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ABSTRACT
We consider estimation in a randomised placebo-controlled or standard-of-
care-controlled drug trial with quantitative outcome, where participants who
discontinue an investigational treatment are not followed up thereafter, and
the estimand follows a treatment policy strategy for handling treatment dis-
continuation. Our approach is also useful in situations where participants take
rescue medication or a subsequent line of therapy and the estimand follows
a hypothetical strategy to estimate the effect of initially randomised treatment
in the absence of rescue or other active treatment. Carpenter et al proposed
reference-based imputation methods which use a reference arm to inform the
distribution of post-discontinuation outcomes and hence to inform an imputa-
tion model. However, the reference-based imputation methods were not
formally justified. We present a causal model which makes an explicit assump-
tion in a potential outcomes framework about the maintained causal effect of
treatment after discontinuation. We use mathematical argument and
a simulation study to show that the “jump to reference”, “copy reference”
and “copy increments in reference” reference-based imputationmethods, with
the control arm as the reference arm, are special cases of the causalmodel with
specific assumptions about the causal treatment effect. We also show that the
causal model provides a flexible and transparent framework for a tipping point
sensitivity analysis in which we vary the assumptions made about the causal
effect of discontinued treatment. We illustrate the approach with data from
two longitudinal clinical trials.
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1. Introduction

Missing outcome data represent a major threat to the validity of randomised controlled trials
(RCTs), and appropriate analysis methods have been much discussed. An influential report showed
that different analysis methods may target different estimands (different measures of treatment
effect) and argued that specification of the estimand is an important part of trial design and should
inform trial analysis and reporting (National Research Council 2010). Regulators have joined the call
for estimands to be defined clearly, and the International Council for Harmonisation of Technical
Requirements for Pharmaceuticals for Human Use (ICH) Steering Committee has endorsed the
development of new regulatory guidance on the choice of estimands and sensitivity analysis in
clinical trials (European Medicines Agency 2017).

We consider two types of estimand considered by the National Research Council (2010): (E1)
difference in outcome improvement at the planned endpoint if all participants had tolerated or
adhered to trial protocol; (E2) difference in outcome improvement at the planned endpoint for all
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randomised participants. The former measures how treatment works in an ideal setting (efficacy),
while the latter measures how treatment might work in practice (effectiveness). To encompass
outcomes that measure harms of treatment, Carpenter et al. (2013) (henceforth CRK) proposed
the broader terms de jure and de facto estimand for (E1) and (E2) respectively. The ICH E9(R1) draft
addendum (European Medicines Agency 2017) refers to a “hypothetical strategy” and a “treatment
policy strategy” in defining estimands (E1) and (E2) respectively.

Sometimes investigators continue to collect data after treatment discontinuation. The use of such
off-treatment data depends on the estimand (Permutt 2016). For the estimation of a de jure estimand,
off-treatment data for participants who discontinued randomised treatment could be used in
a complier average causal effect analysis (Dunn et al. 2003). In practice, however, off-treatment
data are typically either not collected or excluded from the primary analysis, and the missing data are
assumed to be missing at random (MAR): that is, it is assumed that participants who discontinued
treatment would have benefited from continued treatment in the same way as those who remained
on treatment. However, estimation of a de facto estimand ideally makes use of the off-treatment data,
which should be collected where possible (National Research Council 2010). When all discontinuers
are followed up and complete outcome data are obtained, the de facto estimand can be directly
estimated by comparing observed means (Little and Kang 2015).

This paper considers estimation of a de facto estimand for a quantitative outcome when off-
treatment data are not collected. For participants who have discontinued treatment, this requires
assumptions about whether and to what extent they continue to benefit from their previous
treatment. Our approach is also relevant to the situation in which rescue treatment (over and
above the per-protocol treatment regime for the control arm) is available for those who discontinue
randomised treatment, but interest is in the effect attributable to the initially randomised treatment
without the confounding effects of rescue medications (corresponding to estimand 6 in Mallinckrodt
et al. (2012)), and data after rescue are either unavailable or are ignored.

In the previous work on this topic, Little and Yau (1996) presented a multiple imputation (MI)
approach that could incorporate a variety of alternative assumptions about the treatment effect after
treatment discontinuation for the estimation of de facto estimands in RCTs. CRK presented a generic
algorithm for MI of post-discontinuation outcome data. They assumed that post-discontinuation
outcomes in a given trial arm behave in some way like outcomes in a reference arm (often the
control arm), and proposed various specific methods for forming the imputation distribution. These
methods have been called “reference-based imputation” (RBI) or “control-based imputation” meth-
ods. However, CRK did not theoretically justify these methods. In this paper, we assume that
participants who have discontinued their randomised treatment receive treatment that is similar to
that allocated to the control arm: thus for reference-based imputation, we take the reference to be the
control treatment, where this is typically either placebo or standard of care.

Specification of estimands is clarified by using counterfactual outcomes – outcomes that have not
been or could not have been observed. Such counterfactuals are best described using potential
outcomes notation (Angrist et al. 1996; Little and Rubin 2000). Our aims in this paper are first to
propose and implement a causal model, using explicit assumptions about the causal effect of
a previously discontinued treatment, and second to show that three of the RBI methods are special
cases of the causal model, and hence to provide their theoretical justification.

Implementing the causal model requires untestable assumptions, so we need sensitivity analyses
to understand the impact of these assumptions on inferences and conclusions from the primary
analysis. Kenward et al. (2001) described a principled approach to sensitivity analyses which varies
a sensitivity parameter that quantifies deviations from the missing data assumption. A tipping point
sensitivity analysis (e.g. Yan et al. (2009); Liublinska and Rubin (2014)) extends this approach by
varying the sensitivity parameter until the conclusion from the primary analysis is overturned. The
third aim of this paper is to propose a tipping point sensitivity analysis using the causal model.

The paper is organised as follows: In Section 2, we set out notation and define the RBI methods.
Section 3 contains the key new material: here we set out the causal model and discuss equivalence
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with RBI methods. In Section 4, we discuss implementation. In Section 5 we verify the equivalence of
RBI and causal model estimates in a simulation study. In Section 6, we illustrate the proposed
approach and demonstrate the tipping point analysis with two example data sets. We conclude with
summary remarks in Section 7.

2. Reference-based imputation (RBI) methods

2.1. Notation

We consider a two-arm longitudinal RCT with quantitative outcome observations scheduled at
baseline and at tmax occasions after randomisation. Let Z be the random variable for the
participant’s randomised treatment arm: Z ¼ a for the active treatment arm and Z ¼ c for the
control arm. Let Yt be the random variable for the participant’s outcome at visit t ¼ 0; :::; tmax. It
is convenient to define Y�t ¼ ðY0; . . . ;YtÞ, the vector of all outcomes up to and including visit t;
Y > t ¼ ðYtþ1; . . . ;YtmaxÞ, the vector of all outcomes after visit t; and Y ¼ ðY0; . . . ;YtmaxÞ, the
vector of all outcomes. Let D be the random variable for the participant’s last visit prior to
discontinuing treatment, so D ¼ 0; :::; tmax. Yt is observable for all t but only observed for t � D,
because we assume no off-treatment data. We aim to impute the unobserved values of Yt for
t >D: we stress that these are the outcomes that existed but were unobserved, not the outcomes
that would have existed if treatment had been continued.

We define the potential outcome YtðsÞ at visit t as the outcome that would have been observable
if, possibly contrary to fact, a participant received active treatment for s periods only. In particular,
Ytð0Þ is the potential outcome if never treated, and YtðtmaxÞ is the potential outcome if always
treated. We define Y�tðsÞ, Y > tðsÞ and YðsÞ as before. We let μtðsÞ ¼ E YtðsÞ½ �, the mean of the
potential outcome at visit t if active treatment was received for s periods only. Similarly, we define
μ�t

ðsÞ, μ > tðsÞ and μðsÞ. The variance-covariance matrix of the potential outcomes is ΣðsÞ ¼
var YðsÞð Þ with submatrices Σ�t�tðsÞ, Σ > t > tðsÞ and Σ> t�tðsÞ. We define the matrix of regression
coefficients of potential outcomes after visit t on those up to visit t as βtðsÞ ¼ Σ> t�tðsÞΣ�t�tðsÞ�1,
and the residual variance of the potential outcomes after visit t given those up to visit t

as ΩtðsÞ ¼ Σ> t�tðsÞΣ�t�tðsÞ�1Σ > t�tðsÞT .
Figure 1 illustrates this notation in the case of an adverse outcome which deteriorates (increases)

in the absence of treatment and improves (decreases) in the presence of treatment. If treatment is
discontinued at time s then mean outcomes up to time s are unaffected (μtðsÞ ¼ μtðtmaxÞ for t � s)
but outcomes after time s are worsened (μtðsÞ > μtðtmaxÞ for t > s). The notation is summarised in
supplementary appendix A.

This potential outcomes notation allows for only one type of treatment. We assume that the
observed outcomes are not affected by other treatments. For the outcomes after treatment disconti-
nuation, we assume either that rescue treatment (over and above the per-protocol treatment regime
for the control arm) is not available or that interest is in the effect attributable to the initially
randomised treatment without the confounding effects of rescue medications.

The de jure estimand (estimand E1) at visit t > 0 is E YtðtÞ � Ytð0Þ½ �. The de facto estimand
(estimand E2) is the estimand of interest in this paper and is E YtðDÞjZ ¼ a½ � � E Ytð0ÞjZ ¼ c½ �.
Often, primary interest is in the last visit, t ¼ tmax.

2.2. Reference-based imputation

CRK proposed a generic MI algorithm for this setting:
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(1) For each treatment arm, fit a multivariate normal model to all observed data, using
a Bayesian approach with an improper prior and assuming MAR. The model should have
unstructured mean and unstructured variance-covariance matrix.

(2) For each treatment arm, draw a mean vector and variance-covariance matrix from the
posterior distribution.

(3) For each treatment arm and each possible treatment discontinuation visit t, use the draws to
build the hypothetical joint distribution of the outcomes Y�t up to time t and the outcomes
Y > t after time t, using one of the methods described below.

(4) For each treatment arm and each observed treatment discontinuation visit t, construct the
imputation distribution of Y > t given Y�t . Sample Y > t from this conditional distribution, to
create a “completed” data set.

(5) Repeat steps 2–4 m times, resulting in m imputed data sets.
(6) Analyse each imputed data set and combine the results using Rubin’s rules (Rubin 1987).

To understand the assumptions behind the CRK algorithm, we express it using the potential
outcomes notation.

In step 1, the model is fitted to each treatment arm separately. In the control arm, the observed
outcomes are Yt ¼ Ytð0Þ. In the active treatment arm, the observed outcomes are Yt ¼ YtðtmaxÞ,
because we assume no off-treatment data. Hence, under MAR assumptions that we make explicit in
Section 3.1, the multivariate normal model fitted to the control arm has mean μð0Þ and variance
Σð0Þ, and that fitted to the active treatment arm has mean μðtmaxÞ and variance ΣðtmaxÞ.

In step 2, values of μð0Þ, Σð0Þ, μðtmaxÞ and ΣðtmaxÞ are drawn from their posterior distributions.
In step 3, the drawn values are used to build hypothetical joint distributions of Y . Specifically, for

participants in the active treatment arm who discontinue treatment at time t, a joint distribution is
built for YjZ ¼ a;D ¼ t. CRK proposed using a multivariate normal distribution. Five methods are
mainly distinguished by their choice of mean:

● Missing at random (MAR): mean = μðtmaxÞ.

Never
treated

µ(0)

Treated
to visit s

µ(s)

Always
treated
µ(tmax)

Y<=s(s)
(observed)

Y>s(s)
(observable

but unobserved)O
ut

co
m

e

0 s tmax

Visit

Figure 1. Notation illustrated. Lines indicate mean potential outcomes under three potential treatment scenarios. Circles indicate
observable outcomes for a participant who discontinues treatment at visit s.
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● Last mean carried forward (LMCF): mean = μ�t
ðtmaxÞ; μtðtmaxÞetmax�t

� �
where ep is a row

vector ð1; . . . ; 1Þ of length p.
● Copy reference (CR): mean = μð0Þ.
● Jump to reference (J2R): mean = μ�t

ðtmaxÞ; μ> tð0Þ
� �

.
● Copy increments in reference (CIR):

mean ¼ μ�t
ðtmaxÞ; μ> tð0Þ þ fμtðtmaxÞ � μtð0Þgetmax�t

� �
:

CRK proposed corresponding variance matrices. We simplify their description by observing that
only the regression coefficient matrix and conditional variance matrix of the potential outcomes after
visit t given those up to visit t are used in later steps. CRK set these to be βtðtmaxÞ and ΩtðtmaxÞ for
MAR and LMCF, and βtð0Þ and Ωtð0Þ for J2R, CIR and CR. An approach that we call RBI alternative
instead uses βtðtmaxÞ and ΩtðtmaxÞ for all RBI methods.

In step 4, the joint distributions above are used to derive conditional distributions for
Y > tðtÞjZ ¼ a;D ¼ t;Y�tðtÞ. Under J2R, for example, this is

N μ > tð0Þ þ βtð0Þ Y�tðtmaxÞ � μ�t
ðtmaxÞ

n o
;Ωtð0Þ

� �
ðRBIÞ

N μ> tð0Þ þ βtðtmaxÞ Y�tðtmaxÞ � μ�t
ðtmaxÞ

n o
;ΩtðtmaxÞ

� �
ðRBI alternativeÞ

The rest of the CRK algorithm follows standard MI methods, using the conditional distribution as
the imputation model.

The hypothetical joint distributions under each of these methods are written in the notation of this
paper in supplementary appendix B. The corresponding imputation distributions for the Z ¼ a;D ¼ t
subgroup for any t< tmax are given under “Reference-based imputation methods” in Table 1. The
imputation means are written as a selection term, reflecting how the D ¼ t subgroup differs from other
participants, plus a term linearly related to the treatment effect up to time t. This motivates our causal
model in section 3, which relates causal treatment effects after D to those up to D.

3. New causal model

In this section, we first set out the assumptions of the causal model, and then derive the imputation
model.

Table 1. Imputation distribution of Y > tðtÞ for t< tmax given randomisation Z ¼ a, past Y�t and
treatment discontinuation visit D ¼ t, under various reference-based imputation methods with
control arm as reference (Carpenter et al. 2013) and under the causal model. Ct is a ‘carry-forward’
ðtmax � tÞ � ðt þ 1Þ matrix containing t columns of zeroes and a final column of ones, so that
Ctμ�tðtÞ is a column vector containing tmax � t copies of μtðtÞ.

Imputation distribution

Method Mean Variance

Reference-based imputation methods
MAR βtðtmaxÞ Y�t � μ�tðtÞ

� �þ μ > tðtmaxÞ ΩtðtmaxÞ
LMCF βtðtmaxÞ Y�t � μ�tðtÞ

� �þ Ctμ�tðtÞ ΩtðtmaxÞ
J2R βtð0Þ Y�t � μ�tðtÞ

� �þ μ > tð0Þ Ωtð0Þ
CIR βtð0Þ Y�t � μ�tðtÞ

� �þ Ct μ�tðtÞ � μ�tð0Þ
� � þ μ> tð0Þ Ωtð0Þ

CR* βtð0Þ Y�t � μ�tðtÞ
� � þ βtð0Þ μ�tðtÞ � μ�tð0Þ

� �þ μ> tð0Þ Ωtð0Þ
Causal model

βtðtÞ Y�t � μ�tðtÞ
� �þ K t μ�tðtÞ � μ�tð0Þ

� � þ μ > tð0Þ ΩtðtÞ
* The CR mean is more simply written βtð0Þ Y�t � μ�tð0Þ

n o
þ μ> tð0Þ, but the expression given

here facilitates comparison with the other methods.
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3.1. Assumptions

Assumption A1. Randomisation is independent of potential outcomes: Z??YðsÞ for all s.

Assumption A2. ðYjZ ¼ cÞ is missing at random (MAR).

Assumption A2 states that the observed outcomes in the control arm are MAR. If there are no
missing data before treatment discontinuation, then we can also write this

pðD ¼ tjZ ¼ c;Y;D � tÞ ¼ pðD ¼ tjZ ¼ c;Y�t;D � tÞ
for all t. In other words, treatment discontinuation in the control arm does not relate to future

untreated outcomes, given the past and present.

Assumption A3. ðYðtmaxÞjZ ¼ aÞ is MAR.

Assumption A3 states that the counterfactual fully treated outcomes in the active arm are MAR. If
there are no missing data before treatment discontinuation, then we can also write this

pðD ¼ tjZ ¼ a;YðtmaxÞ;D � tÞ ¼ pðD ¼ tjZ ¼ a;Y�tðtmaxÞ;D � tÞ
for all t. In other words, treatment discontinuation in the active arm does not relate to future
counterfactual fully treated outcomes, given the past and present.

We do not assume that the actual outcomes in the active arm, ðYjZ ¼ aÞ, are MAR. Indeed, this is
unlikely to be true, since (if treatment is effective) treatment discontinuation causally affects actual future
outcomes. Thus, treatment discontinuation is allowed to relate to future actual outcomes, given the past and
present.

Assumption A4. Y > tðtÞjY�tðtÞ follows a linear regression for each t.

This assumption implies that the conditional mean of each future potential outcome YuðtÞ (u> t)
depends linearly on the past observed outcomes Y1ðtÞ; . . . ;YtðtÞ. We make no assumption of
linearity in t or u, so that trajectories over time have no assumed form. A4 is true if YðtÞ follows
a multivariate Normal distribution. The linear regression has mean μ> tðtÞ þ βtðtÞfY�tðtÞ � μ�t

ðtÞg
and residual variance matrix ΩtðtÞ.

Assumption A5. pðD ¼ tjZ ¼ a; YðtÞÞ ¼ pðD ¼ tjZ ¼ a;Y�tðtÞÞ.

A5 states that treatment discontinuation at visit t is unaffected by future partly treated potential
outcomes. It appears similar to the equation A3, but the latter refers instead to future fully-treated
potential outcomes. If there are no missing data before treatment discontinuation then a stronger
assumption which implies both A3 and A5 is

pðD ¼ tjZ ¼ a;YðsÞ;D � tÞ ¼ pðD ¼ tjZ ¼ a;Y�tðsÞ;D � tÞ
for all t and all s> t.

Assumption A6. E Y > tðtÞ � Y > tð0Þ½ � ¼ K t E Y�tðtÞ � Y�tð0Þ½ �.

A6 is an explicit assumption about how the maintained effect of treatment after discontinuation
relates to the effect of treatment before discontinuation. Equivalently,

μ > tðtÞ � μ > tð0Þ ¼ K t μ�tðtÞ � μ�tð0Þ
� �

: (1)
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K t is a ðtmax � tÞ � ðt þ 1Þ matrix of sensitivity parameters: it is not identified by the data and must
be specified by the user. Some suggestions for Kt are made in Section 3.3.

Our model makes no assumption about how the effect of active treatment changes over time
while active treatment is continued. However, implicit in assumption A6 is that there is no delayed
response to the control treatment: thus when a patient discontinues randomised treatment, we
assume the effects of any treatments they switch to are similar to the effects they would have
experienced had they received the control treatment from the start of the trial.

3.2. Modelling outcomes after treatment discontinuation

In this subsection, we consider an individual in the active arm who stops treatment at visit t< tmax.
We use the above assumptions to derive a model for this individual’s outcomes after treatment
discontinuation, conditional on their history Y�t . In section 3.3 we take this model as an imputation
model and compare it with the RBI imputation models.

We write the conditional mean outcome after treatment discontinuation in this model as the sum
of three terms:

E½Y > tðtÞjZ ¼ a;Y�t;D ¼ t� ¼ E½Y > tðtÞjZ ¼ a;Y�t;D ¼ t� � μ > tðtÞ
� �

þ μ> tðtÞ � μ> tð0Þ
� �þ μ > tð0Þ

(2)

where the first term represents the difference between the subgroup who discontinue at visit t and
the whole group (“selection term”), the second term represents the treatment effect in the whole
group (“maintained treatment effect”), and the third term is the untreated mean.

We write the selection term as

E Y > tðtÞjZ ¼ a;Y�tðtÞ;D ¼ t½ � � μ > tðtÞ
¼ E Y > tðtÞjZ ¼ a;Y�tðtÞ½ � � μ > tðtÞ ðby A5 Þ
¼ E Y> tðtÞjY�tðtÞ½ � � μ > tðtÞ ðby A1 Þ
¼ βtðtÞ Y�tðtÞ � μ�tðtÞ

� � ðby A4 Þ:

(3)

Using assumption A6, and substituting (1) and (3) into (2) gives the mean of the imputation model:

E½Y > tðtÞjZ ¼ a;Y�t;D ¼ t�
¼ βtðtÞ Y�t � μ�tðtÞ

n o
þ K t μ�tðtÞ � μ�tð0Þ

n o
þ μ > tð0Þ:

(4)

For the variance, we approximate var Y > tðtÞjZ ¼ a;Y�tðtÞ;D ¼ tð Þ by var Y > tðtÞjZ ¼ a;Y�tðtÞð Þ
which is valid when differences between drop-out patterns are small compared with the variation
in the data, and otherwise conservative. By A1, this is var Y > tðtÞjY�tðtÞð Þ ¼ ΩtðtÞ. This imputation
distribution is given under “Causal model” in Table 1.

3.3. Using the causal model

We need to fix three parameters in order to identify the causal model: K t , βtðtÞ and ΩtðtÞ. In most
cases the post-discontinuation treatment effect may be assumed to depend only on the treatment
effect at the discontinuation visit and not on treatment effects at earlier visits, and therefore K t has
non-zero elements only in the final column; our software implementation below relies on this
assumption. For tipping point sensitivity analyses, we consider two single-parameter causal models
for the outcome at visit u after discontinuation at visit t:

E YuðtÞ � Yuð0Þ½ � ¼ k0 E YtðtÞ � Ytð0Þ½ � (5)

E YuðtÞ � Yuð0Þ½ � ¼ kvu�vt
1 E YtðtÞ � Ytð0Þ½ � (6)
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where vu; vt are the times (on a suitable scale) of visits u; t. The maintained treatment effect after
treatment discontinuation is constant in model (5) but decays exponentially in model (6), being
multiplied by k1 for every unit of time, where 0 � k1 � 1. A combined model is

E YuðtÞ � Yuð0Þ½ � ¼ k0k
vu�vt
1 E YtðtÞ � Ytð0Þ½ �: (7)

Next, we need to fix βtðtÞ, the matrix of regression coefficients of Y > tðtÞ on Y�tðtÞ. Assumptions A2
and A3 identify βtð0Þ, the regression of Y > tð0Þ on Y�tð0Þ, and βtðtmaxÞ, the regression of Y > tðtmaxÞ
on Y�tðtÞ, respectively. We propose assuming either βtðtÞ ¼ βtð0Þ or βtðtÞ ¼ βtðtmaxÞ. We call these
“regression from reference” and “regression from active”, respectively. If all treatment effects are
homogeneous (i.e. if YðtÞ � Yð0Þ does not vary between individuals for any t) then βtðtÞ ¼
βtðtmaxÞ ¼ βtð0Þ and both “regression from reference” and “regression from active” are valid. If we
are willing to assume equal variance-covariance matrices across trial arms (ΣðtmaxÞ ¼ Σð0Þ) then
βtðtmaxÞ ¼ βtð0Þ and “regression from reference” and “regression from active” give the same results.
The same arguments and proposals apply for ΩtðtÞ.

3.4. Comparison with reference-based imputation

From Table 1, RBI methods J2R, CIR and CR correspond to particular choices of the causal model,
while the MAR and LMCF methods do not correspond to this causal model. K t is set to 0 for J2R, Ct

for CIR, and βtð0Þ for CR. This makes precise the statement of Mallinckrodt et al. (2012) that, under
CIR, CR and J2R, the Z ¼ a;D ¼ t subgroup has the treatment effect at visit t maintained,
diminished and eliminated, respectively, at visit tmax. Further, βtðtÞ and ΩtðtÞ are set to βtð0Þ and
Ωtð0Þ. If the RBI alternative variance structures are used then the same equivalences apply, but with
βtðtÞ ¼ βtðtmaxÞ and ΩtðtÞ ¼ ΩtðtmaxÞ.

4. Estimation

The CRK algorithm described in section 2 is easily adapted to impute under the causal model. Steps
1 and 2 are unchanged, and provide draws of μð0Þ, Σð0Þ, μðtmaxÞ and ΣðtmaxÞ. Step 3 is skipped since
the imputation distribution is directly derived from the causal model. Step 4 starts by imputing any
missing data in the control arm under assumption A2, and any missing data in the active arm before
treatment discontinuation under assumption A3. It then constructs the imputation distribution for
active-arm data after treatment discontinuation using specification of K t , βtðtÞ and ΩtðtÞ as in
Section 3.3. Steps 5 and 6 are unchanged.

We describe implementation using the SASmacros developed by James Roger to performMI under the
RBImethods. These are available on the web page (on www.missingdata.org.uk) of the DIAworking group
for missing data. We modified the Part2A macro to impute under the causal model with

K t ¼ kCt (8)

where k is a scalar that may vary between participants. This enables causal model (5) to be
implemented by setting k ¼ k0, the same for all participants. When interest is in the outcome at
visit tmax, causal model (6) can be implemented by setting k ¼ ktmax�D

1 , which varies across partici-
pants with different values of D. The modified macro is available on the DIA working group web
page and sample code is provided in supplementary appendix C. By default, the variance-covariance
matrices in the two arms, ΣðtmaxÞ and Σð0Þ, are assumed equal, but the user can specify them to be
unequal, which is the case we consider.

Alternative implementations are given in supplementary appendix D.
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5. Simulation

We performed a simulation study to verify equivalence of the RBI methods with the proposed causal
model for estimating the treatment effect at the final visit and to assess the impact of mis-
specification of K t and βtðtÞ. Mis-specification of ΩtðtÞ has no impact on bias and little impact on
variance, and for brevity is not discussed.

5.1. Design

Details of the data generating mechanism for simulating the observed and unobserved data are given
in appendix E. Briefly, we consider an RCT with one baseline observation and two post-baseline
visits during the treatment period (that is, tmax ¼ 2). Some active-arm participants discontinue
treatment after visit 1 and are not observed at time 2; all other participants continue randomised
treatment and are fully observed. The mechanism for discontinuing treatment is either MCAR or
MAR. The data distribution for the observed data has either β1ð2Þ ¼ β1ð0Þ or β1ð2Þ�β1ð0Þ: the latter
is designed to make choices of β1ð1Þ important.

For each mechanism for simulating the observed data, we analysed the data in three ways, each
with several different settings. For complete data, we generated the unobserved data using
a maintained treatment effect parameter k ¼ 0; 0:5; 0:74 or 1 and setting β1ð1Þ ¼ β1ð0Þ or β1ð2Þ.
For causal model imputation, we imputed the missing data using the causal model assuming

a maintained treatment effect parameter ~k ¼ 0; 0:5; 0:74 or 1, and setting ~β1ð1Þ, the assumed value
of β1ð1Þ, equal to β1ð0Þ or β1ð2Þ. For RBI imputation, we imputed the missing data using the
reference-based imputation methods CR, CIR and J2R with the variance-covariance matrix taken
from the control arm or from the active arm. In all cases, we estimated the treatment effect from
a linear regression of Y2 on randomised arm and baseline Y0. With imputed data, standard errors
were computed using Rubin’s rules.

5.2. Results

Table 2 displays the average estimated treatment difference at visit 2 for each data generating
mechanism (columns) and each analysis method (rows).

Comparing panels A (analysis of complete data) and B (analysis by causal model imputation)
shows that the causal model imputation methods result in unbiased estimates when the assumed
values of ~β1ð1Þ and ~k agree with the true values of β1ð1Þ and k.

Comparing panels B and C (analysis by RBI imputation) shows that the RBI estimates with variance-
covariance matrix drawn from the control arm (as in CRK) agree with specific cases of the causal model
estimates with β1ð1Þ ¼ β1ð0Þ, and the RBI estimates with variance-covariance matrix drawn from the
active arm (as in RBI alternative) agree with specific cases of the causal model estimates with

β1ð1Þ ¼ β1ð2Þ. Specifically, J2R corresponds to ~k ¼ 0, CIR corresponds to ~k ¼ 1, and CR corresponds

to ~k ¼ the second element of β1ð1Þ which is 0.50 or 0.74 depending on the data generating mechanism.
Comparing different choices of ~β1ð1Þ when the observed data had either no selection effect (i.e.

under MCAR) or β1ð0Þ ¼ β1ð2Þ (that is, in the first three data generating mechanisms), we see that

choice of ~β1ð1Þ does not affect estimates, as expected from Section 3.4. Sensitivity to choice of ~β1ð1Þ
was observed in the fourth data generating mechanism (MAR with β1ð0Þ�β1ð2Þ): mean causal
model estimates were reduced by 0.29 by assuming β1 ¼ β1ð0Þ instead of β1 ¼ β1ð2Þ. Sensitivity to

choice of ~k was the same for all values of β1 (see Section 3.4): for example, assuming ~k ¼ 0 instead of
~k ¼ 1 reduced mean causal model estimates by 0.50 irrespective of the value of β1.

Table 3 displays the average standard error (SE) (the average of the 1000 SEs) and the empirical
SE (the sample standard deviation of the 1000 point estimates) for the treatment difference at the
final visit. Empirical and average SEs for J2R and CIR are similar to those for the corresponding
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causal model estimates. The SEs for CR are slightly larger than those for the causal model with ~k ¼
the second element of β1, because β1 is estimated in CR while ~k is an assumed value in the causal
model. With MAR data, the larger average and empirical SEs due to using the variance-covariance
matrix from the active arm rather than from the control arm arise mainly because there are no
missing data in the control arm and heterogeneity is larger in the active arm than in the control arm.
More importantly, as shown in Seaman et al. (2014), the results confirm that both RBI and causal
model methods give (1) smaller empirical SEs than the estimator based on the complete data, and (2)
larger average SEs (estimated using Rubin’s rules) than the empirical SEs of the methods and the
empirical SEs based on the complete data. We comment on these observations in the discussion.

6. Examples

We use two example data sets from randomised, double-blind, parallel-group studies comparing
active treatment with placebo. The first is from a trial of 172 participants with major depressive
disorders, taken from the DIA page of www.missingdata.org.uk, and used in the DIA working group
to demonstrate various missing data related analytical methods. The outcome variable is the 17-item
Hamilton Depression Rating Scale, HAMD17. The second, kindly supplied by Devan Mehrotra, is
from a pain trial with a pain score as outcome.

Table 2. Simulation study with D ¼ 1 or 2: estimates of treatment effect at visit 2 using complete data, causal model
imputation and RBI imputation. β1ð0Þ ¼ ð0; 0:5Þ0 in all cases. β1ð2Þ�β1ð0Þ means β1ð2Þ ¼ ð�0:12; 0:74Þ0.

Data generating mechanisms for observed data

MCAR MAR

β1ð2Þ ¼ β1ð0Þ β1ð2Þ�β1ð0Þ β1ð2Þ ¼ β1ð0Þ β1ð2Þ�β1ð0Þ
A. Complete data generated with:
β1ð1Þ ¼ β1ð0Þ
k ¼ 0:00 0.99 0.99 1.00 0.70
k ¼ 0:50 1.24 1.24 1.25 0.95
k ¼ 0:74 1.36 1.36 1.37 1.07
k ¼ 1:00 1.49 1.49 1.50 1.20

β1ð1Þ ¼ β1ð2Þ
k ¼ 0:00 0.99 1.00 1.00 1.00
k ¼ 0:50 1.24 1.25 1.25 1.25
k ¼ 0:74 1.36 1.37 1.37 1.37
k ¼ 1:00 1.49 1.50 1.50 1.50

B. Causal model imputation with assumed ~β1ð1Þ and ~k
~β1ð1Þ ¼ β1ð0Þ
~k ¼ 0:00 1.00 1.00 1.00 0.71
~k ¼ 0:50 1.24 1.25 1.25 0.96
~k ¼ 0:74 1.36 1.37 1.37 1.08
~k ¼ 1:00 1.49 1.50 1.50 1.21

~β1ð1Þ ¼ β1ð2Þ
~k ¼ 0:00 1.00 1.00 1.00 1.00
~k ¼ 0:50 1.24 1.25 1.25 1.25
~k ¼ 0:74 1.36 1.37 1.37 1.37
~k ¼ 1:00 1.49 1.50 1.50 1.50

C. RBI imputation with assumed variance-covariance and method
Variance-covariance matrix from control arm
J2R 1.00 1.00 1.00 0.71
CR 1.24 1.25 1.25 0.96
CIR 1.49 1.50 1.50 1.21
Variance-covariance matrix from active arm
J2R 1.00 1.00 1.00 1.00
CR 1.24 1.37 1.25 1.38
CIR 1.49 1.50 1.50 1.50

Note: Maximum Monte Carlo standard error < 0:01

JOURNAL OF BIOPHARMACEUTICAL STATISTICS 343



In the HAMD17 trial, 76% (64/84) and 74% (65/88) of the randomised participants completed the
final (fourth) visit in the active and placebo arms, respectively. In the pain score trial, the completion
rate at the final (sixth) visit was 70% (47/67) and 67% (36/54) in the active and placebo arms,
respectively. In both trials, participants were not followed up after treatment discontinuation. The
observed trajectory means and the frequency of dropout patterns in each trial are shown in Figure 2.

We used the SAS 5 macros for implementing the RBI methods and causal models (Section 4). For
the RBI methods, we assumed participants in the active arm were treated similarly to the placebo
arm after discontinuing the active treatment. To construct the joint distribution of pre- and post-
discontinuation active-arm data under the RBI methods, we first used the variance-covariance
matrix from the placebo arm (RBI analyses) and then repeated the methods with the variance-
covariance matrix from the active arm (RBI alternative analyses).

Table 4 shows the estimated treatment effect on HAMD17 and pain score at the final visit from
standard MI, MMRM and RBI methods. The standard MI and MMRM methods estimate the de jure
estimand. These differ slightly for HAMD17 because of a small incompatibility between the
imputation and analysis models: the imputation model uses all visits to estimate a common effect
of the baseline covariate PoolInv, but the analysis model uses only the final visit. The RBI methods
estimate the de facto estimand and show, as expected, treatment estimates of smaller magnitude than
the de jure estimand, with J2R giving the smallest magnitude of treatment effect followed by CR.

Table 3. Simulation study: average standard error (empirical standard error) for the treatment difference at the final
visit using complete data, causal model imputation and RBI imputation. β1ð0Þ and β1ð2Þ as in Table 2.

Data generating mechanisms for observed data

MCAR MAR

β1ð2Þ ¼ β1ð0Þ β1ð2Þ�β1ð0Þ β1ð2Þ ¼ β1ð0Þ β1ð2Þ�β1ð0Þ
A. Complete data generated with:
β1ð1Þ ¼ β1ð0Þ
k ¼ 0:00 0.276 (0.273) 0.318 (0.311) 0.260 (0.255) 0.295 (0.288)
k ¼ 0:50 0.272 (0.269) 0.315 (0.308) 0.261 (0.256) 0.298 (0.291)
k ¼ 0:74 0.302 (0.206) 0.342 (0.247) 0.311 (0.219) 0.351 (0.258)
k ¼ 1:00 0.270 (0.266) 0.313 (0.306) 0.262 (0.257) 0.301 (0.295)

β1ð1Þ ¼ β1ð2Þ
k ¼ 0:00 0.276 (0.273) 0.318 (0.316) 0.260 (0.255) 0.292 (0.288)
k ¼ 0:50 0.272 (0.269) 0.315 (0.312) 0.261 (0.256) 0.296 (0.291)
k ¼ 0:74 0.271 (0.268) 0.314 (0.311) 0.262 (0.256) 0.298 (0.294)
k ¼ 1:00 0.270 (0.266) 0.313 (0.310) 0.262 (0.257) 0.300 (0.296)

B. Causal model imputation with assumed ~β1ð1Þ and ~k
~β1ð1Þ ¼ β1ð0Þ
~k ¼ 0:00 0.310 (0.168) 0.337 (0.189) 0.305 (0.171) 0.328 (0.181)
~k ¼ 0:50 0.301 (0.190) 0.327 (0.226) 0.299 (0.189) 0.322 (0.214)
~k ¼ 0:74 0.302 (0.206) 0.327 (0.249) 0.301 (0.206) 0.325 (0.237)
~k ¼ 1:00 0.305 (0.226) 0.332 (0.277) 0.306 (0.227) 0.332 (0.267)

~β1ð1Þ ¼ β1ð2Þ
~k ¼ 0:00 0.310 (0.168) 0.359 (0.187) 0.315 (0.188) 0.359 (0.206)
~k ¼ 0:50 0.301 (0.190) 0.344 (0.224) 0.310 (0.204) 0.350 (0.236)
~k ¼ 0:74 0.302 (0.206) 0.342 (0.247) 0.311 (0.219) 0.351 (0.258)
~k ¼ 1:00 0.305 (0.226) 0.345 (0.275) 0.316 (0.239) 0.356 (0.285)

C. RBI imputation with assumed variance-covariance matrix and method
Variance-covariance matrix from control arm
J2R 0.310 (0.168) 0.337 (0.189) 0.305 (0.171) 0.328 (0.181)
CR 0.303 (0.192) 0.328 (0.229) 0.306 (0.200) 0.331 (0.226)
CIR 0.305 (0.226) 0.332 (0.277) 0.306 (0.227) 0.332 (0.267)
Variance-covariance matrix from active arm
J2R 0.310 (0.168) 0.359 (0.187) 0.315 (0.188) 0.359 (0.206)
CR 0.305 (0.192) 0.344 (0.249) 0.332 (0.236) 0.370 (0.283)
CIR 0.305 (0.226) 0.345 (0.275) 0.316 (0.239) 0.356 (0.285)

Note: Maximum Monte Carlo standard error < 0:0005
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Using the variance-covariance matrix from the active arm rather than from the placebo arm gives
slightly more conservative estimates.

We next demonstrate tipping point sensitivity analyses using causal models (5) and (6). In
model (5), a fraction k0 of the treatment effect is maintained at all visits after discontinuation.
Figure 3 shows the de facto estimates and 95% CI over a range of k0 from −0.5 to 2.5. As shown
in the theory and the simulation results, the J2R and CIR estimates correspond to using the causal

Figure 2. HAMD17 and pain score data sets: observed mean profile according to the visit at which treatment was discontinued in
the active and placebo arms.

Note: In the pain score data, four subjects in the active arm and two subjects in the placebo arm did not complete
any post-baseline visit and were excluded from analysis.

Table 4. HAMD17 and pain score data: estimated treatment effect at the final visit using standard multiple imputation with 100
imputations, mixed model for repeated measures (MMRM) and RBI methods.

Estimand & HAMD17 Pain score

Method Estimate1 Std. error p-value Estimate2 Std. error p-value

De jure
Standard MI −2.62 0.99 0.01 −0.88 0.39 0.03
MMRM −2.58 1.03 0.01 −0.88 0.39 0.03
De facto
RBI: variance-covariance matrix from the placebo arm
J2R −2.01 1.01 0.05 −0.64 0.40 0.11
CR −2.22 0.99 0.03 −0.75 0.39 0.06
CIR −2.30 0.99 0.02 −0.77 0.39 0.05
RBI alternative: variance-covariance matrix from the drug arm
J2R −1.99 1.01 0.05 −0.60 0.39 0.13
CR −2.20 0.99 0.03 −0.71 0.39 0.07
CIR −2.28 0.99 0.02 −0.73 0.39 0.06

1 Monte Carlo standard error for MI methods is � 0:04.
2 Monte Carlo standard error for MI methods is � 0:02.
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model with k0 ¼ 0 (no maintained treatment effect after discontinuation) and k0 ¼ 1 (fully
maintained treatment effect after discontinuation), respectively. Values k0 < 0 mean that the effect
of treatment after discontinuation is harmful, while values k0 > 1 mean that the effect of treatment
after discontinuation is greater than before discontinuation. The tipping point analysis on
HAMD17 shows that statistical significance is lost when k0 < 0 (with variance-covariance from
the placebo arm) or k0 < 0:05 (with variance-covariance from the active arm). In both cases, this
suggests that the de facto estimate of treatment effect on HAMD17 is non-significant only if any
benefit of the active treatment is lost immediately following discontinuation. For the pain score
trial, statistical significance is lost when k0 < 1:1 or k0 < 1:3 (depending on whether the variance-
covariance matrix is taken from the placebo or the active arm, respectively). This suggests that, in
order for the de facto estimate of treatment effect to be statistically significant, there would need
to be a delayed benefit such that the treatment effect was greater after discontinuation than before
discontinuation. In both trials, comparing Table 4 with Figure 3 shows that the MAR analyses
give estimates of the de jure estimand that are numerically similar to the causal model estimates
of the de facto estimand when values around k0 ¼ 2 are assumed.

In model (6), the treatment effect decays exponentially after discontinuation. Here, k1 ¼ 0 for J2R
and 1 for CIR. We took visits as the timescale, so that vt ¼ t in model (6). Figure 4 shows the de facto
estimates of treatment effect at the final visit and its 95% CI from the causal model over a range of
k1. This model does not accommodate the effect of treatment after discontinuation being either
harmful or greater than before discontinuation, and because of the more limited range of k1, the
tipping point is not reached: all results are statistically significant for HAMD17 and not significant
for the pain score.

Figure 3. HAMD17 and pain score data sets: tipping point analysis for the estimated treatment effect at the final visit using causal
model (5). The model has a constant treatment effect after treatment discontinuation, equal to fraction k0 of the treatment effect
at treatment discontinuation. The horizontal solid and dotted lines represent the treatment estimates and their pointwise 95% CI,
respectively. The vertical solid line corresponds to k0 such that p-value > 0:05 in the left-hand side of the line (tipping point).
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7. Discussion

We have considered longitudinal RCTs with quantitative outcomes in which participants who
discontinue an active treatment are not followed up thereafter, but are assumed to receive
a treatment similar to the control treatment. We have focused on estimating the effect of assignment
to treatment in the actual treatment circumstances of the trial (de facto or treatment-policy
estimand) rather than the treatment effect if all participants had tolerated or adhered to trial protocol
(de jure or hypothetical estimand). We have proposed a generalised causal modelling approach to
account for treatment discontinuation in the estimation of the de facto estimand. The proposed
causal model makes an explicit assumption about the maintained causal effect of treatment after
treatment discontinuation and provides flexibility to perform sensitivity analyses to the causal
assumption. The causal model agrees with RBI methods in certain cases, and this provides
a formal justification of these RBI methods.

The proposed causal model specifies how much of the treatment effect is maintained after
treatment discontinuation, which we represent by the matrix Kt . We illustrated this with two
examples of Kt : equation (5) with the maintained treatment effect independent of time since
discontinuation, and equation (6) with the maintained treatment effect decaying exponentially
with visits since discontinuation. A simple extension would allow Kt to depend on the reason for
treatment discontinuation. Ideally, sponsors should justify the choice of Kt in the trial protocol based
on the nature of the trial and the treatments.

The choice of regression slope βtðtÞ in the imputation model, reflecting within-subject depen-
dence of post-discontinuation outcomes on pre-discontinuation outcomes should similarly be
pre-specified. It is hard to recommend a single choice and perhaps both βtðtÞ ¼ βtð0Þ and βtðtÞ ¼
βtðtmaxÞ should be implemented. If the analyst is willing to assume equal variance-covariance

Figure 4. HAMD17 and pain score data sets: tipping point analysis for the estimated treatment effect at the final visit using causal
model (6). The model has the treatment effect decaying exponentially after treatment discontinuation, by a ratio k1 for each visit.
The horizontal solid and dashed lines represent the treatment estimates and their pointwise 95% CI, respectively. The tipping
point is not attained in the range 0 � k1 � 1.
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matrices across trial arms then the situation is simpler and βtðtÞ ¼ βtð0Þ ¼ βtðtmaxÞ is the obvious
choice. It is sensible to make the corresponding choices for the residual variance matrix ΩtðtÞ.

Our model has been presented for the case of active-arm treatment discontinuation, where
subjects who discontinue do not then receive rescue medication over and above the per-protocol
treatment regime for the control arm or when interest is in the effect attributable to the initially
randomised treatment without the confounding effects of rescue medications. An unresolved
problem is how to handle initiation of rescue medications when the confounding effects of rescue
medications are of interest. The model can be extended to handle the control arm starting active
treatment: an assumption like A6 still holds, but the Kt matrix must be replaced by assumptions
about how the treatment effect builds up over time.

Assumption A6 implies that if treatment has no effect before discontinuation then it has no effect
after discontinuation. This seems reasonable in general; if it was unreasonable in a particular trial,
then a constant term could be added in assumption A6 and equation (1). Other assumptions are
possible, such as a non-linear model.

We have focussed on varying assumption A6, but we should also assess a number of other
assumptions. The MAR assumptions A2 and A3, and the related assumption A5, could be made
more plausible if the model could be extended to include further time-dependent covariates.
Alternatively one could explore sensitivity to these assumptions by methods like those of Ratitch
et al. (2013). It is less clear how to assess departures from the linearity assumption A4.

All the methods we have considered – RBI methods, causal model and MMRM – make
a multivariate Normal (MVN) assumption. Our key finding that the causal model and RBI methods
are equivalent is valid even if the MVN assumption is false. However, failure of the MVN assumption
risks causing bias in all the methods. The assumption can be checked in the observed data using
standard methods. If the MVN assumption is correct for the observed data and the maintained
treatment effect model (6) is correct, then the imputed data have the correct mean, and so the treatment
effect in the imputed data is unbiased even if the MVN assumption is false for the unobserved data. If
data were skewed, then it would be wise to consider a transformation before analysis.

Our model applies to quantitative outcomes. Extension to other outcomes would be useful.
The repeated-sampling variance of the estimated treatment effect tends to be smaller than the Rubin’s

rules estimate of variance for a given K t (Table 3). The repeated-sampling variance can be approximated
in practice using the delta method (Liu and Pang 2016; Oehlert 1992). Carpenter et al. (2014) argue that
the repeated-sampling variance is not appropriate since it is typically smaller than the complete-data
variance (to an extent which depends on the value of Kt). They also argue that the Rubin’s rules estimate
of variance of the treatment effect is larger than the complete-data variance, because of the information
lost due to the missing data, and this makes it an appropriate variance (Carpenter et al. 2014; Cro et al.
2019). We point out that the type I error rate is correct for the repeated-sampling variance and too small
for the Rubin’s rules variance, meaning that the Rubin’s rules variance carries a loss of power; therefore,
the repeated-sampling variance may be appropriate for a primary analysis.

In summary, whilst MI is an attractive and powerful method for handling missing data in both
experimental and observational studies, it is not always clear what estimand is being targeted or what
assumptions are being made about how outcomes for subjects who discontinue randomised treat-
ment relate to those who remain on study. The recent estimands debate (European Medicines
Agency 2017) has led to a growing recognition that more complex estimation approaches that do
not rely on randomisation may be needed to handle post-randomisation events that lead to missing
data, and there are calls for causal inference methods to become more widely adopted (e.g. Akacha
et al. (2017); Little and Kang (2015)). We join this call to encourage greater understanding and
application of ideas from the causal inference literature to help support the definition and estimation
of estimands of interest in a randomised clinical trial. We hope that this paper illustrates how
a causal inference framework can provide clarity and rigour in stating estimands, stating assump-
tions, and performing estimation.
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