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Abstract. We consider a linearised model of incompressible inviscid flow. Using a regularisation

based on the Hodge Laplacian we prove existence and uniqueness of weak solutions for smooth
domains. The model problem is then discretised using H(div)-conforming finite element methods,

for which we prove error estimates for the velocity approximation in the L2-norm of order O(hk+ 1
2 ).

We also prove error estimates for the pressure error in the L2-norm.

1. Introduction

The use of H(div)-conforming finite element methods for the approximation of incompressible flow
at high Reynolds number has been receiving increasing attention from the research community recently
[?, ?, ?]. By construction such methods can satisfy the divergence-free condition exactly. The lack
of H1-conformity is handled using techniques drawing on ideas from discontinuous Galerkin methods
[?], resulting in several possible different choices for the discretisation of the transport term and the
viscous term. For the former one may either design an energy conserving method using central fluxes,
or one may opt for a dissipative alternative in the form of upwind fluxes. The latter were shown in
[?] to be more robust than the former, as is the case for discontinuous Galerkin (DG) methods. For
DG-methods applied to scalar problems it is well known that thanks to the dissipative properties of
the upwind flux one may prove an error estimate in the L2-norm, of the form (see, e.g., [?])

(1.1) ‖u− uh‖L2(Ω) ≤ Chk+ 1
2 |u|Hk+1(Ω),

where u is the exact solution, uh its DG-approximation, Ω ⊂ Rd, d = 2, 3. is the computational
domain, h the mesh parameter, and finally k the polynomial degree of the approximation space. On
special meshes one can in fact prove optimal estimates with rate hk+1 for upwind DG methods applied
to scalar problems [?, ?]. However, as it is shown in [?], the result (1.1) is sharp on general meshes.

Estimates of the type (1.1) are also the best that are known for either stabilised conforming finite
element approximations, or fully DG methods, of laminar solutions of the Navier-Stokes’ equations in
the high Reynolds number regime [?, ?], or the incompressible Euler equations [?, ?]. The robustness
of the H(div)-conforming elements in the case of vanishing viscosity was shown in [?] for the case
of the Brinkman problem, i.e. without the convection terms. Despite all the work quoted above,
there seems to be no proof of an error estimate of the type (1.1) for finite element methods using
H(div)-conforming elements applied to incompressible flow problems (see the discussion in [?, ?]).

The purpose of this work is to fill the gap mentioned in the last paragraph. That is, proving an
estimate of the type (1.1) for finite element methods approximating a stationary linearised model
of inviscid flow and using H(div)-conforming approximation spaces for the velocity approximation.
Both the spaces designed by Raviart and Thomas [?] and by Brezzi, Douglas and Marini [?] enter
the framework. As stabilising fluxes, these need to be either upwind, or, in case of central fluxes, an
additional penalty term on the jump of the tangential component of the velocity needs to be added.
In the particular case in which the velocity is approximated using the Raviart-Thomas space we also
prove a convergence result for the pressure error, showing that the approximate pressure converges to
the exact pressure in the L2-norm also with the rate O(hk+ 1

2 ). For the BDM space the rate O(hk+ 1
2 )
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is obtained for the projection of the error onto the pressure space, but since in this case the pressure
space is of polynomial degree k − 1, this is a superconvergence result.

1.1. Linear model problem. To keep the discussion as simple as possible we consider the following
linear model problem.

Find a velocity u and a pressure p satisfying

div (u⊗ β) + σu+∇p =f in Ω ,(1.2a)

divu =0 in Ω ,(1.2b)

u · n =0 on Γ.(1.2c)

We think of u and β as column vectors and we set u⊗β = uβt. We assume that divβ = 0 and that
σ ∈ L∞(Ω) with σ(x) ≥ σ0 > 0 almost everywhere in Ω. We assume that β · n = 0 on Γ. In spite
of it being the natural candidate for a model problem for the development and analysis of numerical
methods for inviscid flow this model does not seem to have been considered in the literature. Below
we will first discuss the flow modelling leading to the system (1.2).

To obtain the stationary linear model problem (1.2) from the incompressible Euler equations,
assume that a stationary solution to the latter β, is subject to a smooth, exponentially growing
perturbation of the right hand side of the momentum equation of the form:

f̃(x, t) := f(x) exp(σt), σ ∈ R \ 0.

Writing the perturbed solution β+ũ where ũ(x, t) is the perturbation resulting from the pertubation of
the right hand side and neglecting quadratic terms in the perturbation ũ, we may write the linearised
momentum equation

(1.3) ∂tũ+ div (ũ⊗ β) + div (β ⊗ ũ) +∇p̃ = f̃(x, t).

With the above choice of perturbation we may write the solution on the separated form

ũ(x, t) = u(x) exp(σt).

Injecting this expression in (1.3) we arrive at the following stationary form for the space varying part
of the perturbation

(1.4) σu+ div (u⊗ β) + div (β ⊗ u) +∇p = f(x).

To further simplify the model problem we finally drop the second term in the left hand side of (1.4).
Since div (β ⊗ u) = u · ∇β, this is a non-essential term which can be absorbed in the reaction term
under suitable assumptions on σ and β.

It is easy to construct solutions to the system (1.2). Examples of such solutions in the unit square
are

(1) x-independent solution.
Let β · n = 0 on y = 0 and y = 1 and β is defined to be periodic at x = 0 and x = 1. Then
for any function ϕ : R 7→ R, ϕ ∈ [C1(R)]2 a solution is given by:

β :=

(
ϕ(y)

0

)
.

The associated pressure is p = 0.
(2) Stationary vortex sheet.

Let β · n = 0 on the boundaries of the square and define the streamfunction ϕ(x, y) :=
sin(nπx) sin(nπy), corresponding to the vorticity ω := ∆ϕ = −2n2π2 sin(nπx) sin(nπy) =
−2n2π2ϕ with n a positive integer. Then define:

(1.5) β :=

(
∂yϕ(x, y)
−∂xϕ(x, y)

)
.
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Since β ·∇ω = −2n2π2(∂yϕ(x, y)∂xϕ(x, y)−∂xϕ(x, y)∂yϕ(x, y)) = 0 we see that β is a solution
to the two-dimensional stationary equations of inviscid flow. It is straightforward to verify
that the velocity pressure formulation is satisfied for the pressure,

(1.6) p = n2π2(cos2(nπx)− sin2(nπy))/2.

In both examples (1) and (2) we achieve a problem on the form (1.2) by taking f = σβ and the
solution is then u = β.

1.2. Outline of paper. We prove existence of solutions of the model problem (1.2) and uniqueness
for σ large enough, on smooth domains, in section 3. The H(div)-conforming upwind finite element
methods are introduced and analysed in section 4. Finally in section 5 we illustrate the theory by
computing approximations to the example (2) above.

2. Notation and preliminary results

The partial differential equation will be posed on an open polyhedral domain Ω ⊆ Rd, d = 2, 3 with
Lipschitz boundary Γ. For some of the theoretical results we will assume a smoother boundary. We
adopt standard notation for Sobolev and Lebesgue spaces. In particular, for D ⊂ Ω we denote by
(·, ·)D the L2(D) inner product (without making a distinction between scalar and vector and tensor-
valued functions). For D = Ω we drop the subindex in the above notation. The norm in L2(D) will
be denoted by ‖ · ‖D. By Wm,p(D),m ≥ 0, 1 ≤ p ≤ ∞ we will denote the functions in Lp(D), with
distributional derivatives up to order m belonging to Lp(D), with norm (seminorm) ‖·‖m,p,D (|·|m,p,D).

For p = 2 we denote Hm(D) = Wm,2(D), and the corresponding norm is denoted ‖ · ‖m,D. As usual,
Hm

0 (D) denotes the closure of C∞0 (D) in the ‖ · ‖m,D-norm. We also denote by L2
0(D) the space of

L2(D) functions with zero mean value in D. All spaces for vector-valued functions will be denoted
by boldface notation, e.g., H1(D) = [H1(D)]d, hence we denote by H(div , D) the space of L2(D)
functions with distributional divergence in L2(D), H0(div , D) = {v ∈H(div , D) : v ·n = 0 on ∂D},
and H(curl , D) denotes the space of L2(D) functions with distribution curl in L2(D).

Below we will make use of the following preliminary result (for its proof, see, e.g., [?]).

Lemma 2.1. There exists a constant C > 0 such that for every q ∈ L2
0(Ω) there exists v ∈ H1

0 (Ω)
satisfying

div v = q in Ω,

‖∇v‖Ω ≤ C‖q‖Ω.

Also in [?] the proof of the following result can be found.

Proposition 2.2. The following bound holds

(2.1) ‖v‖Ω ≤ C(‖div v‖Ω + ‖curlv‖Ω) ∀v ∈H0(div ,Ω) ∩H(curl ,Ω).

If we assume that ∂Ω is C1,1

(2.2) ‖∇v‖Ω ≤ K(‖div v‖Ω + ‖curlv‖Ω) ∀v ∈H0(div ,Ω) ∩H(curl ,Ω).

Finally, if Ω is a convex Lipschitz polyhedron [?], or a convex more regular domain, then

(2.3) ‖∇v‖2Ω ≤ ‖div v‖2Ω + ‖curlv‖2Ω ∀v ∈H0(div ,Ω) ∩H(curl ,Ω).

Finally, for two 3×3 matrices A and B with rows Ai and Bi (i = 1, 2, 3) we define C := A×B with
C1 = A2 ·B3 −A3 ·B2, C2 = −(A1 ·B3 −A3 ·B1) C3 = A1 ·B2 −A2 ·B1), and a simple calculation
gives the following identity.

Lemma 2.3. It holds

curl (β · ∇v) = β · ∇(curlv) + ((∇β)t ×∇v).
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3. Well-Posedness of the model problem

It appears that the linear inviscid model (1.2) has not been analysed mathematically. Hence,
will here first study its well-posedness before proceeding with the finite element analysis. Transport
problems have been studied by several authors (e.g. [?, ?, ?]). However, the incompressibility con-
straint seems to add new challenges to the analysis and we cannot apply the techniques of the above
mentioned papers directly. The weak formulation of (1.2) is given by:

Find u ∈H0(div ,Ω) and p ∈ L2
0(Ω) that satisfy

−(u,β · ∇v) + (σu,v)− (p,div v) =(f ,v) for all v ∈H1(Ω) ∩H0(div ,Ω),(3.1a)

(divu, q) =0 for all q ∈ L2
0(Ω).(3.1b)

3.1. Existence of weak solutions (3.1). In order to prove existence of the problem (3.1) we will
regularize it. Consider the following problem: Find a velocity uε and a pressure pε satisfying

−ε∆uε + div (uε ⊗ β) + σuε +∇pε =f in Ω ,(3.2a)

divuε =0 in Ω ,(3.2b)

uε =0 on Γ.(3.2c)

The weak formulation of (3.2) is as follows: Find (uε, pε) ∈H1
0 (Ω)× L2

0(Ω) such that

ε(∇uε,∇v)− (uε,β · ∇v) + (σuε,v)− (pε,div v) =(f ,v) for all v ∈H1
0 (Ω),(3.3a)

(divuε, q) =0 for all q ∈ L2
0(Ω) .(3.3b)

Lemma 3.1. There exists a unique solution uε ∈ H1
0 (Ω) and pε ∈ L2

0(Ω) to the problem (3.3). In
addition, if β ∈ L∞(Ω), then the following bound holds

(3.4) ‖pε‖Ω + ‖
√
σuε‖Ω +

√
ε‖∇uε‖Ω ≤ C ‖f‖Ω ,

where the constant C depends on σ and ‖β‖∞,Ω, but not on negative powers of ε.

Proof. Existence and uniquness of a solution of (3.3) follows from the Babuska-Brezzi theory [?].
Testing the equation with uε we get

(3.5) ε‖∇uε‖2Ω + ‖
√
σuε‖2Ω = (f ,uε).

Therefore, we have the bound

(3.6) ε‖∇uε‖2Ω +
1

2
‖
√
σuε‖2Ω ≤

1

2σ0

‖f‖2Ω.

Moreover, using Lemma 2.1 and (3.3a) we have that

‖pε‖Ω ≤ C
(
ε‖∇uε‖Ω + ‖β‖∞,Ω‖uε‖Ω + ‖

√
σ‖∞,Ω ‖

√
σuε‖Ω + ‖f‖Ω

)
,

and the proof is finished using (3.6). �

Theorem 3.2. There exists a solution u ∈ L2(Ω) and p ∈ L2(Ω) to (3.1).

Proof. Since {uε} and {pε} are uniformly bounded in H0(div ,Ω) and L2
0(Ω), respectively, there exists

a subsequence such that uε ⇀ u and pε ⇀ p with u ∈ H0(div ,Ω) and p ∈ L2
0(Ω). Moreover, since

divuε = 0, for all φ ∈ H1
0 (Ω) we have (u,∇φ) = limε→0(uε,∇φ) = limε→0−(divuε, φ) = 0, thus

showing that divu = 0 in Ω. We then see that from (3.3a) and the fact that ε‖∇uε‖Ω → 0 as ε→ 0
that u and p satisfy (3.1). �
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3.2. Uniqueness of weak solutions. In general we cannot prove uniqueness of weak solutions (3.1).
However, we will be to prove existence and uniqueness of solutions in the space H1(Ω) ∩H0(div ,Ω)
by making more stringent requirements on the coefficients and the boundary Γ. To achieve this goal,
it is necessary to introduce a different regularised (as compared to (3.2)) problem to prove existence of
smoother solutions to (3.1). The idea consists in considering the folllowing regularised Hodge-Oseen
problem: Find a velocity uε and a pressure pε satisfying

ε curl curluε + div (uε ⊗ β) + σuε +∇pε =f in Ω ,(3.7a)

divuε =0 in Ω ,(3.7b)

uε · n =0 on Γ,(3.7c)

curluε × n =0 on Γ.(3.7d)

The weak formulation of (3.7) reads as follows: Find uε ∈ V := H1(Ω)∩H0(div ,Ω) and pε ∈ L2
0(Ω)

that satisfy

ε(curluε, curlv)− (uε,β · ∇v) + (σuε,v)− (pε,div v) =(f ,v) for all v ∈ V ,(3.8a)

(divuε, q) =0 for all q ∈ L2
0(Ω).(3.8b)

Theorem 3.3. Assume that f ∈ L2(Ω) and that Γ is C1,1, or Ω is a convex Lipschitz polyhedron.
Then, there exists a unique solution of (3.8). In addition, it satisfies

(3.9)
√
ε‖curluε‖Ω + ‖

√
σuε‖Ω + ‖pε‖Ω ≤ C‖f‖Ω.

Moreover, suppose that f ∈ H1(Ω),β ∈ W 1,∞(Ω), σ ∈ W 1,∞(Ω) and Γ is C3. If Ω is convex, let
C = ‖∇β‖L∞(Ω), or otherwise C = K‖∇β‖∞,Ω where K is from (2.2). Then, assuming σ0 > C we
have

‖curluε‖Ω ≤ C ‖f‖curl ,Ω ,

where C > 0 depends on σ,β, and K, but not on negative powers of ε.

Proof. The existence and uniqueness of this solution follows from the Babuska-Brezzi theory [?] by
noting that as proven in [?], the norm in H1(Ω) is equivalent to the one in H(curl ,Ω)∩H0(div ,Ω),
thanks to the hypotheses on Γ. The bound (3.9) follows taking v = uε in (3.8a), and the inf-sup
conditions provides the stability for pε.

Next, whenever we suppose that Γ is of class C3 and f ∈ H1(Ω), using the results in [?] (see
Thereom 12 and Remark 16) we have the regularity uε ∈ H3(Ω) and pε ∈ H2(Ω). Noting that
curluε×n = 0 on Γ it follows that curl curl (uε) ·n = 0, so, ṽ := curl curl (uε) ∈H1(Ω)∩H0(div ,Ω),
and then it is a valid test function to be used in (3.8). Thus, taking ṽ as test function in (3.8) and
integrating by parts we obtain
(3.10)
ε‖curl curluε‖2Ω − (uε,β · ∇(curl curluε)) + ‖

√
σ curluε‖2Ω + (∇σ × uε, curluε) = (curlf , curluε) .

The second term in the left can be written as

−(uε,β · ∇(curl curluε)) = (β · ∇uε, curl curluε) = (curl (β · ∇uε), curluε) .

However, using Lemma 2.3 and the antisymmetry of the convective term

(curl (β · ∇uε), curluε) = (β · ∇(curluε), curluε) + ((∇β)t×∇uε, curluε) = ((∇β)t×∇uε, curluε) ,

and then
−(uε,β · ∇(curl curluε)) = ((∇β)t ×∇uε, curluε).

Therefore, replacing the last identity in (3.10) we have

ε‖curl curluε‖2Ω + ‖
√
σ curluε‖2Ω = (curlf −∇σ × uε, curluε)− ((∇β)t ×∇uε, curluε).

Using the Cauchy Schwarz inequality, one of the inequalities (2.2) or (2.3), and the fact that divuε = 0
we have

‖
√
σ curluε‖2Ω ≤ ‖curlf −∇σ × uε‖Ω‖curluε‖Ω + C‖curluε‖2Ω .
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Hence,

(σ0 − C) ‖curluε‖2Ω ≤ ‖curlf −∇σ × uε‖Ω‖curluε‖Ω ,
and the proof follows dividing by ‖curluε‖Ω and applying (3.9). �

Theorem 3.4. Let us assume the hypotheses Theorem 3.3 . Then, there exists a unique solution of
(3.1) such that u ∈H1(Ω) ∩H0(div ,Ω) and p ∈ H1(Ω).

Proof. Let (uε, pε) be the solution of (3.8). Then, by Theorem 3.3 {(uε, pε)} is uniformly bounded in
H1(Ω)× L2

0(Ω). Hence, there exists a subsequence such that uε ⇀ u ∈ H1(Ω) and pε ⇀ p ∈ L2
0(Ω)

weakly. Moreover, since divuε = 0 and uε ∈ H0(div ,Ω), then divu = 0 and u ∈ H0(div ,Ω). This
proves that u satisfies the second equation in (3.1) and the boundary conditions. Since uε ⇀ u ∈
H1(Ω) weakly, then uε → u strongly in L2(Ω). In addition, since ε‖curluε‖Ω → 0 as ε → 0, then
using the weak convergence of pε to p in L2(Ω) we can take the limit as ε→ 0 in (3.8) and conclude
that (u, p) also satisfies the first equation in (3.1). Finally, from the first equation in (3.1) we have
∇p = f − σu− div (β ⊗ u) ∈ L2(Ω), and then p ∈ H1(Ω).

To prove uniqueness, assume that f = 0. If we test with u ∈H1(Ω)∩H0(div ,Ω) we immediately
get that ‖

√
σu‖2Ω = 0 which gives that u = 0. It easily follows that p = 0. �

We finish this section by stating the following result that, in essence, casts the problem (3.1) as the
limit of the Oseen problem (3.3).

Corollary 3.5. Under the same hypotheses from Theorem 3.4 the solution (u, p) of (3.1) is the limit
of the solutions of the Oseen problem (3.3) in the following sense

(3.11) lim
ε→0

(
‖u− uε‖div ,Ω + ‖pε − p‖Ω

)
= 0 .

Proof. The error (u− uε, p− pε) satisfies the following error equation

(3.12) (σ(u− uε),v)− ε(∇uε,∇v) + (β ⊗ (u− uε),∇v)− (p− pε,div v) = 0 ,

for all v ∈H1(Ω) ∩H0(div ,Ω). Since u ∈H1(Ω) ∩H0(div ,Ω), v̂ := u− uε is a valid test function
for (3.12). So, using v̂ in (3.12), the fact that both u and uε are divergence-free, the Cauchy-Schwarz
inequality, and (3.4) we get

‖
√
σ(u− uε)‖2Ω + ε‖∇(u− uε)‖2Ω = ε(∇u,∇(u− uε))

≤
√
ε‖∇u‖Ω

√
ε‖∇(u− uε)‖Ω → 0 ,(3.13)

as ε→ 0, which proves the convergence of uε to u in L2(Ω). The convergence of uε to u inH0(div ,Ω)
follows from the fact that both uε and u are divergence-free.

To prove the convergence of the pressure, using Lemma 2.1 there exists w ∈ H1
0 (Ω) such that

|w|1,Ω ≤ C‖p− pε‖Ω and divw = p− pε. Then, using (3.12), the Cauchy-Schwarz inequality, and the
convergence of uε to u,

‖p− pε‖2Ω = (p− pε,divw) = (σ(u− uε),w) + ε(∇uε,∇w) + (β ⊗ (uε − u),∇w)

≤ C
(
‖
√
σ‖∞,Ω ‖

√
σ (u− uε)‖Ω +

√
ε
√
ε‖∇uε‖Ω + ‖β‖∞,Ω‖u− uε‖Ω

)
‖p− pε‖Ω ,(3.14)

and the proof follows by dividing by ‖p − pε‖Ω and noticing that, thanks to (3.4) the term within
parentheses tends to zero as ε→ 0. �

4. Upwind H(div) method

4.1. Preliminaries. We denote by {Th}h>0 a family of shape-regular simplicial triangulations of Ω.
The elements of Th are denoted by T , with diameter hT , and h := max{hT : T ∈ Th}. The set of its
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facets (edges for d = 2, faces for d = 3) is denoted by Eh. To cater for the nonconforming character
of the approximation we also introduce the following broken versions of the scalar product

(v,w)h =
∑
T∈Th

∫
T

v ·w dx,

〈v,w〉h =
∑
T∈Th

∫
∂T

v ·w ds.

In addition, we introduce the broken space H(Th), of functions in L2(Ω) whose restriction to every
T ∈ Th belongs to H(T ).

Let T ∈ Th and let x ∈ ∂T then we define

v±β (x) = lim
ε→0

v
(
x± ε(β(x) · n(x))n(x)

)
.

and

v̂(x) = v−β (x)

For F ∈ Eh and F = ∂T1 ∩ ∂T2 for T1, T2,∈ Th we define the jumps

[[v ⊗ n]] |F = v|T1
⊗ n1 + v|T2

⊗ n2 ,

and for F ∈ Eh and F ⊂ Γ we define

[[v ⊗ n]] |F = v ⊗ n.

We then define the semi-norm on the jumps of the solution over element boundaries to be

|v|2β =
∑
F∈Eh

‖
√
|β · n| [[v ⊗ n]] ‖20,F .

With these definitions we can state the following important identity [?, Lemma 6.1]

Proposition 4.1. For all v ∈H1(Th), the following holds

(4.1) (v ⊗ β,∇v)h − 〈β · nv̂,v〉h = −1

2
|v|2β.

Let us define the Raviart-Thomas [?] and BDM spaces [?]. The space of polynomials of degree at
most k defined in T is denoted by Pk(T ), and we denote Pk(T ) = [Pk(T )]d. For every T ∈ Th, let
RTk(T ) = Pk(T ) + (Pk(T ) \ Pk−1(T ))x. We define, for k ≥ 0, the spaces

V RT
h,k ={v ∈H0(div ,Ω) : v|T ∈ RTk(T ) for all T ∈ Th},

V BDM
h,k ={v ∈H0(div ,Ω) : v|T ∈ Pk(T ) for all T ∈ Th},
Mh,k ={q ∈ L2

0(Ω) : q|T ∈ Pk(T ) for all T ∈ Th}.

A well-known property linking these two spaces is stated now (for a proof see [?, Lemma 4.3]).

Lemma 4.2. Let v ∈ V RT
h,k with div v = 0 on Ω then v ∈ V BDM

h,k .

We next introduce the standard L2-projection on polynomials on an element T , PTk : L2(T ) →
Pk(T ). Its global equivalent will be denoted Pk : L2(Ω)→Mh,k. We recall the standard estimates for
the L2-projection (see, e.g., [?])

‖Pkq − q‖Ω + h‖∇(Pkq − q)‖Ω ≤ C hk+1
T |q|k+1,Ω ,(4.2)

‖q − P0q‖∞,T ≤ C hT ‖q‖1,∞,T .(4.3)
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The Raviart-Thomas interpolation operator will be used in the sequel. It is defined as follows:
Π : H1(Ω) ∩H0(div; Ω)→ V RT

h,k where Πv is the only function of V RT
h,k satisfying∫

T

(Πv − v) ·w dx = 0 for all w ∈ Pk−1(T ), and all T ∈ Th,(4.4) ∫
F

(Πv − v) · nw ds = 0 for all w ∈ Pk(F ), and all F ∈ Eh.(4.5)

This operator satisfies the following classical properties (see, e.g., [?]).

Lemma 4.3. Let k ≥ 0. The mapping Π satisfies the following commutative property

(4.6) div Πv = Pkdiv v .

Let v ∈Hk+1(Ω) then we have

‖Πv − v‖T + hT ‖∇(Πv − v)‖T ≤ C hk+1
T |v|k+1,T for all T ∈ Th.

We end this section recalling the following classical inverse and local trace inequalities that hold
for every T ∈ Th

|vh|1,T ≤ Ch−1‖vh‖T ∀ vh ∈ Pk(T ) ,(4.7)

‖v‖∂T ≤ C
(
h
− 1

2

T ‖v‖T + h
1
2

T |v|1,T
)

∀ v ∈ H1(T ) .(4.8)

4.2. The finite element method and the error estimates for the velocity. Throughout, the
velocity and pressure will be approximated using the spaces Vh and Mh, respectively. In this work
we will consider the following choices:

Vh = V RT
h,k and Mh = Mh,k, for k ≥ 0,

or

Vh = V BDM
h,k and Mh = Mh,k−1, for k ≥ 1.

The numerical method analysed here reads: Find u ∈ Vh and ph ∈Mh such that

−(uh,β · ∇vh)h + 〈(β · n)ûh,vh〉h + (σuh,vh)− (ph,div vh) = (f ,vh) for all vh ∈ Vh,(4.9a)

(divuh, qh) = 0 for all qh ∈Mh.(4.9b)

Thanks to the inf-sup stability of the pair Vh×Mh (see [?]), and Proposition 4.1, problem (4.9) has a
unique solution. Moreover, the method (4.9) is consistent; in fact, for (u, p) ∈H1(Ω)×L2

0(Ω) solving
(1.2) we have

−(u,β · ∇vh)h + 〈(β · n)u,vh〉h + (σu,vh)− (p,div vh) = (f ,vh) for all vh ∈ Vh,(4.10a)

(divu, qh) = 0 for all qh ∈Mh.(4.10b)

A consequence of Lemma 4.2 is that the finite element method (4.9) produces the same velocity
approximation for uh ∈ V RT

h,k and uh ∈ V BDM
h,k . We show that in the following proposition.

Proposition 4.4. Let (uh, ph) be the solution of (4.9) for the spaces Vh ×Mh = V RT
h,k ×Mh,k and

(ũh, p̃h) the solution of (4.9) for the spaces Vh ×Mh = V BDM
h,k ×Mh,k−1. Then uh = ũh.

Proof. Let eh := ũh − uh, ηh = p̃h − ph then using (4.9) we see that

(4.11) −(eh,β · ∇vh)h + 〈(β · n)êh,vh〉h + (σeh,vh)− (ηh,div vh) = 0 for all vh ∈ V BDM
h,k .

Since div eh = 0 by Lemma 4.2there holds eh ∈ V BDM
h,k , which is a valid test function. Taking vh = eh

in (4.11) and applying Proposition 4.1 we obtain

‖
√
σeh‖Ω = 0,

which proves the claim. �
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We can now derive an error estimate for the velocity. We let eh = Πu− uh and start by noticing
that

(4.12) div eh = 0.

Hence, by Lemma 4.2 we have eh ∈ V BDM
h,k and in particular

(4.13) ∇eh|T ∈ [Pk−1(T )]d×d for all T ∈ Th.

Theorem 4.5. Let u ∈ [H1(Ω)]d solve (1.2) and let uh ∈ Vh solve (4.9). Then, the following error
estimate holds

‖
√
σ(u− uh)‖Ω + |u− uh|β ≤ C

(
1 +
‖β‖1,∞,T

σ0

)
‖
√
σ(u−Πu)‖Ω

+ C‖β‖1/2∞,Ω

(∑
T∈Th

(
1

hT
‖u−Πu‖2T + hT ‖∇(u−Πu)‖2T

)) 1
2

,

where the constant C does not depend on h, or any physical parameter of the equation.

Proof. Using (4.9), (4.10), (4.12), and (4.1) we get

‖
√
σeh‖2Ω =(σ(u− uh), eh) + (σ(Πu− u), eh)

=((u− uh),β · ∇eh)h − 〈β · n(u− ûh), eh〉h + (σ(Πu− u), eh)

=((Πu− uh),β · ∇eh)h − 〈β · n(Π̂u− ûh), eh〉h
+ ((u−Πu),β · ∇eh)h − 〈β · n(u− Π̂u), eh〉h + (σ(Πu− u), eh)

=− 1

2
|eh|2β + ((u−Πu),β · ∇eh)h − 〈β · n(u− Π̂u), eh〉h + (σ(Πu− u), eh) .

Hence, we have

‖
√
σeh‖2Ω +

1

2
|eh|2β

= (u−Πu,β · ∇eh)h − 〈β · n(u− Π̂u), eh〉h + (σ(Πu− u), eh) .(4.14)

We bound each term separately. Using (4.13), the definition of Π (4.4)-(4.5), (4.3), and (4.7), we have

(4.15) (u−Πu,β · ∇eh)h = (u−Πu, (β − P0β) · ∇eh)h ≤ C‖β‖1,∞,Ω‖u−Πu‖Ω‖eh‖Ω .
Using the contributions from neighbouring elements on the face to express the discrete error on the
faces in terms of jumps, the normal continuity of u and Πu, and using the local trace inequality (4.8)
it is easy to show that

(4.16) −〈β · n(u− Π̂u), eh〉h ≤ C ‖β‖
1
2

∞,Ω|eh|β

(∑
T∈Th

(
1

hT
‖u−Πu‖2T + hT ‖∇(u−Πu)‖2T

)) 1
2

.

Finally,

(4.17) (σ(Πu− u), eh) ≤ ‖
√
σ(Πu− u)‖Ω‖

√
σeh‖Ω.

Therefore, inserting (4.15)-(4.17) into (4.14) we arrive at

‖
√
σeh‖Ω + |eh|β ≤C

(
1 +
‖β‖1,∞,Ω

σ0

)
‖
√
σ(u−Πu)‖Ω

+ C‖β‖
1
2

∞,Ω

(∑
T∈Th

(
1

hT
‖u−Πu‖2T + hT ‖∇(u−Πu)‖2T

)) 1
2

.

The result follows after applying the triangle inequality. �

The following result appears as a corollary of the last theorem and Lemma 4.3.
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Corollary 4.6. Let u ∈ [Hk+1(Ω)]d solve (1.2) and let uh ∈ Vh solve (4.9). Then, the following
error estimate holds

‖
√
σ(u− uh)‖Ω + |u− uh|β ≤C

([
1 +
‖β‖1,∞,T

σ0

]
‖
√
σ‖∞,Ωh

1
2 + ‖β‖

1
2

∞,Ω

)
hk+ 1

2 ‖u‖k+1,Ω).

Remark 4.7. The arguments of Theorem 4.5 and Corollary 4.6 may be used to improve the order
obtained Theorem 2.2 of [?] to O(hk+ 1

2 ), if an upwind flux is used. Following the ideas above, use
integration by parts in the first term of I1 in the equation after (2.12). Then add and subtract
the exact solution to the approximate solution in term I3 and recombine terms, so that one may use
continuity on the norm augmented with L2-control on the faces the jumps of the approximate velocity.

4.3. L2-error estimates for the pressure approximation. Since the pressure space is of poly-
nomial degree k for the method using the RT space for velocity approximation and k − 1 for the
method using the BDM space, the optimal order that can be obtained for the error of the pressure
approximation in the L2-norm is O(hk+1) and O(hk), respectively. Here we will prove the following
orders for the pressure error :

(1) in the first case (RT), O(hk+ 1
2 ); this is, the same suboptimality of O(h

1
2 ) as for the velocity

approximation.
(2) in the second case (BDM) we get the optimal convergence O(hk); considering that the pressure

space is of degree k − 1. For the discrete error, i.e. the projection of the error on the space
Mh, we get an O(hk+ 1

2 ) estimate, this is a superconvergence of O(h
1
2 ) compared with the

approximation property of the space of constant functions.

Theorem 4.8. Let (u, p) ∈ H1(Ω) × L2
0(Ω) solve (1.2) and let (uh, ph) ∈ Vh ×Mh solve (4.9). Let

` denote the polynomial degree of the space Mh. Then, the following error estimate holds

‖P`p− ph‖Ω ≤C(‖β‖∞,Ωσ
− 1

2
0 + σ

1
2 )‖
√
σ(u− uh)‖Ω

+ C ‖β‖∞,Ω

(∑
T∈Th

(
‖u−Πu‖2T + h2

T ‖∇(u−Πu)‖2T
)) 1

2

.

Proof. Using the surjectivity of the divergence operator as a mapping from H1
0 (Ω) to L2

0(Ω) there
exists vp ∈H1

0 (Ω) such that div vp = P`p− ph and

(4.18) ‖vp‖1,Ω ≤ C‖P`p− ph‖Ω.

It follows from (4.18) and (4.6) that

‖P`p− ph‖2Ω = (P`p− ph,div vp) = (P`p− ph,div Π̃vp) = (p− ph,div Π̃vp).

If Vh ≡ V RT
h,k then choose Π̃vp ∈ V RT

h,k and if Vh ≡ V BDM
h,k choose Π̃vp ∈ V RT

h,k−1 ⊂ V BDM
h,k . Using (4.9)

and (4.10) we find that

(4.19) (p− ph,div Π̃vp) = −(u− uh,β · ∇Π̃vp)h + 〈(β · n)(u− ûh), Π̃vp〉h + (σ(u− uh), Π̃vp).

Applying the Cauchy-Schwarz inequality and the stability of the RT interpolant and of vp we have

−(u− uh,β · ∇Π̃vp)h + (σ(u− uh), Π̃vp) ≤ (‖β‖∞,Ωσ
− 1

2
0 + σ

1
2 )‖
√
σ(u− uh)‖Ω‖vp‖1,Ω.

For the remaining term observe that, by the definition of 〈·, ·〉h, the fact that β · n changes sign on
neighbouring elements and that (u− ûh) is single valued on the faces of the triangulation,

〈(β · n)(u− ûh), Π̃vp〉h = 〈(β · n)(u− ûh), (Π̃vp − vp)〉h.
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The right hand side of this equality is bounded using the Cauchy-Schwarz inequality, the trace in-
equality (4.8) and the interpolation properties of the RT-interpolant of Lemma 4.3 as follows

〈(β · n)(u− ûh), (Π̃vp − vp)〉h

≤ C‖β‖∞,Ω
∑
T∈Th

(h
− 1

2

T ‖u− uh‖T + h
1
2

T ‖∇(u− uh)‖T )h
1
2

T ‖vp‖1,T

≤ C‖β‖∞,Ω
∑
T∈Th

(‖u− uh‖T + ‖u−Πu‖T + hT ‖∇(u−Πu)‖T )‖vp‖1,T ,

where in the last step we added and subtracted Πu, used the triangle inequality and the inverse
inequality (4.7). We conclude by using (4.18) . �

The following result is an immediate consequence of Theorem 4.8 and Corollary 4.6 and the ap-
proximation properties of the L2-projection,

Corollary 4.9. Assume that Vh = V RT
h,k and Mh = Mh,k. Then, there exists C̃β,σ > 0 that depends

only on the constants in the bounds of Theorems 4.8 and Corollary 4.6 such that

‖p− ph‖Ω ≤ C̃β,σh
k+ 1

2 ‖u‖k+1,Ω + Chk+1|p|k+1,Ω .

For the case in which Vh = V BDM
h,k and Mh = Mh,k−1, the following error estimate holds

‖Pk−1p− ph‖Ω ≤ Ĉβ,σh
k+ 1

2 ‖u‖k+1,Ω

and

‖p− ph‖Ω ≤ Ĉβ,σh
k+ 1

2 ‖u‖k+1,Ω + Chk|p|k,Ω,

where Ĉβ,σ depends on the constants in the bounds of Theorems 4.8 and Corollary 4.6.

5. A numerical example

Here we will show some illustrations of the theory developed above using the analytical solution of
example (2) in section 1.1. For ample qualitative numerical evidence of the performance of this type
of method on physically relevant problems we refer to the references [?, ?].

We consider the domain Ω = (0, 1) × (0, 1) and the solution (1.5)-(1.6) of example (2). We used
the package FreeFEM++ [?] to implement the formulation (4.9) with either the BDM(1) element and
piecewise constant pressures or the RT(1) element with piecewise affine, discontinuous, pressures. The
linear systems were solved using UMFPACK and the meshes were of Union Jack type. In Tables 1-2
we report the errors of velocities and pressures in the (relative) L2-norm. We also report the CPU
time. We see that the velocity approximations have identical errors in the two cases as predicted
by Proposition 4.4, whereas as expected the BDM(1) approximation has poorer convergence of the
pressure. The RT(1) computation however is more costly by almost a factor three.

In Table 3 we report the variation of the error on a fixed mesh with h = 1/40 and σ = 100. The
variable n, controlling the number of vortices, and hence influencing both ‖β‖W 1,∞(Ω) and ‖u‖H2(Ω)

is taken in the set n ∈ {1, 2, 4, 8}. We observe (approximately) linear growth in both velocity and
pressures, except for the pressure for the method using the RT element, where the growth is stronger.
For the highest value n = 8, all errors are above 15% on this mesh. In Table 4 we vary the coefficient
σ and see that also here the error growth for decreasing σ is by and large linear for the velocities,
as predicted by theory (Corollary 4.6) and the RT pressure (Corollary 4.9). The BDM pressure on
the other hand is very robust with respect to variations in σ, but much larger than the RT-pressure.
It starts increasing only for the smallest value of the parameter, when the pressure errors of the two
approximation spaces are comparable. It follows that for small values of σ the pressure approximation
is of similar quality for the BDM and RT methods.
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h ‖u− uh‖L2(Ω) ‖p− ph‖L2(Ω) CPU
1/10 0.011 (−) 0.15 (−) 0.073s
1/20 0.0030 (1.9) 0.074 (1.0) 0.47s
1/40 0.00087 (1.8) 0.037 (1.0) 4.7s
1/80 0.00031 (1.5) 0.019 (1.0) 62.9s

Table 1. Errors for the BDM1/P0 element. σ = 100 n = 1.

h ‖u− uh‖L2(Ω) ‖p− ph‖L2(Ω) CPU
1/10 0.011 (−) 0.026 (−) 0.17s
1/20 0.0030 (1.9) 0.0060 (2.1) 1.2s
1/40 0.00087 (1.8) 0.0018 (1.7) 12s
1/80 0.00031 (1.5) 0.00073 (1.3) 165s

Table 2. Errors for the RT1/P1dc element. σ = 100 n = 1.

n BDM ‖u− uh‖L2(Ω) BDM ‖p− ph‖L2(Ω) RT ‖u− uh‖L2(Ω) RT ‖p− ph‖L2(Ω)

1 0.00087 0.037 0.00087 0.0018
2 0.0048 0.074 0.0048 0.0058
4 0.031 0.14 0.031 0.026
8 0.21 0.34 0.21 0.18

Table 3. Errors for the BDM1/P0 element (columns 2 and 3) and RT1/P1dc element
(columns 4 and 5), h = 1/40, σ = 100, varying n.

σ BDM ‖u− uh‖L2(Ω) BDM ‖p− ph‖L2(Ω) RT ‖u− uh‖L2(Ω) RT ‖p− ph‖L2(Ω)

106 0.00061 0.037 0.00061 0.015
100 0.00087 0.037 0.00087 0.0018
50 0.0012 0.037 0.0012 0.0019
25 0.0021 0.037 0.0021 0.0022
10 0.0051 0.037 0.0051 0.0045
1 0.048 0.058 0.048 0.045

Table 4. Errors for the BDM1/P0 element (columns 2 and 3) and RT1/P1dc element
(columns 4 and 5), h = 1/40, n = 1, varying σ.
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