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Abstract: The study is the first to evaluate the effects of graded normobaric hypoxia 

on SpO2 variability in healthy individuals. Twelve healthy males (mean (SD) age 22 

(4) years) were exposed to four simulated environments (FiO2: 0.12, 0.145, 0.17 and 

0.21) for 45-min, in a balanced cross-over design. Sample entropy, a tool that 

quantifies the irregularity of pulse oximetry fluctuations, was used as a measure of 

SpO2 variability. SpO2 entropy increased as the FiO2 decreased, and there was a 

strong significant negative correlation between mean SpO2 and its entropy during 

hypoxic exposure (r = -0.841 to -0.896, P < 0.001). In addition, SpO2 sample entropy, 

but not mean SpO2, was correlated (r = 0.630 to 0.760, P < 0.05) with dyspnoea in 

FiO2 0.17, 0.145, and 0.12 and importantly, SpO2 sample entropy at FiO2 0.17 was 

correlated with dyspnoea at FiO2 0.145 (r = 0.811, P < 0.01). These findings suggest 

that SpO2 variability analysis may have the potential to be used in a clinical setting as 

a non-invasive measure to identify the negative sequalae of hypoxaemia. 
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Introduction 

Tissue hypoxia is a fundamental consequence not only of high-altitude exposure but 

also of critical illness, where it may occur either as a cause, or as a result of, various 

pathologies (Berger and Grocott, 2017). Hypoxia also causes a concomitant decrease 

in SpO2 through its effects on the arterial partial pressure of oxygen (PaO2), in 

accordance with the alveolar gas equation and the oxyhemoglobin dissociation curve. 

For example, SpO2 on arrival at terrestrial altitude of 3800m can reach ~90%, and 

further decline to ~81% after a trek to 5200m (Mellor et al. 2015). Similarly, SpO2 

values below 80% are regularly observed in patients in intensive care (Wilson et al. 

2010; Van de Louw et al. 2001). Following the stimulation of aortic-arch 

chemoreceptors and carotid bodies, the physiological response to hypoxemia is 

characterized by an increase in cardiac output, ventilation, and haemoglobin 

concentration (Berger and Grocott, 2017; Wilson et al. 2005).  

 

Accumulating evidence indicates that SpO2 variability analysis is more insightful than 

mean SpO2 (Garde et al. 2016; Bhogal and Mani, 2017). Using mean or time averaged 

physiological data does not illuminate the pattern, complexity, and irregularity which is 

observed in most biological systems, and in the cardiovascular system in particular 

(Bhogal and Mani, 2017). The majority of  oscillations in physiological time-series data 

are not linear, and recent evidence suggests that these oscillations can provide a 

useful insight into the activity of the underlying control network (i.e. the cardiovascular 

system) (Wagner and Persson, 1998). Sample entropy is one method of describing 

these nonlinear data, and is commonly used to study the dynamics of the 

cardiovascular system (e.g. heart rate and respiratory rate) (Richman and Moorman, 

2000). Briefly, entropy describes the unpredictability and irregularity of time-series 
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data and allows physiological signals (e.g. heart rate and SpO2) to be classified over 

time (Wagner and Persson, 1998; Moorman et al., 2011). Although there are a variety 

of techniques used when assessing fluctuations in time-series data, entropy is often 

selected as an index of variability due to its link to information theory (Pincus, 1994). 

Information theory is the mathematical study of the coding of information in the form 

of sequences of impulses, and can potentially quantify data within a complex system 

(Mitchell, 2009, Pincus 1994) (e.g. the cardiovascular system). 

 

This nonlinear analysis may provide useful information on the integrity of the 

cardiovascular system in both health and disease. Heart rate and respiratory rate 

variability analysis have previously been used extensively to study the integrity of the 

cardio-respiratory system with promising applications (Shirazi et al., 2013; Tipton et 

al., 2017). Recently, Garde et al. (2016) reported that SpO2 variability data improved 

the identification of children who were admitted to hospital. Further, Bhogal and Mani 

(2017) and others (Pham, 2018) have demonstrated that SpO2 entropy decreases with 

age and that this can differentiate healthy individuals aged over 35 from their younger 

counterparts. Increasingly, it appears that variability analysis provides more 

information about physiological systems compared to absolute or mean values 

(Garrido et al., 2017). These findings suggest that variability indices have the potential 

to predict mortality both in healthy individuals and in clinical populations (Tsuji et al., 

1994; Mani et al., 2009; Bhogal et al., 2019). However, to our knowledge the use of 

SpO2 variability analysis has not been studied empirically within the field of high-

altitude physiology and pathophysiology (e.g., Acute Mountain Sickness). 
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Therefore, the present study sought to characterize the effects of graded normobaric 

hypoxia on SpO2 variability in healthy individuals for the first time. Any non-invasive 

measurement that offer insight into the state of an individual when hypoxic is valuable 

in multiple clinical settings. Reduced entropy in a physiological setting can be 

interpreted as less engagement of the components within a control system (Pincus, 

1994). In healthy physiological systems, more information processing (i.e. 

engagement of the regulatory components) in response to environmental challenges 

such as hypoxia would be expected. As entropy is a measure of information content 

in complex physiologic time-series, we hypothesised that normobaric hypoxia would 

increase the entropy of SpO2 signal in healthy individuals and that SpO2 entropy and 

mean SpO2 would be negatively correlated.  

 

Methods 

 

Ethical approval  

Before providing their written informed consent, all participants were informed of the 

requirements and potential risks of the study. The experimental procedures adhered 

to the standards set by the latest revision of the Declaration of Helsinki, except for 

registration in a database, and were approved by the Science Faculty Ethics 

Committee of The University of Portsmouth (project number 2017-025). 

 

Experimental design 

This study was part of a larger project investigating effects of normobaric hypoxia on 

physiological and cognitive function and the experimental design has been described 

in detail elsewhere (Williams et al., 2019). A convenience sample of twelve healthy 
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males, (mean [SD] age 22 [4] years, height 1.78 [0.05] m, mass 75 [9] kg, FEV1/FVC 

ratio 85 [5] %) volunteered to participate in this study. All participants were non-

smokers, free of any cardiovascular, respiratory and cerebrovascular diseases, were 

not diabetic and were not taking any prescription drugs at the time of or before 

participation. All participants resided at <1000 m and had not spent time at altitude for 

at least 1 month prior to commencement of the study, including commercial flights. 

Participants were instructed to refrain from any strenuous exercise, caffeine or alcohol 

in the 24 h preceding each visit to the laboratory. In addition, participants were 

requested to record their dietary intake for 24 h prior to their first visit and to replicate 

their eating habits for each visit thereafter. 

 

A within participant, balanced cross-over design was employed. Participants were 

required to visit the laboratory on 5 occasions (one health screening and four 

experimental trials). For each experimental trial participants were exposed to 

normobaric hypoxia for 45 minutes in a purpose-built hypoxic chamber (Sporting 

Edge, Sherfield on Loddon, UK).  The fraction of inspired oxygen (FiO2) values were 

0.2093 (sea-level), 0.17 (equivalent to ~1600 m), 0.145 (~3000 m), and 0.12 (4500 

m). If end-tidal O2 (PETO2) or end-tidal CO2 (PETCO2) fell below 45 mmHg and 25 

mmHg respectively, for three consecutive breaths, or if SpO2 went below 65 %, 

participants were given a supply of normoxic air and subsequently removed from the 

chamber. Participants were also blinded to which condition they were in. The ambient 

temperature was maintained at 25 °C and the relative humidity was controlled at 50 % 

throughout. Experimental trials were separated by a minimum of 48 h and conducted 

at the same time of day. 
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Cardiorespiratory responses 

Minute ventilation (V̇E), respiratory frequency (ƒR), tidal volume (VT), end-tidal pressure 

of CO2 (PETCO2) and O2 (PETO2), and heart rate were measured breath by breath using 

a metabolic cart (Quark CPET, Cosmed, Rome, Italy) and appropriate calibration 

procedures were performed according to the manufacturer’s instructions. 

 

SpO2 and SpO2 variability 

SpO2 was recorded using pulse oximetry on the index finger of the right hand (Nonin 

7500, US). Data were continually recorded using an analogue to digital acquisition 

system with a sampling rate of 1000 Hz using a PowerLab system (ADInstruments, 

Castle Hill, Australia). The recorded data were extracted using LabChart software and 

down-sampled by 1000 to 1.s-1. Data were subsequently down sampled as pulse 

oximeter readings are not sampled at such a high rate, and thus at that resolution, the 

variability presented would not reflect true SpO2 variation. This method is commonly 

used when assessing SpO2 entropy (Bhoghal and Mani, 2017, Lazareck and 

Tarassenko, 2006). The data were visually scanned and any obvious artefacts (e.g. 

missed or spurious SpO2 data) were removed (less than 1%). From the recording there 

were 4 X 8-minute segments of data that were used for analysis. A reading prior to 

exposure, a recording once exposed to the altered FiO2, a third reading at 30-min of 

exposure, and finally one after 45-min of exposure.  

 

The oxygen saturation data were analysed using linear (e.g. standard deviation) and 

non-linear methods (e.g. entropy measures) written in MATLAB (MathWorks, 

R2017a). For each 8-min segment the mean SpO2 and standard deviation were 

calculated as tools to understand the overall variability. We also employed sample 
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entropy, detrended fluctuation analysis (DFA) and multiscale entropy (MSE) as 

measures of complexity in SpO2 fluctuations (Richman and Moorman, 2000; Costa et 

al., 2005). Sample entropy is a tool that quantifies the degree of irregularity present in 

a dataset by calculating the probability that an event with window length, m, and 

degree of tolerance, r, will be repeated at later time. In present study m was set at 2 

and r at 0.2 as described by Richman and Moorman (2000). Many physiological time-

series (e.g. heart rate, respiratory rate and SpO2) show a fractal-like pattern of 

fluctuations (Raoufy et al., 2016; Bhoghal and Mani., 2017; Bhogal et al., 2019). 

Fractals exhibit similar patterns at increasingly small scale. A variety of methods have 

been developed to quantify fluctuation of physiological signals at different time scales. 

Detrended fluctuation analysis examines the self-similarity of a time series to 

determine the structural integrity of the signal at different time scales (Peng et al., 

1995). In this analysis the data are split into boxes of various lengths (n) and this is 

plotted against the F(n), which is the variability of detrended signals in different scales 

(n). The slope of the resulting log-log graph is known as “scaling exponent” which 

indicates the type of fractal-like dynamics present in the physiological signal (Peng et 

al., 1995). Another method which takes scaling into account is multiscale entropy. 

Multiscale entropy is an extension of sample entropy and fractal analysis, as it 

examines the sample entropy at different time scales (Costa et al., 2005). The data 

are averaged within window length consisting of a number of data points to create a 

coarse-grained time-series (Costa et al., 2005). The sample entropy of this is then 

calculated and plotted against the window length (Costa et al., 2005). The trend of 

changes in entropy in different scales gives information about complexity of a data set. 

Compared to a previous report we used multiscale entropy to five scales due to the 

shorter nature of the collected data (Bhogal and Mani, 2017).  
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Dyspnoea 

Dyspnoea was recorded using a modified Borg scale (0, ‘Nothing at all’ to 10, 

‘Shortness of breath so severe you need to stop’, Mahler et al, 1987) before and after 

30-min of exposure. 

 

Statistical analyses 

The distribution of data was assessed using descriptive methods (skewness, outliers, 

and distribution plots) and inferential statistics (Shapiro–Wilk test). V̇E, ƒR, VT, PETCO2, 

PETO2, and heart rate data were 5-min averaged.  All data were analysed by either a 

one-way or a two-way repeated measures ANOVA and post-hoc comparisons were 

completed using a Tukey test. Spearman's correlation coefficients were used to 

examine the relationship between SpO2 variability and dyspnoea. Repeated measure 

correlation coefficients (rrm) were computed for the correlations of SpO2 entropy and 

mean SpO2 using the method described by Bland and Altman (1995) and the software 

developed by Bakdash and Marusich (2017). Statistical analyses were performed 

using SPSS (Statistical Package for the Social Sciences), version 22.0 (SPSS Inc, 

Chicago, IL, USA) or R (R Core Team, 2007). Statistical significance was accepted at 

P < 0.05. All data are expressed as means ± standard deviation (SD) unless otherwise 

stated. 

 

Results 

One participant was removed from the chamber in FIO2 0.12 (PETO2 fell below 45 

mmHg). Therefore, the following analyses are for the 12 participants in FIO2 0.2093, 

0.17, and 0.145 and 11 participants in FIO2 0.12. 
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Cardiorespiratory responses 

Minute ventilation (V̇E), respiratory frequency (ƒR), tidal volume (VT), end-tidal pressure 

of CO2 (PETCO2) and O2 (PETO2), and heart rate data are displayed across the four 

environments in Figure 1.  

 

<< INSERT FIGURE 1 ABOUT HERE>> 

 

SpO2 and SpO2 variability 

An example of SpO2 signals at different FiO2 is displayed in Figure 2A. The oxygen 

saturation readings exhibit more fluctuations with lower FiO2. Figures 2 also depict 

SpO2 (Figure 2B), SpO2 standard deviation (Figure 2C), and sample entropy (Figure 

2D). An increase in standard deviation of SpO2 fluctuations and a concomitant 

increase in sample entropy was observed when FiO2 was decreased (Figures 2C and 

D). Detrended fluctuation analysis demonstrates that the scaling exponent (α) was 

consistent across all FiO2 conditions and no significant differences were observed 

(Figure 3A). Finally, the relationship between multiscale entropy and FiO2, a measure 

of complexity, is displayed in Figure 3B. SpO2 entropy increases as the scale 

increases. This indicates that the pattern of SpO2 fluctuations in not random (Costa et 

al., 2005). Multiscale entropy increased following exposure to the lowest level of 

inspired oxygen. Two-way ANOVA indicated that effect of FiO2 (P<0.0001) and scale 

(P<0.0001) were both statistically significant. Interestingly, multiscale entropy can 

characterise and separate the groups better in scale 5 than scale 1 (Figure 3B).  

 

<< INSERT FIGURE 2 ABOUT HERE>> 
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<< INSERT FIGURE 3 ABOUT HERE>> 

 

Intra time-series analysis 

Figures 4A-D demonstrate the temporal changes of SpO2 and SpO2 variability. 

Sample entropy is more responsive to the hypoxic stimulus when compared to the 

mean oxygen saturation. The sample entropy plateaus ~20 minutes before mean 

oxygen saturation in the three hypoxic environments. No significant correlations 

between SpO2 variability at FiO2 0.2093 and mean SpO2 at FiO2 0.17, 0.145, or 0.12 

were observed. Similarly, no significant correlation between SpO2 variability at FiO2 

0.17 and mean SpO2 at FiO2 0.145 or 0.12 was observed. 

<< INSERT FIGURE 4 ABOUT HERE>> 

 

The relationship between mean SpO2 and SpO2 variability 

Linear regression analysis demonstrated that the relationships between mean SpO2 

and SpO2 standard deviation or sample entropy were strongly correlated (Figure 5).  

For the correlation between mean SpO2 and its standard deviation, the repeated 

measures correlation coefficients (rrm) were -0.833 after 10-min, and -0.757 after 30-

min of exposure (p<0.0001, Figure 5A and B).  The rrm were -0.841 after 10-min, and 

-0.896 after 30-min of exposure for correlation between SpO2 and its sample entropy 

(p<0.0001, Figure 5C and D).   

 

<< INSERT FIGURE 5 ABOUT HERE>> 

 

Correlation between SpO2 variability and dyspnoea  
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No significant change in dyspnoea was observed in any of the environments (FiO2 

0.2093, 0.3±0.9 (range: 0.0-3.0), 0.17, 0.3±0.6 (range: 0.0-2.0), 0.145, 0.8±1.5 (range: 

0.0-4.0), and 0.12, 1.1±1.2 (range: 0.0-3.0); p > 0.05). However, a significant 

correlation between sample entropy and dyspnoea (measured using a modified Borg 

scale) was observed in FiO2 0.17, 0.145 and 0.12 (see Table 1). Interestingly, sample 

entropy at FiO2 0.17 was significantly correlated with dyspnoea at FiO2 0.145 and 

approached significance in FiO2 0.12 (r = 0.577, p = 0.063). Mean SpO2 was not 

correlated (p > 0.05) with dyspnoea in any environment.  

 

<<INSERT TABLE 1 ABOUT HERE>> 

 

Discussion 

The current study is the first to systematically evaluate the effects of graded 

normobaric hypoxia on SpO2 variability in healthy individuals. In support of our initial 

hypotheses the main findings of this investigation, are as follows: (1) a strong inverse 

correlation between SpO2 entropy and mean SpO2 during hypoxia was observed, (2) 

SpO2 sample entropy, but not mean SpO2, was correlated with modest levels of 

dyspnoea, and (3) SpO2 sample entropy at FiO2 0.17 was correlated with dyspnoea 

at FiO2 0.145, but not FiO2 0.12. This suggests that SpO2 sample entropy during 

moderate levels of hypoxic exposure may be able to provide an insight into an 

individual response to a more severe hypoxic challenge. 

These findings extend our previous work in healthy individuals in a normoxic 

environment (where SpO2 averaged 98 ± 1 %) (Bhogal and Mani, 2017), to a more 

severe hypoxic state where SpO2 values of 79.6 ± 3.6% were recorded in FiO2 0.12. 
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Interestingly, we observed a strong inverse linear relationship between sample 

entropy and SpO2 (Figure 5). We have previously reported an inverse relationship 

between these two variables, however, these earlier finding were limited to SpO2 

values >94% (Bhogal and Mani, 2017). Given the importance of maintaining 

homeostatic function of arterial oxygenation, it is plausible that SpO2 variability may 

provide an index of central regulation ventilation in adults during hypoxic exposure. 

However, it remains unknown if SpO2 entropy can provide useful diagnostic 

information in high altitude medicine and physiology. For example, future research 

should consider the relationship between SpO2 entropy and hypoxic maladaptation 

(e.g. low hypoxic ventilator response) and the pathophysiology of acute mountain 

sickness during prolonged or more severe hypoxic exposures.  

Although the precise mechanism(s) for this relationship is currently unknown, we 

speculated that this relationship might be explained by the sigmoidal oxyhaemoglobin 

saturation curve. Any perturbation or change at a different point of pO2 (x-axis) would 

result in a different corresponding range of haemoglobin saturation (y-axis). Using the 

Hill’s equation, we generated pO2 values for further exploratory analysis (<<see 

supplementary data>>). Based on this simulation, the plot of mean haemoglobin 

saturation plotted against the standard deviation of the SpO2 data, demonstrated a 

linear inverse relationship, which corroborates with our experimental findings. 

However, no correlation was found between mean haemoglobin saturation and 

sample entropy. Therefore, this exploratory analysis suggests oxyhaemoglobin 

saturation curve alone does not explain the SpO2 entropy data (data not presented).  

We speculated that the increase in SpO2 entropy was indicative of the 

signal/fluctuations becoming more informative, and not more random. To address this 
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hypothesis, we used multiscale entropy analysis, which calculates sample entropy 

after averaging data at different time scales. In a random process (e.g. white noise) a 

reduction in entropy in larger scales would be expected, as random fluctuations cancel 

out each other during the scaling process (Costa et al., 2005). However, a positive 

slope was observed in multiscale entropy analysis (Figure 3B) in the current study and 

in our previous work (Bhogal and Mani, 2017). This indicates that the hypoxia-induced 

increase in SpO2 entropy did not deviate to a random process, but rather that the 

higher entropy was associated with increased structural richness/information from the 

pulse oximetry data. Furthermore, the scaling exponent of the detrended fluctuation 

analysis demonstrated that the scaling exponent is close to α=1.2 (Figure 3A) in all 

experimental conditions which is markedly higher from than that observed in random 

noise (α=0.5) (Peng et al., 1995).  

In addition to the potential application of SpO2 entropy as a screening tool for those 

exposed to extreme environments (e.g. high-altitude medicine), entropy analysis may 

have some usefulness in clinical medicine. However, oxygen saturation variability is 

typically measured using standard deviation or detrended fluctuation analysis of 

oxygen saturation signals in the existing literature (Garde et al., 2016; Vaquerizo-Villar 

et al., 2018). Data from this study suggest that entropy is a more effective method of 

studying oxygen saturation variability (Figure 2). Although the calculation of standard 

deviation is easier than entropy, entropy may provide more insightful information on 

the complexity of SpO2 fluctuations in our data for two reasons: (a) sample entropy 

was the only variability index that demonstrated a significant correlation with 

dyspnoea, and (b) entropy analysis can distinguish random time-series from complex 

time-series  
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To our knowledge, this study is the first to demonstrate that SpO2 entropy at FiO2 0.17, 

0.145, and 0.12 was significantly correlated with dyspnoea (all p < 0.05, Table 1). 

Moreover, sample entropy at FiO2 0.17 was significantly correlated with dyspnoea at 

FiO2 0.145 (r = 0.811, p < 0.01) and approached significance in FiO2 0.12 (r = 0.577, 

p = 0.063). Interestingly, no such correlations were observed with mean SpO2 and 

dyspnoea. These data suggest that SpO2 entropy may provide more useful 

information, compared to absolute/mean values of oxygen saturation, for predicting 

dyspnoea in response to a more severe hypoxic challenge. However, we must 

acknowledge that the mean dyspnoea ratings across the four environmental 

conditions was relatively modest, where the highest value recorded was four out of 

ten, corresponding to ‘somewhat severe’. Therefore, future research examining this 

relationship when participants experience greater levels of dyspnoea is required. 

The present study was not without limitation. Firstly, the current findings are limited to 

a small sample of healthy male volunteers exposed to normobaric hypoxia. Future 

research is required to expand these findings to females and older individuals. 

Moreover, future investigations are also required to establish the utility of these novel 

insights, for example, the relationship between SpO2 entropy and clinical outcomes, 

when monitoring patients in critical care or those with chronic respiratory diseases 

(e.g. COPD). Secondly, the duration of recording physiological variability data is 

typically greater than 8-min (e.g. 60-min). Due to methodological constraints this was 

not possible in the current study. This information is of practical importance as a 

shorter timeframe, i.e. ≤ 8-min as opposed to 60-min, of data recording is feasible in 

both a clinical setting and in the field (e.g. at terrestrial high altitude). Finally, despite 

elucidating an interesting phenomenon, with multiple potential applications, we 

considered that attempting to explain the mechanism(s) of association between mean 
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SpO2 and entropy outside the scope of the current investigation. However, it is 

plausible that increased SpO2 entropy in response to hypoxia may be related to altered 

ventilation. Alternatively, changes in SpO2 entropy might indicate the degree of 

heterogeneity of haemoglobin molecules at different saturations. Detailed 

molecular/electrophysiological research on respiratory control centres are therefore 

warranted to help improve our mechanistic understanding of the observed effect. 

In conclusion, this is the first study to systematically evaluate the effects of simulated 

graded normobaric hypoxia on SpO2 variability in healthy individuals. This study is the 

first to suggest that that sample entropy may convey valuable, and prompt, predictive 

information about the level of hypoxemia and dyspnoea experienced. Further research 

is warranted to establish if SpO2 sample entropy has potential as a non-invasive 

outcome measure in clinical settings.  
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Tables and Figures 

 

Table 1. Correlation between mean SpO2 and SpO2 sample entropy with dyspnoea. 

The values represent Spearman’s correlation coefficient (r). * P<0.05, ** P<0.01. 

 Dyspnoea  

(FiO2 0.17) 

Dyspnoea  

(FiO2 0.145) 

Dyspnoea  

(FiO2 0.12) 

Mean SpO2 (FiO2 0.17) -0.261 -0.194 0.044 

SpO2 Sample Entropy (FiO2 0.17) 0.760** 0.811** 0.577 

Mean SpO2 (FiO2 0.145) 0.083 0.059 0.023 

SpO2 Sample Entropy (FiO2 0.145) 0.367 0.636* 0.455 

Mean SpO2 (FiO2 0.12) -0.012 -0.021 -0.279 

SpO2 Sample Entropy (FiO2 0.12) 0.320 0.344 0.630* 
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Figure 1. Mean (n=12) minute ventilation (V̇E) (A), respiratory frequency (ƒR) (B), tidal 

volume (VT) (C), end-tidal pressure of CO2 (PETCO2) (D) and O2 (PETO2) (E), and heart 

rate (F) in FiO2 0.21 (filled squares), 0.17 (open triangles), 0.145 (open diamonds) and 

0.12 (open circles; n=11). SD are omitted for clarity. ‡ P<0.03 for all environments 

compared to FiO2 0.12. † P <0.001 for all conditions FiO2 0.21<0.17<0.145<0.12. 
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Figure 2. A. Sample SpO2 signals in a healthy volunteer collected over 8 min after 

exposure to nomobaric hypoxia. B. Changes in mean SpO2 following 30 min exposure 

to different fraction of inspired oxygen (FiO2). ** P<0.01 in comparison with FiO2 0.21, 

*** P<0.001 in comparison with FiO2 0.21, +++ P<0.001 in comparison with FiO2 0.17, 

### P<0.01 in comparison with FiO2 0.145. C. Changes in standard deviation of SpO2 

fluctuations following 30 min exposure to different fraction of inspired oxygen (FiO2). 

** P<0.01 in comparison with FiO2 0.21, ++ P<0.01 in comparison with FiO2 0.17. D. 

Changes in Sample Entropy of SpO2 fluctuations following 30 min exposure to different 

fraction of inspired oxygen (FiO2). ** P<0.01 in comparison with FiO2 0.21, ++ P<0.01 

in comparison with FiO2 0.17. *** P<0.001 in comparison with FiO2 0.21, +++ P<0.001 

in comparison with FiO2 0.17. 
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Figure 3. A. Detrended fluctuation analysis (DFA) of SpO2 fluctuations after 30 min 

exposure to different fractions of inspired oxygen (FiO2). No statistical significance 

between the different conditions. B. Multiscale Entropy (MSE) analysis of SpO2 

fluctuations after 30 min exposure to different fraction of inspired oxygen (FiO2). Two-

way ANOVA indicated that effect of FiO2 and scale are both statistically significant 

(Fscale=19.46, P<0.0001; FFiO2=26.05, P<0.0001). 

 

Figure 4. Comparison of the trend of changes in mean SpO2 and Sample Entropy of 

SpO2 fluctuations during 45 min exposure to different FIO2 (A-D). *** P<0.001 in 
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comparison with time = 0, ++ P<0.01 in comparison with time = 10 min, +++ P<0.001 

in comparison with time = 10 min. 

 

Figure 5. The correlation between mean SpO2 and its variability 10 and 30 min after 

exposure to different FIO2. A and B. The relationship between mean SpO2 and SpO2 

Standard Deviation (the linear regression equations are y=-0.228x+22.87 and y=-

0.087x+9.275 for 10 and 30 min respectively). C and D. The relationship between 

mean SpO2 and SpO2 Sample Entropy (the linear regression equations are y=-

0.091x+9.878 and y=-0.058x+6.595 for 10 and 30 min respectively). The rrm values 

represent repeated measure correlation coefficient. 
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Appendix 1. Simulation of the effect of haemoglobin saturation curve on the relationship between 
mean SpO2 and its variability (i.e. standard deviation and sample entropy)  
 
Introduction 
 
SpO2 is a measure of haemoglobin oxygen saturation. We wondered if the relationship between a 
decrease in SpO2 correlating with an increase in SpO2 variability may be explained by haemoglobin 
saturation curve. The haemoglobin saturation curve is nonlinear and is often described by Hill’s 
equation (Fig S1): 
 

𝐻𝑏 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑝𝑂2

𝑛

𝑘𝑑 + 𝑝𝑂2
𝑛 

 
 
 
Figure 1S. Haemoglobin saturation 
curve based on the Hill’s equation 
with n=2.8 and kd=4 kPa. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The sigmoidal shape is due to the binding capacity behaviour of haemoglobin and the nature of the 
dissociation curve. This is related co-operative binding behaviour and the requirement for 
haemoglobin to release oxygen at low oxygen saturation but bind oxygen at higher oxygen (pO2) 
concentrations. 
  
Taking this into account, a small perturbation or incremental change at a different point of the x-axis 
(pO2) would result in a different corresponding range of haemoglobin saturation values. i.e. the 
same change in x-values at lower pO2 values would result in a larger range in y values due to the 
changing gradient of the slope, according the equation of the curve. Given this reasoning a 
simulation using the Hill’s equation and generated pO2 values were used for further analysis. 
  
Method 
  
MATLAB programming language was used to generate simulated data and implementation of the 
algorithms. Hundred independent normally distributed random pO2 time-series with 480 data points 
were generated to have mean values between 3 and 14 kPa (with standard deviation of 0.1 kPa).  
Haemoglobin saturation values were calculated in these hundred pO2 time-series based on the Hill’s 
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equation (with n = 2.8 and kd=4 kPa as parameters). These values were used to calculate mean, 
standard deviation and sample entropy. Mean Haemoglobin saturation was then plotted against 
standard deviation and sample entropy. 
  
Results 
  
The plot of mean Haemoglobin Saturation vs Standard deviation showed a liner inverse relationship 
with a correlation coefficient of 0.993 (p<0.0001) (Figure S). This result supports the trend seen from 
the experimental data - a decrease in SpO2 correlates an increase in variability.  
  
However, there was no inverse correlation between Mean Haemoglobin Saturation and its Sample 
entropy (Figure S). The plot of Mean Haemoglobin Saturation vs Entropy had a correlation 
coefficient of 0.02 (p= 0.801). Therefore, this simulation shows that the model of haemoglobin does 
not explain the experimental data that we observed.  
 
 

 
 
Figure S. Correlation between mean O2 saturation (SpO2) and its Standard deviation (left) or Sample 
entropy (right) in a simulation experiment where random fluctuation of pO2 and the Hill Function 
were considered as the only factors influencing SpO2 variability. 
  
Interpretation / Limitations 
  
The inverse relationship between mean hemoglobin saturation and its standard deviation 
corroborates well with the sigmoidal shape of hemoglobin saturation curve. However, it does not 
explain the relationship between mean SpO2 and the pattern (entropy) of hemoglobin saturation.  A 
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more complex model may be required to explain the relationship entropy. The model does not take 
into account the influence of chemoreceptors, changes in respiration for example and more broadly 
the network of processes that regulates the highly regulated physiological state. Considering the 
amount of information processing that is exhibited in a human body we felt that global information 
processing may play a larger role. In addition, multiple different models investigating different 
parameters may be required to explain this relationship. 
 
 
The scripts in MATLAB used for simulation of the effect of haemoglobin saturation curve on the 
relationship between mean SpO2 and its variability. 
 
close all 

clc 

clear all 

  

n=2.8; % a Hill’s function parameter 

Kd =4; % a Hill’s function parameter 

B=linspace(3,14,100);B=B';% different oxygen concertation in kPa 

T=480; % T is the length of each simulated time-series (480 corresponds to 

% 8 min recording with a sampling rate of 1/s) 

  

Y = NaN(480,100); 

A = NaN(480,100); 

  

% generation of random fluctuation in [O2] (oxygen concentration) 

  

for j=1:100 

for i=1:T 

     

    A (i,j)= B(j,1) + 0.1*randn; % generation of random variation with  

% standard deviation of 0.1 kPa 

     

end 

  

end 

  

% calculation of haemoglobin saturation using Hill’s equation 

for j=1:100 

for i=1:T 

     

    Y(i,j) = 100*(A(i,j)^n)/(Kd+A(i,j)^n); 

     

end 

end 

  

% Calculation of sample entropy using sampen function based on m=2 and  

% r=0.2. 

% To use this code, you need to have access to sampen function and WFDB  

% toolboox. sampen is a function to calculate sample entropy and can be  

% accessed using the following link:  

% https://www.physionet.org/physiotools/sampen/matlab/1.1/ 

% WFDB toolboox for MATLAB (wfdb-app-toolbox-0-10-0) can be accessed at the 

% following link: https://physionet.org/physiotools/matlab/wfdb-app-matlab/ 

 

  

  

sam = NaN(100,1); 

for i=1:100 

   se= sampen (Y(1:T,i),2,0.2);  
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   sam(i,1)=se(2,1); 

    

   end 

  

m=mean(Y); 

s=std(Y); 

  

subplot(1,2,1) 

scatter(m,s,'ko') 

axis square 

title('Standard Deviation') 

xlabel('Mean O2 Saturation (%)') 

ylabel('Standard Deviation of O2 Saturation') 

[r1,p1] = corrcoef(m,s) 

  

subplot(1,2,2) 

scatter(m,sam, 'ko') 

axis square 

title('Sample Entropy') 

xlabel('Mean O2 Saturation (%)') 

ylabel('Sample Entropy of O2 Saturation') 

[r2,p2] = corrcoef(m,sam) 

  

  

 

 
 
 
  

 

 

 

 


