwise. We suppose that the treatment as-

signment is time-varying. Xit is a K×1 vector of time-varying observed covariates that may

include time dummies (or a deterministic time trend), time-varying observed confounding

variables, and interactions among them. Zit is an L× 1 vector of exogenous variables that

are correlated with unobserved fixed effects conditional on treatment assignment. Zit may

consist of some or all variables included in Xit, as well as external variables. No restrictions

are required on the dimension of Zit. We will discuss assumptions on Zit and its use later.

Finally, let Yit(1) and Yit(0) be the potential outcomes for individual i in period t with and

without treatment, respectively. Then, Yit is expressed as Yit = DitYit(1) + (1−Dit)Yit(0).

Throughout this paper, we focus on the ATE for the entire population in each period

t ∈ {1, . . . , T}: τatet ≡ E[Yit(1)−Yit(0)]. In many cases, the ATE for the entire population,

rather than for a limited subpopulation, is more interesting. We shall allow the ATE to
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be time-varying, and consider identifying and estimating the ATE in each period. Note,

however, that the time-varying ATE considered here is different from the time-varying treat-

ment effect parameters considered by Lechner (2009) or Callaway and Sant’Anna (2018),

in that it is defined only relative to the treatment assignment of the corresponding period,

and does not capture the dynamics of the treatment effect considered by them.

Let Ci be a scalar fixed effect. Throughout this paper we suppose that the potential

outcomes Yit(1) and Yit(0) are expressed as the following linear forms:

Yit(1) = α1 +X ′itβ
1 + γ1Ci + u1it, (1)

Yit(0) = α0 +X ′itβ
0 + Ci + u0it, (2)

for t = 1, . . . , T , where u1it and u0it are defined as u1it = Yit(1) − E[Yit(1) | Xit, Ci] and

u0it = Yit(0) − E[Yit(0) | Xit, Ci], respectively. The equations are separable linear in Xit,

Ci, and ujit. For scale normalization, we set the coefficient of Ci in equation (2) to one. We

also restrict γ1 6= 0, which is required for identification.

In the model specification above, the coefficients of Ci and Xit are allowed to be different

between (1) and (2). Further, the constant terms α1 and α0 are separated from the fixed

effect terms, in contrast to the standard linear fixed effects panel data model. Under this

specification, τatet in each period t ∈ {1, . . . , T} is expressed as follows:

τatet = (α1 − α0) + E[Xit]
′(β1 − β0) + (γ1 − 1)E[Ci],

where the expectation is not taken over time, and hence the time variation in Xit is not

averaged out. As seen in this equation, the ATE consists of three parts: a constant part, and

averages of two heterogeneous parts that depend on observed covariates and unobserved

fixed effects, respectively. Notably, γ1 6= 1 allows the treatment effect heterogeneity to

depend on unobserved fixed effects. β1 6= β0 allows treatment effect heterogeneity to

depend on observed covariates. In addition, the time variation of Xit causes time variation

in the ATE. The separability of the constant terms from the fixed effects terms allows the

treatment effects to consist of not only heterogeneous parts, but also a homogeneous part.

Although we assume that Xit enters linearly in (1) and (2), a parametric nonlinear function

of Xit could also be used as far as it is completely separable from the other terms.

In the remainder of this section, I describe four assumptions that are required for iden-

tification. First, throughout this paper, we suppose that all the defined random variables
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are independent and identically distributed (i.i.d.) across individuals:

Assumption 2.1. {{Yit(0), Yit(1), Dit, Xit, Zit}Tt=1, Ci} are i.i.d. across i.

This assumption imposes no restrictions on the distribution of the data across time periods

unlike, for example, Chernozhukov et al. (2013) and Jun et al. (2016).

Next, to formalize the idea of confounding due to the presence of observed covariates

and unobserved fixed effects, we impose the following assumption.

Assumption 2.2. E[Yit(j) | Di1, . . . , DiT , Xi1, . . . , XiT , Ci] = E[Yit(j) | Xit, Ci] for all

j = 0, 1 and t = 1, · · · , T .

This assumption is the same as the fundamental assumption for the FE estimation. The

assumption requires that, in each time period, the potential outcomes are mean independent

of the treatment assignments across all periods conditional on the observed covariates in

the given period and and unobserved fixed effects. This assumption also requires that

the potential outcomes in each time period do not depend on the past or future observed

covariates conditional on the unobserved fixed effects. This implies strict exogeneity of Xit

conditional on Ci.

We also impose the following assumption on the treatment assignment.

Assumption 2.3. P (Dit = j, 0 <
∑T

t=1Dit < T ) > 0 for all j = 0, 1 and t = 1, . . . , T .

This assumption requires that the treated and untreated groups in each time period include

some individuals who have experienced both treatment and no-treatment at least once

across the observed time periods (i.e., individuals with {0 <
∑T

t=1Dit < T}). We call

such individuals “movers,” borrowing the terminology introduced by Chamberlain (1982).

Assumption 2.3 guarantees the existence of movers in each of the treated and untreated

groups in each time period. Note that this assumption only requires some individuals, not

all to be movers.

The last assumption requires that, in the subpopulation of movers, the variables in

Zit are strictly exogenous and correlated with the unobserved fixed effects conditional on

treatment assignment. Zit satisfies the following assumption:

Assumption 2.4. For any j = 0, 1, k = 0, 1, s = 1, . . . , T , and t = 1, . . . , T ;
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(i) E
[
Zitu

k
is | Dit = j,Dis = k, 0 <

∑T
t=1Dit < T

]
= 0,

(ii) rank
(∑T

t=1E
[
(1, Z ′it)

′(1, Ci) | Dit = j, 0 <
∑T

t=1Dit < T
])

= 2.

For movers, Assumption 2.4 (i) requires that Zit is orthogonal to ukis conditional on treat-

ment assignments in any pair of periods s and t; Assumption 2.4 (ii) requires that Zit is

correlated with the fixed effects conditional on treatment assignment in period t.

In practice, finding Zit that satisfies Assumption 2.4 is usually not very difficult. Some

or all variables included in Xit are likely to satisfy Assumption 2.4, and may be included in

Zit. Assumption 2.2 implies that variables in Xit satisfy condition (i) in Assumption 2.4.4

Further, because both Xit and Ci should affect treatment assignment, they are likely to

be correlated with each other after conditioning on the treatment assignment, even if they

are not unconditionally correlated with each other.5 One exceptional case where Zit = Xit

does not work is when Xit is not unconditionally correlated with Ci and, further, does not

affect the treatment assignment. In this case, Xit is not correlated with Ci even conditional

on Dit (does not satisfy condition (ii)).

We also often have some variables that are unconditionally correlated with Ci. For

example, if Ci is individual’s unobserved ability, years of education should be correlated

with Ci and, hence, may be included in Zit. Finally, although Zit has the subscript t,

time-invariant exogenous variables can also be included in Zit for any t = 1, . . . , T .

Remark 2.1 (Relation to the CRC Panel Data Model) The observation rule,

Yit = DitYit(1) + (1−Dit)Yit(0), transforms the potential outcome model (1) and (2) into

the following CRC panel data model:

Yit = DitYit(1) + (1−Dit)Yit(0)

= X ′itβ
0 + τ(Ci)Dit +DitX

′
it(β

1 − β0) + C̃i + uit,

where τ(Ci) = (α1 − α0) + (γ1 − 1)Ci, C̃i = α0 + Ci, and uit = Ditu
1
it + (1 − Dit)u

0
it.

τ(Ci) is the correlated random coefficient in this model. Because the ATE is expressed

4This is because Assumption 2.2 is equivalent to E
[
uj
it | Di1, . . . , DiT , Xi1, . . . , XiT , Ci

]
= 0 for all

j = 0, 1 and t = 1, · · · , T , which is a sufficient condition for condition (i) in Assumption 2.4 when Zit = Xit.
5To illustrate this statement with an example, suppose that Dit denotes job training participation, Ci is

individual ability, and Xit is individual age. Suppose further that individuals with low age and low ability
tend to participate in the training. In this case, after conditioning on the training participation (Dit), age
(Xit) becomes correlated with the ability (Ci), because individuals who participate in the training are likely
to be young and have low ability and vice versa.
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as τatet = E[τ(Ci)] + E[Xit]
′(β1 − β0), identifying the Average Partial Effect (APE) of

Dit, E[τ(Ci)], is necessary to identify the ATE. However, the commonly used generalized

within-group approach can identify the APE only for the subpopulation of movers; hence,

this approach can identify the ATE only for movers. Under the specifications (1) and (2),

the approach proposed in the following section can identify and estimate the ATE for the

entire population.

Remark 2.2 (Relation to the Linear Fixed Effects Panel Data Model): The

potential outcome model (1) and (2) nests the standard linear fixed effects panel data

model. When γ1 = 1, the observed outcome is expressed as the following:

Yit = X ′itβ
0 + (α1 − α0)Dit +DitX

′
it(β

1 − β0) + C̃i + uit. (3)

This corresponds to the standard linear fixed effects panel data model. The ATE is τatet =

(α1 − α0) + E[Xit]
′(β1 − β0) and does not depend on Ci. In this case, we can identify the

ATE by either the usual fixed effects approach or the proposed approach.

3 Identification and Estimation

This section first describes the identification approach. Subsequently, in Section 3.2, the

GMM estimation of the identified parameters is proposed.

3.1 Identification

This section describes the identification of τatet , based on the potential outcomes equations

(1) and (2) and the assumptions described in the previous section and below. The identi-

fication argument proceeds in three steps. In the first step, we identify β1 and β0. Then,

we identify the ratio of fixed effects terms between the two regression functions, that is γ1.

Finally, we identify τatet by combining the observed data with the identified parameters.

The following describes the steps of the identification procedure.

First step

In the first step, we identify β1 and β0 based on the idea of the within-transformation

method used in the FE approach. Let Āji = (1/
∑T

t=1 1{Dit = j})
∑T

t=1 1 {Dit = j} · Ait
and Äjit = Ait − Āji for any variable Ait and j = 0, 1, where 1{·} is the indicator function.
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Ā1
i (Ā0

i ) is the mean of Ait for individual i across time periods when he or she is treated

(not treated). For each j = 0, 1 and individual i with
∑T

t=1 1{Dit = j} = 0 (i.e., the

individual who is always treated or never treated across the observed time periods), we

adopt the convention that Ājit = 0. This transformation is a kind of within-transformation

across treated and untreated periods.

We suppose here that the following assumption holds.

Assumption 3.1. For each j = 0, 1, rank
(
E[
∑T

t=1 1{Dit = j} · Ẍj
itẌ

j′
it ]
)

= K.

This assumption requires that E[
∑T

t=1 1{Dit = j} · Ẍj
itẌ

j′
it ] is full rank for j = 0, 1. It

implicitly ensures the presence of individuals who are treated in at least two time periods

and individuals who are not treated in at least two time periods.6

For each of the treated and untreated individuals in period t (the individuals with

Dit = 1 and Dit = 0, respectively), we have the following transformed model:

Ÿ j
it = Ẍj′

itβ
j + üjit for j = 0, 1 and t = 1, . . . , T,

where the fixed effects term has been differenced out by the within-transformation. Then,

from the above transformed model and under Assumptions 2.1, 2.2, and 3.1, we can identify

βj (j = 0, 1) as follows:

βj = E

[
T∑
t=1

1{Dit = j} · Ẍj
itẌ

j′
it

]−1
E

[
T∑
t=1

1{Dit = j} · Ẍj
itŸ

j
it

]
. (4)

This identification is similar to the identification in the standard linear fixed effects panel

data model by the within-transformation. Note that this identification is based on the or-

thogonality condition: E
[∑T

t=1 Ẍ
j
itü

j′
it | Di1, · · · , DiT

]
= 0, which follows from Assumption

2.2.

The following proposition formalizes the identification result in this step.

Proposition 3.1. Under Assumptions 2.1, 2,2, and 3.1, βj (j = 0, 1) is identified as (4).

A proof is provided in the online Appendix.

6The reason is as follows. By the definition of Ẍ1
it, 1{Dit = 1} · Ẍ1

it = 0 and 1{Dit = 0} · Ẍ0
it = 0 hold

in any period t for individuals who have experienced treatment less than twice and individuals who have
experienced no-treatment less than twice, respectively. Therefore, the rank condition in Assumption 3.1
does not hold if no individuals have experienced treatment or no-treatment at least twice.
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Second step

We next identify the ratio of the scalar fixed effects terms, γ1, and the transformed constant

terms, α̃1 and α̃0, defined below. The identification in this step is based on the subpop-

ulation of movers (i.e., individuals with {0 <
∑T

t=1Dit < T}), whose existence is secured

under Assumption 2.3. Once β1 and β0 are identified in the previous step, we have the

following equations for movers:

η1i (β
1) ≡ Ȳ 1

i − X̄1′
i β

1 = α1 + γ1Ci + ū1i and η0i (β
0) ≡ Ȳ 0

i − X̄0′
i β

0 = α0 + Ci + ū0i .

Here, η1i (β
1) (η0i (β

0)) is equal to the sum of the constant term α1 (α0), the fixed effects

term γ1Ci (Ci), and the disturbance term ū1i (ū0i ). Both equations above are nontrivial for

movers only. For non-movers, one of them degenerates to zero.7 This is why we focus on

the subpopulation of movers in this step.

Then, in each period t, we divide the subpopulation of movers into treated and untreated

groups: {Dit = 1,
∑T

t=1Dit 6= T} and {Dit = 0,
∑T

t=1Dit 6= 0}, respectively.8 For movers

in the treated group {Dit = 1,
∑T

t=1Dit 6= T}, we can re-express the regression function for

Yit(1) as follows:

Yit(1) = α̃1 +X ′itβ
1 + γ1η0i (β

0) + ũ1it, (5)

where α̃1 ≡ α1 − γ1α0 and ũ1it ≡ u1it − γ1ū0i . This equation is derived by replacing Ci with

η0i (β
0) in equation (1). Similarly, for movers in the untreated group {Dit = 0,

∑T
t=1Dit 6=

0}, by replacing Ci with η1i (β
1) in equation (2), we have the following regression function

for Yit(0):

Yit(0) = α̃0 +X ′itβ
0 +

1

γ1
η1i (β

1) + ũ0it, (6)

where α̃0 ≡ α0 − 1
γ1
α1 and ũ0it ≡ u0it − 1

γ1
ū1i . Note that if γ1 = 0, 1/γ1 in (6) does not take

a finite value. This is the reason we restrict γ1 6= 0.

We now consider identifying α̃1, α̃0, and γ1 in the transformed regression functions (5)

and (6), but an identification problem arises here. In (5) and (6), η0i (β
0) and η1i (β

1) are

7The reason is as follows. For individual i who is never treated, η1i (β1) degenerates to zero because
Ȳ 1
i = 0 and X̄1

i = 0 by definition. Similarly, for individual i who is always treated, η0i (β0) degenerates to
zero.

8Note that {Dit = 1, 0 ≤
∑T

t=1Dit ≤ T} = {Dit = 1,
∑T

t=1Dit 6= T} and {Dit = 0, 0 ≤
∑T

t=1Dit ≤
T} = {Dit = 0,

∑T
t=1Dit 6= 0}.
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endogenous because they include disturbance terms ūi0 and ūi1 and, hence, are correlated

with ũ1it and ũ0it, respectively. To deal with this endogeneity problem, we use the exogenous

variables in Zit that satisfy the conditions in Assumption 2.4. Under this assumption,

we can use Zit as a vector of instrumental variables for η0i (β
0) and η1i (β

1), because, in

the supposed subgroups, Zit is exogenous to ũ0it and ũ0it under Assumption 2.4 (i) and is

correlated with Ci under Assumption 2.4 (ii).9

From the above discussion, given that β1 and β0 are already identified, the parameters

α̃1, α̃0, and γ1 are identified by the following moment conditions:

T∑
t=1

E

[(
1, Z ′it

)′ (
Yit(1)− α̃1 −X ′itβ1 − γ1η0i (β0)

)
| Dit = 1,

T∑
t=1

Dit 6= T

]
= 0, (7)

T∑
t=1

E

[(
1, Z ′it

)′(
Yit(0)− α̃0 −X ′itβ0 −

1

γ1
η1i (β

1)

)
| Dit = 0,

T∑
t=1

Dit 6= 0

]
= 0. (8)

The first components of the moment conditions (7) and (8) follow from the exogeneity

condition:
∑T

t=1E
[
ujit | Di1, · · · , DiT

]
= 0, which holds under Assumption 2.2. The others

follow from the orthogonal condition in Assumption 2.4 (i). In these moment conditions,

Zit works as a vector of instruments for η0i (β
0) and η1i (β

1).10 α̃1 and α̃0 are identified by

the moment conditions (7) and (8), respectively, and γ1 is identified by both of them.

The following formalizes the identification result in this step.

Proposition 3.2. Suppose β0 and β1 are already identified. Then, under Assumptions

2.1–2.4, γ1 and α̃j (j = 0, 1) are identified by the moment conditions (7) and (8).

A proof is provided in the online Appendix.

Third step

We can finally identify E[Yit(1)] and E[Yit(0)], as follows:

E [Yit(1)] = E
[
DitYit + (1−Dit)

(
α̃1 +X ′itβ

1 + γ1η0i (β
0)
)]
, (9)

E [Yit(0)] = E

[
(1−Dit)Yit +Dit

(
α̃0 +X ′itβ

0 +
1

γ1
η1i (β

1)

)]
, (10)

9ūi1 in η1i (β1) and ūi0 in η0i (β0) can be viewed as measurement errors for α1 + γ1Ci and α0 + Ci,
respectively. In this view, the variables in Zit work as instruments to deal with the measurement errors.

10We can use Zit that consist of some or all variables in Xit, even though Xit are already used in the first
step of the identification, because we use different subpopulation, movers, in this step.
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where the equations hold under Assumption 2.2. In equation (9), we predict Yit(1) for

individuals who are not treated in period t by combining Xit and η0i (β
0) with the identi-

fied parameters. This is based on the idea of the regression adjustment method (see, for

example, Wooldridge 2010, Section 21.3.2). In equation (10), applying the same method to

individuals treated in period t, we predict their unobserved potential outcomes Yit(0).

Consequently, under Assumption 2.2, we can identify τatet , as follows:

τatet =E[Yit(1)]− E[Yit(0)]

=E

[
Dit

{
Yit −

(
α̃0 +X ′itβ

0 +
1

γ1
η1i (β

1)

)}
+ (1−Dit)

{(
α̃1 +X ′itβ

1 + γ1η0i (β
0)
)
− Yit

}]
.

(11)

The following proposition formalizes the identification result in this step.

Proposition 3.3. Suppose βj and α̃j for j = 0, 1, and γ1 are already identified. Then,

under Assumptions 2.1 and 2.2, τatet for t = 1, . . . , T is identified as (11).

A proof is provided in the online Appendix.

The following theorem summarizes the complete identification result.

Theorem 3.1. Let θ′ ≡
(
β1′, β0′, α̃0, α̃1, γ1, τate1 , · · · , τateT

)
. Suppose the potential outcome

model (1) and (2). Then, under Assumptions 2.1–2.4 and 3.1, θ is identified.

A proof is omitted since the result obviously follows from Propositions 3.1–3.3.

The following are some remarks on the identification result.

Remark 3.1. (Potential Outcome Model without Constant Terms) When

the potential outcome equations (1) and (2) do not include constant terms, α1 and α0,

respectively, the identification procedure does not require the use of Zit. To explain this,

suppose here that the potential outcome equations are as follows:

Yit(1) = X ′itβ
1 + γ1Ci + u1it,

Yit(0) = X ′itβ
0 + Ci + u0it,

where u1it and u0it are defined as in Section 2. These equations do not have the constant

terms. Under this model and the maintained assumptions, βj (j = 0, 1) can be identified

12



as (4), as in the first step of the identification procedure.

For the second step, we do not need to identify the transformed constant terms α̃j

(j = 0, 1) in this case, because the transformed equations (5) and (6) in this case do not

contain these terms. Thus, we only need to identify the ratio of the fixed effects γ1 in this

step. In the absence of the constant terms, it follows for movers that η1i (β
1) = γ1Ci + ū1i

and η0i (β
0) = Ci + ū0i . Then, γ1 can be identified, without using Zit, as follows:

E
[
η1i (β

1) | 0 <
∑T

t=1Dit < T
]

E
[
η0i (β

0) | 0 <
∑T

t=1Dit < T
] =

γ1E
[
Ci | 0 <

∑T
t=1Dit < T

]
E
[
Ci | 0 <

∑T
t=1Dit < T

] = γ1,

where the first equality follows from Assumption 2.2. The ATE can be identified in the

same way as in the third step.

Remark 3.2. (Time-invariant Treatment Effect): When Xit does not induce

time-variation in the ATE, the ATE becomes time-invariant. This happens when E [Xit]

is time-invariant or β1 and β0 are equivalent. Instead of (11), the time-invariant ATE,

denoted by τate, can be identified as

τate =
1

T

T∑
t=1

E

[
Dit

{
Yit −

(
α̃0 +X ′itβ

0 +
1

γ1
η1i (β

1)

)}
+ (1−Dit)

{(
α̃1 +X ′itβ

1 + γ1η0i (β
0)
)
− Yit

}]
.

In this case, the numbers of moments and parameters to be estimated are reduced, which

could decrease the variances of the estimators.

3.2 Estimation

Building on the identification procedure, the vector of parameters θ can be estimated by

GMM. The GMM estimator of θ is constructed from the vector of moment functions as

follows:

g1 (Wi, θ) =
T∑
t=1

Dit · Ẍ1
it

(
Ÿ 1
it − Ẍ1′

it β
1
)
,

g2(Wi, θ) =
T∑
t=1

(1−Dit) · Ẍ0
it

(
Ÿ 0
it − Ẍ0′

it β
0
)
,

g3(Wi, θ) =
T∑
t=1

1

{
Dit = 1,

T∑
t=1

Dit 6= T

}
·
(
1, Z ′it

)′ (
Yit − α̃1 −X ′itβ1 − γ1η0i (β0)

)
,
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g4 (Wi, θ) =

T∑
t=1

1

{
Dit = 0,

T∑
t=1

Dit 6= 0

}
·
(
1, Z ′it

)′(
Yit − α̃0 −X ′itβ0 −

1

γ1
η1i (β

1)

)
,

g5(Wi, θ) =Di1

{
Yi1 −

(
α̃0 +X ′i1β

0 +
1

γ1
η1i (β

1)

)}
− (1−Di1)

{(
α̃1 +X ′i1β

1 + γ1η0i (β
0)
)
− Yi1

}
− τate1 ,

...

g4+T (Wi, θ) =DiT

{
YiT −

(
α̃0 +X ′iTβ

0 +
1

γ1
η1i (β

1)

)}
− (1−DiT )

{(
α̃1 +X ′iTβ

1 + γ1η0i (β
0)
)
− YiT

}
− τateT ,

where Wi = ({Yit, Dit, X
′
it, Z

′
it}Tt=1)

′. g1(Wi, θ) and g2(Wi, θ) are the moment functions to

estimate β1 and β0, respectively, which are derived from the first step of the identification

procedure. g3(Wi, θ) and g4(Wi, θ) are the moment functions to estimate α̃1, α̃0, and γ1,

which are analogues of moment conditions (7) and (8), respectively. For each t = 1, . . . , T ,

g4+t(Wi, θ) is the moment function to estimate τatet by the prediction, which is derived from

equation (11). The above moment functions can be easily modified for the cases considered

in Remarks 3.1 and 3.2.

In the GMM framework, we can also test whether γ1 = 1 or not. In our specification, this

is equivalent to a test for whether the treatment effect heterogeneity depends on unobserved

fixed effects. We could apply GMM-based tests for the null hypothesis: γ1 = 1. If the null

hypothesis is correct, we can use the usual fixed effects estimator to estimate the ATE.

4 Monte Carlo Simulation

In this section, we conduct a Monte Carlo experiment to study the finite sample behavior

of the proposed estimator. Some additional Monte Carlo experiments are conducted in the

online Appendix. We here consider two kinds of data generating processes (DGPs), DGP1

and DGP2, which consist of different outcome models and a same treatment assignment

model with T = 2. The outcome models are as follows: For t = 1, 2,

Yit =

 2 +Xit,1 − 0.5Xit,2 + Ci + u0it

1 + 2Xit,1 + 0.5Xit,2 + γ1Ci + u1it

if Dit = 0

otherwise
,
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where γ1 = 1 in DGP1 and γ1 = 3 in DGP2. The treatment assignment model is

Dti = 1
{
−2−Xit,1 +Xit,2 + Ci + uDit ≥ 0

}
for t = 1, 2. In both DGPs, (Xi1,1, Xi2,1, Ci)

′

are drawn from a multivariate normal distribution with mean (1, 1.5, 1)′, standard devia-

tion 1, and pairwise covariances 0.3; (Xi1,2, Xi2,2)
′ are drawn from a multivariate normal

distribution with mean (1, 1.5)′, standard deviation 1, and pairwise covariance 0.3. Note

here that Xit,1 is correlated with Ci while Xit,2 is not. The disturbance terms are drawn

from the following multivariate normal distributions:


u0i1

u1i1

u0i2

u1i2

 ∼ N



0

0

0

0

 ,


1 0.5 0.3 0.2

1 0.2 0.3

1 0.5

1



 ,

 uDi1

uDi2

 ∼ N
 0

0

 ,

 1 0.3

1



In addition, we set an exogenous variable Wit as Wit = Ci +uWit , where (uWi1 , u
W
i2 )′ is drawn

from a zero mean multivariate normal distribution with standard deviation 1 and pairwise

covariance 0.3. This exogenous variable satisfies the conditions in Assumption 2.4.

Two remarks should be made on the DGPs. First, the difference between DGP1 and

DGP2 is in the coefficients for Ci in the outcome equations. While DGP1 has the same

coefficients for Ci in the treated and untreated outcome equations, DGP2 has different

coefficients between them. Therefore, treatment effect heterogeneity does not depend on

Ci in DGP1, but it does in DGP2. Second, each of the three variables Wit, Xit,1, and Xit,2

can be used as an exogenous variable in Zit, whose role is described in Section 3, because

they satisfy the conditions in Assumption 2.4. Wit and Xit,1 are unconditionally correlated

with Ci, whereas Xit,2 is not. But Xit,2 is correlated with Ci after conditioning on Dit.

In this simulation, we compare the efficient two-step GMM estimator derived from the

proposed identification procedure with the OLS estimator and the FE estimator in DGP1

and DGP2. The parameters of interest are the ATEs in periods 1 and 2. In DGP1, the true

values of the ATEs in periods 1 and 2 are 1 and 2, respectively; in DGP 2, the true values of

the ATEs in periods 1 and 2 are 3 and 4, respectively. For the proposed estimator, we use

five different sets of Zit: {Wit}, {Xit,1}, {Xit,2}, {Xit,1, Xit,2}, and {Wit, Xit,1, Xit,2}. The

fourth set uses all the exogenous variables that are included in the potential outcome model;

the last set uses all the exogenous variables. In both DGPs, the ratios of movers, always-

treated individuals, and never-treated individuals are about 31.7%, 13.5%, and 54.8%,

respectively.
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Table 1 reports the results of 1,000 simulations with sample sizes N = 200, 500, and 800.

Panels I and II in Table 1 report the simulation results for DGP1 and DGP2, respectively.

Several findings are worth noting. First, the OLS estimator is severely biased in both DGP1

and DGP2 due to the presence of unobserved fixed effects. Second, the FE estimator is

not biased in DGP1, whereas it is biased in DGP2. This is because the treatment effect

heterogeneity depends on unobserved fixed effects in DGP2. Third, in both DGP1 and

DGP2, the proposed estimator has little bias, regardless of the type of Zit. Fourth, even

in DGP1, where the FE estimator is consistent, the performance of the proposed estimator

is compatible with that of the FE estimator in terms of RMSEs. Fifth, comparing the

different sets of Zit, the proposed estimator has smaller RMSEs when Zit consists of Xit,1

and/or Xit,2 than when Zit consists of only Wit in both DGPs. In the online Appendix,

additional simulation results are provided, where we evaluate the finite sample behavior in

three cases: (i) fraction of movers is small, (ii) γ1 is close to zero, and (iii) T is large.

5 Empirical Application

In this section, I apply the proposed approach to study the impact of a mother’s smoking

during pregnancy on her child’s birth weight and its heterogeneity. There are many works

that study the average smoking effect and its heterogeneity under various identifying and

functional form assumptions (e.g., Abrevaya, 2006; Veiga and Wilder, 2008; Walker et al.,

2009; Abrevaya et al., 2015; Lee et al., 2017). Walker et al. (2009) examine the difference

in the average smoking effect between teen mothers and adult mothers. Abrevaya et al.

(2015) and Lee et al. (2017) examine the heterogeneity of the average smoking effect in

terms of the mother’s age in their application.

The analysis uses the matched panel data set constructed by Abrevaya (2006) from the

U.S. Natality Data Sets for 1990–1998. Because the original data set does not have unique

identifiers for mothers, he carefully matched mothers to children mainly based on pairs of

the child’s state of birth and the mother’s state of birth, which have a small number of

observations, and then constructed the matched panel data set. I select “matched panel

#3,” because it is the most conservatively constructed. The same data set is also analyzed

by Arellano and Bonhomme (2012) using the CRC panel data model, and by Jun et al.

(2016) using a nonseparable panel data model. Because the numbers of births in the original

data set are different among mothers, I focus on mothers who bore three children during the
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observed period. The final sample contains 12,360 mothers. Among them, 1,349 mothers

were smoking during their first pregnancy, 1,371 mothers were smoking during their second

pregnancy, and 1,437 mothers were smoking during their third pregnancy. The ratio of

movers in the sample is 11.7%.

Using this sample, I estimate the average effect of a mother’s smoking during pregnancy

on her child’s birth weight at each birth time using the potential outcome model (1) and

(2). In the model, Dit is an indicator for a mother’s smoking, where Dit = 1 indicates

that ith mother was smoking during pregnancy for her tth birth and Dit = 0 indicates

otherwise. The potential outcomes Yit(1) and Yit(0) are the child’s birth weight for the ith

mother’s tth birth if she was smoking and not smoking during the pregnancy, respectively.

Xit includes the age of the mother at the time of the birth, the gender of the child, dummy

variables for birth times, dummy variables indicating the existence of prenatal visits, and

the value of the “Kessner” index for the quality of prenatal care (for details, see Abrevaya,

2006). Unobserved fixed effects Ci are supposed to represent a mother’s health-related

lifestyle factor (Jun et al., 2016, p.307). Under the potential outcome model (1) and (2),

we allow the heterogeneity of the smoking effect to depend on the observed and unobserved

characteristics. Note, however, that our model still cannot deal with some identification

issues pointed out by Abrevaya (2006, Section 5) (e.g., feedback effect from a prior birth

outcome and correlated changes in maternal behavior).

To apply the proposed estimator, we want exogenous variables Zit that satisfy the

conditions in Assumption 2.4. I use three sets of exogenous variables for Zit: The age of

the mother at her tth birth, the years of education of the mother, and both. The age is

already included in Xit, while the education is not. Recall that we can use variables included

in Xit for Zit. Both variables are probably unconditionally correlated with unobserved fixed

effects, because a woman’s decision about the timing of birth is likely to depend on her

unobserved lifestyle factors and the lifestyle factors should be associated with her age and

education, respectively. Even if they are not unconditionally correlated with the fixed

effects, they should be correlated after conditioning on the smoking indicator. We also

suppose that they are uncorrelated with error terms because we control for a sufficient set

of the observables and unobserved fixed effects.

Table 2 presents the estimation results for the coefficient parameters in the transformed

potential outcome equations (5) and (6), as well as the differences between them for equa-

tions (6) and (5) (i.e., β1 − β0), which indicate the heterogeneity of the smoking effect
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depending on the observed covariates. Here, I applied the efficient two-step GMM estima-

tor using the age and years of education as a set of Zit. The result does not vary so much

when using different Zit. The effect of smoking is significantly higher for the second and

third birth times and for mothers with no prenatal visits, and changes quadratically with

respect to age. All of the variables, except for the no prenatal visit, first visit in the third

trimester, second child, and third child, have the same signs of the difference estimates as

those in Abrevaya’s (2006, Table VII) results. Note that Abrevaya (2006) does not consider

the interaction effect of smoking with each birth time. The significant estimate of γ1 indi-

cates the presence of the heterogeneity of the smoking effect that depends on unobserved

fixed effects.

Table 3 presents the estimation results for the average smoking effect using the proposed

estimator and the FE estimator. For the FE estimator, I use a fixed-effects regression

model including the smoking indicator, observed covariates Xit, and interactions between

the smoking indicator and Xit. The proposed estimators are the two-step GMM estimator

using the three sets of Zit. The first three rows of Table 3 show the estimation results

of the time-varying average effect using model (1) and (2) for the proposed estimator and

using model (3) for the FE estimator. The last row shows the estimation results of the

time-invariant average effect, where we impose the restriction β1 = β0 on model (1) and (2)

and model (3). The results of both estimators show that a mother’s smoking has a negative

average effect on her child’s birth weight at each birth time, and the effect is time-varying.

Although the results of the proposed estimator are somewhat variable depending on the

choice of Zit, they show that the average smoking effect worsens with additional birth time.

This might be because mothers who smoke during later pregnancy may be heavier smokers

and/or because the negative effects of smoking accumulate over time.11 The proposed

estimator provides lower estimates at each birth time than that of the FE estimate. We

might suspect that the FE estimates are upward biased for the average effects because it

ignores the heterogeneity of the smoking effect that depends on the mother’s unobserved

characteristics. The results of the proposed estimator also show relatively more negative

effects of a mother‘s smoking compared to the results of the previous works.

11Note that the framework in this paper cannot explicitly capture the accumulated effect of smoking,
unlike the dynamic treatment framework considered, for example, by Lechner (2009).
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6 Conclusion

This paper proposed a new panel data approach to identify and estimate the time-varying

ATE. The approach can identify and consistently estimate the ATE even when treatment

effect heterogeneity depends on unobserved fixed effects. In such a case, existing panel data

approaches identify the ATE for limited subpopulations only. In contrast, the proposed

approach can identify and estimate the ATE for the entire population. The approach

depends on the linear fixed effects specification to the potential outcome equations, wherein

scalar fixed effects additively enter the two potential outcome equations with different

coefficients, and uses exogenous variables that are correlated with fixed effects conditional

on treatment assignment. I recommend that empirical researchers who use panel data

apply this approach when treatment effect heterogeneity seems to depend on unobserved

individual characteristics, and their interest is in the ATE for the entire population.
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Table 1: Monte Carlo Simulation Results

N=200 N=500 N=800
True Value Bias SD RMSE Bias SD RMSE Bias SD RMSE

Panel I: Simulation results for DGP1

ATE for 1st period
OLS 1 1.147 0.257 1.175 1.173 0.166 1.184 1.162 0.130 1.170
FE 1 -0.015 0.258 0.258 0.008 0.167 0.167 -0.004 0.134 0.134

Proposed Estimator
(1) 1 0.025 0.195 0.196 0.034 0.130 0.134 0.255 0.107 0.110
(2) 1 0.023 0.190 0.192 0.030 0.126 0.129 0.021 0.099 0.101
(3) 1 0.038 0.177 0.181 0.042 0.117 0.124 0.037 0.092 0.099
(4) 1 0.034 0.180 0.183 0.037 0.118 0.123 0.028 0.093 0.097
(5) 1 0.036 0.184 0.187 0.035 0.123 0.128 0.025 0.098 0.101

ATE for 2nd period
OLS 2 1.157 0.255 1.184 1.169 0.160 1.180 1.162 0.131 1.169
FE 2 -0.008 0.265 0.265 0.004 0.169 0.169 -0.002 0.132 0.132

Proposed Estimator
(1) 2 0.041 0.203 0.207 0.044 0.132 0.140 0.041 0.111 0.118
(2) 2 0.027 0.191 0.193 0.032 0.131 0.134 0.025 0.100 0.103
(3) 2 0.040 0.198 0.201 0.048 0.122 0.131 0.045 0.097 0.107
(4) 2 0.031 0.194 0.196 0.037 0.125 0.130 0.029 0.098 0.102
(5) 2 0.031 0.196 0.198 0.036 0.129 0.134 0.028 0.102 0.106

Panel II: Simulation results for DGP2

ATE for 1st period
OLS 3 2.833 0.463 2.881 2.881 0.300 2.897 2.882 0.229 2.891
FE 3 0.921 0.378 0.996 0.953 0.247 0.984 0.954 0.186 0.972

Proposed Estimator
(1) 3 0.092 0.310 0.323 0.076 0.203 0.217 0.061 0.169 0.180
(2) 3 0.081 0.287 0.298 0.077 0.192 0.207 0.062 0.155 0.167
(3) 3 0.085 0.285 0.297 0.077 0.182 0.197 0.069 0.146 0.161
(4) 3 0.071 0.295 0.304 0.072 0.197 0.210 0.065 0.153 0.166
(5) 3 0.074 0.317 0.326 0.068 0.215 0.225 0.061 0.174 0.184

ATE for 2nd period
OLS 4 2.863 0.471 2.901 2.882 0.290 2.897 2.881 0.221 2.890
FE 4 0.938 0.387 1.015 0.949 0.232 0.977 0.953 0.189 0.972

Proposed Estimator
(1) 4 0.106 0.324 0.341 0.082 0.214 0.229 0.071 0.176 0.190
(2) 4 0.085 0.320 0.331 0.076 0.212 0.225 0.066 0.171 0.183
(3) 4 0.092 0.299 0.313 0.083 0.195 0.211 0.075 0.159 0.176
(4) 4 0.079 0.326 0.335 0.069 0.212 0.223 0.069 0.167 0.181
(5) 4 0.078 0.331 0.339 0.070 0.223 0.234 0.064 0.181 0.192

Note: True Value is the true value of the ATE. Bias, SD, and RMSE are the mean bias, standard
deviation, and the root mean squared error of the estimates across the simulations, respectively. For
the Proposed Estimator, the rows (1), (2), (3), (4), and (5) report the results of the proposed estimator
when Zit is {Wit}, {Xit,1}, {Xit,2}, {Xit,1, Xit,2}, and {Wit, Xit,1, Xit,2}, respectively.
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Table 2: Estimates of parameters in equations (5) and (6)

Estimates
Variables Equation (5) Equation (6) Differences (β1 − β0)

Male 134.39 141.27 -6.88
(14.82) (4.64) (15.50)

Age 231.90 222.78 9.13
(2.18) (1.68) (2.78)

Age2 -4.00 -3.55 -0.45
(0.07) (0.06) (0.09)

Kessner index = 2 -45.49 -61.99 16.50
(27.62) (9.80) (29.22)

Kessner index = 3 -169.53 -162.72 -6.81
(41.72) (24.45) (48.67)

No prenatal visit -147.71 23.11 -170.82
(61.03) (47.86) (78.04)

First prenatal visit in 2nd trimester 43.61 79.93 -36.32
(28.92) (11.84) (31.40)

First prenatal visit in 3rd trimester 200.39 163.00 37.39
(52.00) (30.18) (60.21)

Second child -6.54 29.76 -36.30
(15.73) (6.06) (16.89)

Third child -72.97 27.05 -100.02
(17.16) (10.28) (20.08)

α̃1 -28.96
(16.92)

α̃0 18.69
(17.77)

γ1 0.30
(0.05)

Note: Robust standard errors are presented in the parentheses.

Table 3: Estimates of average effect of mother’s smoking during pregnancy on her child’s
birth weight

FE Estimator Proposed Estimator
(1) (2) (3)

Average effect (first birth) -121.47 -154.84 -219.68 -147.40
(15.56) (17.18) (38.63) (16.27)

Average effect (second birth) -76.21 -216.96 -300.42 -214.05
(17.11) (16.73) (49.56) (15.83)

Average effect (third birth) -128.17 -324.88 -403.12 -319.94
(15.93) (15.92) (47.31) (15.42)

Average effect (time-invariant) -244.23 -216.14 -217.87 -189.36
(11.12) (22.68) (18.22) (11.77)

Note: Robust standard errors are presented in the parentheses. For the Proposed Estimator, the columns
(1), (2), and (3) report the results of the proposed estimator using the age, the education, and both of
them for Zit, respectively.
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