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Abstract

Section 1 provides a representation of the proposed estimator as a GMM estima-
tor along with the regularity conditions. Section 2 provides the proof of Proposition
1. Section 3 concerns the proposed approach to the common trend assumption. Sec-
tion 4 constructs the proposed approach in the repeated cross-section data setting.

1 Representation of the proposed estimator as a GMM

estimator
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and its weighting matrix is an identity matrix. The first and subsequent 2K elements

of mt(Xi1, Xit, XiT , Dit; θt) correspond to the moment functions for OLS in (4) and (6),

respectively. The last one corresponds to the moment function obtained by combining

(5), (7), and (8). Since we consider the just-identified case, the choice of weighting

matrix is irrelevant.

We suppose the following regularity conditions.

Assumption A.1.

(i) Θt is compact. (ii) E[supθt∈Θt
||mt(Xi1, Xit, XiT , Dit; θt)||] < ∞.

2 Proof of Proposition 1

First, I prove the consistency result. Under Assumptions 1, 2, 3, 4, and A.1, E[(1 −
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respectively. Under Assumptions 1, 2, and 3:
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=(E[Yit(1)− YiT (1)] + E[Yit(1)])− (E[Yit(0)− Yi1(0)] + E[Yi1(0)])− τatet,o

=E[Yit(1)]− E[Yit(0)]− τatet,o

=0.

Therefore, E[mt(Xi1, Xit, XiT , Dit; θt,o)] = 0 and E[mt(Xi1, Xit, XiT , Dit; θt)] ̸= 0 for

θt ̸= θt,o, so θt,o is identified. Combining this identification result and Assumptions 1,

2, 3, 4, and A.1, the consistency of τ̂atet follows Theorem 2.6 in Newey and MacFadden

(1994).

Next, I prove the asymptotic normality of τ̂atet . Since θ̂t is a GMM estimator with a
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vector of stacked moment functions mt(Xi1, Xit, XiT , Dit; θt) and we consider the just-

identified case, as following Theorem 6.1 in Newey and MacFadden (1994):
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Since the asymptotic variance of
√
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3 Relation to the common trend assumption

Under Assumption 2, the potential outcome models (1) and (2) satisfy the following

common trend assumptions due to the absence of interaction between gj(Ci) and Xit

for j = 0, 1:

E[Yit(0) | Dit = 1, Xi1, . . . , XiT , Ci]− E[Yi1(0) | Dit = 1, Xi1, . . . , XiT , Ci]

=E[Yit(0) | Dit = 0, Xi1, . . . , XiT , Ci]− E[Yi1(0) | Dit = 0, Xi1, . . . , XiT , Ci] (A.1)

=E[Yit(0) | Xit, Ci]− E[Yi1(0) | Xi1, Ci]

and

E[Yit(1) | Dit = 1, Xi1, . . . , XiT , Ci]− E[YiT (1) | Dit = 1, Xi1, . . . , XiT , Ci]

=E[Yit(1) | Dit = 0, Xi1, . . . , XiT , Ci]− E[YiT (1) | Dit = 0, Xi1, . . . , XiT , Ci] (A.2)

=E[Yit(1) | Xit, Ci]− E[YiT (1) | XiT , Ci],

where the exogeneity assumption also holds. Equation (A.1) is a usual common trend

assumption, which is the defining assumption for the DID approach, and states that

the difference in the expected potential outcome under no treatment between periods t

and 1 is unrelated to the treated or control group. On the other hand, Equation (A.2)

is an unusual common trend assumption and states that the difference in the expected

potential outcome under treatment between periods t and T is unrelated to the treated

or control group.

The proposed method is based on these common trend assumptions. As seen in the

population analogue of the discussion in section 3 of the main text, the proposed method

identifies the average potential outcome under no treatment for the entire population,

E[Yit(0)], based on (A.1) and the average potential outcome under treatment for the

entire population, E[Yit(1)], based on (A.2). Therefore, the proposed method identifies

the ATE for the entire population based on (A.1) and (A.2).

4 Repeated cross-section data

The discussion in the main text is based on the panel data setting. However, the

proposed method can also be constructed in the repeated cross-section data setting

wherein the advantage of the proposed method is to identify the ATE on the entire

population rather than on the treated only, unlike the standard DID approach.
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In the repeated cross-section data setting, we suppose that the observed data sam-

ple {Yit, Dit, Xit} consists of T independent cross-sections at different points in time.

The t = 1, . . . , T denotes the cross-section, while i = 1, . . . , Nt indexes the units in

cross-section t. Units in different cross-sections are not same. Yit denotes an observed

outcome. Xit denotes observed covariates that many include a constant term and ob-

served confounders. Dit ∈ {0, 1} is a group dummy such that Dit = 1 indicates that

unit i in cross-section t is treated.

We consider the following potential outcome models:

Yit(0) = X ′
itβ

0
t + γ0Dit + u0it, (A.3)

Yit(1) = X ′
itβ

1
t + γ1Dit + u1it, (A.4)

where ujit is a mean-zero error term defined as ujit = Yit(j) − E[Yit(j) | Xit, Dit] for

j = 0, 1. We replace unobserved unit fixed effects components g0(Ci) and g1(Ci) in the

panel data setting with group fixed effects components γ0Dit and γ1Dit, respectively, in

the repeated cross-section data setting.

The potential outcome models (A.3) and (A.4) satisfy the following common trend

assumptions:

E[Yit(0) | Dit = 1, Xit]− E[Yi1(0) | Dit = 1, Xi1]

=E[Yit(0) | Dit = 0, Xit]− E[Yi1(0) | Dit = 0, Xi1]

=E[Yit(0) | Xit]− E[Yi1(0) | Xi1]

and

E[Yit(1) | Dit = 1, Xit]− E[YiT (1) | Dit = 1, XiT ]

=E[Yit(1) | Dit = 0, Xit]− E[YiT (1) | Dit = 0, XiT ]

=E[Yit(1) | Xit]− E[YiT (1) | XiT ].

Then, under modifications of Assumptions 1, 3, 4, and A.1 for the repeated cross-

section data setting, the ATE on the entire population, τatet , can be estimated using a

method similar that discussed in section 3 of the main text as in the following three

steps.

First step:
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For the potential outcome under no treatment, we estimate β0
t and β0

1 from the model

(A.3) using the subsample of units with Dit = 0 in cross-section t and Di1 = 0 in cross-

section 1 (this is the full sample in cross-section 1). We obtain the OLS estimators of

β0
t and β0

1 denoted by β̂0
t and β̂0

1 , respectively.

Then, using the full sample in cross-sections t and 1, we estimate E[Yit(0)] as follows:

̂E[Yit(0)] = Ê[Xit]
′β̂0

t − Ê[Xi1]
′β̂0

1 + Ê[Yi1],

where Ê[·] denotes a sample mean.

Second step:

The second step is a symmetry of the first step. For the potential outcome under

treatment, we estimate β1
t and β1

T from the model (A.4) using the subsample of units

with Dit = 1 in cross-section t and DiT = 1 in cross-section T (this is the full sample

in cross-section T). We obtain the OLS estimators of β1
t and β1

T denoted by β̂1
t and β̂1

T ,

respectively.

Then, using the full sample in cross-sections t and T , we estimate E[Yit(1)] as follows:

̂E[Yit(1)] = Ê[Xit]
′β̂1

t − Ê[XiT ]
′β̂1

T + Ê[YiT ].

Third step:

Finally, τatet is estimated as follows:

τ̂atet = ̂E[Yit(1)]− ̂E[Yit(0)].

The estimator is consistent and asymptotic normal, which can be proved in the same

way as the proof of Proposition 1. The asymptotic variance has a similar form with (9)

as the following:
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where the expectation of the random variables is taken under their joint distribution.

References

Newey, W.K., McFadden, D., 1994. Large sample estimation and hypothesis testing.

In: Handbook of Econometrics. vol. 4, pp.2111-2245.

7


