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Joint Propulsion and Cooling Energy Management
of Hybrid Electric Vehicles by Optimal Control

Boli Chen, Xuefang Li, Simos A. Evangelou and Roberto Lot

Abstract—This paper develops an optimal control methodology
for the energy management (EM) of a series hybrid electric
vehicle (HEV) with consideration of ancillary cooling losses, to
minimize fuel consumption. Both engine and battery thermal
management (TM) models are integrated into the HEV power-
train model as they interact with each other during operation.
By collecting all components for propulsion and cooling, a
control-oriented model is established, which enables the joint
EM and TM optimization problem to be solved simultaneously.
Experimental driving cycles are utilized to reveal the impact of
the cooling losses on the fuel economy under different driving
circumstances. The case study shows the effectiveness of the
proposed strategy in finding the optimal power sharing of the
hybrid powertrain with consideration of both propulsion and
overall cooling requirements. Moreover, a benchmark method
based on separately optimized EM and conventional thermostat
and PI controlled cooling systems is introduced to verify the
solution quality of the proposed approach. It is demonstrated
that the proposed method outperforms the benchmark by 0.7%-
2.49% in terms of fuel economy, depending on the driving
scenarios.

ABBREVIATIONS
CL Cooling Load
COP Coefficient of Performance
CS Charge-Sustaining
ECMS Equivalent Consumption Minimization Strategy
EM Energy Management
HEV Hybrid Electric Vehicle
ICE Internal Combustion Engine
LHV Diesel Lower Heating Value
NLP Nonlinear Programming
OCP Optimal Control Problem
PL Propulsion Load
PMS Permanent Magnet Synchronous (Machine)
PS Primary Source of energy
SOC State of Charge
SS Secondary Source of energy
TCS Thermostat Control Strategy
TM Thermal Management
VL Vehicle Load

I. INTRODUCTION

As a viable solution to address the problems of global
warming and natural resources depletion, hybrid electric vehi-
cles (HEVs) have emerged as a leading technology to reduce
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emissions and the consumption of fossil fuel. In contrast
to conventional vehicles that are only driven by an internal
combustion engine (ICE), an HEV usually has an additional
electric energy source. Therefore, an appropriate energy man-
agement (EM) control strategy is required to determine the
power sharing between the two energy sources to minimize
fuel consumption. Two main types of EM strategies have been
developed in the literature: optimization-based and rule-based
control strategies [1]–[6]. The optimization-based methods are
essentially based on the formulation of an optimal control
problem (OCP), which can be solved by numerous optimiza-
tion tools, including dynamic programming [1], Pontryagin’s
Minimum Principle [2], model predictive control [7], [8] and
equivalent consumption minimization strategy (ECMS). The
main advantage of the methods within this category is that
global or local optimality conditions are usually guaranteed.
In contrast, rule-based approaches are designed based on
empirical control rules that are simple and robust, yet the
solutions have no optimality guarantees [9], [10]. Nevertheless,
it is worthwhile to note that most of the existing EM strategies,
optimization- or rule-based, focus on the propulsion power of
the powertrain, while the ancillary energy losses associated
with the thermal management (TM) of the energy sources are
usually neglected (see, for example, [1]–[14]).

An opportunity therefore exists to design EM control strate-
gies with increased awareness on total power requirements
to enhance their fuel efficiency. Beyond this, the ICE and
battery thermal management systems are crucial for the safety
and reliability of modern HEVs’ operation [15]–[21]. Badly
controlled energy source temperature may lead to an inef-
ficient operation or even accelerate the aging phenomena.
Therefore, the inclusion of ICE and battery thermal models
and management systems in the powertrain model is an
important step to design practical and more potent overall
EM control strategies [22]–[27]. In [23], by considering the
influence of the ICE temperature on fuel consumption, a
temperature-sensitive optimal control strategy is proposed for
a parallel HEV, which is proven to be effective in reducing fuel
consumption. However, in that work the energy consumption
of the ICE cooling system is still not accounted for. The very
recent work [27] proposes an enhanced ECMS by considering
the engine cooling losses for parallel HEVs. The results show
the superior performance of the cooling-sensitive ECMS over
the baseline ECMS. Moreover, the impact of battery cooling
losses is investigated in [24], where the battery TM system is
integrated into the EM control of a series hybrid electric truck.
The result shows that battery cooling energy consumption
could increase fuel consumption by as much as 5%. Based
on the ECMS strategy, an enhanced EM control approach is
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Fig. 1. Block diagram of the series HEV powertrain used in this work.

proposed in [25], which also takes the battery TM system
into account. The integrated EM method shows potential fuel
savings as compared to the strategy of separately managing
the energy and thermal aspects. While this existing body of
work, which considers EM with either battery or ICE thermal
control, provides some insight into the design of practical EM
strategies, it does not consider the mutual influence between
the two thermal management systems; the cooling of one
source increases the powertrain energy requirements which
likely also increases the energy usage of the other source,
thereby increasing that source’s temperature and hence cool-
ing power requirements, and vice versa. Recently, the work
presented in [26] takes both ICE and battery cooling systems
into account in a series HEV powertrain, and compares two
control mechanisms: 1) the auxiliary cooling components are
simultaneously controlled by the EM strategy, 2) the auxiliary
systems simply follow an on/off rule independent of the EM
algorithm, such that the cooling systems are activated only
when the component temperatures are higher than the defined
set points. It is shown that the vehicle overall fuel economy
can be significantly improved by 1) where the EM and TM
are combined. However, the overall EM method is based on a
very simple rule-based EM strategy, which lacks optimality.

To the best of the authors’ knowledge, the development of
an optimization-based EM strategy with consideration of both
ICE and battery thermal management systems is still missing.
Motivated by this, an optimal control approach is proposed
in this work for the EM of a series HEV powertrain with
consideration of the losses caused by both ICE and battery
cooling systems, which therefore integrates both ICE and
battery thermal management systems. Thermal management
of the electric machine in the powertrain is not considered be-
cause the associated cooling losses are known to be negligible
as compared to the losses associated with engine and battery
cooling [16]. The main contributions of the present work are
summarized as follows: 1) formulation and solving of the EM
optimal control problem with joint consideration of propulsion
and overall (ICE and battery) cooling requirements in a way
that is suitable for numerical optimization, and 2) exposition
of the advantages of the joint EM (with TM) optimization as
compared to a benchmark EM method that is optimal on the
basis of propulsion power but which adopts conventional con-
trollers for the cooling systems. To enable these contributions,
a computationally efficient model is employed that describes
sufficiently the physical processes involved, which includes: a)
models for the ICE and battery cooling systems presented in
[16], with suitable (and validated) reduction of their dynamic

states, integrated with b) a standard series HEV model from
[28], [29], leading to an overall powertrain dynamic model.
Moreover, the present study provides some insight into the
impact of the auxiliary cooling losses on fuel economy for
different experimental driving scenarios.

The rest of the paper is organized as follows. Section II
introduces the overall vehicle model including the powertrain,
ICE cooling system and battery cooling system. In Section III
the optimization problem is formulated with consideration of
both the propulsion and cooling requirements, with the details
of the benchmark scheme also given. Simulation and compar-
ative results are presented in Section IV. Finally, Section V
draws the conclusions of this work.

II. THE SERIES HEV MODEL

The vehicle studied in this work is a general-purpose pas-
senger car with a series hybrid powertrain, which is sketched in
Fig. 1. As it can be seen, this powertrain architecture consists
of three branches: primary source (PS) branch, secondary
source (SS) branch and vehicle load (VL) branch , which are
coupled electrically at the DC-link. The PS branch is formed
by an ICE, a permanent magnet synchronous (PMS) generator,
and an AC-DC rectifier, which are connected in series. The
SS branch includes a battery and a DC-DC converter, and
the VL branch includes the propulsion load (PL) subbranch
with a DC-AC inverter, a PMS motor/generator, a transmission
system with a fixed gear ratio and the wheel load. Thermal
management systems of the engine and the battery are also
integrated into the VL branch, as the cooling load (CL)
subbranch, to maintain the temperature of the energy sources
within desired ranges. In the chosen cooling power supply
architecture, the cooling power can be provided by either or
both of the powertrain sources (PS and SS) as decided by the
power split optimization.

Traditional ICE cooling systems consist of a wax based
thermostat valve, crankshaft driven water pump and a clutched
radiator fan. In particular, the fan can freewheel at low
temperatures when cooling is not needed, and the clutch
is engaged when the engine temperature increases so that
the fan is driven by the engine power to cool the engine.
The present work utilizes an ICE cooling system with more
advanced components, such as valve, pump and fan, all driven
by servo-motors, which have the potential to offer enhanced
regulation performance of the coolant fluid flow, and reduced
fuel consumption and tailpipe emission as a consequence [30].
On the other hand, the battery cells are cooled by an air
conditioning system where the most power consuming actuator
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is the servo-motor driven refrigerant compressor. As such,
both engine and battery cooling systems are assumed to be
driven by the AC power from the powertrain inverter, as shown
in Fig. 1. The developed battery and engine thermal models
are integrated into a conventional model of a series HEV
[28], [29], which captures the essential physical characteristics
of the powertrain components with a relatively low dynamic
order, and which has its main components parameters validated
by experimental data. The overall vehicle model consists of
7 states: battery state of charge (SOC), fuel mass and the
thermal states, including the engine coolant temperature at
engine and radiator outlet, battery cell temperature and the
cooling air temperature of engine and battery, respectively. The
dynamics of the remaining powertrain components, such as the
motor and power converters, are approximated by steady-state
representations. Given its low order, this model greatly facili-
tates the design and implementation of optimization-based EM
strategies, which usually demand heavy computational effort.

The driving mission is mostly specified in the literature
in terms of driving cycles for the assessment of EM control
strategies. When the driving speed profile is known a priori, the
driving force Fv acting on the wheels is computed as follows:

Fv = mv a+ FT + FD +mvg sin θ, (1)

in which mv is the vehicle mass, a is the vehicle accel-
eration, θ is the road slope, and FT = fT mv g cos θ and
FD = fDv

2 are the resistance forces respectively due to tires
and aerodynamic drag, with fT and fD the rolling resistance
and aerodynamic drag coefficients, and v the vehicle speed.
The vehicle speed profile (including the acceleration) and road
slope are given as inputs to the model according to the tested
drive cycles, which will be introduced in Section IV-A.

A. Vehicle Load Branch

With reference to Fig. 1, the PS power PPS and the SS
power PSS are merged at the DC link:

PV L = PPS + PSS . (2)

The total power PV L received from the energy sources is
turned into AC power by the bi-directional inverter, which
is modeled as a constant efficiency term ηi. This AC power
meets the total power demand from the wheels and the total
cooling load. By considering PPL and PCL as the propulsion
and cooling loads, respectively, referred at the input of the
inverter, it holds that

PPL + PCL = PV L. (3)

In particular, PCL is the combined cooling power loss of the
ICE (PCLE) and the battery (PCLB), both also referred at the
input of the inverter:

PCL = PCLB + PCLE . (4)

The PMS motor/generator offers bi-directional energy conver-
sion, according to Pm = (ηiηm)sign(PPL)PPL. The efficiency
of the PMS machine ηm is described by a static efficiency
map of the load torque and the angular speed, as shown in
Fig. 2 [28]. The motor speed ωm is coupled with the speed
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Fig. 2. Efficiency of the reversible PMS machine (generator = positive torque,
motor = negative torque) [28]. The torque bounds (due to power limitation)
are shown by dotted lines. The rated power of the machine is 95kW.

of the wheels, and consequently the vehicle speed v, by a
transmission system with a single fixed gear ratio γ, such that
ωm = γ/rw v, where rw is the wheel radius. Moreover, the
bi-directional power flow through the transmission is modeled
by:

Pt = η
sign(Pm)
t Pm , (5)

with ηt a constant efficiency factor. By considering the power
at the wheels, Pv = Fv v, it is clear that Pt = Pv when
Pv ≥ 0, while when Pv ≤ 0, the regenerated braking power,
Pt = Pv−Ph, because of the mechanical brakes, Ph, that are
directly applied to the wheels. Due to the series powertrain
configuration, the operation of the motor and the transmission
is allowed to be isolated from the EM strategy. As such, the
power demand (related to propulsion) PPL can be calculated
directly from Pv , as follows: PPL =

Pv
ηiηmηt

, ∀Pv ≥ 0 ,

PPL = (Pv − Ph)ηiηmηt, ∀Pv < 0 .
(6)

It is also assumed that the energy recovery is not restricted by
the braking distribution between front and rear axles, such that
all the braking energy (after Ph is subtracted) is recoverable.

To sum up, for a given driving cycle, it is possible to
compute and use PPL as the input to be followed instead
of a speed profile, thus leading to a simplified EM problem
framework. The parameters of the VL branch and vehicle force
model are listed in Table I.

TABLE I
VL BRANCH AND VEHICLE PARAMETERS

Description Symbol Value
Vehicle mass mv 1500 kg
Tyre rolling resistance coefficient fT 0.01
Aerodynamics drag coefficient fD 0.47
Efficiency of DC-AC inverter ηi 0.96
Efficiency of transmission ηt 0.96
Transmission ratio γ 3
Wheel radius rw 0.3m

B. Primary Source Branch
a) Fuel Consumption Model: The ICE in this work

represents an Audi 5-Cylinder Turbo Diesel Engine. The
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associated static efficiency map is generated from experimental
data available in the Advanced Vehicle Simulator (ADVISOR)
[31]. The generator is an identical PMS machine to the motor
in the VL branch, but it is only operated with a positive torque
(see Fig. 2). The rectifier is simply modeled by a constant
efficiency factor ηr. The overall efficiency of this branch is
the product of individual component efficiencies, as shown in
Fig. 3.
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The mechanical separation from the wheels allows the PS
branch to be constantly operated along the trajectory of the
most efficient torque-speed operating points (as shown in
Fig. 3). In such a case, the fuel mass rate qf can be fitted
approximately as a linear function of the branch output power
PPS , as shown in Fig. 4. The dynamic equation of the fuel
mass mf is therefore given by:

d

dt
mf = ṁf0 + αfPPS , (7)

in which ṁf0 acts as the idling fuel mass rate, and αf is the
coefficient of power transformation. From (7), it is immediate
to obtain the fuel power from combustion by:

Pf = qLHV ṁf0 + qLHV αfPPS (8)

where qLHV is the diesel lower heating value.
b) Engine Thermal Model: By considering that the effi-

ciencies of the generator and the rectifier are very close to 1,
it can be seen from the PS efficiency map illustrated in Fig. 3
that approximately one third of the chemical power Pf can
be transformed into engine power output Pe. The rest of the
combustion energy is either taken away by the exhaust waste
gas or becomes waste heat that needs to be properly removed
by the cooling system. With reference to the data provided

in [32], the exhaust gas energy is approximately 30%, while
the waste heat energy (from combustion, 32%, and engine
friction, 11.5%) is up to 43.5%, of the overall fuel energy.
By assuming that the ratio between exhaust gas energy and
waste heat energy remains constant at approximately 30:43.5,
the waste heat rate that needs to be removed by the engine
cooling system can be expressed as:

Q̇e = (Pf − Pe)σ

=

(
qLHV ṁf0 + qLHV αfPPS −

PPS
ηr ηg

)
σ, (9)

with σ = 0.6
(
≈ 1

30
43.5+1

)
and ηg the efficiency of the PMS

generator (shown in Fig. 2 but varying only with PPS as the
PS branch is operated along the trajectory of the most efficient
torque-speed operating points shown in Fig. 3). The structure
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Fig. 5. The schematic diagram of the engine thermal management system.

of the engine cooling system is shown in Fig. 5. As it can be
seen, the pump drives the coolant water to circulate within the
engine, which then flows into the radiator to be cooled. The
heat is discharged to the ambient surroundings by the radiator
cooling fan, which controls the air flow through the radiator.
The speeds of the fan and the pump are electrically controlled
via servo-motors. The smart valve controls the coolant volume
that flows through the radiator. The valve is assumed to be
fully opened so that all the coolant at engine outlet flows
through the radiator.

Similarly to [15], [16], [33], [34], the engine cooling system
is modeled based on the convective heat transfer. By starting
from the engine thermal model developed in [16], it is further
assumed that the coolant temperature at the engine outlet is
the same as the engine temperature (i.e. the heat conduction in
the engine block is ignored) to reduce the model complexity
by one dynamic state; this assumption is validated by simula-
tions. This leads to three differential equations describing the
dynamics of the coolant and cooling air temperatures:

mw,ecc
dTe
dt

= Q̇e − qwcc(Te − Tr), (10)

mw,rcc
dTr
dt

= qwcc(Te − Tr)− hca(Tr − Tc), (11)

ma,rca
dTc
dt

= hca(Tr − Tc)− qaca(Tc − Tamb). (12)

This model involves three states, Te, Tr and Tc, the tempera-
tures of the coolant at the engine and at the radiator, and of
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the cooling air, respectively. The ambient temperature Tamb
is set to 30◦C in the present work. The remaining parameters
are explained in Table II. qw and qa respectively denote the
coolant and cooling air flow rates, which are linearly related
to the coolant pump speed, Np, and cooling fan speed, Nf ,
via the following equations:

qw = βpNp, qa = βfNf , (13)

with the constant factors βp and βf depending on the speci-
fications of the pump and fan (e.g., pump displacement, fan
diameter), and the densities of coolant and cooling air. Np
and Nf can be manipulated to control the temperature states
associated with the cooling system.

According to [16], the power consumed by the pump and
fan is proportional to the cube of qw and qa, respectively, as
described by:

Ppump = Kp q
3
w, Pfan = Kf q

3
a, (14)

where Kp and Kf are two constant coefficients. Finally, the
total engine cooling demand PCLE is evaluated by

PCLE = (Pfan + Ppump)/ηi . (15)

The engine fuel consumption and thermal model parameter
values are presented in Table II [16], [35].

TABLE II
ENGINE BRANCH AND COOLING SYSTEM PARAMETERS

Parameter Symbol Value
Idling fuel mass rate ṁf0 0.11 g/s
Power transformation coefficient αf 0.0583 g/kW/s
Diesel lower heating value qLHV 42.6 MJ/kg
Efficiency of rectifier ηr 0.96
Coolant specific heat capacity cc 4090 J/kg/◦C
Air specific heat capacity ca 994 J/kg/◦C
Coolant-air heat transfer coefficient hca 1000 W/◦C
Coolant mass at engine mw,e 2 kg
Coolant mass at radiator mw,r 2 kg
Air mass at radiator ma,r 0.3 kg
Cooling air flow rate coefficient βf 8.7×10−4 kg/s/RPM
Coolant flow rate coefficient βp 4.2×10−4 kg/s/RPM
Cooling fan power coefficient Kf 78.8 W·s3/kg3

Coolant pump power coefficient Kp 86.4 W·s3/kg3

C. Secondary Source Branch

The battery system is modeled in this section, including both
electrical and thermal models. The models are parametrized for
the A123 AHR32113 cylindrical cells, which are of LiFePO4

type. The battery consists of 200 identical cells equally divided
in 2 parallel strings, with each string formed by 100 cells in
series. The cell specifications and the associated battery model
parameters for this study are summarized in Table III [16].

a) Battery Electrical Model: The model selection for a
Li-ion battery system is subject to a trade-off between accuracy
and computational complexity, however for the intended pur-
poses of vehicle powertrain energy management, an equivalent
electric circuit model is suitable, for which there is also a
rich literature. Therefore, in the present work, the battery is
modeled as a series connection of an ideal voltage source (of
open-circuit voltage Voc) and an ohmic resistance (internal

TABLE III
BATTERY ELECTRIC AND THERMAL SYSTEM PARAMETERS

Parameters Symbol Value
Cell capacity 4.5Ah
Cell nominal voltage 3.3V
Cell resistance 10mΩ
Number of cells n 200
Cell heat capacity Cb 286.8 J/◦C
Cell thermal resistance Rλ 0.65 ◦C/W
Cell cooling air heat capacity Ca 0.708 J/◦C
Battery capacity Qmax 9 Ah
Open circuit voltage Voc 330 V
Discharging/charging C-rate limit 10 C / 5 C
Internal resistance Rb 0.5 Ω
SOC upper limit SOCmax 0.8
SOC lower limit SOCmin 0.5
Efficiency of DC-DC converter ηdc 0.96

resistance Rb) [29], in which the battery SOC represents the
only state variable, governed by:

d

dt
SOC = − ib

Qmax
. (16)

where Qmax is the battery capacity, and ib denotes the battery
current, assumed positive during the discharge phase. The
battery current can be solved with respect to Voc, Rb, and the
battery output power Pb ( =(Voc− ibRb)ib ), by rearranging the
Pb expression, as follows:

ib =
Voc −

√
V 2
oc − 4PbRb

2Rb
. (17)

Voc is known in the literature to depend nonlinearly to the
SOC, however here Voc is reasonably approximated by a
constant voltage, which is compatible with the usual aim of
a charge-sustaining (CS) battery management, by which the
SOC is narrowly constrained; in the present work the battery
SOC is limited within [SOCmin, SOCmax] = [50%, 80%].
Furthermore, by combining the battery with the bidirectional
DC/DC converter, the SS output power is obtained by:

PSS = η
sign(PSS)
dc Pb, (18)

in which ηdc is the efficiency of the DC/DC converter. By
applying the algebraic solution of ib (17) and the power
balance equation (18) in (16), the dynamic behavior of the
SS can be described by the differential equation of SOC with
respect to PSS only:

d

dt
SOC =

−Voc +
√
V 2
oc − 4PSS Rb/η

sign(PSS)
dc

2RbQmax
. (19)

b) Battery Thermal Model: The present work utilizes a
control oriented single cell thermal model based on an active
air cooling system, which represents a common solution for
practical HEV battery systems. The lumped-parameter thermal
model presented in [16], which assumes that all the cells have
the same temperature and therefore the thermal interaction
between them is ignored, is adapted in the present work to
capture the essential thermal behavior of the battery with
acceptable model complexity, by making the following further
assumptions: 1) the cooling air temperature is uniform across
the battery bank, and 2) the temperature across the cell is
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uniform. The first assumption enables a single cell model,
while the second assumption is usually applied to reduce the
model complexity by one dynamic state [36]; battery core and
surface temperatures are lumped into a single variable, namely
the cell temperature.

AC cooling
system

Tamb

Battery Cell

RλTa

Tb

Cooling air flow

Fig. 6. The schematic diagram of the battery thermal management system.

The structure of the battery cooling system, described by
the employed model, is illustrated in Fig 6. The battery cell
thermal status in this case is described by the cell temperature
Tb and the cooling air temperature Ta. The dynamic of the cell
temperature is governed by the following differential equation
based on the heat convection:

Cb
d

dt
Tb = Q̇r −

Tb − Ta
Rλ

(20)

where Q̇r is the heat generation rate of a single battery cell
induced by the cell resistance, Cb is the heat capacity of the
cell, and Rλ is the thermal resistance between the cell and the
cooling air. According to the layout of the cells, it is immediate
to calculate: Q̇r = Rb i

2
b/n. The dynamic of the cooling air

temperature is modeled as:

Ca
d

dt
Ta =

Tb − Ta
Rλ

− Q̇b,cool (21)

where Q̇b,cool is the cooling load for cooling one battery cell,
and Ca is the heat capacity of the air surrounding the single
cell. Finally, PCLB is calculated by

PCLB =
n Q̇b,cool
COP ηi

(22)

where COP is the coefficient of performance of the air
conditioning system. In practice, the COP depends on several
factors, including the refrigerant and ambient temperature.
Inspired by test results of the R134a refrigerant published in
[37], the COP is fixed at 2.25 for Tamb = 30◦C.

III. OPTIMAL CONTROL PROBLEM FORMULATION

The control objective in the present work is to minimize the
overall fuel consumption for a driving mission by EM with
consideration of propulsion and cooling requirements. Such
requirements involve sustaining the battery SOC and main-
taining the battery temperature within the optimum operating
range:

Tb,min ≤ Tb ≤ Tb,max, (23)

with Tb,min = 15◦C and Tb,max = 35◦C, while the coolant
temperature at the engine’s outlet and the radiator are re-
quested to track reference temperatures for safe engine op-
eration: Te,tar = 90◦C, Tr,tar = 70◦C, respectively [16]. To
implement the proposed joint propulsion and cooling EM strat-
egy, the overall control problem is formulated in this section as

an OCP. For benchmarking purposes, a conventional control
strategy with separately controlled EM and TM systems is
also introduced. The detailed formulation of both scenarios
involves various OCPs, which will be specified in Sections
III-A and III-B.

The OCPs formulated in the present work are solved
by GPOPS-II [38], which is an optimal control software
embedded in Matlab. GPOPS-II implements the Gaussian
quadrature methods to convert an OCP into a sparse nonlinear
programming problem (NLP), which is then tackled by the
NLP solver IPOPT.

A. Individual EM and TM control strategy (OCP-Split)

The benchmarking strategy is a composite control scheme
that combines conventional schemes for the various individual
control tasks: a) conventional EM optimization for propul-
sion power only without considering the cooling systems, b)
PI-control-based engine cooling, and c) TCS-based battery
cooling. Although TCS represents the most commonly used
technique for commercial vehicles, PI is selected here for
engine temperature control as it offers more accurate tracking
performance than the TCS.

1) Conventional EM optimization for propulsion power only
(OCP-EM): The objective of this optimization problem is
to find the primary and secondary sources power quantities,
PPS and PSS respectively, that minimize the fuel consumption
mf (tf ), subject to the powertrain system dynamics (fuel mass
(7) and the SOC (19) only) and the algebraic constraint of
power balance at the DC link as given by (2) (in this case
PV L = PPL). The problem can be further simplified by
utilizing: a) the constraint (2), b) the linear dependence of the
fuel consumption rate on the PS power (see (7)), which enables
the alternative objective of min

∫ tf
t0
(PPL−PSS)dt to be used

instead of minmf (tf ), and c)
∫ tf
t0
PPLdt being completely

determined by the followed speed profile according to (1)
and (6). OCP-EM can thus be simplified to an optimization
problem with a single input u = PSS and a single state
x = SOC, as follows:

min
PSS

−
∫ tf

t0

PSSdt

subject to the dynamic system (19) and the following inequal-
ity constraints:

max(PPL−PPS,max, PSS,min)≤PSS≤min(PSS,max, PPL),
(24a)

SOCmin ≤ SOC ≤ SOCmax , (24b)

where (24a) is inferred from (2) and the individual energy
source power limits:

0 ≤ PPS ≤ PPS,max , PSS,min < PSS < PSS,max (25)

The power limits are set to: PPS,max = 85 kW, PSS,min =
−16.5 kW and PSS,max = 24.6 kW (consequences of the
C-rate limits specified in Table III). Finally, the following
boundary conditions complete the problem:

mf (t0) = 0 , SOC(t0) = SOC(tf ) = 65%. (26)
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in which the SOC boundary conditions ensure the battery to
be CS at the end of the mission.

Given a driving cycle, the OCP-EM solves the PSS and con-
sequently the power share profile: µ = PPS/PPL, ∀PPL > 0
(when PPL ≤ 0, power split is fixed at PPS = 0 and
PSS = PPL) that minimizes the overall fuel consumption for
the hybrid powertrain without cooling systems.

2) OCP-Split: The first stage in OCP-Split is to solve OCP-
EM as described in Section III-A1 and obtain the power
share trajectory µ for the given driving cycle. Subsequently,
two PI controllers are deployed respectively for manipulating
fan and pump speeds (Nf and Np) to enforce the engine
coolant temperatures Te and Tr to track the predefined targets
Te,tar and Tr,tar, respectively, by using feedback based on the
tracking-error. On the other hand, the battery cooling system
controlled by the TCS is activated when Tb hits the upper limit
Tb,max, and when Tb goes back to 30◦C the cooling system
is switched off again. As soon as the battery cooling system
is activated, the battery cooling power PCLB is operated at a
constant load. The total power (propulsion, and cooling power
determined by the PIs and TCS) requested to follow the driving
cycle is met by the sum of PPS and PSS by following the
power share trajectory µ found a priori by the OCP-EM for
the same cycle. The fuel consumption and the SOC profile are
finally evaluated by integrating (7) and (19).

B. Joint propulsion and cooling EM (OCP-Joint)

The OCP in this scenario is formulated for the full pow-
ertrain system to find its control inputs u that minimize the
cost function J(x,u), taking multiple aspects into account,
including fuel consumption, energy source thermal behavior
and battery charge sustainability. The overall powertrain model
that collects (19), (10)-(12) and (20)-(21) is represented in the
following form:

ẋ= f(x,u)=



−Voc +
√
V 2
oc − 4PSS Rb/η

sign(PSS)
dc

2RbQmax

Q̇e − qwcc(Te − Tr)
mw,ecc

qwcc(Te − Tr)− hca(Tr − Tc)
mw,rcc

hca(Tr − Tc)− qaca(Tc − Tamb)
ma,rca

Rb i
2
b

nCb
− Tb − Ta

CbRλ
Tb − Ta
CaRλ

− ηiCOPPCLB
nCa



(27)

where qw, qa, ib, Q̇e can be explicitly expressed as functions
of dynamic states x and control inputs u, defined by: x =
[SOC, Te, Tr, Tc, Tb, Ta]

> and u = [PSS , Nf , Np, PCLB ]
>.

Similarly to the OCP-EM, mf and PPS are excluded from
the state and control vectors to reduce the dimension of
the dynamic model. When the optimal control inputs u are
determined, PPS can be obtained immediately from (2)-(4)
and (13)-(15). As such, the total fuel usage mf (tf ) is allowed
to be evaluated a posteriori based on the optimum solution.

The multi-objective cost function proposed for this OCP,
selected with further reduction in the complexity of the joint
optimization problem in mind, is as follows:

J(x,u) = W1

∫ tf

t0

(PCLE + PCLB − PSS)dt

+W2 (SOC(tf )− SOC(t0))
2
+W3

∫ tf

t0

(Te − Te,tar)2dt

+W4

∫ tf

t0

(Tr − Tr,tar)2dt+W5

∫ tf

t0

ζ(Tb)dt, (28)

where the weighting factors Wk, k = 1, 2, · · · , 5 are tuned
to balance the control performance in the different aspects,
with the first term of the cost function related to the fuel
consumption, similarly to OCP-EM but now with the cool-
ing power included. As it can be noticed, the second term
represents a “soft constraint” for the CS operation over a full
driving cycle. Such a formulation offers a suitable relaxation
of the strictly CS condition SOC(t0) = SOC(tf ) (usually
imposed as a boundary condition as shown in Section III-A
for OCP-EM), with great benefit in terms of computation
efficiency. The temperature tracking targets of the coolant at
engine outlet and the radiator are addressed by quadratic cost
functions of the tracking errors, formulated as the third and the
fourth terms in (28). Moreover, it is worth noting that the last
term in (28) formulates and includes in the objective function
in a smooth manner the hard (path) constraint (23) on the
battery temperature Tb, to facilitate the optimization algorithm.
In particular, the following piecewise quadratic function is
utilized in this framework to emulate the constraint (23):

ζ(Tb) =

µ1T̃
2
b + µ2


(T̃b +H)2, T̃b ≤ −H
0, −H < T̃b < H

(T̃b −H)2, T̃b ≥ H

 ,

(29)
where H = 0.9, µ1 = 0.12, µ2 = 87.6, and T̃b is the
normalized temperature difference between Tb and the mean
of Tb,max and Tb,min:

T̃b =
Tb − (Tb,max+Tb,min)

2
(Tb,max−Tb,min)

2

=
Tb − 25

10
.

The behavior of (29) is illustrated in Fig. 7. It can be observed
that the smoothed penalty function (29) highly resembles the
ideal operational limits, being almost flat with 0 value within
the acceptable working temperature [15◦C, 35◦C].

15 20 25 30 35

0

0.5

1

1.5

Fig. 7. Comparison of ideal and smoothed penalty function for Tb.

Similarly to the OCP-Split, the inequality constraints (24a)
and (24b) are also enforced to keep the battery SOC and the
power inputs from both energy sources inside their admissible
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range. In addition, the control inputs of the cooling systems
are constrained by

0 ≤ Nf ≤ Nf,max , 0 ≤ Np ≤ Np,max ,

0 ≤ PCLB ≤ PCLB,max ,

with Nf,max=Np,max=6000 rpm and PCLB,max=6 kW. Fi-
nally, dynamic states are initialized by the following condi-
tions:

mf (t0) = 0 , SOC(t0) = 65%,
Te(t0) = Te,tar, Tr(t0) = Tr,tar ,
Tb(t0) = 35◦C, Tc(t0) = Ta(t0) = 30◦C .

(31)

IV. SIMULATION RESULTS

A. Driving Cycles

The driving cycle defines the speed profile that needs to
be followed by the vehicle. Thus, it heavily influences the
operation of an EM strategy and the overall fuel economy.
The present work utilizes a set of experimental driving speed
profiles recorded respectively for urban, rural and motorway
driving by a recently developed data acquisition device [39]. In
contrast with artificial test cycles, these experimental profiles
reflect realistic driving behavior where human drivers’ inclina-
tion (e.g., usually to apply higher acceleration and deceleration
than test cycles) and the effects of legal speed limits, road
grades and traffic lights are naturally involved. The employed
speed profiles are shown in Fig. 8, with some of their particular
features specified in Table IV. The associated road elevation
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Fig. 8. Experimental speed profiles and the associated road elevation profiles
for urban (top), rural (middle) and motorway (bottom) driving.

data of the experimental driving missions is also measured and
converted to the slope θ, which contributes to the total driving
force via mvg sin θ and fT mv g cos θ (see (1)).

B. Numerical Results

Simulation examples are carried out in this Section based on
the experimental driving cycles shown in Fig. 8 with the aim
to: 1) evaluate the cooling losses in different and practical

TABLE IV
CHARACTERISTICS OF EXPERIMENTAL SPEED PROFILES

Urban Rural Motorway
Duration [s] 480 792 490
Distance [km] 1.99 12.17 11.66
Average Speed [km/h] 14.9 55.2 85.5
Max speed [km/h] 63.9 76.3 117.2
Max acceleration [m/s2] 3.87 2.77 2.33
Max deceleration [m/s2] -3.42 -3.64 -3.44

driving scenarios, 2) analyze how the cooling load changes
the optimal EM solutions, and 3) show the benefits of the
proposed OCP-Joint over the conventional composite control
strategy, OCP-Split, in terms of fuel savings and other aspects.
To this end, the optimal solutions solved by two realizations of
OCP-Joint (OCP-Joint A and OCP-Joint B), with a different
tuning parameter set for each realization, are benchmarked
against the results of OCP-Split, at 30◦C ambient temperature.
The choice of realization A aims to assess the capability of
OCP-Joint to track engine and radiator coolant temperatures
more accurately than with OCP-Split, while maintaining the
same fuel consumption as OCP-Split. The introduction of
realization B aims to assess the improvement of OCP-Joint
in fuel economy as compared to OCP-Split, while OCP-Joint
maintains a similar engine and radiator coolant temperature
tracking precision as with OCP-Split. Note that the CS con-
dition SOC(t0) = SOC(tf ) is not guaranteed when the OCP-
Split is employed, since it is imposed only in the stage of
OCP-EM. However, in addition to the fuel consumption and
temperature tracking, as mentioned above, the terminal SOC of
the two OCP-Joint approaches can be freely assigned by tuning
the weights in (28). To ensure a fair comparison, the terminal
SOC conditions, SOC(tf ), of the two OCP-Joint schemes in
each driving cycle case are enforced to be identical to the
terminal SOC reached in the results obtained by OCP-Split.

a) OCP-Split: The PI controllers and TCS of the OCP-
Split are tuned, as shown in Table V, such that the tracking
error satisfies:

|Te − Te,tar| ≤ 1.5◦C, |Tr − Tr,tar| ≤ 3◦C , (32a)
|Te − Te,tar| ≤ 2◦C, |Tr − Tr,tar| ≤ 4◦C , (32b)
|Te − Te,tar| ≤ 2◦C, |Tr − Tr,tar| ≤ 8◦C , (32c)

respectively for urban, rural and motorway driving situations
(it is expected that the OCP-Split tracking accuracy can be
improved at the price of more fuel usage as the PI tuning is
subject to a trade-off between tracking accuracy and control
power). The approach followed is to tune by trial and error the
PI control and TCS gains and parameters, such that for a target
fuel consumption the best tracking performance is achieved.

b) OCP-Joint A: In this case the OCP-Joint weights in
(28) are selected as shown in Table V, such that the resulting
fuel consumption and the terminal SOC are the same as in the
solutions of OCP-Split in each driving cycle case respectively,
to enable a first fair comparison between OCP-Joint and OCP-
Split in terms of temperature tracking accuracy.

c) OCP-Joint B: In this case the OCP-Joint coolant
temperature tracking precision is relaxed as compared to
OCP-Joint A by adjusting the weights in (28), as shown in
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Table V, such that OCP-Joint exhibits a similar engine and
radiator coolant temperature behavior (and peak variation),
while maintaining the same SOC(tf ), as OCP-Split. Thus,
a further fair comparison between OCP-Joint and OCP-Split
is enabled, in this case in terms of fuel economy.

TABLE V
WEIGHTING FACTORS OF THE OCP-JOINT OBJECTIVE FUNCTION (28) AS

WELL AS PI AND TCS PARAMETERS OF THE OCP-SPLIT

W1 W2 W3 W4 W5

OCP-Joint A (Urban) 5.5 5e3 2e-2 1e-3 2.5e-3
OCP-Joint A (Rural) 12 5e3 2e-2 1e-3 2.5e-3
OCP-Joint A (Motorway) 4 5e3 2e-2 1e-3 2.5e-3
OCP-Joint B (Urban) 10 5e3 2e-5 1.5e-6 2.5e-3
OCP-Joint B (Rural) 10 5e3 1.6e-6 6e-7 1.65e-3
OCP-Joint B (Motorway) 10 5e3 2e-5 1.5e-6 2.5e-3

PI for the pump PI for the fan TCS operating power
Urban P = 800, I =2 P = 750, I =1 1kW
Rural P = 750, I =5 P = 700, I =2 1kW
Motorway P = 800, I =8 P = 700, I =0.5 1kW

1) Comparison between OCP-Joint A and OCP-Split: In
this subsection the behavior and performance of OCP-Joint A
are compared and benchmarked against those of OCP-Split,
firstly in terms of powertrain and cooling power flows, sub-
sequently in terms of engine coolant and battery temperature
response as well as battery SOC variation, and finally in terms
of average energy source and cooling power losses including
power balance validation.

Figures 9-11 compare the optimal power profiles in different
driving situations, where it is shown that the inclusion of the
cooling systems in the EM optimization (that places emphasis
on coolant temperature tracking) changes the optimal power
split pattern between the two energy sources. As it can be
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Fig. 9. Power flows PV L, PPS and PSS solved by OCP-Split (top), OCP-
Joint A (middle) and OCP-Joint B (bottom) for urban driving (a part of the
driving cycle is shown). The amount of total cooling power PCL is multiplied
by 10 and also overlaid.

seen, the optimal solution of the OCP-Split in each driving cy-
cle case operates the SS as an energy buffer that provides only
a small amount of power for propulsion (and proportionally
for cooling according to power share µ), while the PS provides
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Fig. 10. Power flows PV L, PPS and PSS solved by OCP-Split (top), OCP-
Joint A (middle) and OCP-Joint B (bottom) for rural driving (a part of the
driving cycle is shown). The amount of total cooling power PCL is multiplied
by 10 and also overlaid.
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Fig. 11. Power flows PV L, PPS and PSS solved by OCP-Split (top),
OCP-Joint A (middle) and OCP-Joint B (bottom) for motorway driving (a
part of the driving cycle is shown). The amount of total cooling power PCL
is multiplied by 10 and also overlaid.

the rest of the power. Conversely, since the OCP-Joint A
solution is strongly influenced by the combined emphasis on
reducing both cooling power (related to the fuel consumption
objective) and variations of ICE coolant temperatures from
given setpoints, the PS power is suppressed to avoid high PS
power output, and much more SS power is applied to meet
high power demands. At the same time, in order to compensate
the increased SS usage, the OCP-Joint A often increases the
PS usage when the power request is small (for example,
approximately at 308-324 s in motorway driving), so that the
battery can be charged through the engine to maintain charge
sustaining operation, resulting in a somewhat “flat” PS power
profile for the whole mission; this is more visible in the case
of motorway driving. This behavior can be attributed to: a)
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the fact that it is easier to enforce steady coolant temperatures
when the ICE power is steady, and b) the cubic law governing
the engine cooling power (see (14)) as opposed to the linear
law for the battery cooling power (see (22)), such that engine
cooling is much more costly than battery cooling at high
cooling loads. It is clear from Figs. 9-11, therefore, that the
total cooling power is significantly reduced by OCP-Joint A,
with further insight on the mechanism by which this happens
given in Fig. 12 which provides the breakdown of cooling
power components in an exemplary case. In this figure the
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Fig. 12. Cooling power flows PCL, PCLE and PCLB solved by OCP-Split
(top), OCP-Joint A (middle) and OCP-Joint B (bottom) for rural driving (a
part of the driving cycle is shown).

engine and battery cooling power profiles for the rural driving
OCP-Split and OCP-Joint A cases shown for in Fig. 10 are
illustrated. It can be seen that the large peaks of engine cooling
power and low levels of battery cooling power in OCP-Split
are replaced with a combination of significantly lower levels of
engine cooling power and more spread battery cooling power
in OCP-Joint A.

The thermal and SOC performance of OCP-Joint A and
OCP-Split is compared in Figs. 13-14. As it can be seen,
when OCP-Joint A is employed, the target temperatures of
the engine coolant are accurately followed, whereas the PI
control in the engine cooling system (OCP-Split) is unable to
provide comparable temperature tracking accuracy as the joint
optimization solution OCP-Joint A, as also shown by (32).
Moreover, the battery temperature, Tb, of both OCP schemes
is kept within the desired range throughout the mission in
all driving cycles. The CS condition SOC(t0) = SOC(tf ) of
OCP-Split is imposed only in the first stage OCP-EM whose
optimal solutions solely charge the battery from regenerative
braking and not by any direct charging from the PS [40].
Therefore, when the power split is applied according to the
µ trajectory, the additional cooling power drives the battery
to be less charged: SOC(tf ) < SOC(t0). The resulting SOC
terminal condition of OCP-Split is targeted by OCP-Joint A,
as illustrated in Fig. 14. Hence, it is guaranteed that both
OCP schemes consume the same amount of energy, with
consideration of fuel and battery charge.

The average energy source and cooling power losses for the
whole mission in each driving cycle case are also evaluated
for each OCP, which reinforce some of the earlier observations

Fig. 13. Temperature of coolant at engine outlet, Te, and radiator, Tr , solved
by OCP-Split (dashed), OCP-Joint A (solid) and OCP-Joint B (dash dot) for
urban (top), rural (middle), and motorway (bottom) driving.

Fig. 14. Battery temperature, Tb, and SOC profiles solved by OCP-Split
(dashed), OCP-Joint A (solid) and OCP-Joint B (dash dot) for urban (left),
rural (middle), and motorway (right) driving.

and conclusions, and also provide further and more complete
insight about the nature of the various OCP solutions. In
particular, the average PS branch power loss is computed by

1
tf−t0

∫ tf
t0

(Pf − PPS) dt, while the loss of the SS branch is

determined by 1
tf−t0

∫ tf
t0
|Vocib − PSS |dt, which takes both

charging and discharging losses into account. Similarly, the
average cooling power for the ICE and the battery is obtained
by 1

tf−t0

∫ tf
t0
PCLEdt and 1

tf−t0

∫ tf
t0
PCLBdt respectively. The

histogram in Fig. 15 shows the aforementioned power losses
for each OCP in different driving scenarios. It is clear that
the vast majority of losses in all simulated cases corresponds
to PS branch power losses, which is expected since the most
inefficient component of the powertrain is the ICE with peak
efficiencies of 0.36, as shown in Fig. 3. The first important
observation, which also serves as an overall powertrain power
balance validation, is that the OCP-Split and OCP-Joint A
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Fig. 15. Average energy source and cooling power losses solved by OCP-
Split, OCP-Joint A and OCP-Joint B in each driving cycle case. The numerical
values are obtained by dividing the overall energy values for the whole mission
with the duration of the drive cycle in each case. For clarity, only the top part
of each bar is shown, in which the blue PS branch average power loss starts
from 0 kW in all cases.

bars have the same total height in all driving cycle cases, as
would be expected from the design choice of identical fuel
consumption and SOC variation throughout the mission in
both OCPs. The proportion of each type of loss, however,
is different between the two OCP cases. As more SS power
is used in OCP-Joint A to eliminate peaks of PS power (see
Figs. 9-11), the SS and PS branch power losses are respectively
increased and decreased. There is a similar change in the
associated cooling power losses. These observations are true
for all driving cycle cases.

2) Comparison between OCP-Joint B, and OCP-Joint A
and OCP-Split: OCP-Joint B is shown in Fig. 13 to track the
engine and radiator coolant temperature set points in a similar
manner to OCP-Split, according to the choice of the weights of
(28) shown in Table V. In terms of battery temperature profiles
shown in Fig. 14, OCP-Joint B yields more similar solutions
to OCP-Split as compared to the solutions of OCP-Joint
A. Figure 14 also verifies that the terminal SOC conditions
obtained by OCP-Split are reached by OCP-Joint B in all
examples.

Since OCP-Joint B puts the emphasis on fuel consumption
reduction, as with OCP-EM, the optimal power sharing of
OCP-Joint B has a similar pattern to the OCP-Split solutions,
but with moderately higher and lower usage of SS and PS
power respectively, as shown by the power profiles in Figs. 9-
11. As such, the total energy source power losses (sum of
SS and PS branch power losses) of OCP-Joint B are reduced
as compared to both OCP-Split and OCP-Joint A, as shown
in Fig. 15, since PS branch power comes at a much lower
efficiency than SS branch power. Furthermore, this moderate
change in the power sharing balance serves to reduce consider-
ably the PS cooling power losses with only marginal increases
in SS cooling power losses of the OCP-Joint B as compared
to OCP-Split, while both types of cooling losses are reduced
by OCP-Joint B as compared to OCP-Joint A, as also shown
in Fig. 15 and Fig. 12. Hence, the total cooling power losses
of OCP-Joint B become significantly less compared to OCP-
Split, as it can be seen in Figs. 9-11. Thus, the overall losses
of OCP-Joint B are the lowest as compared to the other two
OCPs, which is also reflected in the fuel economy. By making
use of the density of petroleum diesel, 0.832 kg/L, and the

length of each driving cycle (see Table IV), the fuel economy
of OCP-Joint B and OCP-Split is calculated and compared in
Table VI. As shown, the simultaneous optimization mechanism

TABLE VI
EVALUATION OF FUEL ECONOMY [L/100KM] AND PERCENTAGE OF FUEL

SAVING OF OCP-JOINT B AS COMPARED TO OCP-SPLIT

OCP-Joint B OCP-Split Fuel saving
Urban 7.83 8.00 2.12%
Rural 4.24 4.27 0.7%
Motorway 5.09 5.22 2.49%

OCP-Joint B is able to save 2.12%, 0.7% and 2.49% fuel
usage respectively for the urban, rural and motorway cycles
as compared to the conventional composite strategy OCP-Split.

Finally, the differences in cooling power losses among the
three driving scenarios are examined for OCP-Joint A and
OCP-Joint B in Fig. 15, with similar observations in both
OCPs. Battery cooling is dominant when following the urban
speed profile. As the speed increases, more ICE cooling is
required. Typically, ICE cooling dominates for OCP-Split
solution when the speed increases further to motorway driving.
The overall cooling power requirements increase for all OCPs
as the driving speed increases from low speed (urban) to
high speed (motorway) driving. Nevertheless, rural driving is
amenable to be optimized to the lowest total cooling power
consumption, as compared to the urban and motorway speed
profiles. This can be associated with the almost constant speed
cruising about the average speed in the rural driving style
employed in this work, which is a more efficient driving
pattern in terms of cooling.

V. CONCLUDING REMARKS

The joint energy and thermal management control of a
series hybrid electric vehicle is addressed in this paper by
an optimal control methodology. The optimal control problem
is formulated by suitably integrating the battery and the
internal combustion engine thermal models to a conventional
powertrain model without significantly increasing the overall
model complexity. A weighted multi-objective cost function
of the various control performance aspects is formulated with
a reduction in optimization complexity in mind. As such, the
proposed joint energy management (EM) control strategy is
able to find the appropriate power split between the engine and
battery, which minimizes the overall fuel consumption while
fulfilling the cooling requirements of both energy sources.
In this paper, the numerical case studies are carried out
in the context of three real-world speed profiles obtained
experimentally in urban, rural and motorway driving scenarios.
The importance of including the thermal dynamics in the
EM problem is illustrated by numerical comparisons with the
existing EM optimization strategy that neglects the thermal
dynamics and optimizes on the basis of propulsion power
only, while employing traditional PI and thermostat control-
based cooling systems. It is found that the battery plays a
more active role when the cooling losses are considered in
the EM optimization since the engine cooling system is less
efficient than the battery cooling system at high cooling loads.
By employing two tuning sets of the optimization objective
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function, the benefit of the proposed strategy is shown both
in terms of enhanced cooling systems temperature control
tracking as well as fuel economy. With the cooling system
temperature tracking performance tuned to be equivalent to
that of the conventional method, the joint propulsion and
cooling energy management optimization method is found to
outperform the conventional approach for all studied driving
cycles with up to a 2.49% improvement in terms of fuel
consumption.
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