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Abstract

Aging is characterized by accumulation of structural and metabolic changes in the

brain. Recent studies suggest transmodal brain networks are especially sensitive to

aging, which, we hypothesize, may be due to their apical position in the cortical hier-

archy. Studying an open-access healthy cohort (n = 102, age range = 30–89 years)

with MRI and Aβ PET data, we estimated age-related cortical thinning, hippocampal

atrophy and Aβ deposition. In addition to carrying out surface-based morphological

and metabolic mapping experiments, we stratified effects along neocortical and hip-

pocampal resting-state functional connectome gradients derived from independent

datasets. The cortical gradient depicts an axis of functional differentiation from

sensory-motor regions to transmodal regions, whereas the hippocampal gradient

recapitulates its long-axis. While age-related thinning and increased Aβ deposition

occurred across the entire cortical topography, increased Aβ deposition was espe-

cially pronounced toward higher-order transmodal regions. Age-related atrophy was

greater toward the posterior end of the hippocampal long-axis. No significant effect

of age on Aβ deposition in the hippocampus was observed. Imaging markers corre-

lated with behavioral measures of fluid intelligence and episodic memory in a

topography-specific manner, confirmed using both univariate as well as multivariate

analyses. Our results strengthen existing evidence of structural and metabolic change

in the aging brain and support the use of connectivity gradients as a compact frame-

work to analyze and conceptualize brain-based biomarkers of aging.
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1 | INTRODUCTION

Aging is a multifactorial process defined as a time-dependant func-

tional decline that affects most living organisms (López-Otín, Blasco,

Partridge, Serrano, & Kroemer, 2013). Though not fully understood,

aging involves the accumulation of structural and metabolic changes

that ultimately lead to impairments in multiple cognitive domains,

including executive function, episodic memory, and word retrieval

(Baciu et al., 2016; Fjell, Sneve, Grydeland, Storsve, & Walhovd, 2017;

Tromp, Dufour, Lithfous, Pebayle, & Després, 2015). Collectively,

these contribute to increasing challenges for psychosocial functioning,

wellbeing, and quality of life in older age (Pan et al., 2015; Wilson

et al., 2013).

Ongoing advances in multimodal neuroimaging have identified

structural, functional, and metabolic substrates of both healthy cogni-

tive functioning (Tomasi & Volkow, 2012) and of its decline in aging

(Draganski, Lutti, & Kherif, 2013; McConathy & Sheline, 2015;

Steffener, Brickman, Habeck, Salthouse, & Stern, 2013). In particular,

progress in magnetic resonance imaging (MRI) acquisition and model-

ing techniques now allows for the fine-grained mapping of neocortical

and subcortical morphology in vivo (Fischl & Dale, 2000). In healthy

individuals, aging has been related to decreased hippocampal volume

and cortical thinning (Fjell, McEvoy, Holland, Dale, & Walhovd, 2014;

Fraser, Shaw, & Cherbuin, 2015; Salat et al., 2004; Shaw, Sachdev,

Anstey, & Cherbuin, 2016; Sowell et al., 2003; Yang et al., 2016; Yao,

Hu, Liang, Zhao, & Jackson, 2012), both of which measurably contrib-

ute to cognitive decline (Fjell et al., 2006; Leal & Yassa, 2015; Mielke

et al., 2012; Walhovd et al., 2006). These findings are complemented

by functional and metabolic studies, particularly work based on posi-

tron emission imaging (PET) of tracers sensitive to deposits associated

with healthy and pathological aging. PET-based quantification of amy-

loid beta (Aβ), generally considered a marker of neurodegenerative

conditions like Alzheimer's Disease, has demonstrated elevated levels

in the brains of cognitively normal older adults as well (Jansen et al.,

2015; Rodrigue et al., 2012; Sperling et al., 2011). Cortical Aβ has fur-

thermore been associated with multi-domain cognitive impairment,

such as episodic and semantic memory together with executive and

visuospatial abilities (Baker et al., 2017; Farrell et al., 2017; Jansen

et al., 2018; Mortamais et al., 2017).

With increasing availability of open-access and multimodal data

aggregation and dissemination initiatives, it is now possible to adopt

an integrated approach, combining several imaging markers to better

understand biological factors contributing to cognitive decline. Recent

studies in cognitively normal older adults have suggested a synergistic

relationship between cerebral amyloid pathology and hippocampal

atrophy (Bilgel et al., 2018), whereas others suggest that cortical

thickness may represent a more approximate marker of the patho-

physiological underpinning of cognitive decline than Aβ deposition

(Knopman et al., 2018). In addition to the potentially complementary

value of different imaging markers as surrogates of cognitive abilities,

aging effects do not seem to be uniform across different regions

(McGinnis, Brickhouse, Pascual, & Dickerson, 2011). Notably, several

reports have supported an interaction between large-scale functional

network organization, structural brain changes, and the risk for cogni-

tive decline in aging (Andrews-Hanna et al., 2007; Buckner, 2004; Fox

et al., 2005; Sambataro et al., 2010; Spreng, Wojtowicz, & Grady,

2010; Sullivan, Anderson, Turner, & Spreng, 2019; Spreng & Turner,

2013; Zhao et al., 2015). Structural and metabolic changes in trans-

modal regions known to engage in more higher-order and integrative

processing, such as the default mode network (DMN) and fronto-

parietal networks, have been demonstrated to contribute to cognitive

decline in healthy subjects (Lim et al., 2014). An overlap between ele-

ments of the DMN and Aβ pathology has been previously reported in

Alzheimer's Disease (Buckner, 2005), with recent studies indicating

that core DMN regions may be among the earliest sites of Aβ deposi-

tion in preclinical stages (Palmqvist et al., 2017). This pathological

accumulation is thought to contribute to memory dysfunction associ-

ated with dementia, as the DMN has been shown to be engaged dur-

ing activation of episodic memory (Buckner, Andrews-Hanna, &

Schacter, 2008). Pathological Aβ deposition is not unique to the DMN

however, with early accumulation also reported in the fronto-parietal

network as well as other transmodal regions with overall high long-

range connectivity (Buckner et al., 2009; Elman et al., 2016; He et al.,

2014; Wang et al., 2007).

Studying the openly-available Dallas Lifespan Aging Study (DLBS)

dataset (Park, 2018), the current work integrated measures of neocor-

tical and hippocampal morphology and Aβ deposition to examine age-

related differences and their relationship to cognition. In addition to

leveraging surface-based processing and multimodal co-registration

techniques, we harnessed a novel analysis reference frame deter-

mined by the putative neocortical hierarchy. Initially formulated in

nonhuman primates (Mesulam, 1998), the hierarchy follows a “sen-

sory-fugal” gradient from low-level cortices involved in interactions

with the external world to higher-order transmodal areas involved in

self-generated, abstract cognition (Buckner & Krienen, 2013; Hun-

tenburg, Bazin, & Margulies, 2018; Margulies et al., 2016; Paquola

et al., 2019; Hong et al., 2019). Recent application of unsupervised

compression techniques applied to cortico-cortical functional connec-

tivity data recapitulated a similar gradient in humans (Margulies et al.,

2016). By being functionally and anatomically distant from sensory

systems, DMN activity is likely to be shielded from environmental

input (Kiebel, Daunizeau, & Friston, 2008) and may also perform

cross-modal integration of information (van den Heuvel & Sporns,

2013). Equivalent compression techniques have been applied to

hippocampus-to-cortex connectivity profiles, also revealing a principal

gradient of connectivity. In the hippocampus, this gradient follows its

“long-axis,” with anterior segments being closely connected to trans-

modal DMN and temporo-limbic networks, while posterior sections

increasingly interact with posterior cortical areas including the visual

and dorsal/ventral attention networks (Vos de Wael et al., 2018).

Stratification of aging biomarkers based on neocortical and hippo-

campal connectivity gradients, followed by univariate as well as multi-

variate analytics, provides an alternative viewpoint to voxel- or

parcellation-based studies of macroscale organization and connectiv-

ity. This reference frame may help to consolidate recent literature
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demonstrating increased vulnerability of higher-order networks to

pathological protein accumulation (Buckner et al., 2009; Elman et al.,

2016; He et al., 2014; Palmqvist et al., 2017), and age-related reduc-

tions in cortical thickness across higher-order and sensorimotor net-

works (Bajaj, Alkozei, Dailey, & Killgore, 2017). Furthermore, by

sidestepping the need to define discrete communities through the use

of clustering (Eickhoff, Yeo, & Genon, 2018; Yeo et al., 2011) or con-

nectivity boundary mapping techniques (Cohen et al., 2008), gradient-

based connectome profiling provides a continuous coordinate system

to aggregate and analyze aging biomarkers. Ultimately, this approach

allows for the multimodal study of pathological advance along a

quantifiable map of the neocortical hierarchy and the hippocampal

long-axis, furthering our understanding of neurological aging and the

associated cognitive decline with respect to brain organization at the

system level.

2 | MATERIALS AND METHODS

2.1 | Participants

We selected 144 healthy adult native English speakers (89 females,

30–89 years, mean ± SD age = 62 ± 16.9 years, 93.4% White/Cauca-

sian) from the openly-shared DLBS, a comprehensive study designed

to understand cognitive functioning at different stages of the adult

lifespan (http://fcon_1000.projects.nitrc.org/indi/retro/dlbs.html;

(Park, 2018). Participants were well educated (mean ± SD = 16.8

± 2.3 years of education) and scored highly on the mini-mental state

examination (MMSE; Folstein, Folstein, & McHugh, 1975; mean

± SD = 28 ± 1.2 points). As previously outlined (Rodrigue et al., 2012),

participants were screened for neurological and psychiatric disorders,

loss of consciousness >10 min from a traumatic insult to the head, drug/

alcohol abuse, stroke and major heart surgery, chemotherapy within

5 years, and immune system disorders. Participants were right-handed

and recruited from the Dallas–Fort Worth metropolitan area. Specifi-

cally, we selected only those who underwent a research-dedicated

anatomical MRI and Aβ PET examination.

It is of note that all participants in the DLBS were classified as

cognitively healthy as per MMSE scores. However, as the DLBS pro-

vides no measure of subjective cognitive decline (SCD), we were

unable to exclude participants based on this variable, previously

shown to relate to mesial temporal atrophy and functional connectiv-

ity alterations (Fan et al., 2018; Verfaillie et al., 2018). Additionally,

clinical rating tools such as Scheltens visual rating of medial temporal

atrophy scale (Scheltens, Launer, Barkhof, Weinstein, & van Gool,

1995) that can identify participants with preclinical Alzheimer's Dis-

ease, were not employed. Our dataset thus included physically healthy

subjects with high MMSE scores indicative of intact cognition as sup-

plied by DLBS, and without the additional exclusion of participants

who may potentially have preclinical Alzheimer's Disease based on

visual ratings.

The DLBS was approved by the University of Texas at Dallas and

University of Texas Southwestern Medical Centre respective ethics

committees. All DLBS participants provided written consent prior to

enrolment.

2.2 | Neuropsychological test battery

Participants completed a battery of neuropsychological tests assessing

the following domains; processing speed (Salthouse & Babcock, 1991;

Wechsler, 2008), working memory (Turner & Engle, 1989; Wechsler,

2008), episodic memory (Brandt, 1991; Robbins et al., 2010), crystal-

lized abilities (Zachary, 1986), executive function (Robbins et al.,

2010), and fluid reasoning (Ekstrom, French, Harman, & Dermen,

1976; Raven, 1996). A single participant was missing a single score for

the Digit Symbol Task (0.1% missing data). Due to this number being

so small, we did not want to exclude the participant from analysis, but

instead imputed the missing data point using linear interpolation.

Results from all neuropsychological tests were standardized to

z-scores. To reduce data dimensionality, we iteratively performed a

maximum likelihood common factor analysis with varimax rotation

with two- to five-factor solutions (Harman, 1976). Overfitting

occurred with three or more factors (Heywood, 1931), thus the two-

factor solution was utilized in subsequent analyses. Neuropsychologi-

cal tests pertaining to fluid intelligence strongly contributed to the

first factor (henceforth, F1), specifically Ravens Progressive matrices,

Educational Testing Service (ETS) Letter Sets, Digit Symbol Test, Digit

Comparison Test, CANTAB Spatial Working Memory Test, and CAN-

TAB Stockings of Cambridge Test. Whereas tests pertaining to epi-

sodic memory contributed highly to the second factor 2 (F2),

specifically Hopkins Verbal Learning Immediate Recall, Delayed Recall,

and Recognition. For specific factor loadings across tests, see

Table S1.

2.3 | MRI acquisition

Anatomical images were acquired with a Philips Achieva 3 T whole-

body scanner (Philips Medical Systems, Bothell, WA) and a Philips

eight-channel head coil at the University of Texas Southwestern Med-

ical Center using the Philips SENSE parallel acquisition technique.

A 3D T1-weighted sagittal magnetization-prepared rapid acquisition

gradient echo (MPRAGE) structural image was obtained (T1w, Repeti-

tion time [TR] = 8.1 ms, echo time [TE] = 3.7 ms, flip-angle = 12�,

FOV = 204 × 256 mm2, resulting in 160 slices with 1 × 1 × 1 mm3

voxels).

2.4 | Amyloid PET acquisition

All participants were injected with a 370 MBq (10 mCi) bolus of
18F-Florbetapir. At 30 min post-injection, they were positioned on the

imaging table of a Siemens ECAT HR PET scanner. Velcro straps and

foam wedges were used to secure the participants head and partici-

pant positioning was completed using laser guides. A 2-min scout was

acquired to ensure the brain was in the field of view and that there

was no rotation in either plane. At 50 min post-injection, a two-frame

by 5-min dynamic emission acquisition was started, followed
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immediately by a 7-min internal rod source transmission scan. The

transmission image was reconstructed using backprojection and a

6-mm full-width-at-half-maximum (FWHM) Gaussian filter. Emission

images were processed by iterative reconstruction, specifically 4 itera-

tions and 16 subsets with a 3 mm FWHM ramp filter.

2.5 | Multimodal image processing in neocortical and
hippocampal regions

2.5.1 | Generation of neocortical surfaces

To generate models of the cortical surface and measure cortical thick-

ness, native T1w images of each participant were processed using

FreeSurfer 6.0 (http://surfer.nmr.mgh.harvard.edu). Previous work has

cross-validated this pipeline with histological analysis (Cardinale et al.,

2014; Rosas et al., 2002) and manual measurements (Kuperberg et al.,

2003). Processing steps have been described in detail elsewhere

(Dale, Fischl, & Sereno, 1999; Fischl, Sereno, & Dale, 1999). In short,

the pipeline includes brain extraction, tissue segmentation, pial and

white matter surface generation, and registration of individual cortical

surfaces to the fsaverage surface template. The latter step aligns verti-

ces among participants, while minimizing metric distortion. Cortical

thickness was calculated as the closest distance from the white matter

to the pial boundary at each vertex. FreeSurfer quality control and

manual edits were carried out by a single rater (AL) and included pial

corrections and addition of control points, followed by reprocessing.

2.5.2 | Hippocampal subfield-surface mapping

We applied a recently developed approach for hippocampal subfield

segmentation, the generation of surfaces running through the core of

each subfield, and subsequent “unfolding” for surface-based analysis

of hippocampal imaging features (Bernhardt et al., 2016; Caldairou

et al., 2016; Kim et al., 2014; Vos de Wael et al., 2018). In brief, each

participant's native-space T1w image underwent automated correc-

tion for intensity nonuniformity, intensity standardization, and linear

registration to the MNI152 template. Each image was processed using

a multi-template surface-patch algorithm (Caldairou et al., 2016),

which automatically segments the hippocampal formation into sub-

iculum, CA1-3, and CA4-DG subfields. An open-access database of

manual subfield segmentations and corresponding high-resolution 3 T

MRI data (Kulaga-Yoskovitz et al., 2015) was used to train the algo-

rithm (https://www.nitrc.org/projects/mni-hisub25). The algorithm

was previously validated in healthy individuals, where Dice coeffi-

cients above 0.8 were demonstrated across subfields even when mil-

limetric T1w images were used as input (Caldairou et al., 2016). The

algorithm also generates medial sheet representations running

through the core of each subfield, which allow for the sampling of

intensity parameters with minimal partial volume effect, while

guaranteeing point correspondence across participants. Prior valida-

tion experiments in epileptic patients showed that these features reli-

ably predict hippocampal histopathology and focus laterality

(Bernhardt et al., 2016, 2017; Kim et al., 2014). After parametrizing

subfield surfaces using spherical harmonic shape descriptors (Styner

et al., 2006), a Hamilton-Jacobi approach generated a medial surface

running through the central path of each subfield (Kim et al., 2014).

To estimate local atrophy, we calculated columnar volume (Kim et al.,

2014). This index is calculated as the distance between a vertex on

the medial sheet of each subfield and the corresponding outer shell

multiplied by the average surface area of the surrounding triangles

between the subfield boundary and the medial surface. In prior work,

we showed a high correlation between columnar volume and degrees

of hippocampal cell loss in patients with temporal lobe epilepsy

(Bernhardt et al., 2016).

2.5.3 | PET-MRI integration

We mapped PET data to T1w imaging space generated by the pipe-

lines in Section 2.5.1 and Section 2.5.2, allowing for a surface-based

integration of Aβ uptake with structural imaging features along neo-

cortical and hippocampal subfield surfaces. In both cases, boundary-

based procedures estimated the registration between a native PET

image and the corresponding T1w images (Greve & Fischl, 2009),

followed by vertex-wise interpolation within the cortical ribbon. Neo-

cortical PET data were resampled to fsaverage5 to improve corre-

spondence across measurements; in the case of hippocampal PET

features, the sampling grid was already aligned via the spherical

parameterization during processing (Kim et al., 2014). Following previ-

ous approaches (Rodrigue et al., 2012), neocortical and hippocampal

Aβ values were normalized by mean cerebellar gray matter Aβ uptake,

providing a standardized uptake value ratio (SUVR) per vertex. To

control for cerebro-spinal fluid partial volume effects (CSF-PVE), each

participant's T1w image was skull stripped and segmented into tissue

types and partial volume estimates (Zhang, Brady, & Smith, 2001).

CSF-PVE maps were mapped to neocortical and hippocampal sur-

faces. Using surface-wide linear models, we controlled Aβ SUVR

values for effects of CSF-PVE at each vertex in all participants (see

Figure S1 for surface maps normalized by cerebellar gray matter only).

2.6 | Quality control and final sample selection

The DLBS open-access data set contains structural and functional data

with variable image quality. All T1w images, segmentations, and co-

registrations were visually inspected by a single researcher (AL). We

removed datasets with artifacts leading to inaccurate cortical segmenta-

tions (n = 25) Additionally, data with inaccurate hippocampal segmenta-

tions (n = 17), characterized by gross errors or inclusion of neighboring

white matter voxels, were removed. Following quality control, the final

sample included 102 healthy individuals (69 females, 30–89 years,

mean ± SD age = 59 ± 16.1 years, 90.2% White/Caucasian), who were

highly educated (mean ± SD = 16.1 ± 2.2 years of education), and

scored highly on the MMSE (mean ± SD = 28 ± 1.1). The age of our

sample was approximately normally distributed (Figure S2).
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2.7 | Statistical analysis

Analyses were performed using SurfStat (Worsley et al., 2009) for

Matlab (The Mathworks, Natick, MA, R2017B). All linear models out-

lined below additionally controlled for sex and years of education.

2.7.1 | Regional analysis along neocortical and
hippocampal surfaces

Surface-wide linear models examined effects of age on cortical

thickness.

Ti = β0 + β1*Age+ β2*Sex+ β3*Education

Where Ti is the thickness at vertex i, and Age, Sex, and Education

are the model terms and the betas the estimated model parameters.

Similar models assessed the relationship between cortical Aβ deposition

and age. We corrected for multiple comparisons using the false discov-

ery rate (FDR) procedure (Benjamini & Hochberg, 1995). We selected a

two-tailed pFDR of <.05. An analogous approach assessed age effects on

columnar volume and Aβ across hippocampal subfield surfaces.

2.7.2 | Relation to cognitive factors

We computed Pearson's correlation coefficients and tested for associ-

ations between age and neuropsychological factor scores F1 and F2.

Furthermore, we correlated mean cortical thickness, hippocampal

volume, and Aβ values within significant clusters computed in

Section 2.7.1 with the factor scores. As for the previous analysis, find-

ings were corrected using an FDR procedure.

2.7.3 | Multimodal profiling based on connectome
topographic mapping

We used previously derived maps of neocortical and hippocampal

resting-state functional connectome gradients (Margulies et al., 2016; Vos

de Wael et al., 2018) based on the human connectome project dataset

(Van Essen et al., 2012) to stratify findings. In the neocortex, the first prin-

cipal gradient describes a continuous transition from unimodal sensory

areas via task-positive networks, such as the salience, dorsal attention,

and fronto-parietal network, toward the DMN core regions (Margulies

et al., 2016), recapitulating earlier models of a cortical hierarchy with low-

level sensorimotor regions on the one end, and transmodal regions partic-

ipating in higher-order functions on the other end (Mesulam, 1998). In

the hippocampus, the first principal gradient of hippocampal connectivity

runs from anterior to posterior regions across all subfields, with the for-

mer being more strongly connected to transmodal DMN than the poste-

rior part (Vos de Wael et al., 2018). Both gradients were discretized into

20 bins, following a recent approach to stratify task-based fMRI data

using connectome topographies (Murphy et al., 2018). In brief, depending

on its location on the original gradient map, each voxel was assigned a

label between 0 and 100, where 0 represents the unimodal end and

100 the transmodal end. Voxels were then assigned to a bin depending

on their numerical label, for example, all voxels with a value between

0 and 5 were assigned to Bin 1 etc. Each bin contained the same number

of vertices to ensure comparable sensitivity. We employed the same anal-

ysis as in Section 2.7.1 and mapped significant t-values to the discretized

gradient using a sliding window approach. For all participants, the t-

statistic for each voxel was calculated and averaged to produce a single t-

value, which was assigned to the appropriate bin. Thus, each gradient bin

had a specific t-value representing the average effect of age on brain

markers in that bin. A linear model between bin ordering and the t-value

within each bin explored interactions between gradient ordering and age

effects on brain markers. To assess the relationship between gradient

values and cognition, we computed the mean cortical thickness and amy-

loid values in each of the 20 gradient bins controlling for gender and level

of education. The residual bin values were then fed into a linear model

with factor Score 1 and 2 and resultant t-values were plotted against bin

ordering to produce gradient-cognition plots. A linear model between bin

ordering and the t-values then explored interaction between gradient

ordering and cognition. This approach, thus, provided a low-dimensional

representation of structural and Aβ changes along the neocortical and

hippocampal functional topography.

2.7.4 | Additional control analyses

Replicability of the brain-cognitive relationships were assessed using com-

plementary multivariate methods, specifically partial least squares (PLS)

analysis (McIntosh & Lobaugh, 2004). PLS seeks to find weighted linear

combinations of the original variables that maximally covary with each

other. The PLS was optimized were surface-based brain measures (atro-

phy and Aβ scores; z-scored and arranged in matrix X) and cognitive and

demographic phenotypes (z-scored and arranged in matrix; Y). Statistical

significance of each latent variable was established via permutation tests,

in which the rows of X were randomly permuted. For a given significant

latent variable, we furthermore computed bootstrap ratios and their con-

fidence intervals for each of the loadings, both for brain and phenotypic

measures. To assess generalizability, we assessed the range of correlation

coefficients when using a fivefold cross-validation paradigm.

3 | RESULTS

3.1 | Effects of age on neocortical and hippocampal
subfield markers

3.1.1 | Surface-based findings

Vertex-wise analysis revealed widespread reductions in cortical thick-

ness with increasing age (pFDR < .025; Figure 1a). Laterally, clusters

occupied bilateral frontal, central, temporal, and parietal cortices with

a relative sparing of the orbitofrontal and occipital cortices. Medially,

clusters occupied bilateral precuneus, cingulate, paracentral, superior

frontal, fusiform, and parahippocampal cortices. Considering the hip-

pocampus, subfield analysis of columnar volume revealed effects pre-

dominantly in posterior portions, spanning subiculum, CA1-3, and

CA4-DG bilaterally. Additional clusters were also observed in bilateral

anterior CA1-3 (pFDR < .025; Figure 1a).
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We observed higher Aβ deposition with increasing age

(pFDR < .025) in a different spatial pattern than the cortical thickness

findings. Specifically, we observed bilateral increases in predominantly

limbic and transmodal cortices, encompassing lateral and medial tem-

poral, insula, orbitofrontal, cingulate and midline parietal, as well as

supramarginal regions, with a relative sparing of primary motor, occipi-

tal and mesial frontal cortices (Figure 1b). In the hippocampus, neither

increases nor decreases in Aβ survived FDR-correction. At

uncorrected thresholds (p < .025), we observed mainly trends for

increased Aβ in bilateral anterior CA1-3 (Figure 1b).

Please see Figure S3 for more conservative surface-based effects

thresholded at pFDR < .0001.

3.1.2 | Mean neocortical and hippocampal effects

Pearson's correlations explore the relationship between age and over-

all neocortical and hippocampal brain markers. Analysis revealed both

cortical thickness (r = −.65, p < .01) and hippocampal volume

(r = −.22, p < .05) to display significant negative associations with age

F IGURE 1 Analysis of gray matter morphology and Aβ deposition (normalized by cerebellar gray matter and controlled for CSF-PVE) along
neocortical (left) and hippocampal subfield (right) surfaces. Effects of age on (a) cortical thickness and hippocampal volume across all subfields and
(b) on Aβ deposition. Models controlled for sex and education. Age-related increases are shown in warm and decreases in cold colors. Regions
significant at a two-tailed pFDR < .05 are shown with black outlines, uncorrected trends relating to increased hippocampal Aβ are shown in semi-
transparent (b, bottom right). Correlations between age and markers of brain aging are displayed in (c). *Denotes statistical significance.
NS, nonsignificant; PVE, partial volume effect [Color figure can be viewed at wileyonlinelibrary.com]
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(Figure 1c). A significant positive association was observed between

age and cortical Aβ deposition (r = .39, p < .01). Unlike the neocortical

findings, hippocampal Aβ deposition did not correlate with age

(Figure 1c).

3.2 | Effects of age and imaging markers on
cognition

Older age correlated with lower cognitive factors scores that is,

poorer fluid intelligence (F1: r = −.66, p < .001) and episodic memory

(F2: r = −.48, p < .001; Figure 2a).

Posthoc analysis between mean cortical thickness in regions of signifi-

cant age effects (see Figure 1a) showed positive correlations with both

F1 (r = .58, p < .001) and F2 (r = .41, p < .001), indicating better perfor-

mance in individuals with higher thickness (Figure 2b). On the other hand,

increases in mean Aβ deposition (see Figure 1b) related to lower scores

on both F1 (r = −.31, p < .001) and F2 (r = −.23, p < .05; Figure 2b). At

the level of the hippocampus, we observed positive correlations between

columnar volumes in regions of age effects and F1 (r = .55, p < .001) and

F2 (r = .43, p < .001). Regarding hippocampal Aβ deposition in regions of

uncorrected age effects, no significant correlations were observed with

F1 (r = −.15, p = .13) nor with F2 (r = −.08, p = .3).

In keeping with our study focus on aging rather than inter-

individual differences, we opted not to control for age when assessing

the relationship brain markers and cognition. We hypothesized that

change in brain structure, Aβ deposition and age are related, and serve

to impact on cognition in a synergistic manner. Therefore, a posthoc

mediation analysis between age, cognition, and brain markers in

regions of significant age effects was performed to explore this

interdependence. The brain markers selected as potential mediators

were those which demonstrated a significant correlation with both

factor scores (Figure 2b,c). As such, hippocampal Aβ deposition was

not included. Following the methodology described by Zhao, Lynch,

and Chen (2010), we found cortical thickness (F1: a*b = 0.007

[CI = 0.005–0.009], F2: a*b = 0.004 [CI = 0.003–0.006]) cortical Aβ

deposition (F1: a*b = −0.002 [CI = −0.004 - -0.002], F2: a*b = −0.001

[CI = −0.003 - 0.000]) and hippocampal volume (F1: a*b = 0.006

[CI = 0.005–0.008]. F2: a*b = 0.005 [CI = 0.003–0.006]) all to be sig-

nificant mediators of the relationship between age and both F1 and

F2. All brain markers were categorized as “Complimentary” mediators

(Zhao et al., 2010), indicating the likely presence of additional mediat-

ing variables on the relationship between age and cognition.

3.3 | Profiling of age effects on brain markers and
cognition via connectome gradients

3.3.1 | Age effects

Age-related cortical thinning was diffuse across the entire cortical

functional gradient (pFDR < .025), with no marked difference between

uni- and transmodal areas (t = −1.64, p = .11; Figure 3a). On the other

hand, although age-related increases in Aβ deposition also occurred

across the entire neocortical gradient, we observed a significant

incline toward transmodal regions (t = 6.96, p < .001; Figure 3a). Hip-

pocampal age effects were not as strong as in the neocortex and did

not reach significance. Yet, effect sizes for age-related volume loss

were larger toward the posterior aspect of the hippocampal “long-

axis” gradient (t = −9.51, p < .001) while we observed trends for

increased Aβ in anterior regions (Figure 3b).

3.3.2 | Laminar differentiation

We also mapped levels of laminar differentiation to our cortical surface

models similar to our previous work integrating 3D histology and neu-

roimaging (Paquola et al., 2019; Figure 3a). To this end, each cortical

node was assigned to one of four levels of laminar differentiation

(i.e., idiotypic, unimodal, heteromodal, paralimbic) derived from a semi-

nal model of the cortical hierarchy based on the integration of neuroan-

atomical, electrophysiological, and behavioral studies in human and

nonhuman primates (Mesulam, 1998). Laminar differentiation-based

analysis confirmed highest aging related Aβ deposition in limbic trans-

modal areas (t > 3.9), and effect sizes descending the hierarchy that is,

heteromodal association areas and unimodal association areas (t = 3.5)

followed by idiotypic sensory and motor cortices (t = 2.77). For thick-

ness findings, effects were more diffuse with highest negative aging

effects in unimodal and heteromodal association areas (t > 3.3),

followed by idiotypic (t = 3.0), and then limbic areas (t = 2.0; Figure 3a).

3.3.3 | Cognition

Considering cortical thickness, measures across the entire neocortical gra-

dient positively correlated with F1, with largest effects in sensory regions

(t = −2.40, p < .05), and with F2, which demonstrated no significant dif-

ference between sensory and higher-order bins (t = −1.60, p = .13). Aβ

deposition across almost the entire gradient correlated with F1. In con-

trast to the thickness findings, transmodal values were most closely

related to F1 scores (t = −5.00, p < .001). On the contrary, gradient-wise

Aβ deposition showed no association with F2 scores (Figure 3c).

Hippocampal volume in low-level bins, corresponding to the poste-

rior hippocampus correlated with higher F1 (t = −16.33, p < .001;

Figure 3c) and F2 scores. Values in the posterior aspect of the gradient

showed stronger correlations than those in anterior portions (t = −15.44,

p < .001). Unlike the neocortical findings, gradient-wise hippocampal Aβ

deposition did not correlate with scores for F1 and F2 (Figure 3c).

3.4 | Additional control analyses

Although main models included sex and education as control

covariates, similar effects were observed using models that omitted

their control (Figure S4). Furthermore, we observed virtually identical

results when additionally controlling for APOE-e4 genotype

(Figure S5), and when performing a subgroup analysis restricted to

only non-APOE4-e4 carriers (Figure S6).

Univariate methods, as presented above, help to spatially pinpoint

brain-cognition relationships (McIntosh & Lobaurgh, 2010), and owing

to their clear interpretability, lend themselves to integration with

LOWE ET AL. 5219



F IGURE 2 Associations between age-related brain markers and cognitive performance. (a) Age of sample is displayed next to the results of
the maximum likelihood common factor analysis with varimax rotation, which identified two latent factors pertaining to measures of fluid
intelligence (F1) and episodic memory (F2), respectively. The factor score matrix has been age-ordered with red indicating higher scores and blue
indicated lower scores. Significant negative correlations between age and F1 and F2 scores are also displayed. (b) Posthoc correlation analysis,
based on significant clusters of age-related cortical thickness and cortical amyloid deposition (see Figure 1) with F1 and F2. (c) Correlation analysis
between hippocampal volume and amyloid deposition with F1 and F2. Brain measures have been corrected for sex and education. Please see
Figure 1 for details on the multiple comparison's correction. *Denotes statistical significance. NS, nonsignificant; SUVR, standardized uptake value
ratio [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 3 Topographic profiling of age effects and cognitive correlations in neocortical and hippocampal regions. (a) Age effects on vertex-
wise cortical thickness and Aβ deposition (left), mapped to a reference space based on neocortical functional connectivity gradients (center,
adapted from Margulies et al., 2016), resulting in a continuous profile of thickness values that can be correlated with age (right). In the profile,
primary sensory regions are situated toward the left and transmodal regions toward the right. Profiles show consistently high aging effects on
cortical thickness across the entire neocortical gradient. Aβ shows a similar pattern, but higher values toward the transmodal end. (b) Vertex-wise
age effects on hippocampal subregional volume and Aβ deposition (left), mapped to a “long-axis” reference space based on hippocampal
functional connectivity gradients (center, adapted from Vos de Wael et al., 2018), showing more elevated deposition in anterior subregions. Right
hemisphere gradients were virtually identical. (c) Gradient-based stratification of correlations between F1 and F2 on neocortical (left panels) and
hippocampal measures (right panels). Solid lines represent significant t-values using Bonferroni correction, whereas dashed lines represent
significant t-values using FDR-correction for multiple comparisons (one-tailed p < .025). If the curve is above the positive lines, then brain marker
values within that given bin significantly predict a higher cognitive score. Likewise, if the curve is below the negative lines then this is predictive
of lower cognitive scores. If the curve falls between positive and negative lines, no statistical significance was achieved [Color figure can be
viewed at wileyonlinelibrary.com]
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second-level analysis, such as topographic profiling. We also per-

formed PLS to synoptically interrogate brain-cognition relationships

in a multivariate manner (Abdi & Williams, 2010; McIntosh &

Miši�c, 2013; Wold, 1966; Zeighami et al., 2017). The first

demographic/cognitive latent variable was consistently characterized

by aging and multi-domain cognitive impairment (Figure S7). On the

other hand, we found robust and significant latent brain variables in

three of the four models. At the level of the neocortex, this latent var-

iable was associated with diffuse cortical atrophy (mean ± SD r across

100 fivefolds = 0.68 ± 0.09; permutation-test p < .001) and tran-

smodal/paralimbic amyloid beta increases (mean ± SD r across

100 fivefolds = 0.40 ± 0.14; permutation-test p = .003). At the level of

the hippocampus, the most significant latent variable was mainly char-

acterized by subfield atrophy in posterior regions (mean ± SD r across

100 fivefolds = 0.67 ± 0.09, permutation-test p < .001), however hip-

pocampal amyloid changes were not consistently related to the aging

and cognitive impairment latent variable (mean ± SD r across 100 five-

folds = −0.05 ± 0.20, permutation-test p = .298).

Given that functional connectivity in healthy individuals has been

shown to differ with age (Ferreira et al., 2016; Sala-Llonch et al.,

2014), we also performed a separate control analysis in which we built

functional connectivity gradients in the hippocampus and neocortex

from a different healthy life span dataset (n = 39, 20 females, age

range: 18–77, mean ± SD = 45 ± 22.9 years; Supporting Information

“Methods”). Gradients estimated in this cohort were largely similar in

overall shape to the original ones that is, describing a system level

transition from unimodal to transmodal areas in neocortices and the

hippocampal long-axis. Gradient-stratified findings based on the

lifespan functional data were thus virtually identical to the original

findings based on the HCP cohort, both for the neocortex (Figure S8)

and hippocampus (Figure S9).

4 | DISCUSSION

Our work targeted age-related differences in morphology and amyloid

deposition across neocortical and hippocampal subregions and confirms

widespread structural-metabolic differences with advancing age. Age

effects on thickness were diffuse along the entire neocortical functional

gradient, whereas effects on volume were stronger in posterior seg-

ments of the hippocampal long-axis. Regarding Aβ deposition, age-

related increases were observed along the entire neocortical gradient

with significantly stronger effects observed in higher-order transmodal

neocortices while no gradient-based modulation of age effects was

observed for hippocampal Aβ. Structural and amyloid measures corre-

lated with behavioral indices of fluid intelligence and episodic memory,

again in a topography-dependent manner, emphasizing the power of

our analytical framework to compactly represent and conceptualize

brain aging in the context of macroscale functional systems.

At a whole-brain level, our image processing strategy incorporated

several desirable elements to combine imaging metrics of neocortical

and hippocampal subregions. Indeed, unconstrained surface-based

morphometric MRI and Aβ PET analysis in neocortical regions extends

work focusing on a-priori defined region-of-interest (Rodrigue et al.,

2012; Thambisetty et al., 2010). Likewise, we deemed it essential to

leverage a novel hippocampal segmentation algorithm due to the het-

erogenous nature of the structure. This heterogeneity extends along

its anterior–posterior axis, across its three subregions and is charac-

terized by differences in volume, functional connectivity, and vulnera-

bility to aging and disease (Hatanpaa et al., 2014; Malykhin, Huang,

Hrybouski, & Olsen, 2017; Poppenk, Evensmoen, Moscovitch, &

Nadel, 2013; Vos de Wael et al., 2018). By unfolding its complex and

interlocked anatomical organization, we could thus address subre-

gional changes in the hippocampal formation along its long-axis, build-

ing upon prior work operating at the whole-hippocampus (Fjell et al.,

2009) or whole-subfield level (de Flores, La Joie, & Chételat, 2015).

Notably, although Aβ sampling was carried out within the cortical rib-

bon to minimize cerebro-spinal fluid partial voluming, we additionally

controlled for these effects at each vertex using statistical techniques

and normalized Aβ uptake data against cerebellar gray matter values,

a reference region thought to be relatively unaffected by aging

(Rodrigue et al., 2012; Vandenberghe et al., 2010). These steps likely

increased specificity, while minimizing morphological confounds. At

the level of the neocortical surface, we could observe a divergence

between the effects of age on thickness and Aβ. Indeed, while the for-

mer affected a widespread network encompassing frontal, temporal

and central areas in line with prior work (Fjell et al., 2009; McGinnis

et al., 2011; Salat et al., 2004; Yang et al., 2016; Yao et al., 2012),

increased Aβ was observed in a more restrictive and predominantly

limbic transmodal circuitry (Rodrigue et al., 2012; Sperling et al.,

2009). Following FreeSurfer edits and quality control, results

remained largely the same, supporting that little or no age-related dif-

ferences reflect a genuine sparing with increasing age. The regional

divergence of morphological and Aβ effects was paralleled in the hip-

pocampus, where we observed age-related reductions in local colum-

nar volume mainly in posterior segments, while Aβ was marginally

increased in the proximity of the hippocampal head.

To conceptualize these spatial patterns in a framework that more

closely relates to macroscale functional organization, we utilized novel

topographic mapping techniques guided by resting-state functional

connectivity information from a large sample of healthy adults. Specif-

ically, we remapped cortical and hippocampal morphometric and Aβ

measures according to the main axes of neocortical and hippocampal

connectivity. Prior work has shown that neocortical connectivity vari-

ations follow a gradient running from unimodal toward transmodal

regions while hippocampal connectivity gradually shifts along its long-

axis (Hong et al., 2019; Margulies et al., 2016; Plachti et al., 2019; Vos

de Wael et al., 2018). Representing neuroimaging data in this com-

pact, and presumably hierarchical (Mesulam, 1998), reference frame

can be seen as complementary to parcellation-based methods as it

does not assume clear-cut boundaries between functional systems

but rather gradual transitions when going from one network to the

next. In keeping with our regional findings, topography-stratified anal-

ysis supported a difference between structural and Aβ changes rela-

tive to the neocortical axes. While age effects on thickness were seen

along the entire gradient, positive age-Aβ correlations were
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significantly larger toward the transmodal anchor. Our findings with

respect to functional connectivity gradients is compatible with earlier

work demonstrating age-related cortical thinning across multiple func-

tional networks (Bajaj et al., 2017), and a selective vulnerability of

higher-order midline networks to Aβ pathology (Mutlu et al., 2017;

Myers et al., 2014; Palmqvist et al., 2017; Rapoport, 1989; Sperling

et al., 2009). From a theoretical perspective, our approach comple-

ments earlier models assuming a spatial patterning of brain aging, for

example, models presuming that posterior structural and associated

functional compromise may lead to increased activity in anterior

regions (Davis, Dennis, Daselaar, Fleck, & Cabeza, 2008; Grady et al.,

1994; Payer et al., 2006; Salami, Eriksson, & Nyberg, 2012), or even

more general accounts that assume the engagement of supplementary

networks to preserve cognitive function in the face of diffuse

neurofunctional decline (Park & Reuter-Lorenz, 2009; Reuter-Lorenz &

Park, 2014). Structural decline of neurotransmitter systems through-

out the brain may also result in functional changes, including attenua-

tion of neuronal gain control, resulting in suboptimal cognition (Li,

Lindenberger, & Sikström, 2001; Li & Rieckmann, 2014). In fact, our

results provide support for hierarchy-specific shifts, whereby diffuse

structural changes result in compensatory recruitment of higher-level

regions. In other words, cortical atrophy across a large territory could

evoke increased functional demands on higher-order default mode

and frontal–parietal networks. Though not fully understood, the

increase in activity, connectivity, and metabolic stress may in turn

increase the susceptibility of higher-order networks to Aβ pathology

(Bero et al., 2011; Buckner, 2005; Lehmann et al., 2013). Additionally,

we chose to corroborate our findings by mapping levels of laminar dif-

ferentiation to our neocortical surface models. This once again rev-

ealed a diffuse aging effect on cortical thickness, while Aβ deposition

was greatest in limbic transmodal areas and decreased steadily toward

sensory and motor cortices. We believe this unique tripartite analysis

consisting of surface-based models, connectome gradient profiling,

and laminar differentiation analysis serves to further highlight the vul-

nerability of the neocortex to atrophy and pathological deposits in

healthy aging. We believe this framework could be leveraged in future

research to further explore structural and functional decline in neuro-

degenerative diseases. Regarding the hippocampal long-axis gradient,

we observed larger age-related volume loss toward the posterior end,

supporting earlier literature demonstrating a vulnerability of the pos-

terior hippocampus in aging (Kalpouzos, Chételat, Baron, et al., 2009;

Nordin et al., 2018; Pruessner, Collins, Pruessner, & Evans, 2001). We

found no significant effect of age on hippocampal Aβ deposition

across the entire hippocampal gradient, which is in keeping with our

regional findings demonstrating only trends for increased deposition

in the hippocampal head. We believe our lack of significant findings

relating to Aβ across the hippocampus could be the result of low sen-

sitivity of PET imaging to Aβ deposition in this structure. The unique

anatomy of the hippocampal formation, coupled with its predisposi-

tion toward partial volume errors, has been hypothesized to reduce

the reliability of PET imaging in this region (Sabri, Seibyl, Rowe, & Bar-

thel, 2015). Nevertheless, we deemed it worthwhile to explore hippo-

campal Aβ, given theoretical benefits when studying metabolic data

with subfield-surface analytics that offer reduced partial volume

effect during parameter sampling and high spatial specificity.

With regards to the cognitive substrates of our findings, thickness

reductions across the neocortical gradient related to lower scores on

measures of episodic memory and fluid intelligence, supporting a con-

tribution of whole-cortex morphological integrity to this faculty (Fjell

et al., 2006; Schretlen et al., 2000). As effect sizes were somewhat

higher in unimodal portions of the gradient, our data may underline the

contribution of externally-oriented attention networks to fluid intelli-

gence (Majerus et al., 2012), with particularly the dorsal attention net-

work being proximal to sensory and sensorimotor anchors on the

neocortical gradient (Margulies et al., 2016). The dorsal attentional net-

work and sensorimotor regions are densely interconnected, and previ-

ous research has shown that externally-oriented operations broadly

contribute to fluid intelligence (Hearne, Mattingley, & Cocchi, 2016).

Our findings demonstrating reduced thickness and volume along the

neocortical and hippocampal gradient to be associated to cognitive

decline supports previous literature indicating such relations across dif-

ferent cognitive domains (Fjell et al., 2006; Leal & Yassa, 2015; Mielke

et al., 2012; Walhovd et al., 2006). Furthermore, earlier work has some-

what struggled to establish associations between specific cognitive

functions and morphometric characteristics of brain regions known to

be functionally involved, such as the hippocampus/parahippocampal

region in episodic memory (Reitz et al., 2009; van Petten, 2004; Ziegler

et al., 2010). However, several studies have shown significant relation-

ships between the morphology of mesiotemporal structures and related

cognitive processes in aging (Kalpouzos, Chételat, Landeau, et al., 2009;

Walhovd et al., 2004; Yonelinas et al., 2007). In support of this, we

observed reduced hippocampal volume in both our surface- and

gradient-based analysis to correlate with reduced scores on tests per-

taining to episodic memory. The presence of such brain structure-

cognition relationships may strengthen the argument that reductions in

cognitive performance observed in healthy aging can, in part, be

explainable by structural decline of associated brain regions. However,

it should be noted that future studies employing longitudinal designs,

larger samples, and multiple scanning points are required to ultimately

establish cause and effect.

With respect to Aβ, particularly transmodal neocortical increases

related to worse scores, with effects significant for fluid intelligence

but only trending for memory-related factor scores. Previous work

has highlighted a relationship between Aβ deposition and poorer per-

formance on several aspects of cognition including processing speed

and fluid reasoning (Rodrigue et al., 2012). Our results build upon

these findings by demonstrating increased Aβ deposition in trans-

modal portions of the gradient to be associated with lower fluid intel-

ligence scores, in accordance with the proposed involvement of the

prefrontal and parietal cortex in this cognitive domain (Gray,

Chabris, & Braver, 2003). This result has important implications for

aging research as it suggests that cognitive dysfunction could also

occur in the preclinical phase of Alzheimer's Disease, which is charac-

terized by the presence of Aβ but without the associated cognitive

decline (Sperling et al., 2011). In contrast, we found no significant

effect on measures of episodic memory, in keeping with previous
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literature (Aizenstein et al., 2008; Jack et al., 2008; Rodrigue et al.,

2012; Sperling et al., 2009); hypothetically, longitudinal decline in

memory may be more sensitive to Aβ than cross-sectional estimates

(Resnick et al., 2010; Storandt, Mintun, Head, & Morris, 2009).

Although the evidence for a relationship existing between Aβ deposi-

tion and cognitive decline in healthy individuals continues to be

mixed, the importance of Aβ imaging in cognitively healthy individuals

remains due to its potential as a biomarker for clinical progression

(Huijbers et al., 2015; Klunk, 2011). Although not explored here, the

observed structural and metabolic change across neocortical and hip-

pocampal regions may reflect disruptions of large-scale networks,

negatively affecting cognitive functions. In support of this, we incor-

porated a multivariate PLS analysis, associating brain and phenotypic

measures, which revealed a cohesive pattern of regions showing met-

abolic and structural imaging changes coupled to aging and general

cognitive decline. Findings were significant after thousands of permuta-

tions, and replicable across hundreds of cross-validation experiments,

supporting robustness. In further agreement to network-level effects, pre-

vious work indeed showed a decline in white matter network efficiency

with age (Collin & Van Den Heuvel, 2013; Zhao et al., 2015), with long-

range connections and higher-order cognitive networks demonstrating

considerable vulnerability (Montembeault et al., 2012; Spreng & Turner,

2013; Tomasi & Volkow, 2012).

When controlling for APOEe4 genotype status, we observed no

modulation or differences in cognitive scores unlike recent data indic-

ative of a significant effect of genotype status on cognition in aging

(Schiepers et al., 2012). One potential explanation for the lack of sen-

sitivity is the relatively small sample of APOEe4 carriers (n = 23) in this

current study. However, our results do lend support to earlier work

demonstrating no effect of APOEe4 status on cognition in healthy

aging (Mayeux, Small, Tang, Tycko, & Stern, 2001; Pendleton et al.,

2002; Small et al., 2000; Small, Basun, & Bäckman, 1998; Smith et al.,

1998). Furthermore, in studies that do find an effect of APOEe4 on

cognition, the effect is not consistent across cognitive domains, with

attention, working memory, verbal ability, visuospatial skill, and per-

ceptual speed demonstrating no significant deficits as a result of

genotype status (Small, Rosnick, Fratiglioni, & Bäckman, 2004;

Wisdom, Callahan, & Hawkins, 2011).

A potential limitation to this study is that we were unable to con-

trol for SCD. SCD was assessed in the DLBS using the Metamemory

in Adulthood questionnaire (Chen, Farrell, Moore, & Park, 2019), how-

ever, this data has yet to be released. SCD has been related to mes-

iotemporal atrophy, functional connectivity alterations, decreased

task-directed attention, and increased white matter hyperintensities

(Fan et al., 2018; Hayes et al., 2017; Van Rooden et al., 2018;

Verfaillie et al., 2018; Viviano et al., 2019), and might thus have been

an interesting variable to relate to neocortical and hippocampal mea-

sures in the newly proposed gradient space. Furthermore, the DLBS

only screened against physical health, neurological health, and

MMSE>26 to cover a large range of individuals falling under a healthy

aging umbrella. Measures of preclinical Alzheimer's Disease, including

Amyloid beta SUVR cut-off points and/or Scheltens visual rating scale

for mesiotemporal atrophy (Scheltens et al., 1995) were thus not used

for subject exclusion. It is, therefore, possible that some participants

might have suffered from preclinical stages of Alzheimer's Disease

with still high MMSE scores. Finally, we restricted our analysis to

102/144 cases with higher-quality MRI data. Although this nominally

reduced statistical power, focusing on cases with high-quality imaging

data and quality-controlled hippocampal and cortical segmentations

may improve inference. In fact, it might even be more sensitive than

an assessment of a larger dataset with potential confounds in image

quality and surface extractions.

In conclusion, our work presents a novel approach to represent

age-related differences in brain structure, metabolism, and cognition.

In addition to supporting previous work indicative of structural and

metabolic change in the aging brain, the use of a compact analytical

framework to relate brain-based biomarkers to macroscale functional

systems allowed for novel insights into the interplay between patho-

logical deposits and structural compromise, and how this subsequently

impacts upon cognition in the healthy aging population.
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