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Abstract

We characterize revenue-maximizing mechanisms in Myerson’s (1981) environment when the

seller behaves sequentially rationally, in the sense that she cannot commit not to propose a new

mechanism if the previously chosen one fails to allocate the object. We show that the seller-optimal

mechanism takes the same form as in the case when there is commitment: The seller maximizes

revenue by assigning, at t = 1, the good to the buyer with the highest virtual valuation if it is

above a buyer-specific reserve price. If no trade takes place at t = 1, at t = 2, the seller assigns

the object to the buyer with the highest posterior virtual valuation, provided that it is above the

seller’s value.
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The classic works on auctions (Myerson (1981); Riley and Samuelson (1981)) characterize the

revenue-maximizing allocation mechanism for a risk-neutral seller who owns one object and faces

a fixed number of buyers whose valuations are private information. An important assumption in

these papers is that the seller commits to withdraw the item from the market if it is not sold. This

commitment assumption is far-fetched and often not met in reality. Christie’s in Chicago auctions

bottles of wine that failed to sell in earlier auctions. The U.S. government re-auctions properties that

fail to sell: Lumber tracts, oil tracts, and real estate are put up for a new auction if no bidder bids

above the reserve price.1 As Porter (1995) reports, 46.8 percent of the oil and gas tracts with rejected

high bids were put up for a new auction. In March 2010, the FCC announced that in 2011, it would

re-auction part of the 700 MHz wireless spectrum that failed to sell in 2009. The key issue is not only

that commitment is often unrealistic, but, more importantly, that an auction that is desirable with

commitment may lead to poor outcomes if there is limited commitment.

The durable-good monopolist literature was the first to study the effects of a seller’s inability to

commit to a given institution if it fails to realize all gains of trade (Bulow (1982); Gul, Sonnenschein,

and Wilson (1986); Stokey (1981)). McAfee and Vincent (1997) study an auction setup in which the

seller behaves sequentially rationally. The papers cited above restrict the procedures that the seller

can employ (the seller chooses prices in the durable-goods papers and reservation prices in McAfee

and Vincent (1997) and in Liu, Mierendorff, and Shi (2015))2 and show that the seller’s inability

to commit reduces monopoly profits. Here, we maintain the assumption that the seller behaves

sequentially rationally, but we allow the seller to choose any selling procedure (mechanism). Our goal

is to determine which procedure maximizes revenue and to investigate the extent to which allowing

for general mechanisms enables the seller to mitigate revenue loss due to the lack of commitment.

We consider the following scenario: There is a risk-neutral seller who owns a single object and faces

I risk-neutral buyers. Valuations are private, independently distributed across buyers, and constant

over time. The buyers and the seller interact for two periods and discount the future with the same

discount factor. At the beginning of each period, the seller proposes a mechanism to sell the object.

If the object is sold, the game ends; otherwise, the seller returns in the next period and offers a new

mechanism. The game ends after two periods even if the object remains unsold.3 We show that the

optimal mechanism takes the same form as in the case when there is commitment: First- (or second-)

price auctions with optimally chosen reserve prices are revenue-maximizing when buyers are ex-ante

1These examples are also mentioned in McAfee and Vincent (1997).
2Other papers that study reserve price dynamics without commitment are Burguet and Sákovics (1996), which ex-

amines cases of costly bidding, and Caillaud and Mezzetti (2004), which looks at sequential auctions of many identical
units.

3The analysis of the case of T = 2 contains the most essential insights and can be carried out with less-burdensome
notation. Section 6 presents an overview of the analysis of the case in which 2 < T <∞.
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identical. When buyers’ valuations are drawn from different distributions, the seller maximizes revenue

by assigning the good to the buyer with the highest virtual valuation if it is above a buyer-specific

reserve price. Reserve prices drop over time. How much the optimal reserve prices drop depends

on the discount factor. Inability to commit is costly for the seller. The revenue loss is highest for

intermediate values of the discount factor and when the number of buyers is small.

In the U.S., the FDIC runs a large number of auctions of distressed assets (real estate, in particular).

Properties are auctioned off with reserve prices, and in a number of cases, the initial reserve price is

too high and the property is sold later with a lower reserve.4 In both the U.S. and Europe, fiscal crises

have led to a surge in distressed assets for sale.5 The amounts that financial institutions recover from

these sales is very important for their future solvency and the health of the financial sector. Given that

unsold assets are placed back on the market, there is a lack of commitment to the initial reserve price.

Our analysis establishes that auctions with reserve prices are revenue-maximizing and that revenue

loss due to the lack of commitment is small when the seller is either very patient or very impatient

and when the number of buyers is relatively large. This last finding says that when demand exceeds

supply significantly, the impact of lack of commitment is very modest, but the finding also stresses

that the auction design becomes more important when supply surges relative to demand, as happens

during a crisis.

Methodologically, this is the first paper that solves for the optimal mechanism under limited com-

mitment in a multi-agent environment allowing for a continuum of valuations, and for the possibility

that the seller controls what agents observe–the transparency of mechanisms.6 Mechanism design

under non-commitment is notoriously difficult even in single-agent environments because, as the lit-

erature on the ratchet effect (Freixas, Guesnerie, and Tirole, 1985; Laffont and Tirole, 1988) first

observed, one cannot use the revelation principle,7 which asserts that the choice of mechanism(s) is

final. This implies that the designer can never change the rules in the future, even though it might

become obvious that better ones exist. When this commitment assumption fails, there is no generally

applicable canonical class of mechanisms.

Kumar (1985), who formulated what he refers to as the “noisy revelation principle,” provides a first

step towards providing a canonical class of mechanisms when the principal behaves sequentially ratio-

4See http://www.fdic.gov/buying/historical/index.html and McAfee, Quan, and Vincent (2002), who thoroughly
document this phenomenon.

5See Stovall and Tor (2011) or “Troubled European Assets Come to Market,” in The Wall Street Journal, Feb. 5
2013.

6Bester and Strausz (2007) allow a mediator to execute the principal’s mechanism and then release a noisy signal of
the agent’s choice. In other words, the mediator in Bester and Strausz (2007) controls what the principal observes. In
our paper, the transparency of mechanisms controls what agents observe. This dimension of transparency is not relevant
in Bester and Strausz (2007)’s model because there is only one agent.

7See Laffont and Tirole (1988), Salanie (1997), or, for a more recent treatment, Skreta (2006b).
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nally.8 Despite this result, finding the optimal mechanism is not simple, as showing which posteriors

are optimal is challenging. Bester and Strausz (2001) establish that for single-agent and finite-type

models, it is without loss of generality for the principal to restrict attention to mechanisms with mes-

sage spaces that have the same cardinality as the type space, and in which the agent reports his true

type with strictly positive probability. Again, finding the optimal set of types that each type of the

agent is randomizing over (and with what probabilities) is not trivial. In addition, Bester and Strausz

(2000) show that this result fails in a two-agent example.9

This paper employs the method developed in Skreta (2006b), which relies on characterizing equi-

librium outcomes and is introduced in Section 1. Section 2.1 describes necessary conditions for an

outcome to be PBE-feasible, and, using these conditions as constraints, in Section 2.2, we formulate

the seller’s search for the revenue-maximizing sequentially rational auctions as a constrained maxi-

mization problem–Program NC. We solve Program NC in Section 3. In Subsection 3.3 we find an

assessment that implements the solution of Program NC and is a PBE. These are the two main steps

of the proof of the main result, Theorem 1. The value of commitment is discussed in Section 4, which

also illustrates our characterization in a simple example.

To solve Program NC, we analyze how the second-period optimal mechanism, which is a vector of

functions, varies as a function of arbitrarily complex posteriors. Lemma 1 formalizes the result that

in the absence of commitment, eliciting information sequentially is costly because the buyers at t = 1

anticipate that the seller will be exploiting this information at t = 2 and, hence, require that they be

rewarded for it in advance. Based on Lemma 1, Proposition 2 shows that the best action for the seller

is to pool all valuations below a cutoff until the second period of the game, when she has commitment

power, since trying to separate them at t = 1 is too costly. Establishing Proposition 2 is the central

and most challenging part of the analysis since we have to show that pooling the low end of valuations

is better than any other conceivable alternative in which buyers mix over several reports, use reporting

rules with non-convex supports, and so forth. This step is harder here, where there are many agents

compared to the single-agent environment in Skreta (2006b); this is the case because when there is

only one agent, the optimal second-period mechanism is a posted price, whereas, here, it is an auction

and performing comparisons of how it varies as a function of various posteriors is more complex.

Given Proposition 2, Lemma 2 establishes that, at an optimum, valuations below the cutoff do not

get the good and do not pay anything at t = 1. Lemma 3 shows that this cutoff is higher than the

8Kumar’s principle states that without any loss, we can restrict attention to mechanisms where the agents report a
probability distribution about their types. Kumar (1985)’s result captures the essential difference between mechanism
design with and without commitment–namely, that without commitment, in all but the first period, the principal’s
posterior beliefs are endogenous and depend on her previous mechanism choice.

9Evans and Reiche (2008) show that the revelation principle does extend in the Bester and Strausz (2000) example if
one allows ex-ante payments, but it fails even with ex-ante payments if more than one agent has private information.
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revenue-maximizing reserve price with commitment (the valuation where a buyer’s virtual valuation

is equal to the seller’s value). Then, a solution of Program NC separates valuations into two groups:

the-no-trade-at-t = 1-region, where all valuations below a cutoff are pooled together with the lowest

possible valuation and never get the good or pay anything at t = 1; and the-trade-at t = 1-region,

where the seller assigns the object to a buyer with the highest virtual valuation.

Apart from the challenge arising from the lack of a “revelation principle” result that is common to

single- and multi-agent environments, there are two conceptual issues specific to multi-agent environ-

ments: The first is related to the fact that what buyers (or agents, more generally) observe at each

stage–the transparency of mechanisms–critically affects their beliefs about each other, which may, in

turn, affect their future behavior. For example, competing in a sealed-bid, versus an open-outcry,

auction has different implications for what buyers learn about each other. The second difference is

that with multiple agents, the mechanism designer may endogenously become privately informed over

time.10 This is possible because the designer (the seller) observes more than the agents (the buyers)

observe about the behavior of their competitors; think, for instance, of sealed-bid auctions. These two

issues do not arise when there is a single buyer and compound the difficulties arising from the lack of

an appropriate “revelation principle.”

In Section 5 we address the issue of transparency by introducing an alternative definition of mecha-

nisms that determines not only who gets the object and the payments as a function of buyers’ behavior,

but also what buyers know after the mechanism is played. Formally, this is done by modeling first-

period mechanisms as game forms endowed with an information-disclosure policy. Then, by applying

the information-disclosure irrelevance result from Skreta (2011), we show that the set of sequentially

optimal mechanisms at t = 2 is independent of the disclosure policy used at t = 1. We conclude that

without any loss, we can model period-one mechanisms as game forms and assume that all buyers

observe all actions chosen, which, in turn, implies that the seller does not become privately informed.

The first paper to incorporate disclosure policies as part of the design of the optimal mechanism

is Pavan and Calzolari (2006), who consider a sequential common agency problem. There, disclosure

determines how much information is communicated by the stage-one principal to the stage-two prin-

cipal. Calzolari and Pavan (2006) apply this approach in a model of monopoly with resale. In their

paper, the disclosure rule discloses to each buyer an offer/ask price recommendation for the resale

game. As in this paper, the disclosure policy in Calzolari and Pavan (2006) is meant to capture what

agents learn about the other agents’ behavior in the previous stage. The only difference is that, in this

paper, in the second period, agents participate in another mechanism offered by the original principal,

whereas in Calzolari and Pavan (2006), in a resale market, that does not involve the original principal.

10For a brief account of the literature on informed-principal problems, see Skreta (2011).
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The ideas and techniques developed in the present paper have a large set of potential applications.

One area in which the designer chooses mechanisms sequentially is that of government procurement

and, in particular, defense procurement:11 There are typically multiple stages until the final winner

is determined; in each of these stages, sellers submit bids, and based on the bids, a subset of them

advances to the next stage. If a bidder signals too much about his private information early on, his

rents may be reduced at a later stage. Also, how bidders compete at each stage may depend on the

information they obtain about their competitors in earlier stages, so the issue of transparency arises

here, too.

Our techniques could be applicable to situations in which other issues relating to transparency–

privacy,12 for example–are important.13 Nowadays, sellers not only keep track of their buyers but also

design their pricing schemes (coupons, loyalty programs) based on the information that they have

obtained thus far.14 When sellers track their interactions with various buyers, the issues of ratcheting

and transparency are central.

Other related literature: “No sale” is not the only form of inefficiency of the classical optimal

auction. Sometimes, it allocates the object to a buyer other than the one with the highest valuation,

thus leaving resale opportunities open for the new owner. Zheng (2002) studies optimal auctions

allowing for resale, assuming that the original seller controls the bargaining power of the new owner

in the resale market. With an impressive construction, that paper derives conditions under which

Myerson (1981)’s optimal allocation can also be attained by a seller who cannot prevent resale. In

Zheng (2002), there is no discounting. Calzolari and Pavan (2006) also study revenue-maximizing

auctions with resale. Compared to Zheng (2002), they drop the assumption that the initial owner

controls the bargaining power in the resale market. They also allow the seller to disclose information

to the reseller and find that it is impossible to maximize revenue with a deterministic selling procedure.

Here, we look at the complementary problem of characterizing mechanisms for a seller who cannot

prevent herself from re-auctioning the good, and we allow for discounting.

Other works assume that the seller has even less commitment than the seller in this paper; in

particular, the seller cannot even commit to carry out the rules of the current auction. In McAdams

and Schwarz (2007), the seller, after observing the bids, cannot commit not to ask for another round of

bids. The current paper, in contrast, assumes that the seller chooses revenue-maximizing procedures

11Bower (1993) outlines some of the commitment issues that arise in defense procurement.
12The pioneering papers on the economics of privacy are Hirshleifer (1980); Posner (1981); Stigler (1980). For a recent

survey, see Hui and Png (2006). For a paper contributing to the policy debate on privacy issues, see Varian (1996).
13The recent work of Izmalkov, Lepinski, and Micali (2005, 2008) addresses these issues and marries mechanism design

theory with cryptography.
14See, for instance, Acquisti and Varian (2005) and Fudenberg and Villas-Boas (2007) for an excellent and comprehen-

sive survey of the work in this area.
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and commits at each stage to carry out the mechanism for that stage. Vartiainen (2011), too, examines

a symmetric model in which buyers’ types are finite and there is no discounting.15 He allows both forms

of no commitment (no commitment to current or to future mechanisms), but he assumes that all actions

are publicly observable and asks what mechanism leads to a sustainable outcome given complete lack of

commitment. He shows that, essentially, only the English auction achieves sustainability. Again, this

paper is different from Vartiainen (2011) in that our interest is in designing optimal mechanisms and

there is discounting. We also allow for a continuum of valuations and for non-transparent mechanisms.

1 The Model

A risk-neutral seller, indexed by S, owns a unit of an indivisible object, and faces I risk-neutral

buyers.16 The set of all players–the buyers and the seller–is denoted by Ī = {S, 1, .., I}. The seller’s

valuation is known and normalized to vS ≡ 0, whereas vi–the valuation of buyer i–is private information

and is distributed according to Fi on Vi = [0, bi], with 0 ≤ bi <∞ which has a continuous and strictly

positive density fi.
17 Buyers’ valuations are distributed independently of one another and remain

constant over time. Let F (v) = ×i∈IFi(vi), where v ∈ V = ×i∈IVi and F−i(v−i) = ×j∈I
j 6=i
Fj(vj). Time

is discrete and finite, and the game lasts 2 ≤ T <∞ periods. The seller and the buyers have the same

discount factor δ ∈ [0, 1]. All elements of the game, apart from the realization of the buyers’ valuations,

are common knowledge. The seller aims to maximize expected discounted revenue, whereas buyers

aim to maximize expected discounted surplus. Since most of the intricacies of the problem appear

even when T = 2, we initially focus on this case and defer the analysis of T > 2 to Section 6.

The set of buyer i’s actions (or reports) is the Borel set Ai, which contains all valuations Vi ⊂ Ai,

and can be a strict superset of Vi. Let A = ×i∈IAi. A mechanism Mt = (qt, zt) : A → [0, 1]Ī × RĪ

specifies for each vector of actions (or reports) a ≡ (ai, a−i), the probability i is assigned the good at

t, qti(a), and i’s expected payment at t, zti(a). Each mechanism has the same set of actions for buyer

i–namely, Ai–so the set of actions is not an object of choice. This is without loss of generality18 and

15In contrast to the problem in Vartiainen (2011), without discounting, our problem is trivial: In that case, the seller
would wait until the last period of the game and offer the mechanism described in Myerson (1981), obtaining the highest
possible revenue given the presence of asymmetric information.

16We use the female pronoun for the seller and male pronoun for the buyers.
17 The fact that we take each buyer’s lowest valuation to be zero is not important for the results. Nothing in the

analysis hinges on that.
18To see why this is without loss of generality, consider a case in which the seller offers mechanisms where at t = 1 the

action set is A1
i and at t = 2 it is A2

i . This can be equivalently represented by the seller offering a mechanism in both
periods with action set Ai = A1

i ∪ A2
i , and by amending the mechanisms as follows: At t = 1, for all vectors of actions

where ai ∈ A2
i \A1

i set q1
i (ai, a−i) = q1

i (âi, a−i) and z1
i (ai, a−i) = z1

i (âi, a−i), for some âi ∈ A1
i . The t = 2-mechanism can

be amended analogously. Doing so does not add any new outcomes (assignment probabilities and payments) at period 1.
Moreover, it does not alter the sequentially rational outcomes at t = 2 since–as we later establish–in equilibrium, actions
associated with identical t = 1-assignment probabilities must be followed by identical t = 2 assignment, and the proof
of Proposition 2 shows that this t = 2-assignment is identical to the one that would be sequentially rational if we would
merge all actions with identical t = 1-assignment probabilities into one action. Also, the formulation allows the action
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avoids the complication of having the space of all mechanisms contain the set of all sets, which doesn’t

exist in the usual naive set theory. Note that the period-t mechanism specifies only what happens at

period t, so it is analogous to a spot contract. Also, because the seller collects buyers’ payments and

keeps the good if no buyer gets it, we have ztS(a) = −Σi∈Iz
t
i(a) and qtS(a) = 1− Σi∈Iq

t
i(a).

Timing and Strategies:

t=1: At the beginning of t = 1, nature determines the buyers’ valuations; the seller chooses a mecha-

nism and commits to it; buyers observe it and choose their actions. If, given the agents’ actions,

the mechanism prescribes trade, then the game ends; otherwise, we move to t = 2. All actions

are publicly observable. This assumption is relaxed in Section 5.

t=2: At t = 2, given the vector of actions chosen at t = 1, a, the seller chooses a mechanism; buyers

observe it and choose their actions. The game ends at T = 2, irrespective of whether or not

trade takes place.

The fact that the seller commits to the period-1 mechanism implies that the period-1 allocation of

the good, payments and disclosure are determined by the period-1 mechanism along with the actions

chosen by the agents. Given that mechanisms and all actions are publicly observable, the seller’s

information sets IS coincide with public histories, whereas buyer i’s information sets, Ii, contain vi in

addition to the public histories. A public history at t = 1 contains M1, while at t = 2, it contains M1,

the vector of period-1 reports a, and M2. The seller’s strategy specifies a mechanism for each element

in IS . We restrict attention to pure strategies for the seller.

Buyers’ Strategies: At each information set, buyer i’s behavioral strategy specifies a family of report-

ing rules mt
i, where for each vi ∈ [0, bi], m

t
i is a probability distribution over Ai:

∫
Ai
mt
i(ai|vi)dai = 1.

The reporting rule mt
i(.|vi) is a density that can be a degenerate function with one or more mass

points. When it has a unique mass point, it is the Dirac function, which is not absolutely continuous

with respect to the Lebesgue measure.19The proofs of the results do not require the reporting rule

mt
i(.|vi) to be absolutely continuous with respect to the Lebesgue measure.

Reporting Functions: Every reporting rule mt
i(.|vi) is associated with a reporting function mt

i(ai|.),

which is a measurable function of vi, and (roughly) represents the relatively likelihood that different

valuations employ a given message ai. If buyers employ pure strategies, then mt
i(ai|.) is equal to one

set to be larger than the type space. If the seller wants to use a mechanism with fewer actions then, for all “superfluous”
actions ãi, set qti(ãi, a−i) = qti(ai, a−i) and zti(ãi, a−i) = zti(ai, a−i), where ai is an action in the restricted set that the
seller wants to employ.

19When the density has mass points, the integral expression
∫
Ai
mt

i(ai|vi)dai = 1 abuses notation, but this is somewhat
standard.
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for the valuations that report ai and zero otherwise. The support of the reporting function mt
i(ai|.)–

denoted by Vi(ai)–is the set of vi’s for which message ai is in the support of the reporting rule mt
i(.|vi).

Let V̄i(ai) ≡ [vi(ai), v̄i(ai)] denote the closure of the convex hull of Vi(ai). Reporting functions are

used to obtain Bayesian beliefs as follows:

Bayesian Beliefs: The seller’s posterior belief at t = 2 about i’s valuation after observing ai at

t = 1 is denoted by fi(. |ai) and satisfies

fi(vi |ai)
∫
Vi

m1
i (ai|ti)fi(ti)dti = m1

i (ai|vi)fi(vi). (1)

Because buyers behave non-cooperatively, they choose their actions at t = 1 independently from

one another. Then, upon observing the vector of actions a, the seller’s posterior about the buyers’

valuations satisfies

f(v |a) ≡ ×i∈Ifi(vi |ai ).20 (2)

Our goal is to find a strategy profile that is PBE of the game and is associated with the highest

expected discounted revenue for the seller among all PBE’s.

Preliminary Observations: To simplify matters and to avoid introducing excessive notation, we

make a few preliminary observations. First, what matters for the seller’s mechanism-choice at t = 2 is

her posterior beliefs about the buyers’ valuations, which (for a given strategy profile) are determined

by the vector a of period-1 reports. Thus, we index t = 2-mechanisms by a. Second, since t = 2

is the last period of the game, the seller commits to the outcome of the t = 2-mechanism, and the

revelation principle applies as usual. We can then, at t = 2, restrict attention to mechanisms where

it is a best-response for all buyers to participate and to report their true valuations. Thus, buyers’

t = 2-reporting function is deterministic, and all reports in Ai other than those in Vi are superfluous.

Key Definitions: Fix a strategy profile in which buyers report the truth in the last period of the

game, and i employs a reporting rule mi at t = 1.21 Then, when valuations are v, and t = 1-reports

are a, the expected discounted probability that buyer i gets the good, and his expected discounted

20 The way we formalized buyers’ reporting rules is identical to the way signalling rules are formalized in Crawford and
Sobel (1982). As in Crawford and Sobel (1982), the existence of regular distributions can be established as follows: Define
a buyer’s reporting rule to be a probability distribution µ̂ on the Borel subsets of [0, bi]× [A] for which µ̂(Ṽ × [A]) =

∫
Ṽ
f ,

for all measurable sets Ṽ . Loève (1955), pp.137-138, shows that in this setting there exist regular distributions m(.|v)
and f(.|a) for (v, a) ∈ V × A. Milgrom and Weber (1985), who introduced this distributional approach, show that it is
equivalent to the mixed strategies used in the text. In this paper’s setup, this formulation guarantees that m(.|v) and
f(.|a) are measurable functions of v and a, respectively, and the integral expressions in the text are well-defined.

21To simplify notation, we omit the t = 1-superscript and write, for instance, mi(ai|vi) instead of m1
i (ai|vi), qi instead

of q1
i and so forth, while we keep the t = 2-superscripts, which are necessary for clarity.
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payment are, respectively, given by:

q̄i(v, a) ≡ qi(a) + qS(a)δq
2(a)
i (v) and z̄i(v, a) ≡ zi(a) + qS(a)δz

2(a)
i (v), (3)

whereas his expected discounted payoff at (v, a) is:

ui(v, a) ≡ q̄i(v, a)vi − z̄i(v, a). (4)

From (3) and (4), we also define: Ui(vi) ≡ EV−iEA[ui(v, a)] and Uaii (vi) ≡ EV−iEA−i [ui(v, a)], where

Uaii (vi) is i’s expected payoff when his valuation is vi; he reports ai at t = 1, and play proceeds

according to the specified strategy profile. These definitions imply that

Ui(vi) = EAi [U
ai
i (vi)], (5)

where the expectation is taken with respect to the density mi(.|vi) that describes the reporting rule.

Analogously, we define

Pi(vi) ≡ EV−iEA[q̄i(v, a)] and P aii (vi) ≡ EV−iEA−i [q̄i(v, a)] (6)

and Xi(vi) ≡ EV−iEA[z̄i(v, a)] and Xai
i (vi) ≡ EA−iEV−i [z̄i(v, a)]. Note that the above definitions imply

Ui(vi) = Pi(vi)vi −Xi(vi). We also use:

P
1(ai)
i ≡ EV−iEA−i [qi(a)] (7)

and

P
2(ai)
i (vi) ≡ EV−iEA−i [qS(a)q

2(a)
i (v)], (8)

which denote the interim expected probability that i gets the good at t = 1 and at t = 2, respectively,

given a t = 1-report ai. Analogously, we define X
1(ai)
i and X

2(ai)
i (vi).

In the above definitions, the expectation over A is taken with respect to

m(a|v) ≡ ×i∈Imi(ai |vi ), (9)

while the expectation over A−i with respect to m(a−i|v−i) ≡ ×j∈I
j 6=i
mj(aj |vj ).

Outcomes: The outcome of a strategy profile (not necessarily an equilibrium) is an allocation rule

p and a payment rule x obtained as follows:

pi(v) ≡ EA[q̄i(v, a)] and xi(v) ≡ EA[z̄i(v, a)]. (10)
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The allocation rule specifies for all i ∈ I the expected, discounted probability that player i obtains

the object, and the payment rule specifies the corresponding expected, discounted payment when the

realized vector of buyers’ valuations is v. Analogously, we can define the outcomes of continuation

games. Note that (6) and (10) imply that

Pi(vi) = EV−i [pi(v)]. (11)

If (p, x) is an outcome of a strategy profile that is a PBE, it is called PBE-feasible.

Methodology: Our goal is to find a strategy profile that is PBE of the game and is associated

with the highest expected discounted revenue for the seller. For this, it would suffice to find all PBEs

of our game. However, as explained in the introduction, there is no “revelation principle”type of

result for the first-stage mechanism, given that the seller behaves sequentially rationally and cannot

commit not to re-optimize her choice at t = 2. In order not to impose any ad hoc restrictions, the

seller’s choice set at t = 1 is the set of all mechanisms. The resulting game, however, is too complex

to establish that a strategy profile is a PBE: The difficulty arises because the seller may deviate at

t = 1 to mechanisms where no continuation equilibrium exists. Because it is impossible to evaluate

such deviations, it is impossible to establish that a proposed strategy profile is an equilibrium.22 To

circumvent this difficulty, we introduce a canonical game that has the same outcomes as the original

game but is simpler in that the seller is not a player: In the canonical game, the seller chooses a

dynamic mechanism once and for all:23

Definition 1 A dynamic mechanism M specifies a period-1 mechanism M1 = (q1, z1), and for all

t = 1-vectors of actions a for which the seller keeps the good at t = 1, a period-2 mechanism M2(a) =

(q2(a), z2(a)).

A dynamic mechanism is PBE-feasible if, given the proposed mechanisms there exist buyers’ strate-

gies such that: For all i, buyer i’s strategy specifies: (i) for each M2(a) a continuation reporting rule

that is a best response given M2(a) and his posterior beliefs consistent with Bayes’ rule along the path,

and, (ii) a t = 1-reporting rule that is a best response given M1 and continuation strategies. Moreover,

given these buyers’ strategies, for all a, mechanism M2(a) = (q2(a), z2(a)) is optimal for the seller at

t = 2 given the buyers’ t = 2-continuation reporting rules and the seller’s posterior beliefs derived

from the buyers’ t = 1-reporting rules using Bayes’ rule (given by (2)).

22Existence of an off-path equilibrium outcome, no matter the mechanism the principal deviates to (even deviation
to indirect mechanisms), is assumed in Myerson (1983) but, there, agents’ type and strategy spaces are finite. In this
paper, we assume a continuum of valuations and the possibility of uncountable action spaces.

23I am grateful to the editors of this journal for suggesting this insightful way to deal to the equilibrium-existence
issue.
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In the canonical game, once-and-for-all, the seller chooses a mechanism as in standard mechanism-

design with commitment. However, she chooses a dynamic mechanism, and sequential rationality is

introduced by requiring the dynamic mechanism to be PBE-feasible. It is immediate to see that a

PBE-feasible outcome of the original game is a PBE-feasible outcome of the canonical game. Also,

arguments similar to those establishing the Renegotiation-Proofness Principle motivate restricting

attention to dynamic mechanisms that are not reneged at t = 2: For any dynamic mechanism and

associated PBE, such that the seller deviates at t = 2 to another mechanism, there exists another

dynamic mechanism and associated PBE in which the seller does not deviate at t = 2 that implements

the same outcomes.

Definition 2 A dynamic PBE-feasible mechanismM is optimal if the seller’s expected revenue, given

M is higher compared to any other PBE-feasible dynamic mechanism.

Still, given the generality of the stage mechanisms, it is not obvious how to find an optimal

dynamic mechanism. To sidestep this difficulty, we focus on equilibrium-feasible outcomes rather

than on strategies. This methodology, introduced in Skreta (2006b), relies on the idea that the

seller’s equilibrium revenue is determined by the equilibrium outcome (described by the allocation and

payment rule, defined in (10)).

PBE-feasible Outcomes: An allocation rule p and a payment rule x are PBE-feasible if they are

the outcome of a dynamic PBE-feasible mechanism.

Then, the seller seeks an allocation rule and a payment rule that maximize expected discounted

revenue among all PBE-feasible allocation and payment rules:

max
(p,x)

∫
V

Σi∈Ixi(v)dF (v), (12)

subject to (p, x) being PBE-feasible.

To find an optimal dynamic mechanism, we proceed as follows: We start by deriving necessary con-

ditions for allocation and payment rules to be PBE-feasible. Using these conditions as constraints,

we then formulate a maximization problem in Section 2.2 and choose the revenue-maximizing PBE-

feasible outcome in Section 3.2. Finally, in Section 3.3, we find a PBE-feasible dynamic mechanism

that implements this outcome.

2 Mechanism Selection under Limited Commitment

2.1 Necessary Conditions

We start by deriving necessary conditions for allocation and payment rules to be PBE-feasible.

12



Resource Constraints: The allocation rule p has to satisfy resource constraints, which, since

there is only one object, translate to:

RES : 0 ≤ pi(v) and Σi∈Ipi(v) ≤ 1 for all v ∈ ×i∈IV and i ∈ I.

Participation Constraints: Following Myerson (1981), we assume that the seller employs mech-

anisms that guarantee that buyers’ interim payoff at the beginning of the game is higher than their

outside options, which we assume to be equal to zero. We call these participation constraints:

PCi : Ui(vi) ≥ 0 for all i ∈ I, vi ∈ Vi.

It turns out that, despite imposing this weak version of participation constraints, the optimal mecha-

nisms satisfy ex-post participation in each period.

Best-Response Constraints: Consider a buyer i whose strategy is part of a PBE. At a PBE,

buyer i’s strategy must be a best response at each information set. This implies that there is no type

of buyer i that can strictly benefit by mimicking the reporting rule of another type, which, in turn,

implies that:

ICi: Pi(vi)vi −Xi(vi) ≥ Pi(v′i)vi −Xi(v
′
i), for all i ∈ I, vi, v′i ∈ Vi.

We call these the anti-mimic (or incentive) constraints. Also, if a′i and a′′i are in the support of

mi, both are optimal and, hence, maximize Uaii (vi), implying that i is indifferent between these two

reports: U
a′i
i (vi) = U

a′′i
i (vi).

Sequential Rationality Constraints: At a PBE-feasible dynamic mechanism, for all vectors

a ∈ A, such that qS(a) > 0, mechanism (q2(a), z2(a)) must be optimal given (2). Since T = 2 is the last

period of the game, the seller’s problem is equivalent to finding the revenue-maximizing auction in a

static setup, with the only difference that beliefs are endogenous and depend on the vector of t = 1

reports a.

Let Ji(vi |ai ) denote buyer i’s posterior virtual valuation at t = 2 when he reports ai at t = 1.24

Myerson (1981) shows that a revenue-maximizing mechanism assigns the object with probability one

to the buyer with maximal posterior virtual valuation,25 provided that his reported valuation is above

24 Myerson (1981) solves this problem assuming that all buyers’ distributions of valuations have strictly positive
densities. In general, distributions of valuations may fail to have strictly positive densities. In such cases, we cannot
straightforwardly express the buyers’ virtual valuations. One can, however, use the method of Skreta (2007) or of Monteiro
and Svaiter (2010), or can appropriately approximate the problem as we explain in Appendix E, so as to get meaningful

expressions of virtual valuations. If the posterior is well-behaved, then it is written as usual: Ji(vi|ai) ≡ vi− (1−Fi(vi|ai))
fi(vi|ai)

.
25 If Ji(vi |ai ) is increasing in vi the problem is regular, meaning that the point-wise optimum is incentive-compatible.

If not, we replace them with their “ironed” versions according to a procedure described in Myerson (1981), Skreta (2007)
or Monteiro and Svaiter (2010). In what follows, in order to avoid extra notation, when we write Ji, we mean its ironed
version.

13



a buyer-specific reserve price. Skreta (2006a) establishes that the optimal reserve price is given by26

r2
i (ai) ≡ inf

{
vi ∈ Vi s.t.

∫ ṽ

vi

[
sfi(s|ai)−

∫ bi

s
fi(t|ai)dt

]
ds ≥ 0, for all ṽ ∈ [vi, bi]

}
. (13)

In words, the optimal reserve price is the smallest valuation vi such that the average virtual valuation

to the right of vi is positive. The reserve price r2
i (ai) depends on the seller’s posterior (1), which is

determined by i’s equilibrium reporting-t = 1 strategy mi and the realized report ai. Note that (13)

implies that

r2
i (ai) ≥ vi(ai) (14)

since vi(ai) is the smallest valuation in the support of fi(.|ai).

Let vj(vi, a), denote j’s valuation that satisfies

Ji(vi|ai)− Jj(vj |aj) = 0. (15)

If vj < vj(vi, a), i’s posterior virtual valuation is higher than j’s, and the reverse if vj > vj(vi, a). Let

v−i(vi, a), be the vector consisting of all vj(vi, a) with j different from i. An optimal allocation at

t = 2, q
2(a)
i , is determined by the boundaries r2

i (ai) and v−i(vi, a) as follows:

q
2(a)
i (v) =

{
1 if vi ≥ r2

i (ai) and v−i ≤ v−i(vi, a),

0 otherwise
(16)

z
2(a)
i (v) = q

2(a)
i (v)vi −

∫ vi

0
q

2(a)
i (ti, v−i)dti,

where r2
i (ai) satisfies (13), and v−i(vi, a) is the vector of vj , with j different from i that satisfy (15).27

We call the requirement that q2(a) and z2(a) satisfy (16) the sequential-rationality constraint, and we

denote them by SRC(a).

Observation: T=2-reserve prices matter: Note that i obtains the good at the reserve price r2
i (ai)

with positive probability. If that were not true, then for all t = 1-reports a−i, and realizations of v−i,

the posterior virtual valuations of all buyers other than i are strictly higher than the seller’s value,

which is zero in our case. This is impossible since posterior virtual valuations are below the seller’s

value at least in a neighborhood around zero.

26This expression shows how to obtain the optimal reserve price when i’s distribution of valuations does not necessarily
have a density or does not satisfy the monotone hazard rate property. So, in the one-buyer case solved in Skreta (2006a),
one does not need to rely on techniques of Skreta (2007) or of Monteiro and Svaiter (2010), or on the approximation
technique described in Appendix E.

27 In case of ties, q
2(a)
i (v) = 1 for the lowest-index buyer among those buyers with maximal posterior virtual valuations.
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2.2 The Seller’s Problem

We start by expressing the seller’s revenue as a function of the allocation rule. Lemma 2 in Myerson

(1981), establishes that the constraints ICi, PCi and RES are equivalent to: (i) Pi(vi) is increasing in

vi; (ii) Ui(vi) =
∫ vi

0 Pi(ti)dti + Ui(0); Ui(0) ≥ 0; and, finally, (iii) Σi∈Ipi(v) ≤ 1, pi(v) ≥ 0 for all i and

v ∈ V. Myerson (1981) established that if (p, x) satisfy (i)-(iii), then the seller’s expected revenue can be

expressed as
∫
V Σi∈Ixi(v)dF (v) =

∫
V Σi∈Ipi(v)Ji(vi)f(v)dv−Σi∈IUi(0), where Ji(vi) ≡ vi − (1−Fi(vi))

fi(vi)

denotes buyer i’s (prior) virtual valuation. Given that the necessary conditions for PBE-feasibility

include ICi, PCi and RES, if (p, x) is PBE-feasible, it satisfies (i)-(iii) and revenue can be expressed

exactly as in Myerson (1981). As is standard, we assume that Ji(vi) is strictly increasing in vi for all

i.28

We now formulate a constrained maximization problem, which we call Program NC:

sup
{mi,qi(a)}a∈A,i∈Ī

∫
V

Σi∈Ipi(v)Ji(vi)f(v)dv − Σi∈IUi(0),

where pi(v) is given by (10), and subject to:

mi(.|vi) is a density function for all vi ∈ Vi and i ∈ I;

mi(ai|.) is a measurable function of vi for all ai ∈ Ai and i ∈ I;

ICi : Pi(vi) increasing in vi, for all vi ∈ Vi and i ∈ I;

ICi(ai) : if ai and âi are in the support of mi(.|vi), Uaii (vi) = U âii (vi);

PCi : Ui(0) ≥ 0, for all i;

RES: for all v ∈ V, 0 ≤ pi(v) ≤ 1, Σi∈Ipi(v) ≤ 1, and i ∈ I

and
∑Ī

i=S qi(a) = 1, qi(a) ≥ 0, for all i ∈ Ī;

SRC(a): for all a s.t. qS(a) > 0, q2(a), z2(a) are given by (16) for beliefs (2);

Beliefs: posterior beliefs are given by (2) .

To solve the problem, we have to optimally specify the t = 1-assignment probabilities and payments

{qi(a), zi(a); i ∈ Ī}a∈A; and the reporting rules–the mi’s–which, in turn, determine the t = 2 sequen-

tially rational mechanism through (16).

The following Proposition establishes that if a solution of Program NC exists and turns out to be

PBE -feasible,29 then the dynamic mechanism that implements it is optimal.

28This assumption allows us to avoid the complications that result from not having well-defined virtual valuations or
from having to iron them and to focus on the ones that arise from the sequential rationality constraints.

29To see that it is possible that (p, x) satisfy all the constraints of Program NC but are not PBE-feasible, note that
constraint ICi requires that Pi is increasing in vi, whereas constraint ICi(ai) requires that Uai

i (vi) = U âi
i (vi) if ai and

âi are in the support of mi(.|vi). Even if these two constraints are satisfied (as well as the rest of the constraints of
Program NC), this does not exclude the possibility that there is an ãi that i can choose where he gets the good with
probability 1 and he pays nothing, but that ãi is not in the support of mi(.|vi) for any vi. Obviously if such an action
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Proposition 1 If a solution of Program NC exists and is PBE-feasible, then the dynamic mechanism

that implements it is optimal.

Proof. Let (p∗, x∗) denote the allocation and payment rule arising at a solution of Program NC.

Suppose that it is PBE-feasible, and denote the corresponding seller’s expected revenue by R(p∗, x∗).

We argue by contradiction. Let (p̃, x̃) be a revenue-maximizing PBE-feasible outcome given some

dynamic mechanism, and suppose that R(p̃, x̃) > R(p∗, x∗). Since (p̃, x̃) is PBE-feasible it satisfies

all the constraints of Program NC and, hence, is feasible (since the constraints are a few necessary

conditions for PBE-feasibility). However, since it generates strictly higher revenue than (p∗, x∗), it

contradicts the fact that (p∗, x∗) is a solution of Program NC.

In what follows, we obtain a solution of Program NC and construct a dynamic mechanism that is

PBE-feasible and that implements it. Proposition 1 then guarantees that this is an optimal dynamic

mechanism.

3 Revenue-Maximizing Sequentially Rational Auctions

The main result of this paper is the characterization of revenue-maximizing sequentially rational

auctions. We first state the result and its implications, and then, establish it.

Theorem 1 The optimal dynamic mechanism allocates, at t = 1, the good to the buyer with the

highest virtual valuation if it is above a buyer-specific threshold. If no trade takes place at t = 1, at

t = 2, it allocates the object to the buyer with the highest posterior virtual valuation if it is above the

seller’s value–which is equivalent to the actual valuation being above a buyer-specific threshold. If all

buyers are ex-ante symmetric, the t = 1- and t = 2-thresholds are the same across buyers.

An interesting and practically relevant implication of Theorem 1 is the following Corollary:

Corollary 1 When buyers are ex-ante symmetric, the symmetric equilibrium of the game in which

the seller runs in each period a second-price (SPA) or a first-price (FPA) auction with optimally

chosen reserve prices and in which buyers not bidding above the reserve do not participate (report the

same message), generates maximal revenue for the seller.

Proof. At a sequential SPA (or FPA) with reserve prices, conditional on at least one buyer

bidding above the reserve in period 1, trade takes place at t = 1 and the game ends. Following

standard arguments, it is then easy to see that buyers at t = 1 bid their true valuation in an SPA (or

exists, i must choose it in equilibrium, so it must be in the support of mi(.|vi) for all vi. This shows that there can exist
allocation and payment rules satisfying all the constraints of Program NC that are not PBE-feasible.
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use a strictly increasing bidding function at a symmetric equilibrium of a FPA) if their value (or the

prescribed bid in the case of FPA) is above a threshold; otherwise, they do not participate and wait

until period t = 2.

Conditional on at least one buyer bidding above the reserve in period 1, trade takes place at

t = 1 and the game ends, so it does not matter what the seller learns (or infers) about a buyer’s true

valuation. Only when all buyers choose not to participate at t = 1 does the game continue to t = 2.

In that case, the only thing that the seller learns is that all buyers’ valuations are below a threshold,

exactly as is prescribed by the optimal mechanism. Then, at a symmetric equilibrium of an SPA with

a reserve price, at t = 1, the object is assigned to the buyer with the highest valuation–who, due to

symmetry, is the buyer with the highest virtual valuation–among all buyers who submit a bid above

the t = 1-reserve price. If no one bids above the reserve at t = 1, the game proceeds to t = 2. Given

ex-ante symmetric buyers, at a symmetric equilibrium, the buyers are symmetric at t = 2, as well. At

t = 2, an SPA assigns the object to the buyer with the highest valuation–who, due to symmetry, is also

the buyer with the highest posterior virtual valuation–if his valuation is above the reservation price

posted at t = 2.30 Similar arguments hold for symmetric equilibria of sequential first-price auctions,

FPA with reserve prices.

We establish Theorem 1 in Subsections 3.2-3.4 as follows: We solve Program NC and then find

a PBE-feasible dynamic mechanism that implements its solution. Then, Proposition 1 allows us to

conclude that this is an optimal dynamic mechanism.

3.1 Benchmark: The Solution Ignoring Sequential Rationality Constraints

To better understand the solution of Program NC, it is helpful to consider the solution of a relaxed

program–called Program C–that ignores the sequential rationality constraints. This gives us the

revenue-maximizing outcome when the seller has commitment.

Myerson (1981) solves this program and shows that, at the optimum, the object goes to the buyer

with the highest virtual valuation, provided that his valuation is above a buyer-specific reserve price

r∗i that satisfies (13) for the prior. The optimal t = 1-assignment is:

qi(v) =

{
1 if vi ≥ r∗i and Ji(vi) ≥ Jj(vj), for all j

0 otherwise
(17)

with payment zi(v) = qi(v)vi−
∫ vi

0 qi(ti, v−i)dti, while the optimal t = 2-mechanism is the same as the

t = 1 one: q
2(a)
i (v) = qi(v) and z

2(a)
i (v) = zi(v) for all v and all i (the seller commits not to change the

30If ties occur–a probability zero event given increasing virtual valuations–the lowest-index buyer among the ones who
tie is assigned the good with probability one.

17



t = 1-allocation at t = 2). The optimal assignment with commitment is characterized by boundaries

dividing the set of valuations into regions in which either the seller or a buyer is assigned the object, as

is depicted in Figure 1. The region in which the seller is assigned the good is ×i∈I [0, r∗i ], whereas the
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2'
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Figure 1: The revenue-maximizing allocation ignoring sequential rationality constraints when I = 2

region in which i gets it is characterized by r∗i and the boundary that determines when i’s valuation

is the highest. When buyers are ex-ante symmetric, this boundary is given by the locus where all

buyers’ valuations are equal, which is simply the 45-degree line between any two buyers.

The commitment solution trivially satisfies the sequential rationality constraints if the good is

always assigned to a buyer at t = 1. This occurs when r∗i = 0 for at least one i. Otherwise, the seller

keeps the object at t = 1 when all realized valuations are in ×i∈I [0, r∗i ]. Commitment means that this

outcome remains unchanged at t = 2, and it imposes that q
2(a)
i (v) = 0 for all i when v ∈ ×i∈I [0, r∗i ].

This assignment violates sequential rationality, however, since at t = 2, the seller infers that all realized

valuations lie in ×i∈I [0, r∗i ]. It is immediate to see that i’s posterior virtual valuation at r∗i is equal

to r∗i ≥ 0, so the seller would, at the very least, prefer to give the good to i when his valuation is r∗i ,

rather than keep it.
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3.2 The Solution of Program NC

When thinking about what is optimal, taking the sequential rationality constraints into account, it

helps to examine the features of the solution when there is commitment. First, note that the reason

the commitment solution pools the lower end of each buyer’s valuations is that the cost of separating

them (which is the higher rents that must be left to types above the excluded ones) outweighs the

benefit, so the net benefit of separation (as captured by those types’ virtual valuation) is negative.

An optimal reporting rule given commitment is, then, as follows: All i’s valuations below r∗i report 0,

while all valuations above r∗i report the truth.

When we introduce the sequential rationality constraints, the seller may want to expand or shrink

the region of valuations that pool with valuation 0. She may actually want to use a first-period

mechanism that supports complex reporting rules as best-responses: for instance, mixed strategies

that lead to posteriors with non-convex supports, etc. A key question is whether such reporting rules

make it sequentially rational for the seller to select t = 2-optimal mechanisms that induce t = 2-

allocations closer to the ex-ante optimal one, compared to t = 2-allocations that are optimal when

buyers use pure reporting rules. We start our characterization by investigating which reporting rules

are optimal given the presence of sequential rationality. In order to do this, we define what it means

for a report to be relevant for sequential rationality constraints:

SRC-Relevant Reports: A report ai is relevant for sequential rationality constraints if qS(ai, a−i) >

0 for at least one vector a−i with
∫
V−i

m−i(a−i|v−i)f−i(v−i)dv−i > 0.

We focus on the case in which sequential rationality constraints bind. Sequential rationality con-

straints bind when for all i, there is a SRC-relevant message in the support of the reporting rule of

type 0–namely, the function mi(.|0).31 If the support of mi(.|0) is a singleton–that is, if type 0 of i

employs a pure strategy–we call this message employed by type 0 message 0. If the support mi(.|0) is

not a singleton, then we call message 0 the message ai associated with the smallest P
1(ai)
i (defined in

(7)) among all messages ai in the support of mi(.|0).

Proposition 2 below establishes that at a solution of Program NC, the optimal reporting rule is pure

and that all valuations below some threshold v̄i report 0. The reporting function mi(0|.) associated

31To see this, recall that prior virtual valuations are increasing (without this assumption, we would have to employ the
“ironed ”virtual valuations, which are, by definition, increasing), hence, when a buyer’s realized valuation is zero, the
virtual valuation is negative and at its lowest level. Now, suppose that at a solution of Program NC, trade takes place
with probability 1 when at least one buyer’s valuation is zero, no matter the realization of the other buyers’ valuations
(that is, for some i, qS(ai, a−i) = 0 for all a−i and for all ai in the support of mi(.|0)). This implies that trade takes
place at t = 1 also after a vector of reports a−i chosen by −i buyers when all their valuations are zero. It is immediate to
see that the seller would find it optimal to assign the object at t = 1 given reports that are chosen by higher valuations.
Then sequential rationality constraints do not bind since trade takes place with probability 1 at t = 1.
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with such a reporting rule is

mi(0|vi) =

{
1, for vi ∈ [0, v̄i]

0, otherwise
. (18)

The support of the reporting rule in (18)–namely, the set Vi(0)–is the interval [0, v̄i]. With the help of

this reporting function, we can obtain the seller’s posterior at t = 2 after i reports message 0 at t = 1,

which is:

fi(vi|v̄i) =

{
fi(vi)
Fi(v̄i)

, for vi ∈ [0, v̄i]

0, otherwise
. (19)

Proposition 2 (Reporting rules) At a solution of Program NC: (i) there is a unique vector of

reports that is associated with no trade at t = 1, which we denote by 0 ≡ 0, ..., 0; and (ii) buyers use a

degenerate (pure) reporting rule where all valuations below some cutoff v̄i report 0. When buyers are

ex-ante symmetric, the cutoff is equal across buyers: v̄i(0) = v̄.

The proof of Proposition 2 proceeds in three Steps and relies on Lemma 1, which follows. This

Lemma establishes that buyers’ best-response constraints imply that they must be rewarded at t = 1

for any eventual reduction to their surplus due to the seller’s re-optimizing behavior at t = 2. Hence,

sequential rationality constraints increase the cost of separating valuations.

Lemma 1 For any type vi for which there are two actions ai and âi such that vi belongs to V̄i(ai) ∩

V̄i(âi), it holds that Uaii (vi) = U âii (vi).

Consider a valuation in vi ∈ Vi(ai) for which ai and âi are in the support of mi(.|vi). Then,

best-response constraints imply that Uaii (vi) = U âii (vi). Lemma 1 establishes that U âii (vi) = Uaii (vi)

for all valuations in V̄i(ai) ∩ V̄i(âi), even for vi’s for which ai is not in the support of their reporting

rule mi(.|vi). This, in turn, implies that
dU

ai
i (vi)
dvi

=
dU

âi
i (vi)
dvi

a.e. on V̄i(ai) ∩ V̄i(âi), which is equivalent

to

P aii (vi) = P âii (vi), a.e. on V̄i(ai) ∩ V̄i(âi). (20)

Equality (20) tells us that (even) if mixing can reduce the probability that i gets the good at t = 2

(which may be desirable from the ex-ante perspective), this reduction must be balanced with an

increase of the expected probability of trade at t = 1. This implies that the sequential rationality

constraints increase the t = 1-incentive rents since, now, the rewards of separating a valuation at t = 1

must include the anticipated reduction in the rents that occurs at t = 2 because the seller exploits the

information obtained at t = 1. Equality (20) is the basis of the proof of Proposition 2, which can be

found in Appendix B.
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We now proceed to specify the optimal t = 1-assignment at a = 0–the vector when all buyers

report 0.

Lemma 2 (First-Period Assignment) At an optimal first-period assignment, either qS(0) = 1 or

qS(0) = 0. Moreover, if qS(0) = 1, then qi(0, a−i) = 0 for all a−i.

This Lemma follows almost immediately from the following observation: Given the optimal re-

porting rule established in Proposition 2, the seller’s expected revenue can be written as:

R =

∫
×i∈I [0,v̄i]

Σi∈I

[
qi(0) + δqS(0)q

2(0)
i (v)

]
Ji(vi)f(v)dv +

∫
V \×i∈I [0,v̄i]

Σi∈Ipi(v)Ji(vi)f(v)dv, (21)

which is linear in qi(0), for i ∈ Ī .

Lemma 2 establishes that at a solution of Program NC, the seller keeps the good when all buyers’

valuations lie below some cutoff. At the “commitment solution,”the cutoff is r∗i –the valuation where

i’s virtual valuation is zero (the seller’s valuation). We now show that with sequential rationality

constraints, the cutoff v̄i must be (weakly) greater than r∗i :

Lemma 3 (Optimal Cutoffs) At a solution of Program NC, v̄i ≥ r∗i : that is, ×i∈I [0, v̄i] contains

the region where all virtual valuations are below the seller’s value.

Lemma 3 shows that at a solution of Program NC, the seller keeps the good at t = 1 when all virtual

valuations are less than a threshold that is larger than the seller’s value. The intuition for why this

threshold is higher compared to the one with commitment is that the seller anticipates at t = 1 her

temptation at t = 2 to over-assign the object compared to what is revenue-maximizing from the t = 1

perspective.32 The fact that with limited commitment, the seller may want to induce a larger set of

high-value buyers to postpone trade, so as to sustain a higher price in the continuation game, has

been already noted in the single-buyer environment studied in Skreta (2006b) and in the continuum of

buyers sequential screening problem studied in Deb and Said (2015). The optimal level of v̄i depends

on the discount factor δ, which, as we illustrate in examples in Section 4, determines the revenue loss

due to sequential rationality.

32The reason for this over-assignment is that the posterior virtual valuation is higher compared to the prior. In
particular, when the posterior is (19), i’s posterior virtual valuation is equivalent to vi− [Fi(v̄i)−Fi(vi)]

fi(vi)
, which is equal to

the prior virtual valuation vi− [1−Fi(vi)]
fi(vi)

plus the term [1−Fi(v̄i)]
fi(vi)

. Note, however, that this intuition oversimplifies matters.

The cutoffs (the v̄i’s) also determine the ranking of the buyers’ posterior virtual valuations. It is then conceivable that
the ranking that is supported by some vector of cutoffs with v̄i < ri for some i is optimal because it reduces the costs of
sequential rationality constraints. We show (in Appendix D) that this cannot happen because, roughly, the effect of v̄i’s
on the ranking of posterior virtual valuations across buyers is secondary.
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The fact that at a solution of Program NC, it holds that v̄i ≥ r∗i implies that in the remaining

area of vectors of valuations–that is, in V \×i∈I [0, v̄i]–at least one buyer has a virtual valuation that is

higher than the seller’s value. For V \×i∈I [0, v̄i], we choose the first-period assignment that maximizes

(21) pointwise (for each v), subject to the resource constraint. Clearly, this point-wise optimum of a

relaxed program is the best the seller can achieve. The above considerations lead to the following:

Proposed Solution: At a solution of Program NC, the optimal reporting rule mi(.|vi) is a degenerate

function with a mass point at 0 for all vi ∈ [0, v̄i], and a degenerate function with a mass point at vi

for all vi > v̄i. The optimal t = 1 assignment is: qS(ai, a−i) = 1 if for all i ai = 0; otherwise, qS = 0;

qi(0, a−i) = 0 for all a−i; and, finally, qi(vi, v−i) = 1 if i has the maximum virtual valuation, zero

otherwise, while q2 is given by (16), for beliefs given by (19). The resulting allocation and payment

rules are:33

for v ∈ V \ ×i∈I [0, v̄i] : p∗i (vi, v−i) =

{
1 if i ∈ arg maxi∈I1(v) Ji(vi)

0 otherwise
, (22)

for v ∈ ×i∈I [0, v̄i] : p∗i (vi, v−i) = δq2
i (v),

where I1(v) = {i ∈ I : vi ∈ Vi and vi > v̄i} and q2 is given by (16), for beliefs given by (19);

x∗i (v) = p∗i (v)vi −
∫ vi

0
p∗i (ti, v−i)dti. (23)

We now verify that, indeed, this proposed solution is feasible for Program NC:

Lemma 4 (Feasibility) The allocation rule in (22) is feasible for Program NC.

Finally, we note that the revenue-maximizing assignment under limited commitment can be fully

characterized by choosing the cutoffs v̄i optimally. This can be achieved by solving the following

simplified program: After substituting (22) in (21), Program NC reduces to the problem of finding

v̄ = (v̄1, ..., v̄I), with v̄i ∈ [0, bi], which maximizes:

R(v̄) ≡ δ
∫
×i∈I [0,v̄i]

Σi∈Iq
2
i (v)Ji(vi)f(v)dv +

∫
V \×i∈I [0,v̄i]

Jmax(v)f(v)dv, (24)

where Jmax(v) = maxi∈I{J1(v1), ..., JI(vI)}, and q2 satisfies (16) for beliefs given by (19).

This program is tremendously simpler than Program NC: Instead of maximizing over an infinite

dimensional space, the seller now chooses a vector v̄ out of a compact set ×i∈I [0, bi]. Moreover,

it is routine to verify that (24) is continuous in v̄ since, as we establish in Appendix D, q2–more

33 Because virtual valuations are increasing, so are posterior virtual valuations; see Lemma 8 in Appendix D. Ties,
then, occur with probability zero and can be broken arbitrarily.
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precisely the boundaries that describe q2–r2
i (v̄i) and vj(vi, v̄i, v̄j), vary continuously with v̄. Hence,

this maximization problem is well-defined and a solution exists. We illustrate how to obtain this

solution in Section 4.

3.3 Implementation

We have, thus far, obtained a solution of Program NC described in (22) and (23) for v̄ that solves

(24). Since this solution satisfies only necessary conditions of being PBE-feasible, to complete our

characterization, we provide a PBE-feasible dynamic mechanism that implements it:

Dynamic Mechanism: The assignment rule of the t = 1-mechanism is:

qi(vi, v−i) =

{
1 if i ∈ arg maxi∈I1(v) Ji(vi)

0 otherwise,
, (25)

where I1(v) = {i ∈ I : vi ∈ Vi and vi > v̄i} , and where v̄= (v̄i, v̄−i) solves (24). The payment rule of

the t = 1-mechanism is:

zi(0, a−i) = 0, for all a−i ∈ A−i (26)

zi(vi, v−i) =


r1
i (v−i) if i ∈ arg maxi∈I1(v) Ji(vi) and I1(v) 6= i

r̄1
i if I1(v) = i

0 otherwise

.

This payment rule (26) is derived using (23): Buyer i pays only when he wins the object. If i wins

while facing some competition at t = 1–that is, when I1(v) 6= i–he pays the lowest possible valuation

that would still allow him to win given v−i–that is, r1
i (v−i) ≡ inf{vi such that qi(v) = 1}.34 If i does

not face any competition at t = 1–that is, if I1(v) = {i}–i pays a buyer-specific reserve price r̄1
i . Full

derivation details can be found in Appendix F.

The t = 2-mechanism is a direct mechanism described in (16) that is optimal given (19).

Buyers’ Strategies: At period t = 1, buyer i employs a reporting rule mi(.|vi) that is a degenerate

function with a mass point at 0 for all vi ∈ [0, v̄i], and a degenerate function with a mass point at vi

for all vi > v̄i. At t = 2, buyers report their valuations truthfully, so the t = 2 reporting rule is a

degenerate function with a mass point at vi for all vi.

Beliefs: Given the buyers’ behavior described by their reporting rules, when trade does not occur

at t = 1, the seller’s posterior beliefs along the path are given by (19). When the seller observes an

off-path vector of actions that leads to no trade at t = 1, her posterior belief at t = 2 remains equal

to the prior (passive beliefs).

34The payment rule in this region is analogous to the one described by the optimal mechanism in Myerson (1981). The
difference is that, here, not all buyers report a valuation above the cutoff at t = 1.
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It is immediate to see that this strategy profile implements (22) and (23). Now, we establish

that this dynamic mechanism is PBE-feasible. At t = 2, the dynamic mechanism specifies a direct

revelation mechanism with an allocation rule described in (16), which is revenue-maximizing given

the seller’s posterior beliefs derived from the buyers’ reporting rules. Since v̄ is optimally chosen, the

seller cannot do any better by changing the regions where trade takes place at t = 1, versus t = 2.

The fact that buyers’ strategies are best responses at t = 2 follows immediately from the incentive

compatibility of the direct mechanism that the seller employs at t = 2. Hence, the only requirement

that remains to be verified is that buyers’ strategies are best responses at t = 1. This follows from

the incentive compatibility of (22) established in Proposition 4 and from the fact that payments are

constructed from (23). Putting all the pieces together, we have shown that:

Proposition 3 (PBE-implementability) The allocation rule described in (22) can be implemented

by a PBE-feasible dynamic mechanism.

3.4 Proof of Theorem 1

In Proposition 1, we argued that if a solution of Program NC is PBE-feasible, then the dynamic mech-

anism that implements it is optimal. We then showed that the allocation rule in (22) with optimally

chosen v̄ solves Program NC. Finally, Proposition 3 states that this solution can be implemented by

a PBE-feasible dynamic mechanism. Hence, this dynamic mechanism is optimal.

Discussion:35 Put differently, this paper proves the existence of a dynamic mechanismM–in which

Ai = Vi, for both t = 1 and t = 2, and such that the following three conditions are satisfied:

(a) Given M, there exists a PBE in the game among the buyers only, in which: (i) at t = 1, each

buyer reports 0 for vi < v̄i and reports truthfully for vi > v̄i; and (ii) if the good remains

unassigned at t = 1, then all vi report truthfully at t = 2.

(b) Given buyers’ strategies, it is optimal for the seller not to change the mechanism at t = 2 if the

good is unassigned at t = 1; that is, given the seller’s t = 2-posteriors, deviation to any t = 2-

feasible direct mechanism yields a lower payoff.

(c) For any other dynamic mechanism M′ and any PBE of M′ (in the game among the buyers),

one of the following holds:

(i) either the mechanism is not sequentially rational, in the sense that the seller has a profitable

deviation to a different feasible mechanism t = 2; or

35I am grateful to the editors for providing this insightful discussion.
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(ii) the seller’s expected payoff under the proposed PBE associated to M ′ is lower than under

the original PBE of M .

Observation: While we could not a priori argue that it is wlog to restrict attention to dynamic

mechanisms in which the t-1 message spaces coincide with the type spaces, the results of this paper de

facto imply that it is without loss of optimality for the seller to restrict attention to such mechanisms:

Setting Ai = Vi suffices to get the revenue-maximizing equilibrium feasible outcome of the general

game, as we established in Section 3.2. Put differently, the findings of this paper extend the Bester

and Strausz (2001) result to the IPV auction setup considered in this paper.

4 Illustration and the Value of Commitment

Here, we provide an illustration of the result of Theorem 1 in a simple example: Suppose that there

are I buyers whose valuations are distributed uniformly on [0, 1], that the seller’s valuation is zero,

and that T = 2. For this example, the commitment benchmark–that is, a revenue-maximizing auction

without the sequential rationality constraints–is a second-price auction with a reserve price of r∗i = 0.5

for all i ∈ I. When I = 2, the seller’s expected revenue is 0.4166.

With sequential rationality constraints, at t = 1, buyer i gets the object if vi ≥ vj , for all i 6= j,

and vi ≥ v̄i. Given a vector of first-period cutoffs v̄ = (v̄1, ..., v̄I), the posterior is fi(vi|v̄i) = 1
v̄i

, and

i’s posterior virtual valuation is Ji(vi |v̄i ) = 2vi − v̄i. It is easy to see that the optimal t = 2-reserve

price is r2
i (v̄i) = v̄i

2 . Then, at a revenue-maximizing mechanism at t = 2, buyer i obtains the object if

vi ≥ vj − (v̄j−v̄i)
2 and vi ≥ v̄i

2 for all j 6= i.

Since, in this example, buyers are ex-ante identical, at the optimum, v̄i = v̄j ≡ v̄ and (24) reduces

to:

Iδ

∫ v̄

v̄
2

(2v − 1)vI−1dv + I

∫ 1

v̄
(2v − 1)vI−1dv. (27)

It is straightforward to verify that the revenue-maximizing first-period cutoff is:

v̄ =
δ − 2Iδ + 2I

δ − 2I+1δ + 2I+1
. (28)

Comparative Statics: We first observe that the first-period cutoff, described in (28), is increasing

in δ. Differentiating (28) with respect to δ, we get ∂v̄
∂δ = 2I+2I+1

(δ−2I+1δ+2I+1)2 > 0. Differentiating (28) with

respect to I, we get that ∂v̄
∂I =

1
2

2IIδ(δ−1)

(δ−2I+1δ+2I+1)2 ≤ 0. The first-period cutoff decreases, and it converges

to 1
2 as I gets large. The left panel of Figure 2 depicts how the first-period cutoff varies with the

discount factor: Each curve corresponds to a different number of buyers: the dotted line to I = 2,

the dashed line to I = 3 and the solid line to I = 10. The right panel of the same figure depicts how
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Figure 2: First-Period Cutoff

the first-period cutoff varies with the number of buyers. The dotted curve corresponds to a discount

factor of δ = 0.5, and the solid line corresponds to a discount factor of δ = 0.9.

Expected revenue as a function of the discount factor when I = 2 and T = 2 is given by

8
3(7δ−8)3 (53δ3 − 183δ2 + 210δ− 80)− 1

12δ
(3δ−4)2

(7δ−8)3 (21δ− 16) and is depicted by the solid line in Figure 3

below. The dotted line on the same graph depicts the expected revenue in the commitment benchmark.

The revenue loss is zero for extreme values of the discount factor and highest for δ close to 0.8. We

can also look at at the first-period reserve price. For the example under consideration and when I = 2,

the first-period reserve price derived in (47) becomes r̄1
i = v̄(1−0.375δ), with v̄ = 3δ−4

7δ−8 . Interestingly,

the first-period reserve price varies non-monotonically with the discount factor.
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Figure 3: Left Panel: Revenue; Right Panel: First-period reserve price

How Much is Commitment Worth? As Figure 3 illustrates, for extreme discount factors–namely,

for δ = 0 and for δ = 1–the revenue loss due to lack of commitment is zero: When δ = 0, the future

does not matter at all, so the sequential rationality constraints disappear, and the optimal vector of

cutoffs is given by the vectors of valuations where all buyers’ virtual valuations are equal to the seller’s
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valuation; that is, v̄(δ = 0) = (r∗1, ..., r
∗
I ). When δ = 1, waiting is costless, so the seller can wait until

the last period of the game and offer an optimal mechanism without sequential-rationality constraints.

This can be achieved by selecting v̄ to be equal to the vector of the highest possible valuations of all

buyers: v̄(δ = 1) = (b1, ..., bI). This can also be seen in Figure 2 above. For intermediate discount

factors, an optimal vector of cutoffs is somewhere between v̄(0) and v̄(1).

Since the seller can always run an efficient auction at t = 1 (which allocates the good with proba-

bility one, and, hence, limited commitment has no bite), an upper bound on the value of commitment

in terms of the seller’s expected revenue is equal to the difference between the revenue at the optimal

Myerson benchmark and the revenue generated by an efficient auction. The difference between these

two benchmarks depends on the number of buyers, the discount factor, and the distribution of valu-

ations. If the seller faces many buyers, then the probability that trade occurs at period one is very

high, and her lack of commitment becomes less important: The design matters the most when she

faces a small number of buyers.

Longer Games: Following an analogous procedure, we can obtain the optimal cutoffs for the case

in which I = 2 as a function of the discount factor for longer games.36 In Figure 4, the number of

buyers is held at two, and we depict the first-period cutoff as a function of the discount factor for

games of various lengths. The dashed line corresponds to t = 2, the dotted line to t = 3 and the solid
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Figure 4: First-Period Cutoff and Length of T

line to t = 4. The last thick line is the first-period cutoff of a stationary equilibrium of the t = ∞

game of McAfee and Vincent (1997). This cutoff is implicitly given by a solution of 2v̄ − 1 = δv̄3.37

McAfee and Vincent (1997) study reserve-price dynamics in an infinite-horizon model in which

the seller uses standard auctions; buyers are symmetric; and the lowest possible valuation is strictly

36The analysis of the derivation of a revenue-maximizing PBE for the case T > 2 is overviewed in Section 6.
37More specifically, McAfee and Vincent (1997) consider a uniform [0, 1] , infinite-horizon, no-gap example and establish

that it has a symmetric linear stationary equilibrium.
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higher than the seller’s value–“the gap case.”38 We show that in a finite-horizon version of their

model, standard auctions together with sequentially rational reserve price paths–analogous to the

one characterized in Theorem 1 in McAfee and Vincent (1997) for the infinite-horizon case–indeed

constitute the revenue-maximizing equilibrium when the seller can choose any mechanism in each

period.

5 Mechanisms with Variable Transparency

We have, thus far, assumed that all players observe the entire vector of actions chosen at period t;

that is, we have assumed that the seller employs fully transparent mechanisms. This can be restrictive

since, in dynamic settings where we require players to behave sequentially rationally, what buyers

observe determines their beliefs about their competitors, which may affect their future behavior and,

hence, the set of continuation equilibrium outcomes. Here, we allow for the seller to control how much

buyers observe in each period: The seller privately observes all the actions chosen by the buyers at

period t, and the transparency of the mechanism determines how much information about these actions

is disclosed to buyers at the end of period t.

The degree of transparency of the period-t mechanism is modeled as an information-disclosure

rule, that is a mapping from the vector of actions chosen by the buyers (the seller’s information),

to a vector of messages, one for each buyer: ct : A → ∆(Λ), where Λ := ×i∈IΛi, and Λi is the set

of messages that the seller can send to buyer i. Let λ ≡ (λi, λ−i) ∈ Λ denote a vector of messages

released by the disclosure rule. Buyer i observes only λi.

Definition 3 A variable transparency mechanism Mt = (qt, zt, ct) : ×i∈IAi → [0, 1]Ī × RĪ × ∆(Λ)

specifies for a vector of actions a, the probability i is assigned the good at t, qti(a); i’s expected

payment at t, zti(a); and a probability distribution of vectors of messages that buyers observe ct(λ|a).

Note that the disclosure rule is part of the characteristics of the period-t mechanism; hence, the

seller commits within period t to the disclosure rule. This is realistic since when, in practice, a seller

chooses to use a sealed bid instead of an open-outcry auction, the choice of the selling procedure itself

captures its transparency level.39 It is also easy to see that this formulation encompasses full disclosure

(then, ct is deterministic and maps a vector of actions a to itself); no disclosure (then ct maps every

vector of actions a to the same message; hence, it is completely uninformative); as well as intermediate

cases. When the seller employs a variable transparency mechanism, she not only determines how a

38In “the gap case,”there is always some period in which trade takes place with probability one.
39It is worth noting that Proposition 4 below holds even without such commitment, as its proof does not rely on it,

and it remains true even if the seller chooses the disclosure rule after observing the period-t actions and before proposing
the t+ 1 mechanism.
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vector of actions is mapped to assignment probabilities and transfers, but also specifies what buyers

observe based on a vector of actions.40

As in the baseline model, we assume that all players observe the dynamic mechanism (which now

consists of a period-1 mechanism that includes the information-disclosure rule) and whether or not

trade takes place. Given that the seller observes the entire vector of actions and what is disclosed to all

buyers, whereas each buyer observes only the message he receives, the seller has superior information

vis-a-vis the buyers, and she becomes an informed principal.

Proposition 4 The full-transparency optimal mechanism–the mechanism that is optimal when a is

common knowledge– is optimal for the seller at t = 2 irrespective, of the disclosure rule associated

with the t = 1 mechanism.

Proposition 4 relies on the following observations: First, the full-transparency optimum is a feasible

choice for every type of the seller, regardless of the buyers’ posterior beliefs, because it is dominant-

strategy incentive-compatible. This implies that no matter the seller’s t = 2 information, the expected

revenue from the t = 2-mechanism must be (weakly) higher than the revenue from the full-transparency

optimum. Second, because there is a common prior, from the ex-ante point of view, the expectation of

i’s t = 2-payment from his and from the seller’s perspective coincide. This is despite the fact that this

expectation can differ at the interim, given that the seller’s and buyer i’s beliefs about the types of −i

buyers may differ. Skreta (2011) employs these two observations to establish that, at an equilibrium

of the informed-seller game, this interim expectation must also coincide, regardless of the disclosure

policy. Using this finding, that paper obtains the usual expression of the seller’s revenue in terms of

virtual valuations, as in the standard model with common beliefs.41 It proceeds to establish42 that

the full-transparency optimal mechanism is optimal at t = 2 (and, more generally, at the last period

of the game), regardless of the disclosure rule associated with the t = 1 mechanism.

Proposition 4 implies that optimal t = 2-mechanisms are independent of the disclosure policy of

the t = 1-mechanism. Since disclosure policies can affect revenue only through changing the revenue-

maximizing choices at t = 2, we can conclude the following:

40In the current formulation, a disclosure rule maps a vector of actions to a probability distribution over signals. This
is assumed for simplicity. Another possibility would have been that the disclosure rule is a mapping from actions and
allocations to a probability distribution over signals. Given that allocations are themselves functions of a, we conjecture
that the reduced-form formulation is without loss since we can define a new composite disclosure rule that is simply a
function of a and is equivalent to the original one.

41Some more details are provided in online Appendix D.
42Full details are available from the author upon request.
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Corollary 2 Without loss of generality for the seller, we can assume that all buyers observe the entire

vector of actions chosen in the first period.

6 Analysis of the Problem when 2 < T <∞ : An Overview

We have shown that if T = 2, the seller maximizes expected revenue by employing a “Myerson”

auction in each period. Here, we sketch out how we can extend this result by induction for any T

finite.

We describe the induction step for T = 3 : First, we establish the analog of Lemma 1, the proof of

which remains essentially unchanged, with the only modification that the allocations at t = 2 are now

continuation allocations of a two-period game that starts at t = 2. Given Lemma 1, we can establish

Proposition 2 using arguments parallel to the ones used in the T = 2 case: When two different actions

of a buyer are followed by identical t = 2 continuation allocations, we can merge the actions, and

that does not change the sequentially-rational continuation allocation at t = 2. Actions followed

by different continuation allocations increase the cost of sequential rationality constraints. Hence,

pooling the lower end of valuations at t = 1 is optimal. Given Proposition 2, the analog of Lemma

2 for the T = 3 game follows, using arguments identical to those in the T = 2 case. Proposition 2

implies that at the optimum, posteriors after all buyers choose the vector 0 are truncations of the

priors–given by (19). Lemma 8 (in Appendix D) then establishes that the corresponding posterior

virtual valuations are strictly increasing. Then, we can apply our T = 2 result to obtain the revenue-

maximizing sequentially-rational allocation rule at the continuation game that starts at t = 2 after the

vector 0 is chosen at t = 1, which is dominant-strategy incentive-compatible (Remark 1 in Appendix

E).

To establish Lemma 3, we need to show that the t = 1 boundary v̄i is greater or equal to r∗i (the

commitment reserve price) for all i ∈ I when the problem lasts three periods. We already know from

Lemma 2 of Skreta (2006b) that the T = 3-boundaries r3
i (v̄

2
i (v̄i)) are increasing in v̄2

i (v̄i) (or, more

generally, rTi (v̄T−1
i (v̄i)) are increasing in v̄T−1

i (v̄i).) The proof of the analog of Lemma 3 mimics that

for the two-period version of the game, after we establish that the boundaries v̄2
i (v̄i) are increasing

in v̄i. The t = 2-boundaries v̄2
i (v̄i) give the valuation of i below which the seller keeps the object at

t = 2 when the posteriors are given by equation (19). When T = 3, posterior virtual valuations at

the continuation game that starts at t = 2 are equivalent to Ji(vi|v̄i) ≡ vi − Fi(v̄i)−Fi(vi)
fi(vi)

. Notice that

Ji(vi|v̄i) is decreasing in v̄i since Fi is increasing in v̄i. Then, because posterior virtual valuations fall

when v̄i increases, the region in which the seller keeps the good at t = 2 increases; that is, v̄2
i (v̄i) is

(weakly) increasing in v̄i. With this simple observation in hand, we can straightforwardly establish
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Lemma 3 for the case in which the game lasts for three periods. Lemma 4 and Proposition 3 are,

then, routine to generalize. Finally, given that the two-period sequentially optimal allocation rule

is dominant-strategy incentive-compatible (recall Remark 1), we can easily establish43 the analog of

Corollary 2 for T = 3 and for longer finite games. And we conclude that we can, without loss, assume

that at t = 1, all buyers observe the entire vector of actions chosen.

Given the result for T = 3, we can continue to get the result for T = 4, since all steps followed in

the case of T = 3 immediately generalize to the case of T = 4. The general induction is as follows:

once we have the characterization for a game that lasts t periods, we can use this to establish the

result for a game that lasts t+ 1, periods and so forth.

7 Robustness and Concluding Remarks

We have shown that when sellers cannot resist the temptation to place unsold items back on the

market simple selling procedures are optimal: When buyers are ex-ante symmetric, first- or second-

price auctions with optimally chosen reservation prices are revenue-maximizing. Lack of commitment

is costly for the seller, especially when demand is thin and when the seller is moderately patient.

Governments sell important assets, such as oil tracts, timber tracts, spectrum and treasury bills,

through auctions. Optimal design is especially important for revenue generation when the number of

buyers who participate in the auction is very small and there is little competition. This is usually the

case for auctions of very valuable assets. This observation, together with the fact that a large fraction

of items that remain unsold are placed back on the market, makes the characterization obtained in

this paper a relevant extension of the optimal-auction literature.

We now offer a few remarks on the generality of the solution. With respect to the definition

of “mechanisms,” we have been very general: We have assumed that a mechanism consists of some

abstract game form endowed with an information-disclosure policy as a way of capturing different

scenarios of what buyers observe during the play of an auction. Regarding the generality of buyers’

strategies, we allow for mixed strategies, and for non-convex sets of types to be making the same

report. Finally, regarding what the seller observes during play, we have assumed that she observes

the vector of actions that buyers choose at each stage. This assumption makes the non-commitment

constraints quite strong, and intentionally so: The point of our analysis is to find what is best for the

seller, given that she cannot commit. If we had assumed that the seller observes nothing over time

then, she would not have any reason to update her beliefs, and, trivially, the commitment solution

would be sequentially-rational.

43Full details are available from the author upon request.
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A limitation of this work is that we analyze a finite-horizon problem. This goes somewhat against

the spirit of our analysis since the seller commits in the last period. However, in many situations in

practice, financial or political constraints impose a hard deadline by which an asset must be sold. For

example, financial institutions have a certain period of time to sell distressed confiscated property.

Technically, an infinite-horizon mechanism-design problem in which the designer behaves sequentially

rationally is complex, and its analysis is beyond the scope of the present paper. In such a problem,

continuation allocation rules need not be revenue-maximizing, so Lemma 1 may not hold. In addition,

it seems impossible to express the problem in a recursive way, thus precluding the use of dynamic

programming techniques. It is very likely that the solution of an infinite-horizon problem would be

based on an argument that relies on the properties of the revenue-maximizing mechanisms in the finite

horizon established in this paper, making the current analysis a key stepping stone towards such a

characterization.

In recent years, motivated by the large number and the importance of applications,44 there has

been substantial work on dynamic mechanism design.45 A key assumption in that literature is that

the principal can fully commit ex-ante to mechanisms that are ex-post suboptimal. This can be

sometimes unrealistic: Contracting parties often renegotiate or change a contract if it becomes clear

that there exist others that dominate it. Thus, designing multi-period incentives schemes under various

assumptions of commitment is an important and active area of research: Hörner and Samuelson (2011)

study a revenue-management problem in the absence of commitment when the seller is posting prices.

Deb and Said (2015) characterize the revenue-maximizing sequential screening contract in a two-

period model in which the monopolist cannot commit to the second-period price. Finally, Evans

and Reiche (2015) characterize implementable outcomes for an uninformed principal and an informed

agent if, having observed the agent’s contract choice, the principal can offer a new menu of contracts.

Despite the progress, general dynamic mechanism design in the absence of commitment is largely an

understudied area. We hope and expect that the ideas and tools developed in this paper will be useful

for further work.

Appendices

A Proof of Lemma 1

Proof. Our goal is to establish that U âii (vi) = Uaii (vi) for all vi ∈ V̄i(ai) ∩ V̄i(âi). First, consider a
valuation in Vi(ai) that, in addition to ai, reports âi, that is, ai and âi are in the support of mi(.|vi).
Then, best-response constraints imply that at valuation vi, buyer i is indifferent between ai and âi,

44 For example, the classical airline revenue-management problem, the allocation of advertising inventory, the design
of incentive schemes that take into account inter-temporal considerations of managers, etc.

45See, for example, the survey of Bergemann and Said (2011), and the references therein.
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that is, U âii (vi) = Uaii (vi). Valuations in V̄i(ai) ∩ V̄i(âi)\Vi(ai) do not report ai at t = 1; still, we now
show that all vi ∈ V̄i(ai) ∩ V̄i(âi) must be indifferent between ai and âi. We argue by contradiction:
Consider a ṽi ∈ V̄i(ai) ∩ V̄i(âi) that strictly prefers âi to ai, implying that:

P âii (ṽi)ṽi −X âi
i (ṽi) > P aii (vi)ṽi −Xai

i (vi), (29)

for all options in {P aii (vi), X
ai
i (vi)}vi∈Vi(ai). Given the linearity and the single-crossing property of

payoffs, (29) implies that there is an open set of valuations neighboring ṽi that strictly prefer âi to ai
at t = 1. Let (ṽLi , ṽ

H
i ) be the largest such neighborhood. Then, by definition, ai is not in the support

of mi(.|vi) for vi ∈ (ṽLi , ṽ
H
i ), while ṽLi and ṽHi (at least weakly) prefer ai. Then, there is a gap of

(ṽLi , ṽ
H
i ) in the support of fi(.|ai)–the seller’s posterior at t = 2 after he observes ai at t = 1–and,

because the seller employs an optimal mechanism at t = 2, it holds:46

P aii (ṽHi )ṽHi −X
ai
i (ṽHi ) = P aii (ṽLi )ṽHi −X

ai
i (ṽLi ). (30)

Note that (29) trivially47 implies that

P âii (ṽi)ṽi −X âi
i (ṽi) > P aii (ṽLi )ṽi −Xai

i (ṽLi ). (31)

Now, observe that it is not possible that P âii (ṽi) = P aii (ṽLi ) because, then, (31) implies that X âi
i (ṽi) <

Xai
i (ṽLi ), and, in that case, both ṽi and ṽLi strictly prefer to choose âi at t = 1, which contradicts the

definition ṽLi . If P âii (ṽi) > P aii (ṽLi ), then because ṽHi > ṽi, (31) implies that

P âii (ṽi)ṽ
H
i −X

âi
i (ṽi) > P aii (ṽLi )ṽHi −X

ai
i (ṽLi ),

which, together with (30), implies that type ṽHi strictly prefers âi to ai. Contradiction.

If P âii (ṽi) < P aii (ṽLi ), then, because ṽLi < ṽi, (31) implies that

P âii (ṽi)ṽ
L
i −X

âi
i (ṽi) > P aii (ṽLi )ṽLi −X

ai
i (ṽLi ),

which implies that type vLi strictly prefers âi to ai. Contradiction.

B Proof of Proposition 2

The goal is to establish that at a solution of Program NC, (i) there is a unique vector of reports that
is associated with no trade at t = 1, which we denote by 0 ≡ 0, ..., 0; and (ii) buyers use a degenerate
(pure) reporting rule where all valuations below some threshold v̄i report 0. When buyers are ex-ante
symmetric, the cutoff is equal across buyers: v̄i(0) = v̄. The proof is broken down into three main
steps.

Step 1: Reserve price at t = 2. We show that among all posteriors associated with reporting
functions mi(0|.) with V̄i(0) = [0, v̄i(0)], for some cutoff v̄i(0) ∈ [0, bi], the reporting function (and
associated posterior) that leads to the t = 2-reserve price closest to r∗i is the partitional one given by
(18) for v̄i = v̄i(0). We assume that v̄i(0) > 0; otherwise, messages 0 and ai are in the support of just

46 This is easy to see: At an optimal mechanism at t = 2, after a vector of actions ai, a−i was chosen at t = 1, the
incentive constraint for vHi not to mimic vLi is tight for all a−i, because, otherwise, the seller could generate strictly more
revenue at t = 2 by increasing the payments for all valuations greater or equal to vHi . This result is analogous to the one
in the optimal-pricing problem with two types, where the price is chosen to be just big enough to make the high type
indifferent about mimicking the low type.

47If ai is in the support of mi(.|ṽLi ), this is immediate; if not, denote by a slight abuse of notation P ai
i (ṽLi ) and Xai

i (ṽLi )
the best option for ṽLi out of {P ai

i (vi), X
ai
i (vi)}vi∈Vi(ai)

.
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one type, namely 0, and the result trivially follows. A t = 2-reserve price that is as close as possible
to r∗i is preferred from the t = 1-perspective since it reduces the region in which the seller assigns the
good to negative (prior) virtual valuations (namely, valuations below r∗i ). The result is established
with the help of the following Lemmas:

Lemma 5 Consider first-period reporting rules and mechanisms that satisfy the constraints of Pro-
gram NC. If ai is in the support of mi(.|vi) for vi ∈ [0, v̄i(0)] and r2

i (ai) < v̄i(0), then, r2
i (ai) = r2

i (0).

Lemma 548 tells us that if a report ai is in the support of mi(.|vi) for vi ∈ [0, v̄i(0)] and r2
i (ai) <

v̄i(0), then r2
i (ai) = r2

i (0). Consider, now, the following modification of the reporting rule: Valuations
using a t = 1-report ai associated with a t = 2-reserve equal to r2

i (0) “pool” and simply report 0
instead of ai. For the modified reporting rule, it holds that m̃i(0|vi) = mi(0|vi)+mi(ai|vi)+ ...., where
we add over all reports associated with t = 2-reserve price equal to r2

i (0). We denote the optimal
reserve price given the resulting posterior as r̃2

i (0). Step 1 of the proof of Proposition 8 in Skreta
(2006b)) establishes that r̃2

i (0) = r2
i (0).49 Now, we move on to compare r̃2

i (0) with r2
i (v̄i(0))—the

optimal reserve price given posterior beliefs (19) for v̄i = v̄i(0). Note that Lemma 2 in Skreta (2006b)
establishes that r2

i (v̄i) is increasing in v̄i, which immediately implies that r2
i (v̄i) ≤ r2

i (bi) ≡ r∗i . This
last equality tells us that in order to sustain r∗i as a t = 2-optimal reserve price, all vi ≤ bi must pool
with 0 at t = 1.

Lemma 6 Sequential rationality implies that r̃2
i (0) ≤ r2

i (v̄i(0)).

Proof. We argue by contradiction. Suppose that r̃2
i (0) > r2

i (v̄i(0)). First, observe that all reports
made by valuations below r2

i (0) (which, as we have argued, is equal to r̃2
i (0)) lead to the same reserve

price (Lemma 5), implying that m̃i(0|vi) = mi(0|vi) +mi(ai|vi) + .... = 1 for vi ≤ r̃2
i (0), so the seller’s

posterior after observing 0, given the modified reporting rule m̃i, is

fi(vi|0) =


fi(vi)

Fi(r̃2
i (0))+

∫ v̄i
r̃2
i

(0)
m̃i(0|s)fi(s)ds

, vi ∈ [0, r̃2
i (0))

m̃i(0|vi)fi(vi)
Fi(r̃2

i (0))+
∫ v̄i
r̃2
i

(0)
m̃i(0|s)fi(s)ds

, vi ∈ [r̃2
i (0), v̄i(0)]

. (32)

Define A(s) ≡ sfi(s)−Fi(v̄i)−Fi(s) = sfi(s)−
∫ v̄i(0)
s fi(t)dt and B(s) ≡ sfi(s)−

∫ v̄i(0)
s m̃i(0|t)fi(t)dt.

Note, that since m̃i(0|t) ≤ 1 for all t, we have that for all s, A(s) ≤ B(s). Recalling (13) and

the definition of r2
i (v̄i(0)), it follows that

∫ ṽ
r2
i (v̄i(0))A(s)ds ≥ 0 for all ṽ ≥ r2

i (v̄i(0)), which, because

A(s) ≤ B(s), immediately implies that∫ ṽ

r2
i (v̄i(0))

B(s)ds ≥ 0 for all ṽ ≥ r2
i (v̄i(0)),

contradicting the definition of r̃2
i (0) according to which it satisfies (13) for beliefs (32).

A rough intuition for Lemma 6 is that (32) puts less weight on the higher valuations (above r̃2
i (0))

compared to (19), so the optimal reserve price given posterior (32) is lower compared to the optimal
reserve price given a truncation of the prior (19). Step 1 follows from Lemmas 5 and 6.

We now proceed to establish that the proposed solution minimizes the distortions arising from
sequential rationality constraints when it comes to inter-buyer boundaries. First, we consider the case
in which buyers are ex-ante symmetric.

48See the online appendix for its proof.
49This results also follows from the proof of Step 3, Case 1 below, where we also provide the intuition.
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Step 2: Inter-buyer boundaries: Symmetric Buyers: When buyers are ex-ante symmetric,
at the commitment solution, the revenue-maximizing boundary dividing the regions where i and j
get the object is the forty-five degree line. We now establish that the posteriors associated with
the reporting rules described in the statement of the Proposition imply that the revenue-maximizing
boundary at t = 2 dividing the regions where i and j get the object is the forty-five degree line and,
hence, are optimal:

When, at period one, the reporting rule is pure and all i report 0 for vi ∈ [0, v̄i(0)], with v̄i(0) =
v̄j(0) = v̄ for all i, j ∈ I, after the seller observes 0, her posterior is given by (19) with v̄i(0) = v̄j(0) = v̄
for all i, j ∈ I. Buyers are, then, still symmetric in the eyes of the seller at t = 2, so the optimal
boundary dividing the regions where i and j get the object remains the forty-five degree line.

Step 3: Inter-buyer boundaries: Asymmetric Buyers: When buyers are asymmetric, the
shape of the ex-ante optimal boundary can be very complex and depends on the particular distribu-
tions.

Case 1–Same t=2 boundaries: Suppose that for all vi in [0, v̄i(0)], if a report ai is in the support
of their reporting rule mi(.|vi), then it holds that: r2

i (ai) = r2
i (0) and v−i(vi, 0, a−i) = v−i(vi, ai, a−i)

for all a−i and all vi. If this is the case, the second-period allocation is identical for all a−i, regardless
of whether buyer i reported 0 or ai at t = 1. We argue that if we replace buyer i’s reporting rule by
one, where i pools and reports 0, instead of reporting any other message associated with the same
t = 2-boundaries (which fully describe the t = 2-mechanism), the t = 2-mechanism remains optimal
and, hence, is sequentially-rational if all valuations in V̄i(0) pool and report 0. Full details of this
proof can be found in the online Appendix. The intuition is as follows: given that the seller’s optimal
t = 2-mechanism does not differ, regardless of whether or not she can condition on having observed
message 0 or ai, nothing changes in the seller’s response when she conditions on the pooled information
that i reported either 0 or ai. Hence, a reporting rule that pools the information does not change
anything in terms of the seller’s choice at t = 2, and, hence, it is without loss and we are done.

We proceed to establish that at a solution of Program NC, reporting rules must be such that we
are in Case 1–hence, the case that follows cannot arise at a solution of Program NC:

Case 2–Different t=2 boundaries: We establish that this case cannot arise at a solution of
Program NC. We start by establishing an auxiliary Lemma:

Lemma 7 At a solution of Program NC, if ai is in the support of mi(.|vi) for some vi ∈ [0, v̄i(0)],
with v̄i(0) > 0, then r2

i (ai) < v̄i(0).

Lemma 750 implies that valuations in [0, v̄i] report either 0 or messages ai associated with r2
i (ai) <

v̄i(0). Then, together with Lemma 5, this implies that r2
i (ai) = r2

i (0). Given that the optimal t = 2
reserve price must be in the support of mi(ai|.), it follows that vi(ai) ≤ r2

i (ai) = r2
i (0).

Observe now that at a solution of Program NC, it holds for all a−i that qS(0, a−i) ≥ qS(ai, a−i).
This observation states that the probability that the seller keeps the good at t = 1 is weakly higher
when i reports 0 compared to any other message. This is almost immediate and follows from the
fact that 0 is chosen by the lower-end of valuations, which are also associated with the lowest virtual
valuations–the region in which seller aims to minimize the extent to which the object is allocated to
one of the buyers. We proceed with the help of this observation and of Lemma 7:

Recalling (3), (6), (7) and (8), (20) can be more explicitly rewritten as:

50See the online Appendix for its proof.
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P
1(0)
i + δP

2(0)
i (vi) = P

1(a1)
i + δP

2(a1)
i (vi). (33)

If vi(ai) < r2
i (ai), then for vi ∈ [0, r2

i (ai)), (33) reduces to P
1(0)
i = P

1(ai)
i , which implies that

P
1(0)
i − P 1(ai)

i = δ
[
P

2(ai)
i (vi)− P 2(0)

i (vi)
]

= 0 (34)

for vi a.e. in V̄i(0)∩ V̄i(ai). If vi(ai) = r2
i (ai), at vi = r2

i (ai) = r2
i (0), r2

i (0) enjoys zero surplus at t = 2.
Then, Lemma 1 implies that the first-period surplus after reporting 0 and ai must be the same, so

P
1(0)
i r2

i (ai)−X
1(0)
i − [P

1(ai)
i r2

i (ai)−X
1(ai)
i ] = 0.

In this case, if P
1(0)
i = P

1(ai)
i fails because, say, P

1(0)
i > P

1(ai)
i , then valuations arbitrarily close to

r2
i (ai) would strictly prefer to report 0 rather than ai, and this would contradict the optimality of
r2
i (ai). Hence, (34) holds in this case, as well.

Note, now, that at vi = r2
i (ai) = r2

i (0), i’s posterior virtual valuation is zero, so he gets the object
at t = 2 when all −i’s realized valuations are below the reserve, namely when v−i < r−i(a−i), where
r−i(a−i) consists of the vector of the reserve prices for −i buyers. Then, recalling (8), the RHS of (34)
can be rewritten as:

δ

∫
A−i

[
[qS(ai, a−i)− qS(0, a−i)]

∫ r−i(a−i)

v−i(a−i)
f−i(v−i)mi(a−i|v−i)dv−i

]
da−i. (35)

Combining (34) with (35) we get that at vi = r2
i (ai) = r2

i (0):

P
1(0)
i − P 1(ai)

i = δ

∫
A−i

[
[qS(ai, a−i)− qS(0, a−i)]

∫ r−i(a−i)

v−i(a−i)
f−i(v−i)mi(a−i|v−i)dv−i

]
da−i = 0. (36)

Since we have argued that at a solution of NC, it must be the case that qS(0, a−i) ≥ qS(ai, a−i), for
all a−i, the only possibility for the equality in (36) to hold is that

qS(0, a−i) = qS(ai, a−i), (37)

for all a−i.

From (16), we know that after reporting ai at t = 1, i gets the good at t = 2 when v−i ≤ v−i(vi, a).
Also, since the RHS of (34) equals the LHS of (34) for all vi, (34) can be rewritten as:

0 = δ

∫
A−i

[∫ v−i(vi,a)

v−i(a−i)
qS(a)f−i(v−i)m−i(a−i|v−i)dv−i −

∫ v−i(vi,0,a−i)

v−i(a−i)
qS(0, a−i)f−i(v−i)m−i(a−i|v−i)dv−i

]
da−i.

(38)

Suppose that v−i(vi, a) > v−i(vi, 0, a−i) at some vi. Note that if v−i(vi, a) > v−i(vi, 0, a−i) for
some a−i, this means that the posterior virtual valuation at vi after message ai is higher than after
0,51 so it holds that v−i(vi, ai, ã−i) > v−i(vi, 0, ã−i) for all ã−i. With the help of this observation, (38)

51We can see this because when v−i(vi, ai, a−i) > v−i(vi, 0, a−i) the area of v−i where i gets the good at t = 2 when
he chooses ai at t = 1 contains the area of v−i where i gets the good at t = 2 when he chooses 0 at t = 1.
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can be rewritten as:

0 = δ

∫
A−i

∫ v−i(vi,a)

v−i(vi,0,a−i)
qS(a)f−i(v−i)m−i(a−i|v−i)dv−ida−i+

δ

∫
A−i

∫ v−i(vi,0,a−i)

v−i(a−i)
[qS(a)− qS(0, a−i)]f−i(v−i)m−i(a−i|v−i)dv−ida−i.

Since (37) implies that the second term is zero, the only possibility for this equality to hold is that
v−i(vi, a) = v−i(vi, 0, a−i) for all a−i. Contradiction. Hence, at a solution of Program NC, we are
in Case 1, where we have shown that replacing i’s reporting rule with a partitional one where all
valuations in [0, v̄i(0)] report 0 does not affect the optimal t = 2-mechanism. This establishes that the
seller does not benefit by mixed or other kinds of complex reporting rules.

C Proof of Lemma 2

Linearity of (21) implies that if we choose qS(0) so as to maximize it, ignoring all but the resource
constraint of Program NC, at such a relaxed solution, either qS(0) = 1 or qS(0) = 0.

When qS(0) = 1, qi(0) = 0 for all i, which says that no buyer obtains the good at t = 1 for vectors
of valuations in ×i∈I [0, v̄i] . Also, when qS(0) = 1, at an optimum qi(0, a−i) = 0, for all a−i different
from 0−i. This is because buyers j ∈ I, j 6= i report a−i different from 0−i when vj ≥ v̄j for all
j ∈ I, j 6= i. Then, if i does not get the good when vj ≤ v̄j for all j ∈ I, j 6= i, he should not be getting
it when competing buyers have higher realized valuations–and, hence, higher virtual valuations.

D Proof of Lemma 3

In order to establish Lemma 3, we prove an intermediate Lemma:

Lemma 8 If Ji(vi) = vi − [1−Fi(vi)]
fi(vi)

is increasing in vi, then so is Ji(vi |v̄i ) = vi − Fi(v̄i)−Fi(vi)
fi(vi)

.

Proof. In order for Ji(vi |v̄i ) to be increasing in vi, the following inequality must hold:

f ′i(vi)[Fi(v̄)− Fi(vi)] ≥ −2f2
i (vi). (39)

Now, if Ji(vi) is increasing in vi, we have that:

f ′i(vi)[1− Fi(vi)] ≥ −2f2
i (vi). (40)

If f ′i ≥ 0, (39) is automatically satisfied. If f ′i < 0, then we have that

f ′i(vi) [Fi(v̄)− Fi(vi)] ≥ f ′i(vi) [1− Fi(vi)] ≥ −2f2
i (vi).

From Lemma 2, it follows that buyer i never gets the object at t = 2 when his valuation is below
the optimal second-period reserve price denoted by r2

i (v̄i), which satisfies (13) for beliefs given by (19).
With the help of this observation, and after substituting (22) in (21), the seller’s expected revenue can
be rewritten as:

Σi∈I

[∫ v̄i

r2
i (v̄i)

δP 2
i (vi)Ji(vi)fi(vi)dvi +

∫ b

v̄i

Pi(vi)Ji(vi)fi(vi)dvi

]
. (41)
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We employ (41) to show that at a solution of Program NC, v̄i ≥ r∗i , where r∗i is the optimal reserve
price when we ignore the sequential rationality constraints (given by (13) for the prior). In order to
do so, we evaluate the impact of a marginal increase in v̄i on the seller’s revenue and show that it is
strictly positive whenever v̄i < r∗i , implying that at a revenue-maximizing assignment, it must be the
case that v̄i ≥ r∗i .

As a preliminary step, we now establish that r2
i is a continuous function of v̄i, and, hence, it is

differentiable almost everywhere: From Lemma 8, if Ji(vi) is strictly increasing, so is Ji(vi |v̄i ). Hence,
r2
i is unique. Moreover, since fi is continuous, so is Fi, which ensures that r2

i is a continuous function
of v̄i, and, hence, it is differentiable almost everywhere.52

Now, when we increase v̄i for some buyer, this has a direct and an indirect effect on (41). The
direct effect is a change in the range of integration for i. The indirect effect is a change on q2

j , for all
j ∈ I, and it results because an increase in v̄i changes the ranking of the posterior virtual valuations:
Recall that buyer i wins the object at t = 2 if his posterior virtual valuation is the highest and is
above the seller’s value-that is, we must have

vi −
Fi(v̄i)− Fi(vi)

fi(vi)
≥ vj −

Fj(v̄j)− Fj(vj)
fj(vj)

(42)

and vi − Fi(v̄i)−Fi(vi)
fi(vi)

≥ 0. The valuation vj that satisfies (42) with equality given vi, v̄i, v̄j–namely,

the boundary vj(vi, v̄i, v̄j)–varies continuously with v̄i and v̄j . We now examine each of these effects
separately. The direct effect of increasing v̄i is:

δP 2
i (v̄i)Ji(v̄i)fi(v̄i)− δP 2

i (r2
i (v̄i))Ji(r

2
i (v̄i))fi(r

2
i (v̄i))

∂r2
i (v̄i)

∂v̄i
− Pi(v̄i)Ji(v̄i)fi(v̄i) (43)

= −(Pi(v̄i)− δP 2
i (v̄i))Ji(v̄i)fi(v̄i)− δP 2

i (r2
i (v̄i))Ji(r

2
i (v̄i))fi(r

2
i (v̄i))

∂r2
i (v̄i)

∂v̄i
> 0.

This inequality results from the following observations: At a solution of Program NC, Pi must be
increasing, implying that Pi(v̄i) ≥ δP 2

i (v̄i). Also, from Lemma 2 in Skreta (2006b), we have that

r2
i (v̄i) is increasing in v̄i, from which we obtain that

∂r2
i (v̄i)
∂v̄i

≥ 0. From the last two observations, it

follows that this partial effect (43) is strictly positive for v̄i < r∗i since, if this is the case, we have
Ji(v̄i) < 0 and, hence, Ji(r

2
i (v̄i)) < 0.

We now move on to establish that the indirect effect of v̄i on expected revenue is zero:

Σi∈I

∫ v̄i

r2
i (v̄i)

δ
∂P 2

i (vi)

∂v̄i
Ji(vi)fi(vi)dvi = 0.

To see this, let q2(v) denote the allocation at t = 2 given v̄i, and let q̂2(v) denote the allocation rule
at t = 2 given cutoff v̄i + ε when the realized vectors of valuations are v. Observe that q2

i (v) = q̂2
i (v)

for all v ∈ V−i × [0, v̄i] , except at the vectors of valuations where the ranking of virtual valuations
changes. This happens along the boundaries where posterior virtual valuations are equal, which is a
set of measure zero.

Therefore, the direct effect of increasing v̄i, as captured in (43), is equal to the total. We can,
then, conclude that at a revenue-maximizing PBE, v̄i ≥ r∗i .

52This cutoff can be alternatively obtained as the solution of the optimal price by a monopolist who is facing a
downward-sloping demand [Fi(v̄i) − Fi(r

2
i )]. The monopolist problem is [Fi(v̄i) − Fi(r

2
i )]r2

i . The first-order necessary
conditions for a maximum (which are also sufficient given MHR), are [Fi(v̄i)−Fi(r

2
i )]−fi(r2

i )r2
i = 0 or, since fi(r

2
i ) > 0,

vi − Fi(v̄i)−Fi(r
2
i )

fi(r
2
i )

= 0. Then, the continuity of r2
i follows by the continuity of the seller’s objective function and the

Theorem of the Maximum.
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E Proof of Lemma 4

First, observe that p∗ in (22) satisfies the resource constraints. Moreover, it satisfies the sequential
rationality constraints since q2 in (22) is given by (16) for beliefs given by (19), and 0 is the only
vector of actions that leads to no trade at t = 1 (hence, it is the only vector of actions relevant for
sequential rationality constraints). We now show that Pi is increasing in vi. We actually establish a
stronger result-namely, that p∗i (v) is increasing in vi for each v−i: From standard arguments, it is easy
to see that p∗i (v) is increasing in vi for vi ∈ [0, bi]\{v̄i} and for all v−i. Hence, it remains to show
that it does not drop at v̄i : When at least one vj > v̄j , some buyer among those with valuations
above the cutoff gets the good at t = 1, so we have that p∗i (v̄i − ε, v−i) = 0 (where ε > 0), whereas
p∗i (v̄i + ε, v−i) is either 0 or 1. In both cases, it is increasing in vi. Now, when for all j 6= i, vj < v̄j ,
we have that p∗i (v̄i − ε, v−i) is equal to either 0 or δ, whereas p∗i (v̄i + ε, v−i) = 1 for that region of v−i;
hence, again, p∗i is increasing. Finally, it is routine to verify that given the payments specified in (23),
the participation constraints are satisfied.

Remark 1 From Lemma 4, we can conclude that (22 ) is dominant-strategy incentive-compatible
since p∗i is increasing for each realization of v−i.

F Derivation of the Payment Rule at the Optimal Mechanism

We rewrite (23) as

xi(v) = qi(a(v))vi −
∫ vi

0
qi(ti, v−i)dti + (44)

δ

[
qS(v)q2

i (v)vi −
∫ vi

0
qS(ti, v−i)q

2
i (ti, v−i)dti

]
.

Recalling the optimal first-period assignment described in Lemma 2, for v ∈ ×i∈I [0, v̄i], (44) reduces
to xi(v) = δ

[
q2
i (v)vi −

∫ vi
0 q2

i (ti, v−i)dti
]

= δz2
i (v), where q2 and z2 are given by (16). This is because

for v ∈ ×i∈I [0, v̄i], qS = 1, and the first two terms of (44) are zero. Now, for v ∈ V \ ×i∈I [0, v̄i], (44)
reduces to:

xi(vi, v−i) = qi(v)vi −
∫ vi
v̄i
qi(ti, v−i)dti − δ

∫ v̄i
max{r2

i (v̄i),r2
i (v−i)} q

2
i (ti, v−i)dti, (45)

where r2
i (v̄i) is given by (13) given beliefs (19) and r2

i (v−i) = inf{vi ∈ [0, v̄i] such that q2
i (v) = 1}.

There are two cases to consider, depending on whether or not buyer i faces some competition at
t = 1: When buyer i faces some competition at t = 1–that is, when I1(v) 6= {i}–i pays only when
he wins, and his payment is equal to r1

i (v−i). When v−i ∈ ×j 6=i[0, v̄j ], i does not face competition at
t = 1, and using qi from (25) and q2 from (16), (45) can be further simplified to

xi(v) = (1− δ)v̄i + δmax
{
r2
i (v̄i), r

2
i (v−i)

}
. (46)

However, it is not possible to implement (46) as is because it varies with v−i, whereas all buyers −i
with v−i×j 6=i [0, v̄j ], pool at t = 1 and report 0. But given that in the case under consideration, buyer
i faces no competition at t = 1, we can use (46) to determine a personalized reserve price, r̄1

i , that
satisfies

r̄1
i =

1

F−i(v̄−i)
Ev−i∈×j 6=i[0,v̄j ]

[
(1− δ)v̄i + δmax

{
r2
i (v̄i), r

2
i (v−i)

}]
. (47)

Since buyer i does not know v−i, from his perspective, he is indifferent between paying r̄1
i whenever

all other buyers report 0 (which occurs with probability F−i(v̄−i)) and incurring payments according
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to (46). Moreover, these two different payment methods are equivalent from the seller’s perspective
because they are associated with the same allocation rule.

References

Acquisti, A. and H. R. Varian (2005): “Conditioning Prices on Purchase History,” Marketing
Science, 24, 367–381.

Bergemann, D. and M. Said (2011): “Dynamic Auctions,” in Wiley Encyclopedia of Operations
Research and Management Science, ed. by J. Cochran, L. Cox, P. Keskinocak, J. Kharoufeh, and
J. Smith, Wiley: New York, vol. 2, 1511–1522.

Bester, H. and R. Strausz (2000): “Imperfect commitment and the revelation principle: the
multi-agent case,” Economics Letters, 69, 165 – 171.

——— (2001): “Contracting with Imperfect Commitment and the Revelation Principle: The Single
Agent Case,” Econometrica, 69, pp. 1077–1098.

——— (2007): “Contracting with imperfect commitment and noisy communication,” Journal of Eco-
nomic Theory, 136, 236 – 259.

Bower, A. G. (1993): “Procurement Policy and Contracting Efficiency,” International Economic
Review, 34, pp. 873–901.

Bulow, J. I. (1982): “Durable-Goods Monopolists,” Journal of Political Economy, 90, pp. 314–332.
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Online Appendix: Omitted Proofs

Optimal Auction Design under Non-Commitment

Vasiliki Skreta

A Proof of Lemma 5

Lemma 5 Consider first-period reporting rules and mechanisms that satisfy the constraints of Program
NC. If ai is in the support of mi(.|vi) for vi ∈ [0, v̄i(0)] and r2

i (ai) < v̄i(0), then, r2
i (ai) = r2

i (0).

Proof. We argue by contradiction. Consider a report ai that satisfies the conditions in the Lemma.
There are a number of cases to consider:

Case A: vi(ai) ≤ r2
i (0).

Case A1: vi(ai) < r2
i (ai).

For vi ∈ [vi(ai), r
2
i (0)), i’s valuation is below the t = 2-reserve r2

i (0), so he does not obtain the
good at t = 2 after reporting 0 at t = 1. Hence, for vi ∈ [0, r2

i (0)),

P 0
i (vi) = P

1(0)
i . (48)

Similarly, for vi ∈ [vi(ai), r
2
i (ai)), we have

P aii (vi) = P
1(ai)
i . (49)

In addition, if r2
i (ai) < r2

i (0), then for vi ∈ [r2
i (ai), r

2
i (0)], we have that

P aii (vi) ≥ P 1(ai)
i + δP

2(ai)
i (r2

i (ai)) > P
1(ai)
i , (50)

which follows because P
2(ai)
i (r2

i (ai)) > 0–an implication of the fact that reserve prices matter. An
analogous expression can be obtained if r2

i (ai) > r2
i (0). Lemma 1 implies that for vi ∈ [vi(ai), r

2
i (0)),

we have
P aii (vi) = P 0

i (vi). (51)

Case A1.1 r2
i (ai) < r2

i (0). Note that for vi ∈ [vi(ai), r
2
i (ai)), (51) implies:

P
1(ai)
i = P

1(0)
i , (52)

while with the help of (50), (51) implies that for vi ∈ [r2
i (ai), r

2
i (0)],

P 0
i (vi) = P

1(0)
i = P aii (vi) > P

1(ai)
i . (53)

Contradiction.

Case A1.2 r2
i (ai) > r2

i (0). The fact that this case is also impossible follows from arguments
parallel to the ones employed in Case A1.1.

Case A2: vi(ai) = r2
i (ai) < r2

i (0).
When r2

i (ai) = vi(ai), the posterior virtual valuation Ji(.|ai) is positive at vi(ai), implying that
i obtains the good with positive probability at t = 2. Also, because the seller chooses an optimal
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mechanism at t = 2, it must be the case that the surplus for valuation vi(ai) = r2
i (ai) at t = 2 must

be zero since it is the smallest possible valuation in the support of mi(ai|.). This implies that

P aii (vi(ai))vi(ai)−X
ai
i (vi(ai)) = P

1(ai)
i vi(ai)−X

1(ai)
i . (54)

Now, (54) implies that for vi < vi(ai), it must be the case that

P 0
i (vi) ≤ P 1(ai)

i . (55)

To see this, note that if P 0
i (vi) > P

1(ai)
i for vi < vi(ai), then best-responding implies that

P 0
i (vi)vi −X0

i (vi) ≥ P 1(ai)
i vi −X1(ai)

i ,

but, then, since vi < vi(ai) and P 0
i (vi) > P

1(ai)
i , we have that

P 0
i (vi)vi(ai)−X0

i (vi) > P
1(ai)
i vi(ai)−X

1(ai)
i ,

implying that vi(ai) strictly prefers to report 0 rather than ai, contradicting the fact that vi(ai) is at
the closure of the support of mi(ai|.)

Combining (55) with (50) and recalling (48) we obtain that P aii (vi) > P 0
i (vi), which contradicts

(51). This concludes all subcases of case A.

Case B: vi(ai) > r2
i (0).

We establish that this case is impossible. First, note that in this case it immediately follows that
r2
i (0) < vi(ai) ≤ r2

i (ai).

Given the earlier observations, it is easy to see that for vi ∈ [r2
i (0), r2

i (ai)],

P 0
i (vi) = P

1(0)
i + δP

2(0)
i (vi) ≤ P 1(ai)

i . (56)

Also, at r2
i (ai) + ε, with ε > 0 it holds that:

P 0
i (r2

i (ai) + ε) = P aii (r2
i (ai) + ε) = P

1(ai)
i + δP

2(ai)
i (r2

i (ai) + ε), (57)

which, together with (56), implies that for some ε > 0 small enough:

P 0
i (r2

i (ai) + ε)− P 0
i (r2

i (ai)− ε) ≥ δP
2(ai)
i (r2

i (ai) + ε)) > 0, (58)

where P
2(ai)
i (r2

i (ai) + ε)) > 0, since at t = 2 trade takes place with positive probability at the reserve.

Observe that (58) implies that P
2(0)
i must jump at r2

i (ai). We now establish that this is impossible.
For transparency of the arguments, we suppose (without loss) that, other than 0, ai is the only other
report in the support of mi(.|vi) for vi ∈ [0, v̄i(0)]. The definition of r2

i (ai) in (13) implies that

r2
i (ai)mi(ai|r2

i (ai))fi(r
2
i (ai))−

∫ bi

r2
i (ai)

mi(ai|ti)fi(ti)dti > 0, (59)

while

0 > (r2
i (ai)− ε)mi(ai|r2

i (ai)− ε)fi(r2
i (ai)− ε)−

∫ bi

r2
i (ai)−ε

mi(ai|ti)fi(ti)dti, (60)
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where ε > 0 arbitrarily small. Note that (59) can be equivalently written as r2
i (ai)−

∫ bi
r2
i

(ai)
mi(ai|ti)fi(ti)dti

mi(ai|r2
i (ai))fi(r2

i (ai))
>

0 or

r2
i (ai) >

∫ bi
r2
i (ai)

mi(ai|ti)fi(ti)dti
mi(ai|r2

i (ai))fi(r
2
i (ai))

, (61)

while (60) can be equivalently written as 0 > (r2
i (ai)− ε)−

∫ bi
r2
i

(ai)−ε
mi(ai|ti)fi(ti)dti

mi(ai|r2
i (ai)−ε)fi(r2

i (ai)−ε)
or

∫ bi
r2
i (ai)−εmi(ai|ti)fi(ti)dti

mi(ai|r2
i (ai)− ε)fi(r2

i (ai)− ε)
> (r2

i (ai)− ε). (62)

Note that since both (61) and (62) are strict, and hold for ε > 0 but arbitrarily small, combining (61)
and (62), we get:

mi(ai|r2
i (ai))fi(r

2
i (ai))

∫ bi

r2
i (ai)−ε

mi(ai|ti)fi(ti)dti > mi(ai|r2
i (ai)− ε)fi(r2

i (ai)− ε)
∫ bi

r2
i (ai)

mi(ai|ti)fi(ti)dti.

(63)

Now, in order for P
2(0)
i to have a discrete jump at r2

i (ai), it must be the case that the posterior virtual
valuation jumps at that point; that is,

Ji(r
2
i (ai)|0)− Ji(r2

i (ai)− ε|0) > J̃ > 0, (64)

where ε > 0 arbitrarily small and J̃ > 0. Note that (64) can be rewritten as:

r2
i (ai)−

∫ bi
r2
i (ai)

mi(0|ti)fi(ti)dti
mi(0|r2

i (ai))fi(r
2
i (ai))

−

(r2
i (ai)− ε)−

∫ bi
r2
i (ai)−εmi(0|ti)fi(ti)dti

mi(0|r2
i (ai)− ε)fi(r2

i (ai)− ε)

 > J̃, (65)

which, since ε is arbitrarily small, implies:

mi(0|r2
i (ai))fi(r

2
i (ai))

∫ bi

r2
i (ai)−ε

mi(0|ti)fi(ti)dti > mi(0|r2
i (ai)− ε)fi(r2

i (ai)− ε)
∫ bi

r2
i (ai)

mi(0|ti)fi(ti)dti

(66)
+J̃mi(0|r2

i (ai)− ε)fi(r2
i (ai)− ε).

Since ai is the only other report in the support of mi(.|vi) for vi ∈ [0, v̄i(0)], for all vi ∈ [0, v̄i(0)],
it holds that

mi(0|vi) +mi(ai|vi) = 1. (67)

By adding (63) and (66), by letting J̄ ≡ J̃mi(0|r2
i (ai) − ε)fi(r2

i (ai) − ε) > 0, and by using (67), we
obtain

fi(r
2
i (ai))

∫ bi

r2
i (ai)−ε

fi(ti)dti > fi(r
2
i (ai)− ε)

∫ bi

r2
i (ai)

fi(ti)dti + J̄ , (68)

which is a strict inequality for all ε > 0, arbitrarily small. This is impossible since fi is continuous.

Recall that for transparency of the arguments, we have assumed that, other than 0, ai is the only
other report in the support of mi(.|vi) for vi ∈ [0, v̄i(0)]. If that is not the case, the posterior virtual
valuation must jump at r2

i (ai) for all ãi in the support of mi(.|vi) for vi ∈ [0, v̄i(0)], and we obtain the
same result by adding up inequalities analogous to (65) for all such ãi’s.
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B Omitted Details Proof of Proposition 2

Details of Step 3, Case 1:

We formalize the intuition discussed in the text below following a few long and rather tedious
steps. For transparency of the arguments, suppose, without loss of generality, that other than 0, ai is
the only report employed by valuations in Vi(0); then, we have that mi(0|vi) + mi(ai|vi) = 1 for all
Vi(0). Because r2

i (ai) = r2
i (0) and v−i(vi, 0, a−i) = v−i(vi, ai, a−i) for all a−i and vi, we have that the

allocation rule q2
i (v, ai, a−i) = q2

i (v, 0, a−i) for all i ∈ I, v and all vectors of actions a−i ∈ A−i that are
chosen with strictly positive probability. From now on, we call this commonly optimal allocation rule
q2 (it also depends on the vector of the other buyers’ reports a−i, which is held fixed below). Given
that q2, z2 is revenue-maximizing at t = 2 given 0, for all a−i, it satisfies that53∫

V
Σi∈Iq

2
i (vi, v−i) [vifi(vi|0)− (1− Fi(vi|0))] f−i(v−i|a−i)dv (69)

≥
∫
V

Σi∈I q̃
2
i (vi, v−i) [vifi(vi|0)− (1− Fi(vi|0))] f−i(v−i|a−i)dv

for all q̃2 feasible. By substituting the exact expressions of fi(vi |0) and of Fi(vi|0), and by multiplying
through with the constant

∫
Vi
mi(0|ti)fi(ti)dti, one can easily see that (69) is equivalent to

∫
V
q2
i (vi, v−i)

[
vimi(0|vi)fi(vi)−

∫ bi

vi

mi(0|ti)fi(ti)dti
]
f−i(v−i|a−i)dv

+

∫
V

Σj∈I
j 6=i
q2
j (vj , v−j) [vjfj(vj |aj)− (1− Fj(vj |aj))] f−i−j(v−i−j |a−i−j)mi(0|vi)fi(vi)dv

≥
∫
V
q̃2
i (vi, v−i)

[
vimi(0|vi)fi(vi)−

∫ bi

vi

mi(0|ti)fi(ti)dti
]
f−i(v−i|a−i)dv

+

∫
V

Σj∈I
j 6=i
q̃2
j (vj , v−j) [vjfj(vj |aj)− (1− Fj(vj |aj))] f−i−j(v−i−j |a−i−j)mi(0|vi)fi(vi)dv, (70)

for all q̃2.
Similarly, given that q2, z2 is revenue-maximizing at t = 2 given ai, a−i, it satisfies that

∫
V
q2
i (vi, v−i)

[
vimi(ai|vi)fi(vi)−

∫ bi

vi

mi(ai|ti)fi(ti)dti]f−i(v−i|a−i)dv

+

∫
V

Σj∈I
j 6=i
q2
j (vj , v−j) [vjfj(vj |aj)− (1− Fj(vj |aj))] f−i−j(v−i−j |a−i−j)mi(ai|vi)fi(vi)dv

≥
∫
V
q̃2
i (vi, v−i)

[
vimi(ai|vi)fi(vi)−

∫ bi

vi

mi(ai|ti)fi(ti)dti
]
f−i(v−i|a−i)dv

+

∫
V

Σj∈I
j 6=i
q̃2
j (vj , v−j) [vjfj(vj |aj)− (1− Fj(vj |aj))] f−i−j(v−i−j |a−i−j)mi(ai|vi)fi(vi)dv, (71)

for all q̃2.
Recall that for transparency of the arguments, we have supposed that ai is the only action other

than 0 that is chosen by valuations in Vi(0) (otherwise, we would have to write and add more inequali-
ties like the ones above). Then, it holds that mi(0|vi)+mi(ai|vi) = 1 for all vi ∈ V̄i(ai), and by adding

53Note that it is without loss to take q2
i (., ai, a−i) (resp. q2

i (., 0, a−i)) to be defined on V since for vi ∈ Vi\Vi(0),
mi(0|vi) = 0.
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up (70) and (71), we get that∫
V
q2
i (vi, v−i)

[
vifi(vi)−

∫ bi

vi

fi(ti)dti

]
f−i(v−i|a−i)dv

+

∫
V

Σj∈I
j 6=i
q2
j (vj , v−j) [vjfj(vj |aj)− (1− Fj(vj |aj))] f−i−j(v−i−j |a−i−j)fi(vi)dv

≥
∫
V
q̃2
i (vi, v−i)

[
vifi(vi)−

∫ bi

vi

fi(ti)dti

]
f−i(v−i|a−i)dv

+

∫
V

Σj∈I
j 6=i
q̃2
j (vj , v−j) [vjfj(vj |aj)− (1− Fj(vj |aj))] f−i−j(v−i−j |a−i−j)fi(vi)dv,

for all q̃2, which is equivalent to saying that the allocation rule q2 is revenue-maximizing at t = 2
when all valuations in V̄i(0) choose 0 with probability one, in which case i where is using a partitional
strategy. This implies that if we are in this case, we can without any loss assume that all valuations
in V̄i(0) = [0, v̄i] choose action 0 with probability 1 and the result follows.

C Proof of Lemma 7

Lemma 7. At a solution of Program NC, if ai is in the support of mi(.|vi) for some vi ∈ [0, v̄i(0)],
with v̄i(0) > 0, then r2

i (ai) < v̄i(0).

Proof. We need to establish that at a solution of Program NC, if ai is in the support of mi(.|vi)
for some vi ∈ [0, v̄i(0)], it cannot be the case that r2

i (ai) ≥ v̄i(0). We argue by contradiction. If this

were the case, then Lemma 1 implies that P 0
i (vi) = P 1ai

i for vi ∈ [vi(ai), v̄i(0)], which implies, in turn,
that the probability that i obtains the good at t = 2 after reporting 0 for that region of valuations is
constant.

This is only possible when there almost surely is no buyer j 6= i and no report aj and vj with
Jj(vj |aj) ∈ [Ji(vi(ai)|0), Ji(v̄i(0)|0)]. In other words, for all j 6= i, vj and aj , the posterior virtual
valuations satisfy either Jj(vj |aj) ≤ Ji(vi(ai)|0) or Jj(vj |aj) > Ji(v̄i(0)|0). Observe, that Ji(v̄i(0)|0) =
v̄i(0) > 0, so having Jj(vj |aj) > Ji(v̄i(0)|0) > 0 for all j, vj and reports aj is impossible: The inequality
is violated when, for instance, all realized vj ’s are around a neighborhood of zero.

Now, consider the case in which Jj(vj |aj) ≤ Ji(vi(ai)|0) for all j 6= i and aj ; then, slightly
increasing mi(0|vi) in the region [vi(ai), v̄i(0)] increases the t = 2-reserve price. If the increase is
small, the reduction in Ji(vi|0) does not affect the t = 2 inter-buyer allocation–i’s virtual valuation is
still higher. This modification increases the t = 2-reserve price r2

i (0) without any further effects, and,
hence, increases revenue from the t = 1-perspective.

D Details for Section 5

Skreta (2011) solves the informed-seller problem discussed in Section 5 as follows: It first observes that
the seller’s revenue at t = 2 after having observed a at t = 1 and given a vector of disclosed messages
λ can be rewritten as∫

V
Σi∈Iq

2(a)
i (v, λ)Ji(vi|ai)f(v |a)dv − Σi∈IU i(vi(ai), a, λ) +

∫
V

Σi∈Iτi(v, a, λ)f(v |a)dv, (72)
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where

− τi(v, a, λ) ≡ ui(v, a, λ)−
∫ vi

vi(ai)
pi(ti, v−i, a, λ)dti − ui(vi(si), v−i, a, λ) (73)

and where U i(vi(ai), a, λ) ≡
∫
V [q

2(a)
i i(vi(ai), v−i, λ)vi(ai) − z

2(a)
i i(vi(ai), v−i, λ)]f(v |a)dv denotes i’s

expected payoff at valuation vi(ai), from q2(a), z2(a), where the expectation is taken with respect to
the seller’s beliefs. Buyer i’s interim payoff at a truth-telling equilibrium is

Ui(vi, ai, λi) =

∫ vi

vi(ai)
Pi(ti, ai, λi)dti + Ui(vi(si), ai, λi), for vi ∈ Vi(si), (74)

where Pi(vi, ai, λi) = Ev−i,a−i,λ−i
[pi(v, a, λ) |ai, λi] is the interim expected probability of trade. This

expectation is taken with respect to i’s beliefs given ai, λi. From (73) and (74), one can immediately
see that the interim expectation of τi(v, a, λ) from i’s perspective is zero, implying that it is also zero
from the ex-ante perspective.

Skreta (2011) uses this observation, together with the fact that the full-transparency optimum is
dominant-strategy incentive-compatible—which implies that it is a feasible choice for the seller, regard-
less of the buyers’ posterior beliefs (which depend on the disclosure policy)–to establish that at an equi-
librium of the informed-seller game τi(v, a, λ) is zero at each v, a, λ. Then, for a given stage-1 disclosure
rule (which determines the stage-2 types and beliefs), at stage 2, the seller chooses, for each of her types,
(a, λ), a mechanism that maximizes revenue (given by (72) using that

∫
V Σi∈Iτi(v, a, λ)f(v |a)dv = 0)

subject to Bayesian incentive and participation constraints for the buyers ignoring the incentive and
participation constraints for the seller. That paper establishes in Proposition 5 that the solution of this
program, regardless of the disclosure rule, coincides with the mechanism that is optimal when a is com-
mon knowledge–the full-transparency optimum–and it satisfies the seller’s incentive and participation
constraints.

E Optimal last-period mechanism for complex posteriors.

Given that at the last period, the seller de facto commits to the outcome of the mechanism we
can appeal to the revelation principle and restrict attention to incentive-compatible direct revelation
mechanisms, consisting of an assignment rule q2 : V (a) −→ ∆(Ī) and a payment rule z2 : V (a) −→
RĪ . When posterior densities are zero, the sets of valuations Vi(ai) and V (a) = ×i∈IVi(ai) are not
necessarily convex, and two difficulties arise: First, we cannot express expected revenue only as a
function of the allocation rule, and second, the formula of posterior virtual valuation is not well-
defined for valuations where the posterior density is zero. To address the first difficulty, we establish
that without loss we can define the mechanism and impose the feasibility constraints on the closure of
the convex hull of valuations; to address the second, we approximate the problem with one in which
virtual valuations are well-defined and show that the solution of the approximate problem is arbitrarily
close to the one of the problem we are interested in.

The Convexified Problem: We consider an artificial problem that has the same objective function
as the problem of interest (i.e., the seller’s expected revenue), but a different feasible set because we
impose incentive and participation constraints on the closures of the convex hulls of Vi(ai) and V (a).
Proposition 1 in Skreta (2006) shows that these problems are equivalent in the following sense: One
can obtain a solution of the program of interest by solving the convexified problem and by restricting
the solution to the actual set of valuations. Conversely, any solution of the program of interest can
be extended appropriately to the convex hull of valuations, and it is a solution of the convexified
problem. Hence, without loss of generality, we can consider the convexified problem. The intuition
for this result is that “adding” types that occur with probability zero does not change the value of
the program. For the convexified problem, we have, as usual, a “revenue equivalence theorem,” and

48



we use standard arguments to express the seller’s problem as follows:

max
q2,z2

∫
V̄ (a)

Σi∈Iq
2(a)
i (v) [vifi(vi|ai)− (1− Fi(vi|ai))] f−i(v−i|a−i)dv − Σi∈IU

2(a)
i (q2, z2, vi(ai)), (75)

subject to: P
2(a)
i (vi) ≡ Ev−i [q

2(a)
i (v)] increasing in vi on V̄i(ai); 0 ≤ q

2(a)
i (v) ≤ 1 and Σi∈Iq

2(a)
i (v) ≤ 1

for all v ∈ V̄ (a).
Unfortunately, we still have to deal with the fact that a buyer’s virtual valuation is not necessarily

well-defined because the density fi can be zero for some valuations on V̄i(a). The inability to divide
by fi(vi|ai) to obtain the virtual valuation creates difficulties, as one cannot compare the benefit
from assigning the good to one buyer versus another.54 We address this issue by considering another
artificial program that is “close” to the convexified problem:

The Approximate Problem: We approximate the objective function with one in which the density

of each i is replaced by f εi (vi|ai) =

{
fi(vi|, ai) if fi(vi|ai) > 0

ε otherwise
, where ε > 0, arbitrarily small. The

resulting problem has the same constrained set as the program in (75) because, in (75), incentive
and participation constraints are imposed on V̄ (a), which includes vectors of valuations that occur
with probability zero. Moreover, the objective function is arbitrarily close to the one in (75): It is
routine to check that the objective function is continuous in ε, and the feasible set is sequentially
compact in the topology of point-wise convergence (for similar arguments, see the Technical Appendix
of Skreta (2006b)). Then, the Theorem of the Maximum implies that the value and the solution of the
approximate problem are arbitrarily close to the ones of (75).

54 In (75), each buyer is assigned a different weight in the objective function: For example, buyer i’s weight is given
by f−i(v−i|a−i).
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