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Abstract. We propose a novel hybrid machine learning approach for
age-related macular degeneration (AMD) classification to support the
automated analysis of images captured by optical coherence tomography
angiography (OCTA). The algorithm uses a Rotation Invariant Uniform
Local Binary Patterns (LBP ) descriptor to capture local texture pat-
terns associated with AMD and Principal Component Analysis (PCA)
to decorrelate texture features. The analysis is performed on the en-
tire image without targeting any particular area. The study focuses on
four distinct groups, namely, healthy; neovascular AMD (an advanced
stage of AMD associated with choroidal neovascularisation (CNV)); non-
neovascular AMD (AMD without the presence of CNV) and secondary
CNV (CNV due to retinal pathology other than AMD). Validation sets
were created using a Stratified K-Folds Cross-Validation strategy for lim-
iting the overfitting problem. The overall performance was estimated
based on the area under the Receiver Operating Characteristic (ROC)
curve (AUC). The classification was conducted as a binary classification
problem. The best performance achieved with the SVM classifier based
on the AUC score for: (i) healthy vs neovascular AMD was 100%, (ii)
neovascular AMD vs non-neovascular AMD was 85%; (iii) CNV (neovas-
cular AMD plus secondary CNV) vs non-neovascular AMD was 83%.

Keywords: Optical Coherence Tomography Angiography (OCTA) ·Age-
Related Macular Degeneration (AMD) · Texture Features
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1 Motivation

Age-related macular degeneration (AMD) is a heterogeneous, multifactorial reti-
nal condition and a leading cause of visual impairment in the elderly popula-
tion [1, 2]. AMD predominantly affects the macula, the central part of the retina
and it is clinically categorised into non-neovascular (or dry) AMD and neovas-
cular (or wet) AMD [3]. The hallmark of dry AMD is drusen, focal deposits of
extracellular debris located under the retina and the retinal pigment epithelium
(RPE); retinal pigment epithelial abnormalities including atrophy are common.
Wet AMD is characterised by the presence of a common, vision-threatening
complication of AMD called choroidal neovascularisation (CNV); this involves
the growth of abnormal blood vessels typically originating from the choroid (a
layer of tissue located underneath the retina and RPE) and involving the mac-
ular area [3]. Dry AMD is the more common subtype and it is associated with
gradual visual loss whereas wet AMD is linked to a more acute presentation [3].
Notably, wet AMD can be successfully treated with intravitreal injection. Early
detection and management are key and timely diagnosis is linked to improved
outcomes [4]. Significant effort and healthcare resources are therefore put to the
early identification of CNV and to the differentiation between individuals with
wet and dry forms of AMD.

Different medical imaging modalities have been developed to help with this
task. A promising recently introduced technique is Optical Coherence Tomog-
raphy Angiography (OCTA) which combines dye-free angiography and non-
invasive volumetric three-dimensional imaging. This modality has advantages
over the widely used Optical Coherence Tomography (OCT) as it enables de-
tailed visualisation of the retinal and choroidal circulation. Furthermore, OCTA
is fast and non-invasive unlike other established modalities, such as Fundus Fluo-
rescein Angiography (FFA) and Indocyanine Green Angiography (ICG) [5, 6, 7].
Importantly, OCTA enables characterisation of moving and static elements of
retinal and choroidal blood flow and it allows visualisation of CNV and other
abnormalities that can help distinguish between dry and wet AMD.

OCTA produces clear images of the retinal vasculature in different retinal
layers including the superficial inner retina, the deep inner retina, the outer
retina and the choriocapillaris layers. The current clinical standard for detecting
CNV and evaluating the efficacy of the treatments for wet AMD involves visually
examining the textural appearance of images from each of these layers. However,
this is not a trivial task given the significant amount of data in each OCTA
scan, the pattern variations between individuals, and the fact that neovascular
and non-neovascular areas may appear similar [8]. It is therefore not uncommon
for clinicians to request a second opinion due to the difficulties involved in the
interpretation process. Figure 1 demonstrates the texture appearance of the
retinal vasculature in the various retinal layers in the OCTA images for different
eye conditions. Images from eyes with no pathology, dry AMD and wet AMD
are shown. The complexity of the blood vessels pattern variations between the
different retinal layers can be appreciated.
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Fig. 1. The textural appearance of blood vessels network in the superficial inner retina,
deep inner retina, outer retina and choriocapillaris layers in OCTA images. Each row
illustrates a different eye condition from the various layers. The first shows a healthy
eye, the second shows a dry AMD eye and the final row shows a wet AMD eye. It
can be observed how the similarities appear in the patterns of the abnormalities in all
layers for the dry and wet AMD eyes, while in some layers the patterns appear very
similar, even in the healthy eye, namely the superficial inner and deep inner layers.

As seen in the previous figure, the texture of OCTA images is affected by
AMD. Image texture is rich with very important information describing complex
visual patterns that can be distinguished by colour, brightness, size or shape [9].
However, there is evidence to demonstrate that it is problematic for the human
eye to recognise textural information which is related to higher-order statistics
or to the spectral properties of an image [10]. Therefore, both quantifying the
texture characteristics of OCTA images and building a predictive image classifi-
cation algorithm that is capable of detecting the early stages of AMD is desirable.
This could reduce the burden on ophthalmologists, remove the subjectivity due
to personal interpretation and ensure a greater efficiency and reliability in the
diagnosis process in daily clinical practice.

Image classification is an important component of computer-assisted medical
diagnostic tools. Apart from an algorithm (based on Rotation Invariant Uniform
Local Binary Patterns (LBP ) as a texture descriptor) that was previously ex-
plored by our group [11], to the best of our knowledge, there has been no prior
image classification work on AMD using OCTA images. The main contributions
of the work undertaken are:

• The construction of new measurements that contribute the most to quanti-
fying AMD presentation in OCTA images.
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• The development of a novel hybrid machine learning approach for AMD clas-
sification with less redundant and misrepresentative texture features com-
pared to our previous algorithm [11] as it has the additional advantageous
capacity to decorrelate texture features by applying Principal Component
Analysis (PCA).

• The application of our previous algorithm [11] and the new hybrid algorithm
to a new much larger dataset provided by Moorfields Eye Hospital, which
includes early stages of AMD disease.

2 Related Work

Numerous previous studies have focused on the development of methods to au-
tomate the analysis and detection of AMD in OCT or OCTA images. Most of
these follow either an image segmentation-based or an image classification-based
approach. The objective of image segmentation approaches is to partition the
retinal vascular texture into disjunct regions. This includes the use of smoothing
techniques as in [6], morphological operations as in [8] and manual-assistance
by tracing the borders of the regions of interest as in [12]. Then, the images are
labelled as healthy or AMD depending on either some measurements performed
over the segmented regions or the visibility of the object of interest. This is in
contrast with image classification, where the goal is to classify an unknown im-
age into one of the pre-defined classes based on features derived from the image
texture using machine learning and pattern recognition techniques. Many ways
of deriving the features have been used, including handcrafted texture descrip-
tors as in [13, 14, 15] or potentially the features learned using deep learning
technologies as in [16, 17, 18].

When assessing image segmentation-based methods as clinical diagnostic
tools for AMD detection in OCTA images, there are several limitations. Impor-
tantly, such approaches require an adequate image quality so that the abnormal
blood vessel patterns are clearly visible; alternatively, the abnormalities can be
difficult to segment. This problem is amplified by the fact that the measure-
ments are likely to be derived from a deformed image texture structure due to
the inclusion of pre-processing steps. These steps make use of morphological or
smoothing operations as has occurred in [6] and [8] when part of the CNV, a key
indicator of the presence of AMD, was excluded. Furthermore, the measurements
may be influenced by human error/bias and often take considerable time when
manual assistance is involved, as in [12]. To overcome the challenges associated
with segmentation, an alternative path is to extract features from the whole
image and use these features to build an image classification-based method.

While there are several image classification-based methods proposed, the
vast majority were designed to be used on images produced from OCT rather
than OCTA scans. However, OCT is not designed to produce images of the
retinal vasculature and may fail to visualise/detect the abnormalities. What is
more, handcrafted texture descriptor-based methods proposed in [13, 14, 15]
are sensitive to noise such as image illumination variations and also include
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complex operations and pre-processing steps to tackle image noise. However,
that may change image details. On the other hand, it may be argued that deep
learning-based methods using OCT images (including [16, 17, 18]) have greatly
enhanced AMD detection performance despite the fact that a significant amount
of training data was necessary to ensure that robust feature representations could
be learned.

OCTA is an emerging imaging technique that enables visualisation of the
retinal vasculature texture with an unprecedented level of detail. Given the re-
cent introduction of robust OCTA imaging technologies only a limited amount
of labelled training data is presently available. This and the complexity of OCTA
images are important current limitations to the development of deep learning-
based methods. Other issues with these methods include high computational
complexity and memory requirements [19]. Moreover, they also present prob-
lems with the interpretation of outcomes due to the fact that the theoretical
foundation is not well understood and the results are empirical [19].

3 Proposed Approach

The hybrid algorithm discussed in this paper follows the same pipeline of a
previous algorithm reported by our group [11] but with an additional step of
feature dimensionality reduction. Briefly, the new hybrid algorithm consists of
three main steps. The first step is the texture feature extraction using the LBP
descriptor to characterise all relevant variations in image texture patterns in-
duced by AMD from the whole image. Subsequently, the feature dimensionality
reduction step applies the PCA, which decorrelates the extracted features. Fi-
nally, there is a classification step, where the images are classified based on the
new features represented by the PCA. Figure 2 shows a brief overview of the
new hybrid algorithm pipeline for AMD classification.

OCTA Images

Texture Feature Extraction

Feature Dimensionality Reduction

Classification

1

2

3

Fig. 2. Overview of the new analysis procedure for the hybrid classification algorithm.
It begins with taking the OCTA images as an input, followed by feature extraction and
dimensionality reduction respectively, and finally the classification.
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3.1 Texture Feature Extraction

The study makes use of Rotation Invariant Uniform LBP , a handcrafted texture
descriptor introduced by Ojala et al. [20]. Although there are several texture
descriptors proposed in the literature, the choice of which one to use depends
on the issues associated with the image texture to be measured and on how
well the descriptor can cope with these issues [21]. Examples of common issues
are the variations caused by rotation and illumination. Notably, OCTA image
texture is affected by these changes [22]. Although the subjects’ eyes are not
purposefully rotated, there may be some orientation changes to the texture as
the central, avascular region is orbited. Consequently, the main motivation of
using the LBP in this study is that due to its various advantages (including
ease of implementation) it can work effectively under limited resources. Also, it
is capable of quantifying AMD in OCTA images while preserving the trade-off
between two fundamental goals: (i) to provide a high-quality description with
a balance between distinctiveness and robustness against the illumination and
rotation changes; (ii) to have the lowest level of computational complexity.

To accurately measure the image texture using the LBP , the values of two
important parameters need to be set up properly. The first parameter is the
number of neighbouring points p spread on a circle and the second parameter is
the radius r of the circle, which defines the length from the central point gc to
the neighbouring points gn. The measurements are then derived by comparing
a neighbouring point’s gn value, where n = (0, 1, 2, 3, . . . , p − 1), against the
central point gc value generating a binary pattern. The LBP values for each
pixel within each image are constructed according to the following equations:

LBP =

!"n=p−1
n=0 S(gn − gc) if u(LBPp,r) ≤ 2

p+ 1 Otherwise

Where S(x) =

!
1 if x ≥ 0

0 Otherwise

(1)

u(LBPp,r) = |S(gp−1 − gc)− S(g0 − gc)|

+

n=p−1#

n=1

S(gn − gc)− S(gn−1 − gc)|
(2)

The u(LBPp,r) is a procedure to count the number of bitwise transitions and to
consider the uniform binary patterns that have at most two transitions, 1/0 or
0/1. When measuring the image texture, the number of uniform binary patterns
that can occur is p+ 1. In this study, the whole OCTA image is processed without
targeting any particular regions. Every image is described by a histogram with
p + 2 bins that calculates the number of occurrences of the uniform LBP values
within each image, while the supplementary bin in the histogram is to calculate
the non-uniform binary patterns that occurred. Then, the generated histogram
will form the feature vector that represents each image.
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3.2 Feature Dimensionality Reduction

In image classification problems, the high dimensional and highly correlated as-
pects of the feature vectors have a critical impact on the performance of the
machine learning algorithm used for conducting the classification. Techniques
that can significantly overcome these issues in an interpretable fashion while
maintaining most of the important information in the feature space are desir-
able. One of the most popular and commonly utilised techniques for this task
is Principal Component Analysis (PCA) [23]. PCA is a statistical technique
that uses a linear transformation to convert a high number of correlated fea-
tures into a lower number of linearly uncorrelated features, named the principal
components that successively maximise variance [23]. The use of PCA in our
new algorithm was mainly motivated by the fact that when we increase the
number of points around a particular circle (when calculating the LBP values),
the dimensionality of the feature vectors that represent each OCTA image also
increases. Consequently, this is likely to increase the chance of having correlated
and therefore redundant features; hence, PCA was applied, as it provides the
following advantages:

• It makes the method less biased since it eliminates redundant texture fea-
tures;

• It improves the accuracy of the method as it reduces the occurrence of mis-
representative texture features;

• It reduces the time taken for training the machine learning algorithm since
it makes use of feature vectors of lower dimensionality.

In this step, the original dimensional feature vectors obtained from the OCTA
images were reduced into lower dimensional feature vectors. These retained 95%
of the variance which is a common percentage widely used when applying PCA.

3.3 Classification

Following the feature dimensionality reduction step, the newly constructed fea-
tures are passed to a classifier for classification. Two different machine learning
algorithms were tested in this work, namely K-Nearest Neighbour (KNN) and
Support Vector Machine (SVM). The kernel type used for the SVM classifier is
a linear kernel. The value of K neighbours for the KNN classifier was empirically
set to one similar to our previous algorithm [11].

4 Evaluation

The hybrid algorithm described here and our previous algorithm [11] were eval-
uated based on their ability to distinguish between the various classes of images
provided by Manchester Royal Eye Hospital and Moorfields Eye Hospital. The
Manchester dataset included 23 healthy and 23 wet AMD samples. The Moor-
fields dataset included 166 wet AMD and 79 dry AMD cases; 25 secondary CNV
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cases were also included. In these secondary CNV samples the neovascularisation
was due to causes other than AMD. Both datasets include four different images
of each eye captured from four retinal layers, namely the superficial inner retinal
layer, the deep inner retinal layer, the outer retinal layer and choriocapillaris
layer. Table 1 summarises the number of images used. The study makes use of
two-dimensional angiogram greyscale images captured from a 3x3 mm field of
view and utilises all the pre-segmented images through the retinal layers by the
default setting of the OCTA scan. This is because we wanted to avoid the ad-
ditional complexity of manually segmenting the images. The addition of such a
step would make the algorithm less user-friendly and would probably introduce
bias.

Table 1. Summary for the number of images used in this study.

Hospital Classes
Retinal Layers

All Layers
Choriocapillaris Outer Deep Superficial

Manchester
healthy 23 23 23 23 92

wet AMD 23 23 23 23 92

Moorfields
wet AMD 166 166 166 166 664

non-CNV (dry AMD) 79 79 79 79 316
secondary CNV 25 25 25 25 100

4.1 Evaluation Setup and Criteria

The classification was performed on each separate layer and in all layers com-
bined as a binary classification problem. The motivations for performing the
classification this way (on each separate layer) are to identify the predictive
layer that has most information describing the abnormalities, and (in all lay-
ers combined) to investigate how well the algorithms operate on classifying the
various layers at once by throwing all layers together. The classification was
conducted as follows:

I healthy vs wet AMD for the Manchester dataset;
II wet AMD vs dry AMD for the Moorfields dataset;
III CNV (wet AMD plus secondary CNV) vs non-CNV (dry AMD) for the

Moorfields dataset.

As the Moorfields dataset is imbalanced and all classes are important for us to
detect, the following evaluation strategies for both algorithms were conducted
on both datasets:

• Use the Stratified K-Folds Cross-Validation strategy to split the data into
training and testing sets creating stratified folds; this means each fold is
created by preserving the number of samples of each class. This is to ensure
a consistent predictive performance for both algorithms and limitation of
the overfitting problem.
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• Use the Receiver Operating Characteristic (ROC) curve and compute the
area under the curve (AUC). This is to provide equal weight for both classes
in our binary classification problem.

These would give an accurate measure of insight into overall performance as well
as ensuring enhanced validation for both algorithms.

4.2 Example Results

The performance of both algorithms was compared based on their AUC scores.
The results are obtained by empirically choosing the same values of LBP pa-
rameters p and r that were used in our previous algorithm [11]. Two classifiers
were tested on both approaches and the following two tables provide a compari-
son between their results. Table 2 provides the results of the SVM classifier and
Table 3 shows the results of the KNN classifier. In both tables, the new hybrid
algorithm is denoted as “Hybrid algorithm” while our previous algorithm [11] is
denoted as “Previous algorithm”.

Table 2. Classification results using both approaches with SVM classifier.

Algorithm Binary Classification
Retinal Layers

All Layers
Choriocapillaris Outer Deep Superficial

Hybrid algorithm
healthy vs wet AMD 100% ± 0 99% ± 1 98% ± 3 95% ± 5 96% ± 2

wet AMD vs dry AMD 83% ± 2 85% ± 3 80% ± 4 75% ± 3 78% ± 4
CNV vs non-CNV 81% ± 3 83% ± 1 76% ± 2 69% ± 4 76% ± 2

Previous algorithm
healthy vs wet AMD 100% ± 0 96% ± 1 96% ± 3 91% ± 3 92% ± 3

wet AMD vs dry AMD 81% ± 2 83% ± 3 79% ± 4 71% ± 2 75% ± 3
CNV vs non-CNV 80% ± 3 82% ± 3 72% ± 4 67% ± 5 74% ± 3

Table 3. Classification results using both approaches with KNN classifier.

Algorithm Binary Classification
Retinal Layers

All Layers
Choriocapillaris Outer Deep Superficial

Hybrid algorithm
healthy vs wet AMD 100% ± 0 99% ± 1 96% ± 2 93% ± 5 96% ± 3

wet AMD vs dry AMD 81% ± 3 84% ± 4 75% ± 5 73% ± 2 75% ± 4
CNV vs non-CNV 80% ± 4 81% ± 5 73% ± 3 68% ± 4 73% ± 2

Previous algorithm
healthy vs wet AMD 100% ± 0 98% ± 2 95% ± 4 90% ± 4 90% ± 2

wet AMD vs dry AMD 80% ± 1 78% ± 4 71% ± 4 70% ± 3 71% ± 2
CNV vs non-CNV 79% ± 4 79% ± 3 70% ± 5 66% ± 3 70% ± 1

The construction of discriminative features has a critical role in the performance
of machine learning algorithms. This is due to the fact that when using mislead-
ing or highly correlated texture features, even with the use of the most sophis-
ticated classifiers, attaining the desired performance level will not be possible.
The preliminary results in Tables 2 and 3 show that the new hybrid algorithm
is robust against image noise and quality due to patient motion or illumination
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changes as compared to our previously reported algorithm [11]. This was con-
firmed by challenging two different classifiers, namely the SVM and KNN. Fur-
thermore, the SVM classifier generally performs better than the KNN classifier
on both algorithms. Moreover, the initial results of our classification algorithms
show that the most predictable layers are the choriocapillaris and outer retinal
layers.

5 Conclusion and Future Work

This paper reports a hybrid algorithm for AMD classification in OCTA im-
ages by combining the LBP descriptor with PCA. The LBP is responsible for
capturing the local textural features from the OCTA images while the PCA is
applied for eliminating the misrepresentative texture features. The algorithm is
capable of capturing all related image variations induced by AMD as analysis is
performed on the entire image. The results achieved so far have suggested that
the proposed hybrid algorithm may be clinically useful for AMD classification
in OCTA images. Deep learning methods might have superior performance, but
the size of the dataset currently available is too small to investigate them.

Future work exploring the performance of deep learning methods in similar
tasks would be of interest. To enable this, the collection of carefully curated
data will be required. Data augmentation techniques to increase the number of
images are generally inappropriate, since in this case they will distort the data in
undesirable ways. Testing the presented and other algorithms on more complex
tasks would also be of interest. Specifically, it would be clinically valuable to be
able to distinguish variations in AMD in the same patient, namely active CNV
(which requires treatment) from inactive CNV (which can be observed).
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