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Abstract
The preservation of concrete dams is a key issue for researchers and practitioners in dam engineering because of the important 
role played by these infrastructures in the sustainability of our society. Since most of existing concrete dams were designed 
without considering their dynamic behaviour, monitoring their structural health is fundamental in achieving proper safety 
levels. Structural Health Monitoring systems based on ambient vibrations are thus crucial. However, the high computational 
burden related to numerical models and the numerous uncertainties affecting the results have so far prevented structural health 
monitoring systems for concrete dams from being developed. This study presents a framework for the dynamic structural 
health monitoring of concrete gravity dams in the Bayesian setting. The proposed approach has a relatively low computational 
burden, and detects damage and reduces uncertainties in predicting the structural behaviour of dams, thus improving the 
reliability of the structural health monitoring system itself. The application of the proposed procedure to an Italian concrete 
gravity dam demonstrates its feasibility in real cases.

Keywords Concrete dams · Structural health monitoring · General polynomial chaos expansion · Bayesian inference · 
Ambient vibrations · Operational modal analysis

1 Introduction

Concrete gravity dams are key to flood control, energy pro-
duction, and the industrial and agricultural supply. Most of 
the existing concrete gravity dams were designed without 
considering their dynamic behaviour, and often their shapes 
were optimised according to static concepts. Moreover, the 
levels of reliability required to important infrastructures have 
been recently increased in order to meet the requests of com-
munities for greater safety, also in light of the revaluation 
of some areas as seismic [1]. Together with the well-known 
issues related to the quantification of dam seismic safety 
[e.g., calibration of load-and-resistance-factor approaches, 
definition of limit states (LSs)] [2], this justifies the need for 

strategies that preserve such structures. In this context, the 
implementation of structural health monitoring (SHM) is 
very important, as it improves dam control and reduces the 
uncertainties involved in predicting their dynamic behav-
iour. However, SHM in dam engineering is very rare, mainly 
because of the large computational burden of predictive 
models, as discussed in Sect. 2.

Concrete dams are equipped with static monitoring sys-
tems, which usually record displacements at a few points in 
the dam body, basin levels and temperatures of the air and 
water. As shown in Sevieri et al. [3] this information can be 
used to calibrate predictive models of the structure for control 
purposes. However, in view of seismic events, dam control 
can be performed more effectively through dynamic moni-
toring systems. Sevieri et al. [4] show how ambient vibra-
tions, and in particular their elaboration through operational 
modal analysis (OMA), can be successfully used to update 
the parameters of predictive models of concrete gravity dams’ 
dynamic behaviour, thus reducing epistemic uncertainties.

This research work presents a new probabilistic ambient 
vibration-based SHM framework for real-time control of 
concrete gravity dams. The procedure exploits experimental 
modal characteristics deduced from the analysis of ambient 
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vibrations via OMA. It consists of two phases: Training and 
Detection. The architecture of the system and the hierarchical 
statistical relationship between ambient vibrations, environ-
mental measurements and model parameters enable analysts 
both to detect damage and to update the parameters of predic-
tive models. Dynamic measurements thus provide structural 
control, thereby improving the prediction of the dam’s struc-
tural behaviour. This latter is possible thanks to the Bayesian 
setting, thus exploiting the information contained in the new 
observations to update the state of knowledge of the model 
parameters. This approach also helps to reduce the uncertain-
ties that affect the estimate of the residual life expectancy of 
the structure.

Predicting dam behaviour requires a massive use of com-
plex numerical models including both soil-structure interac-
tion (SSI) [5] and fluid-structure interaction (FSI) [6], whose 
computational burden is prohibitive without high-performance 
computing. Therefore, the general polynomial chaos expan-
sion (gPCE) [7] is used to propagate uncertainties through 
the proposed predictive models of the dam behaviour and to 
reduce the computational burden by surrogating finite element 
analysis (FEA) results in the solution of the inverse problem 
(i.e., definition of gPCE-based predictive models).

In addition, modelling the SSI leads to a large number of 
numerical modes without experimental correlation, which 
only act as disruption factors for dynamic SHMs. Sevieri at 
al. [4] discuss the problem of matching between numerical and 
experimental modes in the modal analysis of concrete gravity 
dams and propose an algorithm based on the Markov Chain 
Monte Carlo (MCMC) method for the selection of numerical 
modes with experimental correlation. In the present work this 
algorithm is used to solve the mode matching problem in both 
the Training and Detection phases, as discussed in Sect. 4.

The novelty of this study lies in the probabilistic nature and 
the particular architecture of the proposed framework, which 
exploits modal information derived from ambient vibrations 
both to control the structural health state and to reduce the 
uncertainties in the prediction of the dam behaviour. In fact, 
the literature review presented in Sect. 2 shows that recent 
research tends to focus on implementing ambient vibration-
based control systems for concrete gravity dams, without pro-
posing a real SHM framework.

Finally the case study proposed in Sect. 5 shows the fea-
sibility of implementing the proposed method for the on-line 
control of concrete gravity dams.

2  Structural health monitoring systems 
for concrete gravity dams

SHM is the process of assessing the health state of a struc-
ture. The complete definition of a SHM system entails sen-
sor technology, materials technology, numerical modelling 

and diagnostic techniques [8]. SHM is made up of both 
hardware components (e.g., instrumentation) and software 
components (e.g., damage modelling, detection algo-
rithms). Selecting the structural quantity of interest (QI) 
to be monitored and the definition of damage levels are 
fundamental steps. They represent the “structural behav-
iour” and its “threshold”, respectively, the latter is clearly 
related to a particular damage scenario (DS).

The selected “structural behaviour” must be sensi-
tive to damage propagation (i.e., high value of informa-
tion embedded in the QI) and be easily measurable with a 
good degree of accuracy. The “threshold”, which reflects 
a particular damage scenario, in this context can be 
defined with respect to a specific limit state (LS) or dam-
age index (DI). The definition of a threshold should also 
consider the error related to both the measurements and 
structural health state predictions. Calibrated predictive 
models of structural behaviour can be successfully used 
for this purpose [4]. SHM frameworks defined in proba-
bilistic settings and based on calibrated predictive models 
can detect abnormalities by comparing observations and 
predictions [9].

SHM systems are composed of the Diagnosis and the 
Prognosis phases. During the diagnosis, the health state 
of the structure is assessed locally, at the component level, 
and globally, in order to detect and locate damaged areas. 
During the Prognosis, the effects of damage on the struc-
tural behaviour are computed, and the residual life expec-
tancy of the construction is thus assessed.

Concrete gravity dams are always equipped with moni-
toring systems for control purposes, which record environ-
mental measurements, such as the basin level and air and 
water temperatures. Structural behaviour can be monitored 
through static or dynamic systems. Static monitoring sys-
tems record daily displacements in some reference points 
of the dam body in both the upstream-downstream and 
cross-valley directions [10] related to changing environ-
mental conditions. The velocity of this phenomena and the 
magnitude of the corresponding displacements enable the 
problem to be addressed as quasi-static.

Dynamic monitoring systems in dam engineering are 
rarer than static ones and their application is generally 
limited to research purposes. Due to the large size and 
mass of the dams, dynamic SHM are generally based on 
ambient vibrations which are recorded by a network of 
accelerometers or velocimeters. The data recorded can be 
directly used to control the health state of the structure or 
can be processed through OMA techniques [11].

Bukenya et al.  [12] reviewed on application of static 
and dynamic monitoring systems in dam engineering and 
highlighted that static measurements are commonly used 
to calibrate predictive models of the structural behaviour 
in a deterministic setting. On the other hand, only a few 
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applications regard dynamic monitoring systems for dams 
and no study has presented an SHM framework where 
calibrated predictive models are actually used for control 
purposes. Of the various applications that explore the use 
of ambient vibrations for structural control, some studies 
present the calibration of dam predictive models in a deter-
ministic setting, but none have proposed a framework for the 
dynamic SHM of concrete gravity dams.

In addition to the papers mentioned in Bukenya et al. [12], 
other important research works have been published in 
recent years. The static SHM systems recently proposed for 
gravity dams are inspired by the progress made in machine 
learning. Different architectures have been used to define 
predictive models of dam static displacements [3, 13–20] in 
order to improve the accuracy of the prediction and to reduce 
the computational burden of the classical approaches based 
on functional approximation [21]. Artificial neural network, 
support vector machine learning, extreme machine learn-
ing, multiple linear regression and general polynomial chaos 
expansion have been successfully used for the approximation 
of static dam behaviour.

Another important aspect in the definition of an SHM 
is the training phase of the predictive model. Most studies 
are defined in a deterministic setting and regressive meth-
ods are used to calibrate dam predictive models. Different 
approaches have been proposed to improve the performance 
of predictive models: the hybrid simplex artificial bee colony 
algorithm (HSABCA) [22], boosted regression trees [23], 
multilevel-recursive method [17], dynamic time warping 
(DTW) method, local outlier factor (LOF) [24], chaotic 
residual errors [19], Random Forest Regression (RFR) [25] 
and Bayesian inference [3] have been successfully applied 
in the scientific literature.

Several interesting research works that focus on the 
definition of static SHM frameworks are described in more 
detail in the following. Prakash et al. [26] use the principal 
component analysis for the reduction in the dimension of 
static predictive models (e.g., displacements, strains). Pre-
dictive model coefficients are then calibrated using the least 
squares method, while the threshold of abnormal behaviour 
is continuously calibrated through new observations, thus 
avoiding erroneous warnings. The study of a Bulgarian arch 
dam shows the feasibility of the proposed procedure.

Su et al. [27] combine the Dempster–Shafer theory of 
evidence (DST) and Set Pair Theory (SPT), in order to pro-
pose a structural health control method for concrete dams, 
which also supports decision-makers in dam management. 
This combines multi-source space-time information, such as 
monitoring systems, and inspections. The study of a hydro-
power station completed in 1953 proves the efficiency of 
the method both to control the structural behaviour and to 
support decision-makers in choosing the best retrofitting 
intervention.

Hu et al. [28] study the leakages of the Shimantan Res-
ervoir, a concrete dam with penetrating cracks. The authors 
show that systematic field inspections are fundamental in 
understanding the cause of the leakages. They also present a 
predictive model for dam displacements based on a modified 
version of the Navier-Stokes equations, which is particularly 
suitable for dams that experience leakages and penetrating 
cracks.

Lin et al. [20] propose a procedure for the separation of 
dam displacements into two parts: one relating to the dam 
behaviour and another relating to the foundation deforma-
tion. The idea of partitioned finite element model (FEM) 
is used to define hybrid equations that enable these two 
contributions to be separated. Observations recorded by the 
static monitoring system are used to calibrate the partitioned 
model, thus estimating the material mechanical parameters. 
The analysis of a concrete dam is used to verify the validity 
of the separation method.

Kang et al. [29] propose a static framework for the struc-
tural control of concrete dams using long-term air tempera-
ture for the simulation of thermal effects. They use the radial 
basis function network (RBFN) to quantify temperature 
effects from a long-term air temperature series. The RBFN 
is then applied instead of the Fourier series, which are com-
monly adopted for the prediction of thermal effects in dam 
engineering. The application on a real concrete gravity dam 
demonstrates the performance of their method.

Dynamic monitoring systems in dam engineering are 
rarer than static ones. Issues related to SSI and FSI mod-
elling in the dynamic numerical models of concrete dams 
have hitherto prevented the development of dynamic predic-
tive models and consequently dynamic SHMs [4]. However, 
there are some studies on the use of ambient vibrations for 
model calibration purposes.

Cheng et al. [30] propose a SHM approach for concrete 
dams based on ambient vibrations in which the kernel 
principle analysis (KPCA) is used to remove the effect of 
environmental condition variations. Damage is detected by 
comparing the L2 norm of the KPCA error calculated dur-
ing normal conditions with the L2 norm calculated for the 
current state of the dam. After detecting the damaged areas, 
the coordinate modal assurance criterion (COMAC) is used 
to locate them. The authors do not tackle the mode match-
ing problem and do not define any probabilistic framework.

Hariri-Ardebili et al. [31] study the modal behaviour of 
an arch dam, highlighting the effect of mechanical parameter 
uncertainties on the numerical results. The authors present 
a calibration procedure based on regression to the model 
parameters, which employs experimental modal character-
istics. Again, the procedure is not defined within an SHM 
framework.

A hierarchical Bayesian method based on ambient 
vibrations for the dynamic parameter calibration of dam 
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numerical models is proposed by Sevieri et al. [4]. They 
present a modified version of the Markov Chain Monte Carlo 
(MCMC) to solve the mode matching problem related to SSI 
modelling. They use hybrid meta models to surrogate FEA 
results, thus enabling the Bayesian inference to be applied 
to dam engineering. The application of the proposed proce-
dure to the case of a real dam demonstrates the validity of 
this study.

3  Failure mechanisms and damage 
development in concrete dams

The first step in defining the SHM system is to analyse the 
damage propagation and failure mechanisms of the struc-
tural system. This is carried out in order to select the QIs to 
be detected and real case histories, numerical models and 
expert judgements are exploited. Since there are no case 
histories on concrete dam failures after seismic events [32, 
33], numerical models are the only way to predict how such 
structures deal with collapse [2, 33]. Due to the quasi-brit-
tle nature of the material, collapse mechanisms of concrete 
dams are mostly driven by tensile crack development [34]. 
The opening of cracks weakens the structure, thus leading 
to sliding or rocking.

Crack paths start from both the upstream and the down-
stream face of the dam and then propagate toward the 
core [35]. There are four main critical locations where cracks 
tend to start: (A) the neck area, where there is a change in 
the downstream face slope; (B) along lift joints at various 
elevations; (C) along the dam-foundation interface both near 
to the toe and the dam heel; (D) and at the foundation in near 
field of the dam. These areas are shown in Fig. 1 adapted 
from Léger [35].

Three-dimensional models of the dam enable analysts 
to highlight other failure mechanisms (e.g., those involving 
vertical contraction joints) which may lead to uncontrolled 
water release [36] and which cannot be detected through 
two-dimensional models.

Failure mechanisms of dam cross-sections have been 
investigated in several studies. Omidi et al. [37] analyse the 
seismic cracking of concrete gravity dams using a plastic-
damage model and assuming different damping approaches. 
Their results show a high damage concentration in areas A 
and C in Fig. 1.

Hariri-Ardebili et al. [2] present a state-of-the-art review 
of seismic fragility analyses of concrete gravity dams. Most 
studies assume that sliding or rocking only arise in areas A 
and C in Fig. 1.

In a previous work, De Falco et  al.  [38] propose an 
extended version of the “Masonry like” material [39] as 
a new damage constitutive model for dam concrete. The 
Koyna dam is studied in terms of both seismic and overflow 

conditions, and the results are compared with the literature. 
The study revealed a high concentration of crack paths in 
areas A and C in Fig. 1.

Ansari et al. [40] propose a damage index for concrete 
gravity dams based on crack propagation and sliding safety 
factors. They demonstrate that this index can be a reliable 
parameter for the control of the structural health state.

Most studies show that the main failure mechanisms are 
sliding and rocking due to tensile cracking. A reliable SHM 
system for concrete gravity dams therefore needs to pro-
vide early detection of any variations in a QI with the crack 
propagation.

4  Proposed SHM framework

4.1  General overview

The present paper proposes a probabilistic SHM framework 
for concrete gravity dams. Its particular architecture together 
with the use of gPCE-based predictive models allow for 
real-time structural control and a better estimation of the 
remaining life expectancy of the dam. The use of ambient 
vibrations (Fig. 2) as an information source enables dam-
aged areas to be detected and the dynamic parameters of 
dam predictive models to be updated within the SHM itself. 
Epistemic uncertainties related to the mechanical param-
eters of the materials are thus reduced, and the prediction 
of the dam behaviour is improved. Both damage detection 
and SHM are based on a comparison between QIs related to 
the healthy state of the structure and the current state, i.e., 
experimental and predicted mode shapes. Since QIs repre-
senting structural healthy states vary depending on the envi-
ronmental conditions, anthropic loads, random factors and 

Fig. 1  Crack path critical locations of potential seismic failure modes 
in the section of concrete dams
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so on, probabilistic predictive models are needed to forecast 
their evolution. Predictive models also need to be accurate 
and fast, to enable the control system to be in real time. In 
this case, the accuracy of the system is improved by reducing 
epistemic uncertainties via the Bayesian inference. Using 
gPCE-based meta models, rather than FE models, leads to 
more rapid predictions.

The proposed probabilistic framework contributes both 
to the diagnosis and prognosis steps of the SHM. In fact, 
the continuous updating of the proposed predictive model 
reduces the errors, thus refining the predictions themselves 
and consequently the detection and location of the dam-
age. Likewise, uncertainties are also reduced in the prog-
nosis step, thus improving the estimation of the residual life 
expectancy of the dam.

The proposed approach has two phases in the hierarchical 
Bayesian framework [41]: Training and Detection. During 
the Training phase, predictive models are calibrated using 
the observations recorded by the monitoring system dur-
ing the normal operations of the dam. During the Detection 
phase, the structural health state is controlled. The monitor-
ing system records ambient vibrations and environmental 
measurements, such as basin levels, air humidity rate, water 
and air temperatures. The structural response to ambient 
vibrations is analysed through the OMA to determine the 
system’s modal characteristics. In particular, dam mode 
shapes are used as QI because of their particular sensitivity 
to damage development.

An additive multivariate probabilistic model [41, 42] 
is used to statistically describe the relationship among the 

mechanical parameters of materials, environmental condi-
tions, observed and predicted QIs, and error terms. For the 
sake of simplicity environmental conditions are collected 
in � , while the unknown elastic mechanical parameters of 
materials are collected in θθθel . Assuming the system mode 
shapes as reference QIs, only the elastic parameters of the 
materials need to be considered as random variables. A para-
metrization of the problem in terms of the bulk modulus 
K and shear modulus G [43] reduces the variance of the 
solution [3]. It is worth noting that the static and dynamic 
behaviour of dams strictly depend on the environmental con-
ditions [3, 44–49].

The predictive model proposed by Sevieri et al. [4] is used 
to represent the mode shapes of the system dam-basin-soil. 
Let us consider q modes of a dam numerical model with m 
dynamic degrees of freedom ( q ≤ m ). By ordering the com-
ponents of the mode shapes matrix ΦΦΦ =

[
ϕϕϕ1,… ,ϕϕϕk,… ,ϕϕϕq

]
 

in only one vector ϕϕϕtotal with dimension m ⋅ q × 1 , an index 
h with 1 ≤ h ≤ m ⋅ q can be defined, thus leading to a sim-
plification from a computational point of view [4]. Conse-
quently, the statistical relationship between the ith obser-
vation of the hth component of the experimental mode 
shape �h,i

(
�,θθθel,ΣΣΣϕ

)
 and the corresponding predicted value 

�̂�h,i

(
�,θθθel

)
 is

ΣΣΣϕ in Eq. 1 is the covariance matrix of the error terms 
�ϕh

�ϕh,i
 . In order to improve the prediction capability of the 

(1)
𝜙h,i

(
�,θθθel,ΣΣΣϕ

)
= �̂�h,i

(
�,θθθel

)
+ 𝜎ϕh

𝜖ϕh,i
,

h = 1,… ,m ⋅ q i = 1,… , l.

Fig. 2  Flow chart of SHM framework for concrete dams
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SHM also the error term is updated, i.e. the components of 
ΣΣΣϕ . The dimension of the probabilistic problem, and thus 
the computational burden, strongly increases. Therefore, 
by assuming that only components that belong to the same 
mode are correlated, the covariance matrix assumes a block 
form [4], that is

The computational burden can be further reduced by using 
covariance functions to describe the components of ΣΣΣϕ.

By assuming an exponential form for the covariance 
function:

two components �r and �s of the same nth mode can be 
conceived as being correlated through their Euclidean dis-
tance d�r ,�s

 . The unknown combination coefficients �n and 
wn
d
 , which are collected in the vectors ��� and �d , respectively, 

are also updated.
The use of the Bayesian inference within SHM frame-

works is particularly effective because of the large amount 
of recorded data. In the field of engineering modelling, the 
updating process aims to find the parameter set that leads 
to the best fit between an observed QI and its prediction 
obtained with a numerical model [50]. The determination 
of the parameter values is an inverse ill-posed problem in 
the Hadamard’ sense [51], so a regularisation is needed. 
The Bayesian inference allows this to be achieved by intro-
ducing information about the parameters, namely the prior 
distributions [52].

As discussed by Sevieri et al. [4], a hierarchical formula-
tion of the updating rule [53] is preferable because it enables 
the calibration of mean values and standard deviations of 
parameter distributions. This is fundamental for improving 
the estimation of the structural fragility during the prognosis 
phase.

Let us define the vector of the new observations � , which 
collects the experimental mode shapes obtained by process-
ing the ambient vibrations through OMA, and the vector of 
the elastic hyper-parameters ΞΞΞel . The prior distribution can 
thus be written as

(2)

(3)COV
(
�r,�s

)
=

1

�n
exp

[
−
(
wn
d
d�r ,�s

)]
,

(4)p
(
θθθel,ΣΣΣϕ,ΞΞΞel

)
= p

(
θθθel,ΣΣΣϕ|ΞΞΞel

)
p
(
ΞΞΞel

)
.

By defining the likelihood function L
(
�,θθθel,ΣΣΣϕ,ΞΞΞel|�

)
 which 

contains the new observations, the posterior distribution 
p
(
θθθel,ΣΣΣϕ,ΞΞΞel|�

)
 is obtained through the updating rule

Updating procedures based on the Bayesian inference entails 
defining the prior distribution of the unknown parameters 
and selecting a computational approach. Calculating the 
posterior distribution in real problems (i.e., the solution of 
Eq. 5) is complex [53, 54] because of the integration on 
manifolds and the large dimension of the problems. The 
modified version of the numerical algorithm MCMC pro-
posed by Sevieri et al. [4] is herein used to determine the 
posterior distribution. Given that MCMC is a sampling 
approach, it requires a large number of analyses, which 
are computationally expensive. When complex numerical 
models are used to simulate the structural behaviour, as in 
the case of concrete dams, the computational cost becomes 
prohibitive. The use of meta models within the numerical 
algorithm, rather than exploiting the FEA results, reduces 
the computational burden [55].

In this study, gPCE-based meta models of the system 
mode shapes �̂�gPCE

h,i

(
�,θθθgPCE

(
θθθel

))
 surrogate the FEA solu-

tions �̂�h,i

(
�,θθθel

)
 (Eq. 6). In order to build the surrogate 

model, orthogonal basis functions ΨΨΨ�

(
θθθgPCE

(
θθθel

))
 are com-

bined using coefficients collected in �(�)(�) [7].

Constructing the response surface also entails defining the 
gPCE variables θθθgPCE

(
θθθel

)
 (which are a function of the elas-

tic parameters of the material) and the finite multi-index set 
� . The combination coefficients �(�)(�) are determined from 
the FEA solutions, by applying regression techniques [7] or 
the Bayesian approach [56]. By exploiting the orthogonal-
ity condition of the basis functions, the FEA output statis-
tics (i.e., forward problem solution) can easily be derived 
through algebraic operations on the combination coeffi-
cients [7]. Likewise, a variance-based sensitivity analysis 
(i.e., Sobol’ indices) can easily be conducted by combining 
the coefficients collected in �(�)(�) [57], thus quantifying 
how each random parameter of θθθel affects the variation of 
the final result.

Vibration-based damage assessment defined in the Bayes-
ian setting has been used before in the field of SHM [58]. 
However, in the proposed framework the combination of 
Bayesian inference, gPCE-based meta models and the 

(5)

p
(
θθθel,ΣΣΣϕ,ΞΞΞel|�

)

= �L
(
�,θθθel,ΣΣΣϕ,ΞΞΞel|�

)
p
(
θθθel,ΣΣΣϕ,ΞΞΞel

)

= �L
(
�,θθθel,ΣΣΣϕ,ΞΞΞel|�

)
p
(
θθθel,ΣΣΣϕ|ΞΞΞel

)
p
(
ΞΞΞel

)
.

(6)
�̂�h,i

(
�,θθθel

)
≈ �̂�

gPCE

h,i

(
�,θθθgPCE

(
θθθel

))

=
∑

𝛼∈�

�(𝛼)(�)ΨΨΨ𝛼

(
θθθgPCE

(
θθθel

))
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modified version of MCMC [4] provides a robust procedure 
that is applicable to concrete gravity dams.

Each step of the proposed SHM framework is detailed 
below.

4.2  The training phase

During the Training phase, observations recorded by the 
monitoring system are used to update through the Bayesian 
Inference the parameters of the predictive model of the mode 
shapes, which are related to the healthy state of the dam.

Considering l new observations, the likelihood function 
of Eq. 5 can be written as

where �ϕ
i

(
�,θθθel,ΞΞΞel

)
=
[
r
ϕU

1,i
,… , r

ϕ

h,i
,… , r

ϕ

q⋅m,i

]T
 are the 

residuals which express the difference between the ith obser-
vation of the experimental mode shapes and the related 
numerical prediction,

The prior distributions of the material elastic parameters 
(Eq. 5) can be derived from the material test results, which 
are usually available for existing concrete dams. On the other 
hand, non-informative prior distributions can be used for 
parameters whit no physical meaning, such as ��� and �d [41].

4.3  The detection phase

The Detection phase detects damage by comparing experi-
mental mode shapes, currently observed by processing ambi-
ent vibrations with OMA, with those of the healthy dam 
simulated by the calibrated predictive model. The compu-
tational speed achieved through the surrogate model allows 
for the real-time structural control in this step.

Three fundamental aspects must be considered in the defi-
nition of the Detection phase: selection of the OMA tech-
nique, selection of the control frequency, and the definition 
of thresholds that reflect structural abnormal behaviours.

Signal processing and selection of the most appropriate 
OMA technique are fundamental steps for the accurate esti-
mation of experimental mode shapes and frequencies. Even 
tough this topic is outside the scope of the present study, it 
can be stated that automated OMA techniques [11] are cer-
tainly appropriate for the installation of a continuous SHM 
system.

(7)

L
(
�,θθθel,ΣΣΣϕ,ΞΞΞel

)

∝

l∏

i=1

exp
[
−

1

2
�
ϕ

i

T(
�,θθθel,ΞΞΞel

)
ΣΣΣ−1
ϕ
�
ϕ

i

(
�,θθθel,ΞΞΞel

)]

√
|2�ΣΣΣϕ|

,

(8)r
ϕ

h,i
= 𝜙h,i

(
�,θθθel,ΣΣΣϕ,el

)
− �̂�h,i

(
�,θθθel,ΞΞΞel

)
.

The control frequency is the time period between two 
subsequent controls of the health state of the structure. This 
important aspect is usually related to the computational 
power available and the storage capacity. The gPCE-based 
models adopted in this study considerably reduce the com-
putational burden, thus the computational power required is 
no longer a problem. On the other hand, continuous control 
systems require more storage capacities than those related to 
event-triggered systems. Continuous SHMs with relatively 
high control frequency thus require more storage capacity 
than daily ones. Clearly the choice of the best control fre-
quency cannot be generalised and it must be accurately eval-
uated by balancing available storage capacity and required 
structural safety.

Defining a suitable threshold related to a particular dam-
age state involves the physical phenomenon and the accuracy 
of the observations and predictions. Regarding this latter, 
the proposed approach allows analysts to estimate the trust 
level in the discrepancy between recorded and predicted QI 
by updating the covariance matrix ΣΣΣϕ of the error terms. A 
probabilistic study of the physical phenomenon is required in 
order to correlate a variation in the monitored QI with a par-
ticular damage scenario. In fact, if there are no case studies, 
only numerical models can help to investigate how concrete 
dams react during a collapse. Due to the many uncertainties 
involved in this calculation, such a study should be con-
ducted within a robust probabilistic framework. Since each 
concrete gravity dam is characterised by its own construction 
features and geometric characteristics, scenario analyses for 
the determination of suitable thresholds should be performed 
for every individual dam.

5  Case of study

5.1  Dam description

The proposed SHM framework is applied to a large con-
crete dam in Italy for which material test results and ambient 
vibration records are available. Since the observations were 
recorded during the normal use of the dam, they are related 
to a healthy state of the structure in this study. However, 
given that there are no information on how the dam would 
behave when damage occurs, a high-fidelity model is used 
to simulate such conditions.

The dam is situated in a high seismic area in Italy. It is 55 
m tall and 199.20 m in length, with no vertical contraction 
joints. The near-field of the dam is made up of two different 
types of soil: an arenaceous mass and a marl mass.

As outlined in Sect. 4, the elastic parameters of the mate-
rials (i.e., the bulk moduli K and the shear moduli G) are 
treated as random variables. The concrete parameters are 
indicated with the subscript C, while those of the arenaceous 
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soil and those of the marl mass are indicated with A and M 
subscripts, respectively.

Therefore, in this study the elastic model parameters are 
collected in θθθel =

[
KC,GC,KA,GA,KM ,GM

]T . In addition, 
assuming that they are log-normally distributed with mean 
values collected in ���μ

el
=
[
ξ
μ

KC
, ξ

μ

GC
, ξ

μ

KA
, ξ

μ

GA
, ξ

μ

KM
, ξ

μ

GM

]T
 and 

variances collected in ���σ
el
=
[
ξσ
KC
, ξσ

GC
, ξσ

KA
, ξσ

GA
, ξσ

KM
, ξσ

GM

]T
 , 

their hyper-parameter vector becomes ΞΞΞel =
[
���
μ

el
,���σ

el

]T.
Only the basin level variation is considered as a measur-

able variable � in this application, because no information 
on temperatures and humidity was available. Moreover, the 
results of only one ambient vibration experimental cam-
paign are available. The temperatures and humidity can thus 
be assumed to be constant during the test, and consequently 
their effects on the dam behaviour can be neglected.

5.2  Dynamic experimental campaign

The Training phase is performed by using the information 
acquired from the Italian Civil Protection in 2016 during 
an experimental campaign. The aim of the survey was the 
modal identification of the system using its modal charac-
teristics obtained by processing ambient vibrations using 
OMA techniques. Fifteen high performance 1 Hz Seis-
mometer LE-3Dlite (Lennartz Electronic GmbH), placed 
in the upper part of the structure, were used to record 
ambient vibrations. Two-hour recordings with a sam-
pling frequency of fs = 200Hz were performed. The data 

and results are presented in the experimental campaign 
report [59] which is available on-line [60]. In particular, 
the first three modes were identified (Fig. 3) by applying 
the Enhanced Frequency Domain Decomposition (EFDD) 
method with a basin level equal to 856.2 m.a.s.l., i.e. 40.8 
m from the bottom of the dam.

5.3  Material test results and prior distributions

Several different experimental campaigns were carried out 
over time to investigate the quality of the concrete and soil. 
The results of the 2012 experimental campaign (Table 1) 
are used in this work for the definition of the hyper-prior 
distributions. The hyper-prior distributions of the mechani-
cal characteristics of the material are assumed log-normal: 
those of the hyper-parameters ���μ

el
 are directly derived from 

the material test results, while those of the hyper-parame-
ters ���σ

el
 have mean values equal to the standard deviations 

obtained during experimental tests and coefficient of vari-
ations (CoVs) equal to 10%. The assumed values of CoVs 
avoid numerical problems in the algorithm for the inverse 
problem solution, therefore, in the absence of any informa-
tion on them, it seems to be a reasonable choice. In addition, 
only ���μ

el
 are updated in the proposed procedure, then every 

reasonable choice on ���σ
el
 does not affect the final result. The 

hyper-prior distributions of the mechanical parameters are 
reported in Table 2. The prior distributions of the parameters 
with no physical meaning, such as those of the covariance 
function, are modelled as non-informative.

Fig. 3  Experimental mode 
shapes
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5.4  Construction of the FE model and gPCE 
surrogate model

The predictive models �̂�h,i

(
�,θθθel,ΞΞΞel

)
 of the mode shapes of 

the dam (Sect. 4) are based on the gPCE, which is trained on 
the solution of the modal analysis of a FE model.

Starting from the topographic maps and the original tech-
nical drawings of the dam, the system dam-basin-soil model 
is constructed in a CAD program. The final geometry is then 
imported into ABAQUS 6.14 [61], the software used for the 
FEAs. The SSI is considered by modelling the near-field 
with as an elastic medium and using infinite elements [5] to 
reproduce the unboundedness of the soil domain. Acoustic 
elements are used to model the basin and its interaction with 
the dam body and the soil domain as well. Low reflecting 
boundary conditions [6] are used at the edges of the fluid 
domain to avoid the reflection of seismic waves.

The FE model is composed of 13,280 quadratic tetrahe-
dral mechanical elements (C3D10) for the dam body and the 
foundation soil, and 237 linear hexahedral infinite elements 
(CIN3D8) for the soil boundary conditions. The number of 
the 4-node linear tetrahedron fluid elements (AC3D4) of the 
reservoir depends on the water level that is a measurable 
variable. Materials are assumed linear elastic, since the cal-
culation of gPCE combination coefficients is based on the 
modal analysis.

Once the FE model is created, the gPCE must defined. 
Hermitian polynomials are used for the definition of the 
orthogonal basis functions, and the combination coeffi-
cients of the polynomial expansion (Sect. 4) are determined 
on the FEA outputs. The parameters sets of theses FEAs 

are randomly sampled from the prior distributions of the 
mechanical parameters, while the basin levels � is deter-
ministically discretised. The prior distributions used to for 
this task are assumed log-normally distributed with param-
eters derived from the mean values of ���μ

el
 and ���σ

el
 (Table 2). 

The basin level varies from the bottom of the dam to the 
maximum level (55 m), with steps of 10 m, and, in order to 
improve the accuracy of the solution, also basin levels equal 
to 40.8 m (basin level during the experimental campaign) 55 
m (maximum level) are considered. The discretization of the 
measurable variables depends on the aims of the study, then 
such a coarse discretization is acceptable only to show the 
feasibility of the method, while a much more refined discre-
tization is well recommended for the implementation of a 
dynamic SHM. A total of 150 numerical analyses, charac-
terised by different parameters sets randomly sampled from 
the prior distributions, are finally performed for each basin 
level. The FEA results are then used for the calibration of 
the gPCE coefficients by applying the procedure proposed by 
Rosić et al. [56]. A sensitivity analysis is performed to select 
the degree of the polynomial expansion, which minimise the 
gPCE error. After 200 new analyses, performed by randomly 
sampling from the previously defined prior distributions and 
from the set of the measurable variables, the mean values of 
the gPCE error are calculated for the first 17 frequencies of 
the system (Fig. 4) considering 3th, 4th and 5th polynomial 
orders. The error is herein defined as the difference between 
the FEA result and the related gPCE prediction divided by 
the FEA result itself. The sensitivity analysis shows that the 
5th order polynomial expansion provides the smallest error 
both in terms of frequencies and mode shapes.

Table 1  Material test results

EC (MPa) �C �C ( kg∕m3) ft,C (MPa) fc,C (MPa) EA (MPa) �A �A ( kg∕m3) EM (MPa) �M �M ( kg∕m3)

Mean 34620 0.16 2270 2 16.7 21000 0.16 1800 7000 0.22 1800
SD 12498 0.06 189.17 1.1 5.16 9545 0.07 – 3181.8 0.1 –

Table 2  Hyper-prior distributions of the mechanical parameters

�
μ

m,KC
 (MPa) �

μ

m,GC
 (MPa) �

μ

m,KA
 (MPa) �

μ

m,GA
 (MPa) �

μ

m,KM
 (MPa) �

μ

m,GM
 (MPa)

Distr. Log-normal Log-normal Log-normal Log-normal Log-normal Log-normal
Mean 16971 14922 10294 9051.7 4166.7 2868.9
SD 6109.6 5372.1 4411.8 3879.3 1785.7 1229.5

��
m,KC

 (MPa) ��
m,GC

 (MPa) ��
m,KA

 (MPa) ��
m,GA

 (MPa) ��
m,KM

 (MPa) ��
m,GM

 (MPa)

Distr. Log-normal Log-normal Log-normal Log-normal Log-normal Log-normal
Mean 6109.6 5372.1 4411.8 3879.3 1785.7 1229.5
SD 611.0 537.2 441.2 387.9 178.6 123.0
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5.5  The high‑fidelity FE model

The damaged behaviour of the dam is simulated through a 
high-fidelity model having the same geometry of the one 
described in Sect. 5.4, but with a much more refined mesh 
and a non-linear constitutive model for the concrete. The 
mesh is composed of 15,936 quadratic tetrahedral mechani-
cal elements (C3D10) for the dam body and the soil domain, 
and 6873 linear tetrahedral acoustic elements (AC3D4) for 
the basin. Moreover, 474 linear hexahedral infinite elements 
(CIN3D8) are used to model the unboundedness of the soil 
domain, while low reflecting boundary conditions are applied 
at the edges of the basin. The minimum mesh size is one tenth 
of the smallest wavelength of the seismic motion used in the 
seismic analysis described in the next sections.

As the high-fidelity model is deterministic, the basin level is 
at the maximum height, i.e. 55.5 m, thus considering the worst 
case scenario for the seismic analysis.

By assuming that the failure can occur only in the dam 
body due to tensile crack propagation, an elastic-plastic 
damage model (the concrete damage plasticity model) [62] 
is adopted for the dam concrete, while the soil is assumed 
linear-elastic. The parameters of the damage law and those of 
the plastic flow can be found in the scientific literature [37] 
and they are reported in Table 3. More specifically, � is the 
dilation angle, � is is the eccentricity that defines the rate at 
which the flow potential approaches the asymptote, �b0∕�c0 
is the ratio of initial equibiaxial compressive yield stress to 
initial uniaxial compressive yield stress and Kc is the ratio of 
the second stress invariant on the tensile meridian to that on 
the compressive meridian. In this study, the tensile strength is 
fixed equal to 1.45 MPa, while the fracture energy is assumed 
equal to 150 N/m.

5.6  Training phase

In the Training phase, the experimental mode shapes described 
in Sect. 5.2 are used to calibrate the gPCE-based predictive 
models defined in Sect. 5.4. This fundamental step aims to 
reduce the uncertainties involved in the prediction of the dam 
behaviour and to estimate its error as well. In a real control sys-
tem, the procedure described in this Section, which is applied 
only to a single observation, is repeated every time new data 
are available.

The predictive model parameters are updated by following 
the procedure described in Sect. 4.2. The procedure proposed 
by Sevieri et al. [4] is used to solve the inverse problem. This 
numerical algorithm, based on MCMC, requires setting up few 
parameters: the initial mechanical parameter set, the number 
of steps and the proposal distributions. The mean values of 
the hyper-prior distributions of ���μ

el
 are used to define the ini-

tial mechanical parameter set. Normal distributions with mean 
values equal to zero and standard deviations equal to 10% of 
the prior distribution ones are used as proposal distributions. 
The convergence of the algorithm, checked through the proba-
bilistic metric proposed by Brooks et al. [63], is achieved in 
10,000 steps (1000 burn-in).

Fig. 5 shows the comparison between prior and posterior 
distributions of K and G, while the posterior statistics are 
reported in Table 4. The posterior distributions reported in 
Fig. 5 are used for the definition of the gPCE (Sect. 5.4). 
The comparison between experimental and numerical fre-
quencies shown in Table 5 confirms the good agreement 
between them. The good agreement between experimental 
and predicted mode shapes can be observed in terms of 
modal assurance criterion (MAC) [11]. Each MAC matrix 

Fig. 4  Relative errors of the mode shapes meta model of the Scan-
darello dam

Table 3  Plastic flow parameters
� (◦) � �b0∕�c0 Kc

36.31 0.1 1.16 0.66
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Fig. 5  Comparison between 
prior and posterior distributions 
of K and G 
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element represents the correlation between an experimental 
mode and its prediction. MAC values close to 1 indicate a 
high correlation between the two modes. Figure 6 shows 
that only three modes have a sufficiently high correlation, 
while most numerical modes have low correlation with the 
experimental ones.

The inverse analysis algorithm adopted in this work auto-
matically selects the correlated modes, thus solving the pre-
viously discussed mode matching problem.

5.7  Detection phase

During the Detection phase, the observed experimental 
mode shapes are compared to those obtained from the gPCE-
based predictive models. In this application, the comparison 
is the point-to-point difference between experimental and 
predicted mode shapes. As discussed in the Sect. 4.3 the 
comparison criteria, as well as the definition of the thresh-
olds, depends on case study and the available information. 
In the absence of real records providing the modal charac-
teristics of the damaged dam, the high-fidelity FE model 
described in Sect. 5.5) is used to simulate the experimental 
mode shapes related to three different damage scenarios.

The three DSs considered in this study are defined with 
regard to the development of tensile crack paths. Only crack 
paths with tensile damage variable of the concrete damage 
plasticity model dt higher than 0.3 are considered. DS1 is 
thus achieved when cracks appear in one of the critical areas 
of Fig. 1 (localised damage), DL2 is achieved when crack 
paths grow toward the core of the dam (diffuse damage), 
and DL3 is achieved when widespread damage or crossing 
crack path appear.

The reference seismic event for the construction of the 
DSs is the magnitude 6.2 earthquake occurred on 24 August 
2016 at 01:36 UTC in Central Italy. The first period spec-
tral acceleration Sa

(
T1
)
 is used herein as reference intensity 

measure of the ground motion. The seismic input recorded 
by the Amatrice station, characterised by Sa

(
T1
)
 equal to 

1.5622 g, is considered and scaled to the attainment of the 
three defined DSs. The scaled action is applied as boundary 
condition at the base of the near-field after a deconvolution 
step [64].

DS1 is achieved for Sa
(
T1
)
= 0.2107 g, DS2 is 

achieved for Sa
(
T1
)
= 0.4328 g and DS3 is achieved for 

Sa
(
T1
)
= 0.472 g. The three preselected DSs can be achieved 

only by reducing the original seismic input. The tensile 
strength, assumed equal to 1.45 MPa, is a conservative value 
if compared to the material test results, this fact justifies the 
results of the seismic analyses.

The DSs are reported in Fig. 7. Following the proce-
dure discussed in Sect. 4.3, structural damage is detected 
by comparing the experimental mode shapes related to dif-
ferent DSs (obtained in this study from the high-fidelity 
mode) with the corresponding predictions (derived from the 
calibrated gPCE-based predictive models). Figure 8 shows 
the comparison between observations and predictions. The 
devices layout is the same adopted during the experimental 
campaign described in Sect. 5.2.

The results highlight that an abnormal behaviour of the 
system can be easily detected from the first three principal 
modes of the dam for DS2 and DS3 (Fig. 8). In both these 
cases, observed and predicted mode shapes show large dif-
ferences. Whereas, for DS1 predictions and observations are 
relatively close, even if their difference is higher than the 
error of the prediction itself. The damage detection in case 
of DS1 is of primary importance for the structural control. 
Figure 9 shows the histogram of the discrepancy between 
predictions and observations for each device in case of DS1. 
The discrepancy is herein defined as the percentage varia-
tion of the prediction plus its standard deviation. Clearly 
the higher modes better indicate abnormal behaviour, even 
tough the maximum discrepancy reaches 1% in the middle 
of the dam crest. The monitoring system, including hardware 
and software components, should be designed in order to 
achieve this accuracy.

6  Concluding remarks

Concrete gravity dams are fundamental infrastructure for the 
sustainability of a country. Most of them were designed/built 
without concerns for their dynamic behaviour, therefore 

Table 4  Posterior distributions of the elastic parameters

�
μ

m,KC
 (MPa) �

μ

m,GC
 (MPa) �

μ

m,KA
 (MPa) �

μ

m,GA
 (MPa) �

μ

m,KM
 (MPa) �

μ

m,GM
 (MPa) ��

m,KC
 (MPa) ��

m,GC
 (MPa) ��

m,KA
 (MPa)

Mean 11184.2 5186.5 9156.3 7789.7 4958.1 2724.6 1749.1 598.31 2732.74
SD 559.22 378.61 631.78 545.28 242.94 168.93 155.66 45.77 240.42

��
m,GA

 (MPa) ��
m,KM

 (MPa) ��
m,GM

 (MPa) λ1 λ2 λ3 w1
d

w2
d

w3
d

Mean 982.26 1422.50 598.3 25.16 39.09 34.28 0.0074 0.0261 0.0053
SD 68.03 137.29 45.01 5.24 6.25 2.92 0.0096 0.1615 0.0132
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do not meet the seismic reliability levels required by our 
society.

Dynamic structural health monitoring (SHM) systems 
play a fundamental role both in terms of controlling concrete 
dams and in terms of reducing the uncertainties involved in 
the seismic assessment of such structures. Exploiting ambi-
ent vibrations as source of information is an interesting 
option in dam engineering. In fact, in this strategy continu-
ous monitoring systems can be installed without requiring 
any additional device for the excitation of the dam, thus 
reducing the overall cost. However, only few applications 
of ambient vibration-based monitoring systems to concrete 
gravity dams are available in the scientific literature. None 
of them propose probabilistic frameworks.

A new probabilistic framework for ambient vibration-
based SHM for concrete dams is proposed in this paper. 
With the proposed SHM, the structural health state of the 
dam can be controlled and the mechanical parameters of the 
numerical model can be updated. The uncertainties involved 
in the predictive models of the dam are reduced, thus 
improving the structural control itself and the estimation of 
the remaining life expectancy of the structure. The particular 
SHM architecture is made up of two different steps defined 
in the Bayesian setting: the Training phase and the Detection 
phase. During the Training phase, ambient vibrations are 
first processed through Operational Modal Analysis (OMA) 
methods to determine the modal characteristics of the sys-
tem. These characteristics are then used to calibrate predic-
tive models of the structural behaviour based on the general 
Polynomial Chaos Expansion (gPCE). The use of the gPCE 

Table 5  Comparison between experimental and numerical frequen-
cies

Experimental frequencies Numerical 
Frequen-
cies

f
1
 (Hz) 5.737 5.592

f
2
 (Hz) 6.870 6.691

f
3
 (Hz) 8.896 9.183

Fig. 6  MAC matrix between experimental frequencies and numerical 
ones calculated using the mode shapes predictive model

Fig. 7  Damage scenarios, 
Detection phase
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for surrogating numerical models of the dam means that 
the procedure can be defined in the Hierarchical Bayesian 
framework without high-performance computing. In addi-
tion, the definition of the framework in the Bayesian setting 
reduces the uncertainties involved in the predictive models 
themselves.

The calibrated predictive models are then used in the 
Detection phase in order to assess damaged areas. This 
phase is based on comparing predictions with current 
experimental observations. The computational speed and 
accuracy achieved with the use of gPCE-based predictive 
models enables the proposed dynamic SHM to be used for 
real-time control of the structures. Another important aspect 
in this fundamental step is the definition of a threshold for 
the detection of abnormal behaviour in the dam. However, 

this topic is not among the aims of the present paper, which 
is more focused on the definition of the SHM framework.

We applied the proposed framework to a real large 
concrete dam located in a high-seismic area in Italy, for 
which real ambient vibration records and material test 
results are available. The case study shows the feasibility 
of our approach in real cases and has important implica-
tions. The use of gPCE-based meta models is fundamen-
tal for the implementation of the real time control, and 
the inverse analysis algorithm used for the solution of the 
Bayesian problem allows the mode matching problem to 
be solved, which is a crucial issue in dam engineering. The 
idea of defining a threshold with regard to different Dam-
age Scenarios (DSs) is an interesting idea which allows 
intervention strategies to be set up. The accuracy of the 

Fig. 8  Comparison between 
experimental mode shapes and 
predictions, Detection phase

Fig. 9  Discrepancy between 
predictions and experimental 
mode shapes for each device 
(DL1)
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SHM system should be increased as much as possible by 
optimising the device layout (i.e., decrease the required 
accuracy level for detecting a particular DS) or by using 
a more sensitive quantity of interest (such as the deriva-
tives of mode shapes). We plan to investigate these topics 
in future works.
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