
A refinement to the general mechanistic account

Eric Nelson Hatleback1 & Jonathan M. Spring1,2

Received: 19 January 2018 /Accepted: 6 November 2018 /Published online: 7 January 2019

Abstract
Phyllis Illari and Jon Williamson propose a formulation for a general mechanistic
account, the purpose of which is to capture the similarities across mechanistic accounts
in the sciences. Illari and Williamson extract insight from mechanisms in
astrophysics—which are notably different from the typical biological mechanisms
discussed in the literature on mechanisms—to show how their general mechanistic
account accommodates mechanisms across various sciences. We present argumentation
that demonstrates why an amendment is necessary to the ontology (entities and
activities) referred to by the general mechanistic account provided by Illari and
Williamson. The amendment is required due to the variability of some components
in computing mechanisms: the very same component serves as either entity or activity,
both between levels and within the same level of the explanatory hierarchy. We argue
that the proper ontological account of these mechanistic components involves disam-
biguation via explicitly indexing them as entities or activities.

Keywords Mechanisms . Computing . General mechanistic account . Ontology of
mechanisms . Philosophy of computer science

1 Introduction

In synthesizing approaches in the mechanisms literature, Phyllis Illari and Jon
Williamson establish the following claim: “A mechanism for a phenomenon consists
of entities and activities organized in such a way that they are responsible for the
phenomenon.”1 Their position is a carefully constructed synthesis of the three most
respected mechanistic accounts.2 It is meant to articulate the features shared by

European Journal for Philosophy of Science (2019) 9: 19
https://doi.org/10.1007/s13194-018-0237-1

1Illari and Williamson (2012), p. 120.
2The accounts synthesized by Illari and Williamson originate in Machamer et al. (2000); Glennan (2002); and
Bechtel and Abrahamsen (2005).

* Eric Nelson Hatleback
ehatleback@cert.org; hatleback@gmail.com

Extended author information available on the last page of the article

PAPER IN GENERAL PHILOSOPHY OF SCIENCE

The Author(s) 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s13194-018-0237-1&domain=pdf
http://orcid.org/0000-0002-1179-1878
mailto:ehatleback@cert.org
mailto:hatleback@gmail.com

mechanistic accounts across the sciences. Illari and Williamson note that their goal—to
find the similarities across mechanistic accounts in the sciences—is complementary to
one commonplace goal in the literature on mechanisms, which is to discern the
differences demanded by mechanistic accounts in separate scientific fields. According-
ly, we will refer to their goal as a search for a general mechanistic account. Our point of
departure will be the general mechanistic account generated by Illari and Williamson,
labeled as follows:

GMAmechanism for a phenomenon consists of entities and activities organized in
such a way that they are responsible for the phenomenon.

The very nature of the search for a general mechanistic account makes GM continually
prone to amendment. Illari and Williamson extract insight from mechanisms in
astrophysics—which are notably different from the typical biological mechanisms
discussed in the literature—to show how GM accommodates mechanisms across
various sciences. But, as further scientific and philosophical research reveals deeper
details about the mechanisms involved in still other sciences, the proposition that unifies
the common features of those mechanisms will require corresponding adjustments.

The aim of this paper is to sensitize GM to features of modern computing that, to our
knowledge, have not yet been addressed in the literature on mechanisms. Existing
philosophical work addressing mechanisms and computing chiefly investigates wheth-
er computation is a mechanistic process. For example, Piccinini discusses whether a
mechanism computes and explores what makes a mechanism a computation.3 Whereas
Piccinini’s goal importantly includes application of computing to cognitive science, our
emphasis rests with inspecting the merits of maintaining a strict mechanistic duality of
entities and activities. Similarly, inasmuch as Piccinini is not interested in how com-
puter scientists or programmers might benefit from mechanistic thinking, this
practitioner-oriented view is a strong motivation for our work. The philosophy of
technology literature does include some interaction with the biological mechanistic
explanation literature, but such interaction is light. For example, early work by de
Ridder does not even mention the word “computer,” although it does discuss “mal-
function.”4 And although Fresco and Primiero assess malfunctioning from the perspec-
tive of philosophy of computing (with a corresponding reply from Dewhurst that
analyzes miscomputation), those discussions address the features of mechanisms, not
the core constituents of mechanisms, and they do not engage with the wider new
literature on mechanisms as we do here.5

A complete understanding of the constituent mechanistic parts from the perspective of
computer science requires the acceptance of computer scientists as scientists whose goal
is to better explain phenomena. As Tedre and Moisseinen make clear, even computer
scientists are divided about the status of experimentation in computing.6 In fact, many are
divided about whether computer science is a science. However, Tedre’s review reveals
that the disagreements are more about what the interlocutors mean by “computing” and

3 See Piccinini (2007) and Piccinini (2008).
4 See de Ridder (2006).
5 See Fresco and Primiero (2013) and Dewhurst (2014) for further details.
6 See Tedre and Moisseinen (2014).

19 Page 2 of 16 European Journal for Philosophy of Science (2019) 9: 19

“science” than about the relationship between computer science and the other sciences.7

Although the philosophy of technology and engineering could perhaps provide a
practitioner viewpoint, modern work does not directly address computer science or
mechanisms.8 Older work, such as that presented by Simon, does in fact address
computer science and mechanisms, but that work pre-dates the new mechanistic move-
ment, so it does not offer much help presently.9 Simon’s work does, however, provide
influence for the development of the new mechanistic approach: Bechtel and Richardson,
for example, attribute to Simon their conception of, and strategy for, mechanism discovery
as a set of heuristics.10 The only application of mechanism discovery to experimentation
in computing as positive advice for practitioners appears to be our previous work.11 There,
a division of entities and activities is classified into physical and engineered types, and the
difficulty involved in designing scientifically rigorous computer science experiments
based on this distinction is discussed. The present work is an orthogonal analysis that
builds upon the physical/engineered mechanistic distinction for both discovery and
explanation in computer science.

Our focus involves an intersection of computing and the mechanistic account that
differs from the literature outlined above. Specifically, we present argumentation that
demonstrates why an amendment is necessary to the ontology referred to by GM. The
amendment is required due to the variability of some components in computing
mechanisms: the very same component serves as either entity or activity, both between
levels and within the same level of the explanatory hierarchy. We argue that the proper
ontological account of these mechanistic components involves disambiguation via
explicitly indexing them as entities or activities. Indexing such components yields the
benefits of improved clarity of explanation and improved identification of targets for
experimental intervention in domains specific to computing. We further argue, in the
spirit of the general mechanistic account, that the benefits extend generally to scientific
investigation beyond computing. Computing (as a whole) is not homogeneous, so the
benefits of thinking about computer processes from a mechanistic perspective vary
according to the purpose under consideration. For example, the software developer, the
security analyst, and the program verification specialist may each perceive a different
benefit from viewing computer processes mechanistically. Software developers have a
well-defined concept of encapsulation as a simplifying design principle, which means,
very roughly, that the developer needs guarantees on inputs and outputs of a piece of
code in order to interact with it, regardless of how the code achieves the outputs.
Accordingly, encapsulation shares conceptual similarities with levels of mechanistic
explanation.12 Hooking in to the mechanisms literature would give a more coherent
account of the developer’s explanation, understanding, and how that explanation can be
refined across layers. Security analysts may gain a different benefit, such as the ability
to argue (in line with Spring, Moore, and Pym) that security is a science, so long as it
takes on the appropriate modern idea of scientific explanation.13 Explaining computer

7 See Tedre (2011).
8 See Meijers (2009) as an example collection on philosophy of technology; computing is not addressed there.
9 See Simon (1996).
10 See Bechtel and Richardson (1993), Introduction (Section 2).
11 See Hatleback and Spring (2014) for details.
12 See Craver (2007).
13 See Spring et al. (2017).

European Journal for Philosophy of Science (2019) 9: 19 Page 3 of 16 19

processes as a kind of mechanistic explanation makes linking explanations in security
to explanations in other sciences much easier. The security analyst, further, could then
also leverage the mechanism discovery literature. Finally, for the program verification
specialist, who is concerned with ensuring the reliability of software written by others,
Pym, Spring, and O’Hearn argue that the logic used to verify the software must
substantially overlap with the developer’s explanation of how the software works.14

Providing links to mechanistic explanation makes the task of merging with the logic
model easier by giving structure to the explanation (which otherwise seems implicit).
For reliability, this ultimately means leveraging mechanism discovery to improve how
flaws are found in software. Additionally, gains can be made in understanding that flaw,
explaining it, and informing hypothesis generation for fixing it. Although these three
example advantages of thinking about computer processes as mechanisms are not
exhaustive, their diversity and importance motivates an exploration of the necessary
modifications to the current mechanistic account in order to accommodate computing.

Section 2 presents argumentation, paired with an illustrative extended example from
computing, for the need to revise the ontology of the general mechanistic account. In
Section 3, we provide two such possible amendments and settle on indexing the
components of a mechanism as the preferred solution. Section 3 also provides evidence
that the proposed improvement of indexing entities and activities already has occurred
implicitly in mechanistic modeling for some time, but that the habits and context of
computer science make it a natural place to find the practice emphasized. Section 4
provides concluding remarks.

2 Computing and the ontological components of a mechanism

The literature on mechanisms is not unified with respect to providing an account of the
ontologically distinct components of mechanisms. For example, Machamer, Darden,
and Craver argue that entities and activities exhaust the ontology of mechanisms.15

Glennan denies that activities are ontologically separate, instead maintaining that
entities—and only entities—comprise a mechanism.16 Illari and Williamson side with
Machamer, Darden, and Craver by arguing (in part) that activities need to be recognized
as ontologically separate from entities to avoid “entity bias.”17 Our intention in this
section is not to argue for one ontology over another, but rather to contribute a specific
example from computing that demonstrates why an amendment to GM that indexes
entities and activities is necessary.18

14 See Pym et al. (2018).
15 See Machamer et al. (2000).
16 See Torres (2009), where footnote 7 cites personal communication with Glennan in which he maintains that
entities are the only ontological unit on mechanisms. See Glennan (1996), especially p. 53, for published
insinuation that he maintains entities as the only ontologically existing components of mechanisms. Finally,
see Tabery (2004) for extended discussion of the distinctive features of Glennan’s position in contrast to the
“dualist” position proposed by Machamer, Darden, and Craver.
17 See Illari and Williamson (2012), pp. 126–27. See Hatleback and Spring (2014) for further discussion of the
predisposition in the literature on scientific experimentation to focus on entities to the neglect of activities.
18 While indexing the entities and activities appears to be the strongest solution, we do present an alternative
solution (which involves expanding the ontology) in Section 3.

19 Page 4 of 16 European Journal for Philosophy of Science (2019) 9: 19

Elsewhere, we have argued that scientific experimentation in computing breaks into
two distinct classes: one class focuses on physical mechanisms and the other class
focuses on engineered mechanisms.19 Computing is a discipline largely focused on
creation and engineering. Engineered mechanisms, by contrast with physical mecha-
nisms, are changeable in practice at the will of some decision maker. Practical chal-
lenges in sub-disciplines like computer security are best understood, in our estimation,
by marking a heuristic distinction between physical mechanisms and engineered
mechanisms. Furthermore, the properties of engineered mechanisms are not unique to
computing, and they bring to the fore an aspect of mechanisms that GM (in its present
form) does not accommodate.

Engineered mechanisms in computing include manipulable components such as
software and computer code. We argue that these mechanistic components are neither
strictly entities nor strictly activities. We will refer to such components of mechanisms
as variable or variable components.20 In order for GM to accommodate variable
components, such as the engineered mechanisms that emerge in computing, an update
is required.21 In tandem with our argumentation, we will develop—in greater and
greater detail as the argumentation proceeds—a running example involving a file on
a computer to illustrate the necessity of amending GM in accordance with mechanisms
in computing.

Consider, first, a basic file. Perhaps it is the file that contains the digital version of
this essay. At one organizational level, the file is an entity: a file is a thing, and activities
happen to that thing. It can be deleted, for example. However, the “delete” activity is
accomplished via another file, located elsewhere on the computer, which stores
the instructions for the “delete” activity. Software is stored in files, and data is
stored in files.

Concerning the “delete” file, then, it is contextual whether the file is an entity or
whether it is an activity. The file’s ontological status appears to be unclear. Neither its
status as software, nor its status as data, takes obvious precedence. A context in which
to consider the file is required. We must avoid the usual prejudice that nouns are entities

19 See Hatleback and Spring (2014).
20 In Section 3, we distinguish two possible alternative accounts of the variability: one treats the variability as a
feature of entities and activities, and the other treats variable components as ontologically distinct from entities
and activities. The former emerges, in part, from the literature on the explanatory virtues of the mechanistic
account. For example, Glennan’s Law, which maintains that a mechanism is at least partly individuated by the
phenomenon in question, appears to suggest that variability in the entities and activities is merely a feature of
those entities and activities. And, as Dupré notes (Dupré (2012), p. 30), “attempts to understand phenomena at
a particular organizational level determine schemes of classification at that level.” Dupré’s approach suggests
that the theorist, by choosing the level of explanation at which to investigate, also implicitly chooses the
classification of the mechanism’s components at that level. In what follows, we will suggest that an explicit
classification scheme for variable components further strengthens the mechanistic account.
21 It is possible—although fuller argumentation would be required to establish the possibility—that the update
to GM to accommodate variable components might simultaneously resolve a tangential issue. The ontology of
static entities and activities in the current formulation of GM leaves open disputes between those who favor
models as composed predominantly of processes or activities and those who favor models as composed
predominantly of entities and their properties. See Dupré (2012), p. 30, for an example of the former position.
See Glennan (2005), p. 445, for example of the latter position, where he notes that “mechanisms underlie
behaviors,” but the behavior is the “‘phenomenon’ that the mechanism produces,” rather than an activity that is
a component of the mechanism. Permitting the indexing of variable components (as will be urged in what
follows) could resolve this complication by enabling each side of the dispute to build into the indexing the
qualities of the other side’s position.

European Journal for Philosophy of Science (2019) 9: 19 Page 5 of 16 19

and verbs are activities; “a file” may be suggestive that the “file” is a noun, but the
metaphor describing the computer code as “a file” is potentially blinding. It is not an
entity in the same unambiguous way that a piece of paper in a filing cabinet is a file,
which is what the metaphor falsely suggests. The symbolic instructions do not change
when the stored “delete” file is loaded and executed to delete the file containing our
manuscript. The set of symbolic instructions appears to be an entity when stored on
disk as a file, but it also appears to be an activity when it is read by the processing chip.
There is an important difference between the “delete” program’s file on disk, which
cannot destroy files, and the activity of deletion, which does destroy files. Yet both the
entity and the activity refer to the very same series of instructions. In terms of its role in
a mechanism, this component is variable; its status as entity or activity varies according
to the context in which it is considered.

2.1 An extended example: Further details of computing mechanisms

To demonstrate the issue, consider still finer details of the example begun in the
previous paragraph. At the mechanical level, data is stored on a computer disk as a
pattern of electromagnetic signals. These signals represent bits, which are a physical
representation of a mathematical notion of information which has been implemented,
essentially unchanged, since the late 1940s.22 A computer processes these electromag-
netic signals in its central processing unit (CPU), using complex combinations of
relatively simple instructions encoded by the execution of individual electronics inside
the CPU. Example instructions might include: read the value of the number in this
location, write a number to that location, or perform addition on these two numbers. All
of these instructions, and thus modern computers themselves, are physical realizations
of the mathematical model developed by Turing in the 1930s.23

Given these details, one might surmise that an electromagnetic pattern is an entity
when stored on a computer disk and an activity when used in a CPU register, which
thereby appears to surmount the obstacle. But this approach unfairly glosses over
serious problems caused by the indistinguishability between an entity and an activity
in computer science. The problem emerges, for example, in computing program
verification tasks involved with security and reliability. There, it is referred to as “co-
mingling data and control instructions”24 or “improper input validation.”25

Computer security involves the abstract interaction of the defender and the adver-
sary. To exploit “improper input validation” successfully, the adversary's general
strategy is to cause data (an entity) of the adversary’s choosing to be executed as code
(an activity) in order to take control of the computer. The defender’s goal, conversely, is
to distinguish accurately input data from the defender’s own code. This small battle is
fought, with the website as the defender, every time someone enters a username and

22 See Shannon and Weaver (1949).
23 Turing (1936).
24 IEEE (2015). Note that IEEE, as the relevant trade association and international standards body, is
authoritative for definitions of problems for practitioners in this space.
25 MITRE (2008). MITRE maintains the CWE and CVE definitions and repositories under contract to the US
federal government, and within the scope of US government operations and policy, those definitions are
authoritative. MITRE’s CWE and CVE work is also the de facto global standard for definitions of software
vulnerabilities.

19 Page 6 of 16 European Journal for Philosophy of Science (2019) 9: 19

password or posts content on a social media website. The input validation problem
persists, and attacks continue to be successful. Adversaries succeed, despite the fact that
Microsoft, Apple, Sun, and the open-source community all implement sophisticated
defenses in modern operating systems to reduce the security impact when programs fail
to identify which entities should not be executed as activities.26 The multiplicity of
levels of abstraction routinely used in computing exacerbates the problem of separating
code (activities) and data (entities).27 An essential functionality of a modern computer
is the flexibility to treat data as code and code as data. Because of this, the problem of
indexing entities and activities is not an abstract or rare occurrence in computing.
Computer scientists, engineers, and software developers are trained habitually to index
whether something is an entity or an activity—whether it is data or code.28

Proceeding further, consider the common human-user-level instruction “delete
essay.txt” for removing the file containing this essay from the computer's hard drive.
While processing the command, various components in the mechanism associated with
the phenomenon oscillate from entity to activity multiple times in the milliseconds before
the instruction is executed. First, the whole phrase is received by the computer interface as
data, an entity. The example assumes that the data is typed in symbols, such as `shred
essay.txt`, although instead it could be delivered in other forms, for example by clicking
on the file's icon and pressing the delete key on the keyboard. Second, by convention, the
entity “shred essay.txt” is split on the first space character into the command (activity) and
the parameters for that command (entities). However, computer commands need not have
only one such splitting between entity and activity. It is quite natural to write `sudo shred
essay.txt`, in which case the entity is split once, into the “sudo” command and the
parameters “shred essay.txt”. The effect of the “sudo” activity is to execute its parameters
as a command, but as a different user with a higher level of access. Thus, the entity “shred
essay.txt” immediately becomes an activity, “shred”, and an entity, “essay.txt”. There are

26 See the statement made by the United States National Security Agency (NSA) at https://www.nsa.gov/ia/_
files/factsheets/i733-tr-043r-2007.pdf. At the time of the statement, NSA’s responsibilities included defense of
all US government military computer systems. Their statement that all operating systems at the time suffered
from this failure to differentiate code and data (indexing activities and entities in our language) should be
considered a definitive statement on the gravity of the security impact of this failure. The defenses are, namely,
Data Execution Prevention (DEP) and Address Space Layout Randomization (ASLR).
27 Modern computing is only plausible, in terms of the day-to-day engineering and maintenance of actual
systems, because each component of a computer provides an abstract method by which other components
interact with it. This “modular design” permits human designers to learn how to use a component effectively
without needing to understand exactly what it does and how. A standard laptop is exemplary concerning the
levels of abstraction involved in the computing process. The laptop exhibits a procession of perhaps 10 levels
of abstraction, each of which interacts almost exclusively with the level immediately before it and after it. Step
by step, the interactions build from the electricity flowing through transistors on the physical chip up to the
human user’s interaction with the observable results. Each of these interactions is potentially a many-to-many
relationship. For example, a human user could use different applications simultaneously; or the power supply
component could distribute electricity to the processor, the USB (universal serial bus) ports, the graphical
processing unit (GPU), and the data storage disk (hard drive) simultaneously. At each of these interfaces, what
counts as code or data often changes, and the change is by design. The flexibility is what makes modern
computing possible. But the flexibility also causes the difficulty of accurately distinguishing code and data.
Because of this, the problem of indexing entities and activities is not a rare occurrence when working with
computers.
28 This habit is aspirational, of course, and many people in the field do not implement the distinction perfectly.
However, see the earlier-referenced sources for examples where the authoritative organizations state the
aspiration.

European Journal for Philosophy of Science (2019) 9: 19 Page 7 of 16 19

http://www.nsa.gov/ia/_files/factsheets/i733-tr-043r-2007.pdf
http://www.nsa.gov/ia/_files/factsheets/i733-tr-043r-2007.pdf

physical bounds, based on the computer's storage capacity, on the number of times an
input command could be split into entity and activity while maintaining that the data
(entity) be considered a new command consisting of its own entity and activity.29

However, from the perspective of the theory and design of programming languages,
commands are defined inductively and parsed recursively, so most modern computer
commands are defined such that they can (in principle) be split in this manner infinitely
many times.30 Therefore, one cannot prima facie determine which segments of a com-
mand are entities and which are activities; the ambiguity, or “flexibility,” as a programmer
may prefer to call it, is built in to computer systems.

The only physical extension with which to identify these commands and their constit-
uents is the pattern of bits electromagnetically stored by the computer. While it is true that
this essay has an orthographic form that you, the human, are reading presently, there is no
commonly understood meaning for a computer’s operation that references anything other
than a stored electromagnetic pattern. All computers are physical instantiations of the
mathematical model that Turing proposed to determine the computability of certain
rational numbers, the eponymous Turing Machine.31 Turing describes the machine’s
internal configuration and how that interacts with a “tape”—a stream of symbols the
machine reads and writes based on the machine’s internal configuration. Although this
suggests that activities might be identified with the Turing Machine’s internal configura-
tion and entities might be identified with the symbols on the tape, Turing demonstrates that
any Turing Machine can be simulated by just one machine where the first instructions on
the tape are constructed such that they represent the internal configuration of the machine
to be simulated. Accordingly, the symbols on the tape cannot be identified merely as
entities, since the symbols are capable of encompassing the full scope—including the
activities—of an entirely separate Turing Machine. Common parlance for such a “multi-
level” Turing Machine is “Universal Turing Machine” (UTM). The hardware physically
fixed in silicon in a contemporary computer is a UTM. The UTM does not know prima
facie whether any stored symbols—that is, any given electromagnetic pattern—represent
i) instructions for configuring its state, or ii) data to process according to that state. Note
that even this process of simulating a UTM is recursive; the instructions to reconfigure the
internal state are not privileged. The recursiveness of the underlying theory of computation
mirrors the infinite recursiveness in programming language design. Thus, even at the most
fundamental level, the distinction between entities and activities in computing is blurred.
The flexibility to treat data as code is what makes a UTM universal rather than specific.

2.2 Two potential objections

We turn now, briefly, to addressing two potential objections to the claim that variable
components are distinctly unique from their non-variable counterparts. First, it might be
objected that the files “shred” and “essay.txt” (for example) are clearly distinct: they are
objectively different patterns of electromagnetic binary digits (bits). That is, perhaps the

29 For example, a typical laptop at the time of publication has about 4–8 GB of RAM and 0.5–1 TB of hard
drive space. Thus, the number of commands a commodity laptop could hold and parse is on the order of
hundreds of millions to hundreds of billions. The practical limitations, therefore, are irrelevant for the present
discussion.
30 See Winskel (1993).
31 See Turing (1936).

19 Page 8 of 16 European Journal for Philosophy of Science (2019) 9: 19

properties “entity” or “activity” are embedded somehow in the patterns, and such
embedding has yet to be articulated in the literature. Second, it might be objected that
it is a trivial task to split a purported variable component into subsets, as described in
the “delete essay.txt” portion of the example provided earlier, such that one subset
clearly is an entity and the other subset clearly is an activity. Although Turing's result
(namely, that the parsing of the command is not generally decidable) is quite strong, it
may be the case that the concept of termination or parsing in computing does not match
with the concept of partitioning a model into entities and activities within a particular
level of mechanistic granularity.32 To reply to these objections, we return to the
development of the example that has accompanied the argument thus far to demonstrate
that it is not the case that the properties “entity” and “activity” are embedded in the
patterns of bits representing the files, nor is it the case that intuitive differentiation
within one level of analysis is tenable.

Consider typing `/bin/shred /bin/shred` as a command.33 The location “/bin” is
where a Linux computer stores the executable programs. The object “/bin/shred”
uniquely identifies exactly one file on the computer: the file that contains the instruc-
tions for shredding files. The computer splits the human-input entity “/bin/shred /bin/
shred” into two parts, the activity “/bin/shred” and the entity “/bin/shred”. This is not an
instance where the computer changes the program when moving it from hard drive
storage to memory for execution.34 The source code is first interpreted by a compiler
and translated into a set of machine-readable instructions that are particular to the
architecture of transistors and other silicon features of the computer chip.35 It is
compiled into the binary instruction set.36 Accordingly, the set of files under discussion

32 Turing’s result has been proven equivalent in relevant ways to approaches by Gödel (see Gödel (1931)) and
Church (see Church (1936)). Additionally, one might advance this objection despite the fact that Bechtel and
Richardson explicitly develop their mechanistic approach to scientific problem solving as inspired by problem
space search heuristics in computer science stemming, ultimately, from Turing’s results. See, for example,
Bechtel and Richardson (1993, p. 12), where they claim: “Analogously [to problem solving as defined in
computer science and artificial intelligence], the task of constructing an explanation for a phenomenon in a
given scientific domain is one of finding a sufficient number of variables, the constraints on the values of those
variables, and the dynamic laws that are functions on those variables, so that it is possible to predict future
states of affairs from descriptions of the universe at an earlier time.” The link to Turing’s work is implicit in the
connections to computer science, which surface in the relevant artificial intelligence literature as “bounded
rationality,” as coined by Herbert Simon.
33 Shred represents the secure part of the secure delete process. Shred overwrites the contents of a file with
random content to destroy it. The analogy with a physical paper shredder is that both make documents in the
trash unrecoverable.
34 There are instances in computing where this would appear to happen, for instance compiling source code
into binary code. Source code is the human-readable commands programmers use to construct and design
programs. For example, the last line of the source code of the GNU version 8.24 (i.e. the default Linux
version) of the shred program is `return ok? EXIT_SUCCESS: EXIT_FAILURE;’. One does not need
to understand exactly what it means to gather the intended intuition that source code is a language accessible to
humans. Computer processors do not directly interpret these lines.
35 Modern computer chip architectures are largely standardized to a few options, which makes it possible for
users to avoid this step completely. Although the step is invisible to most users, it still always happens at some
point.
36 Presenting a binary instruction set requires special notation. There are not “lines” of binary, so there is no
analogous last line of the compiled code. However, for the sake of comparison, if electromagnetic polarities
are represented by bits 1 and 0, then the last 40 bytes of the example given in footnote 34 (we presented 40
characters of source code, and one character happens to be one byte) of the shred version 8.24 binary code are
a rather boring 320 zeros (one byte has eight bits).

European Journal for Philosophy of Science (2019) 9: 19 Page 9 of 16 19

in “/bin” are just those which already have been transformed into exactly the form that
the processor executes when it does so. There may be interesting questions about the
relationship between a binary instruction set and the source code from which it derives,
but our example focuses only on the compiled binary code.

It is clear, then, that the two instances of /bin/shred, the command and the argument,
are not merely homographs. In the command `/bin/shred /bin/shred`, the first instance
does not stand for a subtly different part of electromagnetic storage from the second,
nor does one refer to a set of symbols that is different from the other, as would be the
case if one were source code and the other were binary instructions. They are not the
same orthography referencing different physical extensions in the world. Instead, both
the entity and the activity are an identical pattern of electromagnetic storage that is co-
extensive in space at the time of typing the command.

Despite the oddness of this duality, a standard Linux computer will successfully
complete the command `/bin/shred /bin/shred` without any difficulty or special setup.
The user merely needs to satisfy the usual requirement of having permission to change
the file. The reason that this works is due to the designed relationship between a CPU
and the storage disk. The CPU can read a copy of the binary instructions from the file in
storage at “/bin/shred” and store a copy of them in CPU memory. This duplication of
the same set of instructions allows the computer to execute those very instructions to
shred the file “/bin/shred” from which it read the instructions. One object, in one
everyday phenomenon, has a variable role in this case. There is no underlying encoding
for “entity” or “activity” present in the pattern of bits, nor can one intuitively differen-
tiate the “entity” portion of the pattern from the “activity” portion in instances where
the pattern instantiates a variable mechanistic component.

3 Amending the general mechanistic account

We turn now to providing what we take to be the most plausible philosophical stance
that one might adopt with respect to updating the general mechanistic account in
accordance with the evidence provided by the variable components of engineered
mechanisms in computing. The update involves modifying GM so that the variable
components are explicitly indexed as entities or activities. The ontology itself is left
unaffected, since the variable components still remain either entities or activities.
However, the implementation of the ontology is affected, since certain components of
mechanisms (the variable components) require attention in that they be labeled—
indexed—as entities or activities, which is a step not commonly applied to the
“standard” components of mechanisms (i.e., the non-variable entities and activities).
The amended GM reads:

GM (indexed): A mechanism for a phenomenon consists of indexed entities and
activities organized in such a way that they are responsible for the phenomenon.

It may seem that the distinction exemplified by the file deletion case warrants nothing
more than careful consideration when dealing with computing mechanisms. For exam-
ple, it may seem that the context or location of the instruction set in those instances
clearly determines whether the component in question is an entity or activity: if a file is

19 Page 10 of 16 European Journal for Philosophy of Science (2019) 9: 19

on the hard drive, it is an entity, and if it is in the CPU chip, it is an activity. However,
note that this objection itself establishes the legitimacy of the proposed amendment to
GM; it is because the ontological status of a variable component is contextual that GM
requires an amendment.37 If the status of the binary pattern stored in the file /bin/shred
(for example) were de re something particular—entity or activity—regardless of
context, then GM (indexed) would be unnecessary. Indeed, in that case, no mechanistic
components would be variable. In light of the argumentation supplied in Section 2, we
do not believe this to be the case.

In practice, the notation for indexing might involve, for example, attaching the status
of variable components (such as code and software) to each reference of the variable
component on a diagram of the mechanism’s operation. The index attached to variable
components (that is, whether they act as entities or as activities) often is dependent
upon the level of the mechanism under investigation within the explanatory hierarchy.
When the phenomenon in question arises from a mechanism that takes code (for
example) as an entity, then the software would be identified as “softwaree”. Likewise,
when the phenomenon in question arises from a mechanism that takes the software to
be an activity, it would be identified as “softwarea”. The notation suggested for
implementing GM (indexed) is consistent with, but more precise than, the notation
that would be employed when implementing GM, which involves the identification of
entities and activities in an absolute fashion. When implementing GM (indexed), the
selection of entities and activities occurs with respect to the level within the explanatory
hierarchy of the phenomenon in question. For example, if the user deletes the file that
contains the “delete” instructions, the mechanism could be modeled as depicted in
Fig. 1. The indexing of the variable component “delete” is explicit in Fig. 1. The same
name is maintained for the variable component to indicate that it is the same in
important respects. In this particular case, “deletea” and “deletee” are the same in that
they are represented by exactly the same set of symbols. The argumentation provided in
Section 2 demonstrates how the very same item—such as the computer file “delete”—
can separately play the role of both entity and activity.

One might wonder whether there exists a ‘correct’ indexing for the components of a
mechanism. Alas, there is no one ‘correct’ indexing; the indexing is contextual. It may
be possible to link this context to the level of abstraction described by Floridi.38 But it
lies beyond our scope to try to link the mechanistic literature to formal systems such as
logic (in this case, Floridi’s logic of information).39 Because computer science is a
diverse field with diverse concerns, it is unlikely that one answer will suffice for
generating the best level of abstraction from which to view mechanism components.
Networking specialists, for example, might view whole computer hosts as entities,
whereas operating systems specialists seek to explain the behavior of the host as the
phenomenon built up of software and hardware. Extensive future work lies ahead in

37 The difficulty (or ease) of indexing components clearly lies beyond the scope of the present work. Rather,
we wish to note merely that the apparent objection is an intuitive and direct way to establish the need for the
indexing we propose.
38 See Floridi (2011) for details.
39 Pym et al. (2018) describe a case where scientific and logic models are merged in computer science,
specifically program verification. So it does appear to be possible to link a mechanistic and logical account of a
phenomenon in computer science, but it is painstaking work to merge them.

European Journal for Philosophy of Science (2019) 9: 19 Page 11 of 16 19

terms of describing how level-of-abstraction choices influence mechanism discovery
and explanation in each of these sub-fields of computing.

3.1 Considering alternative refinements

Future research into mechanisms from other scientific disciplines likely will contribute
feedback that will indicate whether indexing the variable components is the proper
refinement to GM. Other options remain available. For example, the general mecha-
nistic account could adopt an expanded ontology that includes variable components as
altogether separate ontological units. In such a case, GM would be supplanted not by
GM (indexed), but instead by something like:

GM (expanded): A mechanism for a phenomenon consists of entities, activities,
and variable components organized in such a way that they are responsible for the
phenomenon.

The added piece of ontology in GM (expanded) indicates that variable components
such as software occupy an ontologically separate category from entities and activities.
Expanding the ontology in this fashion would impact directly the study of mechanisms
in the philosophy of science literature, since the properties of the new ontological unit
would invite extended examination. Additionally, the expanded ontology would have
direct implications for scientists and experimenters, since they would need to account
for these new variable components as a separate part of experimental design.

If treated this way, executable files on a computer, such as the “delete” file, would be
simply considered variable components—neither entities, nor activities. Recognizing
variable components as ontologically separate from entities and activities might, in fact,
provide a partial explanation for the difficulty faced in the computer science literature
attempting to adopt the methods of other sciences: computer science deals extensively
with executable files, so it is disproportionately affected by variable components, which
have not received detailed study in the mature sciences.40 Nonetheless, granting
separate ontological status to variable components presently seems too grand, since it
is not (yet) clear what is gained by such an approach beyond classificatory simplicity.
Instead, GM (indexed) supplies the amendment necessary to update GM with the
ability to accommodate mechanisms involving variable components.

Further, and of practical importance, the switch can be informative for experimental
design in sciences where variable components are commonplace in the mechanisms
under study.41

40 See, for example, Schiaffonati and Verdicchio (2014) for an account of the difficulty faced by computer
science in adopting the methods of other sciences.
41 See the brief comments at the close of this section for suggestions regarding the potentially positive impact
for experimental design that is afforded by the switch to GM (indexed).

User Deletea Deletee

Fig. 1 A simple mechanism with variable entities and activities indexed

19 Page 12 of 16 European Journal for Philosophy of Science (2019) 9: 19

3.2 Indexing beyond the science of computing

It is worth pursuing one further potential objection to the refinement of GM to GM
(indexed). One might argue that GM (indexed) is merely a special case of GM that is
relevant only to computing, rather than a generalization that is relevant to science more
broadly. The objection might continue that only variable components from computing
need to be indexed, that other sciences do not have such components, and (therefore)
that the bulk of scientific investigation and explanation is captured accurately with GM.

The relevant reply to this objection is twofold. First, in a general sense, the inclusion
of (perhaps) idiosyncratic qualities from diverse sciences supervenes on the very search
for a general mechanistic account. That is, the endeavor itself is an inclusionary
exercise that proceeds only via careful consideration of unique facets emerging in
individual sciences.42 Second, and particular to the case at hand, the benefit of adopting
GM (indexed) involves the ability to extend the indexing concept to variable compo-
nents that might arise in the future in other sciences (or to existing mechanistic pieces
that have not heretofore been identified as variable components).43 This flexibility
comes at zero cost to familiar mechanistic accounts that do not involve variable
components. Such accounts remain unchanged, since they contain no variable compo-
nents to index.

Indeed, one advantage of updating the general mechanistic account by indexing the
variable components is that, in some cases, the status of a mechanism’s components can
be an indicator that guides a scientist’s experimental design. For a particular example,
consider computer security, which is the subdiscipline of computer science concerned
with simultaneously ensuring the confidentiality, integrity, and availability of informa-
tion technology systems against the attacks of adversaries.44 Practitioners find value in
knowing whether an element of an attack is an entity or an activity; the knowledge
helps in the process of devising the proper defense to be deployed.45 In our experience,
defenses are readily interpreted as entities, while attacks are activities, in the mecha-
nism that is responsible for the adversary-defender interaction phenomenon. The
underlying cause of this division is an area of future research. However, regardless of

42 The clearest example of this is GM itself, which Illari and Williamson construct after careful consideration
of mechanisms arising in astrophysics.
43 Two examples include cellular biology and chemistry. Each requires a deeper account than space permits
here, but the following brief digression provides a rough sketch of the role GM (indexed) might play in those
sciences. In the setting of cellular biology, when a protease enzyme catalyzes a proteolysis reaction to break
down the chemical bonds of another protease enzyme of the same type, the enzyme is both the source and the
target of the activity in an important sense. In the context of chemistry, the mechanism responsible for the
phenomenon of chemical bonding involves the transfer of electrons between atoms. Two atoms bond when
electrons—particles, entities—are transferred from one atom to the other. The bond between the atoms occurs
via the interaction between their electron shells. Electron shells, however, are mechanistically depicted as
diffuse clouds or fields of force, not particulate electrons. Chemists regularly discuss the resulting bond as an
object, but another accurate characterization of the chemical bond is the merged field of force of electron shells
maintained by the interaction of electrons. Although it is not common parlance, the bond might be viewed
instead as electrons as activities, as it were, that give rise to the bond. These two examples, although trivial,
suggest that the explicit indexing of variable mechanistic components in sciences beyond computing could be
explanatorily useful, but it has not yet proven necessary, because scientists already perform some semblance of
indexing naturally and intuitively.
44 For a high-level, strategic introduction to computer security see Shimeall and Spring (2013).
45 See Spring and Hatleback (2017) for a detailed account.

European Journal for Philosophy of Science (2019) 9: 19 Page 13 of 16 19

the underlying cause, the heuristic is useful for designing effective experimen-
tation. Experimentation aimed at demonstrating the existence of an entity is
designed differently from experimentation aimed at demonstrating the existence
of an activity. Accordingly, in the case of experimentation aimed at understand-
ing variable components, an initial step in the experimental design process
would involve identifying the proper index for the variable component. The
literature in the field reveals the potential impact of this change, since many
research papers focus on demonstrating the existence of a particular attack or
class of attacks.46 Proper indexing of the mechanistic components could prove
immensely helpful in those instances.

4 Conclusion

The result of the preceding is an amendment to the general mechanistic account to
account for mechanisms that are prevalent in computing. GM, as put forth by Illari and
Williamson, has been updated to GM (indexed). The complete, updated general
mechanistic account thus reads:

GM (indexed) A mechanism for a phenomenon consists of indexed entities and
activities organized in such a way that they are responsible for the phenomenon.

This result is a general mechanistic account that accommodates both the nuances of the
variable components included in engineered mechanisms in computing and the prop-
erties of astrophysical mechanisms investigated by Illari and Williamson in their
original proposal of GM.

Because variable components are less prevalent than “standard” entities and activ-
ities, the indexing process does not introduce a drastic change to the task of mapping
mechanisms. Nonetheless, indexing is necessary because the maps of mechanisms
might include a variable component that is listed as an entity at one step of an
explanatory hierarchy while simultaneously appearing as an activity at a different step.
Figure 1 displays a simple example of this notational clarity: there, the “delete” file
appears as both entity and activity within the same phenomenon. Across different
phenomena or across levels of explanation, clear notation should help prevent confu-
sion in professional communication. Indexing also potentially expands the possibilities
for targets for intervention in a mechanism. Finally, clarity can have direct practical
implications, as well, for scientists in their experimental design.

It is to be expected that further amendments to GM will occur as the mechanistic
accounts implemented by additional sciences are taken into consideration. Our contri-
bution has been to update the general mechanistic account provided by Illari and
Williamson so that it properly reflects engineered mechanisms of the sort that arise in
computing.

46 For example, 33 of the 67 papers in one of the premier information security venues—the 24th USENIX
Security Symposium, August 12–14, 2015— have such a focus. (Those papers with “proof of existence”
emphasis begin on pages 17, 81, 97, 113, 129, 161, 177, 193, 255, 271, 287, 399, 463, 563, 579, 595, 611,
627, 643, 659, 707, 723, 769, 785, 801, 833, 849, 897, 925, 945, 977, 1009, and 1025).

19 Page 14 of 16 European Journal for Philosophy of Science (2019) 9: 19

Acknowledgements The authors are grateful to Phyllis Illari for discussion and insightful comments on
early drafts of this work.

Copyright 2018 Carnegie Mellon University. All Rights Reserved.
This material is based upon work funded and supported by the Department of Defense under Contract No.

FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a
federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be
construed as an official Government position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or
favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for
internal use is granted, provided the copyright and “No Warranty” statements are included with all reproduc-
tions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed
in written or electronic form without requesting formal permission. Permission is required for any other
external and/or commercial use. Requests for permission should be directed to the Software Engineering
Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.

References

Bechtel, W., & Abrahamsen, A. (2005). Explanation: a mechanist alternative. Studies in History and
Philosophy of Biological and Biomedical Sciences, 36, 421–441.

Bechtel, W., & Richardson, R. C. (1993). Discovering complexity: Decomposition and localization as
strategies in scientific research. Princeton: Princeton University Press.

Church, A. (1936). An unsolvable problem of elementary number theory. American Journal of Mathematics,
58, 345–363.

Craver, C. (2007). Explaining the brain: Mechanisms and the mosaic of unity in neuroscience. Oxford: Oxford
University Press.

de Ridder, J. (2006). Mechanistic artefact explanation. Studies in History and Philosophy of Science, 37, 81–96.
Dewhurst, J. (2014). Mechanistic miscomputation: a reply to Fresco and Primiero. Philosophy & Technology,

27, 495–498.
Dupré, J. (2012). Processes of life: Essays in the philosophy of biology. Oxford: Oxford University Press.
Floridi, L. (2011). The philosophy of information. Oxford: Oxford University Press.
Fresco, N., & Primiero, G. (2013). Miscomputation. Philosophy & Technology, 26, 253–272.
Glennan, S. S. (1996). Mechanisms and the nature of causation. Erkenntnis, 44, 49–71.
Glennan, S. (2002). Rethinking mechanistic explanation. Philosophy of Science, 69, S342–S353.
Glennan, S. (2005). Modeling mechanisms. Studies in History and Philosophy of Biological and Biomedical

Sciences, 36, 443–464.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

European Journal for Philosophy of Science (2019) 9: 19 Page 15 of 16 19

Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme.
Monatshefte für mathematik und physik, 38, 173–198.

Hatleback, E., & Spring, J. M. (2014). Exploring a mechanistic approach to experimentation in computing.
Philosophy & Technology, 27, 441–459.

IEEE. (2015). Strictly separate data and control instructions, and never process control instructions received
from untrusted sources. Institute of Electrical and Electronics Engineers. http://cybersecurity.ieee.
org/2015/11/13/strictly-separatedata-and-control-instructions-and-never-process-control-instructions-
received-from-untrusted-sources/. Accessed 15 August 2016.

Illari, P. M. K., & Williamson, J. (2012). What is a mechanism? Thinking about mechanisms Across the
sciences. European Journal for Philosophy of Science, 2, 119–135.

Machamer, P., Darden, L., & Craver, C. (2000). Thinking about mechanisms. Philosophy of Science, 67, 1–25.
Meijers, A. (Ed.). (2009). Philosophy of technology and engineering sciences. Amsterdam: North-Holland.
MITRE Corporation. (2008). CWE-20: Improper Input Validation. Common Weakness Enumeration, defini-

tions version 2.9. https://cwe.mitre.org/data/definitions/20.html. Accessed 15 August 2016.
Piccinini, G. (2007). Computing mechanisms. Philosophy of Science, 74, 501–526.
Piccinini, G. (2008). Computation without representation. Philosophical Studies, 137, 205–241.
Pym, D., Spring, J. M., & O’Hearn, P. (2018). Why separation logic works. Philosophy & Technology.

https://doi.org/10.1007/s13347-018-0312-8.
Schiaffonati, V., & Verdicchio, M. (2014). Computing and experiments: a methodological view on the debate

on the scientific nature of computing. Philosophy & Technology, 27, 359–376.
Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Urbana: University of

Illinois Press.
Shimeall, T., & Spring, J. M. (2013). Introduction to information security: a strategic-based approach.

Waltham: Elsevier.
Simon, H. A. (1996). The sciences of the artificial (3rd ed.). Cambridge: MIT Press.
Spring, J. M., & Hatleback, E. (2017). Thinking about intrusion kill chains as mechanisms. Journal of

Cybersecurity, tyw012. https://doi.org/10.1093/cybsec/tyw012.
Spring, J., Moore, T., & Pym, D. (2017). Practicing a science of security: a philosophy of science perspective.

Proceedings of the New Security Paradigms Workshop, October 1–4, Santa Cruz, CA, Unites States of
America.

Tabery, J. G. (2004). Synthesizing activities and interactions in the concept of a mechanism. Philosophy of
Science, 71, 1–15.

Tedre, M. (2011). Computing as a science: a survey of competing viewpoints. Minds and Machines, 21(3),
361–387.

Tedre, M., & Moisseinen, N. (2014). Experiments in computing: a survey. The Scientific World Journal, 2014,
1–11. https://doi.org/10.1155/2014/549398.

Torres, P. J. (2009). A modified conception of mechanisms. Erkenntnis, 71, 233–251.
Turing, A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem.

Proceedings of the London Mathematical Society, 42, 230–265.
Winskel, G. (1993). The formal semantics of programming languages: An introduction. Cambridge: MIT

Press.

Affiliations

Eric Nelson Hatleback1 & Jonathan M. Spring1,2

1 Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA

2 University College London, London WC1E 6BT, UK

19 Page 16 of 16 European Journal for Philosophy of Science (2019) 9: 19

http://cybersecurity.ieee.org/2015/11/13/strictly-separatedata-and-control-instructions-and-never-process-control-instructions-received-from-untrusted-sources/
http://cybersecurity.ieee.org/2015/11/13/strictly-separatedata-and-control-instructions-and-never-process-control-instructions-received-from-untrusted-sources/
http://cybersecurity.ieee.org/2015/11/13/strictly-separatedata-and-control-instructions-and-never-process-control-instructions-received-from-untrusted-sources/
https://cwe.mitre.org/data/definitions/20.html
https://doi.org/10.1007/s13347-018-0312-8
https://doi.org/10.1093/cybsec/tyw012
https://doi.org/10.1155/2014/549398

	A refinement to the general mechanistic account
	Abstract
	Introduction
	Computing and the ontological components of a mechanism
	An extended example: Further details of computing mechanisms
	Two potential objections

	Amending the general mechanistic account
	Considering alternative refinements
	Indexing beyond the science of computing

	Conclusion
	References

