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Abstract.15

Background: The typical approach to identify blood-derived gene expression signatures as a biomarker for Alzheimer’s
disease (AD) have relied on training classification models using AD and healthy controls only. This may inadvertently result
in the identification of markers for general illness rather than being disease-specific.
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Objective: Investigate whether incorporating additional related disorders in the classification model development process
can lead to the discovery of an AD-specific gene expression signature.
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Methods: Two types of XGBoost classification models were developed. The first used 160 AD and 127 healthy controls
and the second used the same 160 AD with 6,318 upsampled mixed controls consisting of Parkinson’s disease, multiple
sclerosis, amyotrophic lateral sclerosis, bipolar disorder, schizophrenia, coronary artery disease, rheumatoid arthritis, chronic
obstructive pulmonary disease, and cognitively healthy subjects. Both classification models were evaluated in an independent
cohort consisting of 127 AD and 687 mixed controls.
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Results: The AD versus healthy control models resulted in an average 48.7% sensitivity (95% CI = 34.7–64.6), 41.9% speci-
ficity (95% CI = 26.8–54.3), 13.6% PPV (95% CI = 9.9–18.5), and 81.1% NPV (95% CI = 73.3–87.7). In contrast, the mixed
control models resulted in an average of 40.8% sensitivity (95% CI = 27.5–52.0), 95.3% specificity (95% CI = 93.3–97.1),
61.4% PPV (95% CI = 53.8–69.6), and 89.7% NPV (95% CI = 87.8–91.4).
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Conclusions: This early work demonstrates the value of incorporating additional related disorders into the classification
model developmental process, which can result in models with improved ability to distinguish AD from a heterogeneous
aging population. However, further improvement to the sensitivity of the test is still required.
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INTRODUCTION35

Alzheimer’s disease (AD) is a progressive neu-36

rodegenerative disorder affecting an estimated one in37

nine people over the age of 65 years of age, making it38

the most common form of dementia worldwide [1].39

Current clinical diagnosis of the disease is primarily40

based on a time-consuming combination of physical,41

mental, and neuropsychological examinations. With42

the rapid increase in the prevalence of the disease,43

there is a growing need for a more accessible, cost-44

effective, and time-effective approach for diagnosing45

and monitoring AD.46

For research purposes, brain positron emission47

tomography (PET) scans and cerebrospinal fluid can48

be used to suggest AD. In particular, decreased49

amyloid-� (A�) and increased tau levels in cere-50

brospinal fluid have been successfully used to51

distinguishing between AD, mild cognitive impair-52

ment, and cognitive healthy individuals with high53

accuracy. However, as a relatively invasive and costly54

procedure, it may not appeal to the majority of55

patients or be practical on a large-scale trial basis for56

screening the population [2–4]. A peripheral blood-57

derived biomarker for AD would be advantageous.58

Blood is a complex mixture of fluid and multiple59

cellular compartments that are consistently chang-60

ing in protein, lipid, RNA, and other biochemical61

entity concentrations [5], which may be useful for62

AD diagnosis. Recently, a study successfully used63

APP669–711/A�1–42 and A�1–40/A�1–42 ratios and64

their composites, to predict individual brain A�65

load when compared to A�-PET imaging [6]. How-66

ever, the test predicts A� deposition, which is also67

found in other brain disorders such as frontotem-68

poral dementia, and therefore, the test requires AD69

specificity evaluation. Another study reviewed 16370

candidate blood-derived proteins from 21 separate71

studies as a potential biomarker for AD [7]. The72

overlap of biomarkers between studies was lim-73

ited, with only four biomarkers, �-1-antitrypsin,74

�-2-macroglobulin, apolipoprotein E, and comple-75

ment C3, found to replicate in five independent76

cohorts. However, a follow-on study discovered these77

biomarkers were not specific to AD, and were also78

discovered to be associated with other brain disorders79

including Parkinson’s disease (PD) and schizophre-80

nia (SCZ) [8], once again, suggesting the need to81

consider other neurological and related disorders in82

study designs to enable the discovery of biomarkers83

specific to AD.84

Several studies have also attempted to exploit 85

blood transcriptomic measurements for AD 86

biomarker discovery. Initial research was limited 87

to the analysis of single differentially expressed 88

genes (DEG) as a means to distinguish AD from 89

cognitively healthy individuals [2, 9]. However, the 90

limited overlap and reproducibility of DEG from 91

independent cohorts suggests this method alone is 92

not reliable enough [2]. A solution to this problem 93

would be to use machine learning algorithms to 94

identify combinations of gene expression changes 95

that may represent a biomarker for AD. This tech- 96

nique has been applied in multiple studies, which 97

have demonstrated to some extent, the ability to 98

differentiate AD from non-AD subjects [3, 10–13]. 99

However, small sample size and lack of independent 100

validation datasets may have led to overfitting. The 101

decrease in costs associated with microarray tech- 102

nologies led a study developing an AD classification 103

model based on a larger training set of 110 AD 104

and 107 controls and validating in an independent 105

cohort of 118 AD and 118 controls. The model 106

achieved 56% sensitivity, 74.6% specificity, and an 107

accuracy of 66%, which equated to 69.1% positive 108

predictive power (PPV) and 63% negative predictive 109

power (NPV) [11]. This was one of the first studies 110

to demonstrate some validation in an independent 111

cohort; however, the classification model still lacked 112

the 90% predictive power desired from a clinical 113

diagnostic test [14]. 114

Previous studies have demonstrated the potential 115

use of blood transcriptomic levels to differentiate 116

between AD and cognitively healthy individuals; 117

however, they are yet to be precise enough for clin- 118

ical utility and are yet to be extensively evaluated 119

on specificity by assessing model performance in 120

a heterogeneous aging population of multiple dis- 121

eases. This validation process is critical to determine 122

whether the classification model is indeed disease- 123

specific, a general indication of ill health, or an 124

overfit. 125

This study developed a microarray gene expression 126

processing pipeline with reproducibility and clinical 127

utility in mind. New subjects could be independently 128

processed and predicted through the same classifica- 129

tion models without using any prior knowledge on 130

gene expression variation of the data used to develop 131

the classification model and without making any 132

alteration to the classification models itself. XGBoost 133

classification models were developed using the typ- 134

ical approach of training in blood transcriptomic 135
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profiling from AD and cognitively healthy controls.136

The models were evaluated in an independent test-137

ing set mimicking a heterogeneous aging population138

consisting of AD, related mental disorders (PD, mul-139

tiple sclerosis [MS], bipolar disorder [BD], SCZ),140

common elderly health disorders and other related141

diseases (coronary artery disease [CD], rheumatoid142

arthritis [RA], chronic obstructive pulmonary disease143

[COPD]), and cognitively healthy subjects to assess144

the models ability to distinguish AD from related dis-145

eases and otherwise healthy subjects. In addition, a146

second approach was used where XGBoost classifica-147

tion models were developed using AD, mental health148

disorders, common elderly health disorders, and cog-149

nitively healthy subjects. The second approach used150

independent non-AD samples, and was evaluated on151

the same independent testing set as the first approach152

to investigate the effects on model performance when153

incorporating additional related disorders into the AD154

classification development process.155

METHODS156

Data acquisition157

Microarray gene expression studies were158

sourced from publicly available repositories Gene159

Expression Omnibus (GEO) (https://www.ncbi.160

nlm.nih.gov/geo/) and ArrayExpress (https://www.161

ebi.ac.uk/arrayexpress/) in May 2018. Study inclu-162

sion criteria were: 1) microarray gene expression163

profiling must be performed on a related, common164

elderly health, or mental health disorder; 2) RNA165

was extracted from whole blood or a component166

of blood; 3) study must contain at least ten human167

subjects; and 4) data was generated on either the168

Illumina or Affymetrix microarray platform using169

an expression BeadArray containing at least 20,000170

probes. The microarray platform was restricted to171

Affymetrix and Illumina only, as replication between172

the two platforms is generally very high [15–18],173

and expression BeadArrays restricted to a minimum174

of 20,000 probes to maximize the overlap of genes175

across studies, while also optimizing the number176

studies available for inclusion.
177

Data processing178

The data processing pipeline was designed with179

reproducibility and clinical utility in mind. New180

subjects could be independently processed and pre-181

dicted through the same classification models without 182

using any prior knowledge on gene expression vari- 183

ation of the data used to develop the classification 184

model and without making any alteration to the 185

classification models itself. All data processing was 186

undertaken in RStudio (version 1.1.447) using R 187

(version 3.4.4). Microarray gene expression studies 188

were acquired from public repositories using the R 189

packages “GEOquery” (version 2.46.15) and “Array- 190

Express” (version 1.38.0). For longitudinal studies 191

involving treatment effects, placebo subjects or ini- 192

tial gene expression profiling from baseline subjects 193

before treatment were used. Studies consisting of 194

multiple disorders were separated by disease into 195

datasets consisting of diseased subjects and corre- 196

sponding healthy controls if available. 197

Raw gene expression data generated on the 198

Affymetrix platform were “mas5” background cor- 199

rected using the R package “affy” (version 1.42.3), 200

log2 transformed and then Robust Spline Normal- 201

ized (RSN) using the R package “lumi” (version 202

2.16.0). Datasets generated on the Illumina platform 203

were available in either a “raw format” containing 204

summary probes and control intensities with corre- 205

sponding p-values or a “processed format” where 206

data had already been processed and consisted of 207

a subset of probes and samples deemed suitable by 208

corresponding study authors. When acquiring stud- 209

ies, preference was given to “raw format” data where 210

possible, and when available, was “normexp” back- 211

ground corrected, log2 transformed, and quantile 212

normalized using the “limma” R package (version 213

3.20.9). 214

Sex was then predicted using the R package “mas- 215

siR” (version 1.0.1) and subjects with discrepancies 216

between predicted and recorded sex removed from 217

further analysis. Then, within each gender and dis- 218

ease diagnosis group of a dataset, probes above 219

the “X” percentile of the log2 expression scale in 220

over 80% of the samples were deemed “reliably 221

detected”. To account for the variation of redundant 222

probes across different BeadArrays, the “X” per- 223

centile threshold value was manually adjusted until 224

a variety of robust literature defined house-keeping 225

genes were correctly defined as expressed or unex- 226

pressed in their corresponding gender groups [19]. 227

Any probe labelled as “reliably detected” in any 228

group (based on gender and diagnosis) was taken for- 229

ward for further analysis from all samples within that 230

dataset. This process substantially eliminates noise 231

[20] and ensures disease and gender-specific signa- 232

tures are captured within each dataset. 233

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/


U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

4 H. Patel et al. / Gene Expression Biomarker Specific for AD

Next, to ensure homogeneity within biolog-234

ical groups, outlying samples were iteratively235

identified and removed using the fundamental236

network concepts described in [21]. Finally, to237

enable cross-platform probes to be comparable,238

platform-specific probe identifiers were anno-239

tated to their corresponding universal Entrez gene240

identifiers using the appropriate BeadArray R241

annotation files; “hgu133plus2.db”, “hgu133a.db”,242

“hugene10sttranscriptcluster.db”, “illuminaHu-243

manv4.db”, and “illuminaHumanv3.db”.244

Cross-platform normalization and sample245

correlation analysis246

A rescaling technique, the YuGene transform,247

was applied to each dataset independently to enable248

transcriptomic information between datasets to be249

directly comparable. YuGene assigns modified cumu-250

lative proportion value to each measurement, without251

losing essential underlying information on data distri-252

butions, allowing the transformation of independent253

studies and individual samples [22]. This enables254

new data to be added without global renormaliza-255

tion and allows the training and testing set to be256

independently rescaled. Common “reliably detected”257

probes across all processed datasets that contained258

both female and male subjects were extracted from259

each dataset and independently rescaled using the R260

package YuGene (version 1.1.5). YuGene transfor-261

mation assigns a value between 0 and 1 to each gene,262

where 1 is highly expressed. As samples originated263

from publicly available datasets, potential duplicate264

samples may exist in this study. Therefore, correlation265

analysis was performed on all samples using the com-266

mon probes to investigate duplicate samples across267

different studies.268

Training set and testing set assignment269

Multiple datasets from the same disease were avail-270

able, allowing entire datasets to be assigned to either271

the “Training Set” for classification model develop-272

ment or the “Testing Set” for independent external273

validation. Larger datasets from the same disease274

were prioritized to the training set, allowing the275

machine learning algorithm to learn in a larger dis-276

covery set.277

Individual subjects within the training and testing278

set were assigned a “0” class if the subject was AD or279

“1” if the subject was non-AD (includes healthy con-280

trols and non-AD diseased subjects). Grouping the 281

non-AD subjects into a single class effectively mim- 282

ics a large heterogeneous aging population where 283

subjects may have a related mental disorder, neurode- 284

generative disease, common elderly health disorder, 285

or are considered relatively healthy. 286

Classification model development 287

Two types of classification models were created. 288

The first was developed using the typical approach, 289

training in AD subjects and their associated cogni- 290

tively healthy control samples only. This model is 291

referred to as the “AD vs Healthy Control” classifi- 292

cation model. The second classification model was 293

developed using the same AD and healthy control 294

samples used for the “AD vs Healthy Control” clas- 295

sification; however, additional related disorders and 296

their associated healthy controls were introduced as 297

additional controls. This model is referred to as the 298

“AD vs Mixed Control” classification model. 299

The control group of the “AD vs Mixed Control” 300

classification model consisted of multiple diseases 301

and their complementary healthy controls; however, 302

the number of samples across the individual dis- 303

eases in this mixed control group were unbalanced. 304

As all non-AD samples would be assigned a “1”, 305

the disorder with the largest number of samples 306

would influence the classification model develop- 307

ment process more. Therefore, to address this issue, 308

all the complementary healthy subjects from all dis- 309

eased dataset were assumed to be disease-free and 310

were pooled to create a “pooled controls” set. Then, 311

samples within each disorder were upsampled with 312

replacement to match the total number of samples in 313

the “pooled controls” group (excludes AD). This pro- 314

cess balances the number of samples across disorders 315

in the mixed control group, which essentially bal- 316

ances the probability of a sample being selected from 317

any one of the non-AD diseases or “pooled controls” 318

during the classification model development process. 319

This process is further illustrated in Fig. 1. 320

Classification models were built using the tree 321

boosting algorithm, XGBoost, as implemented 322

in the R package “xgboost” (version 0.6.4.1) 323

[23]. The tree learning algorithm uses parallel 324

and distributed computing, is approximately 10 325

times faster than existing methods, and allows 326

several hyperparameters to be tuned to reduce 327

the possibility of overfitting [24]. Default tuning 328

parameters were set to eta = 0.3, max depth = 6, 329

gamma = 0, min child weight = 1, subsample = 1, 330
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Fig. 1. Overview of study design. Two types of XGBoost classification models were developed, optimized, and evaluated. The first (“AD
vs Healthy Control”) used the typical approach, training in Alzheimer’s disease (AD) and cognitively healthy controls (HC), while the
second (“AD vs Mixed Control”) was trained in AD and a mixed controls group. The mixed control group consisted of Parkinson’s disease
(PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), bipolar disorder (BD), schizophrenia (SCZ), coronary artery disease
(CD), rheumatoid arthritis (RA), chronic obstructive pulmonary disease (not represented in the figure), and cognitively healthy subjects.
The individual groups within the mixed controls were upsampled with replacement to avoid sampling biases during model development.
To account for the randomness, a thousand “AD vs Healthy Control” and a thousand “AD vs Mixed Control” classification models were
developed and evaluated. cv, cross-validation; RFE, recursive feature elimination.
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colsample bytree = 1, objective = “binary:logistic”,331

nrounds = 10000, early stopping rounds parame-332

ters = 20 and eval metric = ”logloss”. Due to the333

unbalanced classes between AD and non-AD sam-334

ples, the scale pos weight function was incorporated335

to assign weights to the smallest class, ensuring the336

machine learning algorithm did not bias towards the337

largest class during the classification model devel-338

opment. The initial model was built and internally339

evaluated using 10-fold cross-validation with strati-340

fication which calculates a test logloss mean at each341

nrounds iteration, stopping if an improvement to the342

test logloss means is not achieved in the last 20 itera-343

tions. The nrounds iteration that achieved the optimal344

test logloss mean was used to build the initial classi-345

fication model, reducing the chance for an “overfit”346

model.347

During the internal cross-validation process, each348

feature (gene) was assigned an importance value349

(“variable importance feature”), which is based on350

how well the gene contributed to the correct predic-351

tion of individuals in the training set. The higher the352

variable importance value for a gene, the more use-353

ful that gene was in distinguishing AD subjects from354

non-AD individuals. The genes contributing to the355

initial XGBoost model were each assigned a variable356

importance value. The least two variable important357

features were then iteratively removed, classification358

models re-built, and logloss performance measures359

re-evaluated. This process was repeated through all360

available baseline features, with the minimum logloss361

from all iterations used to determine the most predic-362

tive genes. This process is referred to as “recursive363

feature elimination” and has been shown to improve364

classification model performance and reduce model365

complexity by removing weak and non-predictive366

features [25].367

Following the identification of the most predictive368

genes, the classification model was further refined by369

iteratively tuning through the following hyperparam-370

eter values: max depth (2 : 20, 1), min child weight371

(1 : 10, 1), gamma (0 : 10, 1), subsample (0.5 : 1, 0.1),372

colsample bytree (0.5 : 1, 0.1), alpha (0 : 1, 0.1),),373

lambda (0 : 1, 0.1), and eta (0.01 : 0.2, 0.01), while374

performing a 10-fold cross-validation with strati-375

fication and evaluating the test logloss mean to376

select the optimum hyperparameters. Finally, for377

reproducibility purposes, the same seed number was378

consistently used throughout the upsampling and379

model development process. However, to account380

for the randomness introduced during the bootstrap381

upsampling and model development processes, and382

to provide an insight into the stability of the results, 383

a thousand “AD vs Healthy Control” and a thousand 384

“AD vs Mixed Control” classification models were 385

developed, refined, and evaluated. Upsampling and 386

model development was performed using a differ- 387

ent seed number ranging from 1 : 1000. This would 388

ensure the subjects that were upsampled were ran- 389

domized across the 1,000 different “AD vs Mixed 390

Control” classification models, and as each classifi- 391

cation model was initially developed using a different 392

randomized number, this would result in 1,000 dif- 393

ferent classification models that attempt to solve the 394

same problem. 395

Classification model evaluation 396

Each classification model was validated on the 397

independent unseen testing set, predicting the diag- 398

nosis of all subjects as a probability ranging 399

from 0 to 1, where AD ≤ 0.5 > non-AD. The pre- 400

diction accuracy, sensitivity, specificity, PPV, and 401

NPV were calculated to evaluate the overall clas- 402

sification model’s performance. To aid in the 403

interpretation of the sensitivity and specificity of 404

the classifiers, AUC scores were generated using 405

the R package “ROCR” (version 1.07) with the 406

following recommended diagnostic interpretations 407

used: “excellent” (AUC = 0.9–1.0), “very good” 408

(AUC = 0.8–0.9), “good” (AUC = 0.7–0.8), “suffi- 409

cient“ (AUC = 0.6–0.7), “bad” (AUC = 0.5–0.6), and 410

“test not useful” when AUC value is < 0.5 [26]. 411

Furthermore, the clinical utility metrics were 412

calculated to evaluate the clinical utility of the clas- 413

sification models. The positive Clinical Utility Index 414

(CUI+) was calculated as PPV ∗ (sensitivity/100) and 415

the negative Clinical Utility Index (CUI –) calcu- 416

lated as NPV ∗ (sensitivity/100). The Clinical Utility 417

Index (CUI) essentially corrects the PPV and NPV 418

values for occurrence of that test in each respec- 419

tive population and scores can be converted into 420

qualitative grades as recommended: “excellent util- 421

ity” (CUI ≥ 0.81), “good utility” (CUI ≥ 0.64) and 422

“satisfactory utility” (CUI ≥ 0.49) and “poor utility” 423

(CUI < 0.49) [27]. As a thousand “AD vs Healthy 424

Control” and a thousand “AD vs Mixed Control” 425

classification models were evaluated, the average per- 426

formance for each metric is calculated along with 427

the 95% confidence interval (CI). An overview of 428

the classification model development and evaluation 429

process is provided in Fig. 1.
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The biological importance of predictive features430

The “AD vs Mixed Control” classification models431

contain a list of ranked genes derived from analyzing432

multiple disorders, which collectively attempt to dif-433

ferentiate AD from non-AD subjects. The predictive434

genes were analyzed using an Over-Representation435

Analysis (ORA) implemented through the Consen-436

susPathDB (http://cpdb.molgen.mpg.de) web-based437

platform (version 33) [28] in November 2018 to438

assess their collective biological significance. For439

pathway enrichment analysis, a background gene list440

was included, and a minimum overlap of the query441

signature and database was set as 2.442

Data availability443

The data used in this study were all publicly avail-444

able with accession details provided in Table 1. All445

analysis scripts used in this study are available at446

https://doi.org/10.5281/zenodo.3371459.447

RESULTS448

Summary of data processing449

Twenty-one publicly available studies were iden-450

tified, acquired, and processed. Separating studies by451

disease status resulted in 22 datasets, which consisted452

of 3 AD, 3 MS, 3 SCZ, 3 CD, 3 RA, 2 COPD, 2 BD,453

2 PD, and 1 ALS orientated dataset. Fifteen datasets454

contained both diseased and complementary healthy455

subjects, and the remaining 7 contained only diseased456

subjects. An overview of the demographics of each457

dataset is provided in Table 1.458

Independently processing the 22 datasets resulted459

in a total of 2,740 samples after quality control (QC),460

of which 287 samples were AD. Since 11 different461

BeadArrays had been used to expression profile the 9462

different diseases, and as 7 datasets were only avail-463

able in a “processed format” (GSE63060, GSE63061,464

E-GEOD-41890, GSE23848, E-GEOD74143, E-465

GEOD-54629, and E-GEOD-42296), each dataset466

varied in the number of “reliably detected” genes after467

QC (detailed in Table 1). Initially, any probe deemed468

“reliably detected” in any one of the 22 datasets was469

compiled, resulting in 7,452 genes. In theory, this470

would ensure all measurable sex and disease-specific471

genes were potentially captured within the data.472

However, following the independent transformation473

of each dataset, platform and BeadArray-specific474

batch effects were observed. This can be primar-475

ily explained by different platforms having different 476

probe designs to target different transcripts of the 477

same gene, leading to significant discrepancies and 478

even absence in the measurement of the same gene 479

by different platforms [15]. Therefore, to address 480

this platform and BeadArray-specific batch effect, 481

1,681 common “reliably detected” genes across all 482

datasets that contained both male and female sub- 483

jects (20 datasets) were extracted from each dataset 484

and independently YuGene transformed. Essentially, 485

these 1,681 genes are expressed at a level deemed 486

“reliably detected” in all 11 different BeadArrays and 487

across both male and female subjects. The expres- 488

sion distribution of the,1681 genes in each subject 489

is shown in Figure 2. The variation across the 1,681 490

“reliably detected” genes prior to YuGene transform 491

is significantly different across samples and datasets 492

(Fig. 2a,b), making the data from different datasets 493

and microarray platforms incomparable. However, 494

this was addressed by independently normalizing 495

each sample using only the 1,681 “reliably detected” 496

common genes, which resulted in a more evenly dis- 497

tributed gene expression profile across all samples 498

(Fig. 2c,d), a characteristic desired by machine learn- 499

ing algorithms. 500

Correlation analysis was then performed on all 501

samples, which suggested all samples were highly 502

correlated, with the maximum per sample correlation 503

coefficients ranging from 0.86–0.99. No sample was 504

deemed to be a duplicate, and therefore, no additional 505

sample was removed following QC. 506

Training set and testing set demographics 507

Multiple datasets from the same disease were 508

obtained in this study, with the largest dataset from 509

each disease assigned to the training set to improve 510

discovery. However, three AD datasets were avail- 511

able, and the two largest datasets were generated on 512

the Illumina platform with the third originating from 513

the Affymetrix platform. To address any subtle dif- 514

ferences in gene expression, which may still exist in 515

the data due to platform differences, the largest Illu- 516

mina AD and the Affymetrix AD datasets were both 517

assigned to the training set. 518

Following dataset assignment, the training set con- 519

sisted of 160 AD subjects and 1,766 non-AD subjects, 520

while the testing set consisted of 127 AD subjects and 521

687 Non-AD subjects. The Non-AD group in both 522

the training and testing set consisted of subjects with 523

either PD, MS, SCZ, BD, CD, RA, COPD, or were 524

relatively healthy. Only one ALS dataset suitable for 525

http://cpdb.molgen.mpg.de
https://doi.org/10.5281/zenodo.3371459
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Table 1
Dataset demographics

Disorder Study ID Platform BeadArray Tissue Demographics Samples removed Demographics Training and
(associated source before QC during QC after QC testing set
publication) assignment

No. Case Control No. No. gender No. No. Case Control No.
probes sex sex samples mismatches outlying probes sex sex samples

(M/F) (M/F) sample (M/F) (M/F)

Alzheimer’s Disease GSE63060 ([31]) I HT-12 v3.0 WB 38323 46/99 42/62 249 2 10 5364 45/93 40/59 237 Training
GSE63061 ([31]) I HT-12 v4.0 WB 32049 51/81 55/87 274 5 4 5241 48/79 54/84 265 Testing

E-GEOD-6613 ([32]) A HG U133A WB 22283 8/15 11/11 45 0 1 4184 8/14 11/11 44 Training
Parkinson’s Disease E-GEOD-6613 ([32]) A HG U133A WB 22283 38/12 0/0 50 0 0 3674 38/12 0/0 50 Training

E-GEOD-72267 ([33]) A HG U133A 2.0 PBMC 22277 23/17 8/11 59 0 0 8742 23/17 8/11 59 Testing
Multiple Sclerosis GSE24427 ([34]) A HG U133A WB 22283 9/16 0/0 25 0 0 6633 9/16 0/0 25 Testing

E-GEOD-16214 ([35]) A HG U133 plus 2.0 PBMC 54675 11/71 0/0 82 0 3 8098 11/68 0/0 79 Training
E-GEOD-41890 ([36]) A Exon 1.0 ST PBMC 33297 20/24 12/12 68 0 1 8157 19/24 12/12 67 Training

Schizophrenia GSE38484 ([37]) I HT-12 v3.0 WB 48743 76/30 42/54 202 9 5 6700 69/28 39/52 188 Training
E-GEOD-27383 ([38]) A HG U133 plus 2.0 WB 54675 43/0 29/0 72 0 1 11297 42/0 29/0 71 Testing

GSE38481 ([37]) I Human-6 v3 WB 24526 4/11 16/6 37 2 1 8106 11/3 15/5 34 Testing
Bipolar Disorder E-GEOD-46449 ([39]) A HG U133 plus 2.0 L 54675 28/0 25/0 53 0 0 9882 28/0 25/0 53 Training

GSE23848 ([40]) I Human-6 v2 WB 48701 6/14 5/10 35 0 0 7211 6/14 5/10 35 Testing
Cardiovascular Disease E-GEOD-46097 ([41]) A HG U133A 2.0 PBMC 22277 102/36 60/180 378 0 24 7676 94/36 57/167 354 Training

GSE59867 ([42]) A Exon 1.0 ST WB 33297 85/26 0/0 111 0 3 7936 82/26 0/0 108 Testing
E-GEOD-12288 ([43]) A HG U113A WB 22283 88/22 84/28 222 0 8 4815 83/22 82/27 214 Training

Rheumatoid Arthritis E-GEOD-74143 ([44]) A HT HG U113 plus WB 54715 81/296 0/0 377 1 23 8112 80/273 0/0 353 Training
E-GEOD-54629 ([45]) A Exon 1.0 ST WB 33297 11/58 0/0 69 0 0 11931 11/58 0/0 69 Testing
E-GEOD-42296 ([46]) A Exon 1.0 ST PBMC 33297 4/15 0/0 19 0 0 10417 4/15 0/0 19 Testing

Chronic Obstructive E-GEOD-54837 ([47]) A HG U133 plus 2.0 WB 54675 91/45 57/33 226 0 16 5531 83/44 52/31 210 Training
Pulmonary Disease

E-GEOD-42057 ([48]) A HG U133 plus 2.0 WB 54675 52/42 22/20 136 3 4 6445 49/39 21/20 129 Testing
ALS E-TABM-940 A HG U133 plus 2.0 WB 54675 27/26 18/19 90 3 10 10442 27/25 15/10 77 Training
Total 904/956 486/533 2879 25 114 870/906 465/49 2740

Each study is accompanied by its corresponding publication (if available), where individual study design can be obtained. When possible, datasets were obtained in their raw format, except
for GSE63060, GSE63061, E-GEOD-41890, GSE23848, E-GEOD74143, E-GEOD-54629, and E-GEOD-42296 which were only available in a processed form where the dataset had already
been background corrected, log2 transformed, and normalized by techniques stated in corresponding publications. Multiple datasets from the same disease existed in this study. The dataset with
the largest number of diseased subjects was prioritized into the training set for better discovery. Study IDs initiating with “GSE” and “E-GEOD” were obtained from GEO and ArrayExpress,
respectively. I, Illumina; A, Affymetrix; WB, whole blood; PBMC, peripheral blood mononuclear cell; L, lymphocytes.
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Fig. 2. Distribution of gene expression across all 2,740 subjects in this study. Plots a) and c) are boxplots, where each vertical line represents
an individual, while plots b) and d) represents the expression density of the same 2,740 subjects where each line represents a different
individual. Plots a) and b) shows the variation of the gene expression across subjects prior to YuGene transformation, providing evidence of
batch effects between samples and datasets. In contrast, plots c) and d) reveals a more evenly distributed gene expression profile across all
2,740 subjects when extracting the 1,681 common “reliably detected” genes, and independently YuGene transforming each sample.

this study was identified and was deemed too small to526

split into the training and testing set. Therefore, the527

ALS dataset was assigned to the training set, allowing528

the machine learning algorithm to learn multiple dis-529

ease expression signatures, which could further aid530

in differentiating AD from Non-AD subjects.531

Upsampling was performed on the mixed control 532

group to balance the number of samples across the 533

individual diseases, preventing bias toward the major- 534

ity classes during model development. The “pooled 535

controls” contained 702 samples, and was the largest 536

group in the training set; therefore, the remaining 537
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diseases were upsampled to the same number. This538

resulted in the “AD vs Mixed Controls” being trained539

on 160 AD samples and 6,318 non-AD samples. An540

overview of subjects in the training and testing set is541

provided in Table 2.542

The “AD vs Healthy Control” classification543

model development and performance544

The “AD vs Healthy Control” classification mod-545

els were developed using the only two AD datasets546

(GSE63060 and E-GEOD-6613) available in the547

training set, which consisted of 160 AD and 127548

cognitively healthy controls. A thousand models549

were developed, refined and evaluated, each using550

a different seed number. The models were initially551

built using default parameters, however, after model552

refinement, an average of 57 predictive genes (95%553

CI = 18–101) were selected with optimum hyperpa-554

rameters identified as eta = 0.13 (95% CI = 0.02–0.2),555

max depth = 6.3 (95% CI = 5–10), gamma = 0.2556

(95% CI = 0–1.5), min child weight = 1.01 (95%557

CI = 1–1), subsample = 0.99 (95% CI = 0.95–1), col-558

sample bytree = 0.99 (95% CI = 0.8–1), alpha = 0.1559

(95% CI = 0–0.8), lambda = 0.9 (95% CI = 0.2–1),560

and nrounds = 54.4 (95% CI = 18–211).561

The “AD vs Healthy Control” classification mod-562

els were evaluated in the independent testing set563

and achieved an average sensitivity of 48.7%564

(95% CI = 34.7–64.6), a specificity of 41.9% (95%565

CI = 26.8–54.3), and a balanced accuracy of 45.3%566

(95% CI = 36.0–56.0). Additional classification per- 567

formance metrics are provided in Table 3. As this 568

model was developed and evaluated a thousand times, 569

each sample in the testing set was predicted a thou- 570

sand times, each by a different classification model. 571

The raw probability predictions of all the samples in 572

the testing set by each of the thousand “AD vs Healthy 573

Control” classification models are shown in Fig- 574

ure 3a, where high misclassification can be observed 575

in all disease groups and controls, demonstrating an 576

increased false-positive rate and the inability of the 577

classification models to confidently assign a positive 578

(0) or negative (1) class to each subject. 579

The average AUC was calculated as 0.45 (95% 580

CI = 0.34–0.60), which translates to “test is not use- 581

ful” as a diagnostic test [26]. The average positive 582

(CUI+ve) and negative (CUI –ve) clinical utility val- 583

ues are calculated as 0.07 (95% CI = 0.04–012) and 584

0.34 (95% CI = 0.2–0.46), respectively. These clini- 585

cal utility scores suggest the classification model is 586

“poor” at detecting the presence and absence of AD, 587

and based on current validation results, has no real 588

clinical utility [27]. 589

The “AD vs Mixed Control” classification model 590

development and performance 591

The thousand “AD vs Mixed Control” classi- 592

fication models were developed using the entire 593

training set, which, after bootstrap upsampling, 594

consisted of 160 AD and 6,318 non-AD subjects. 595

Table 2
Overview Training and Testing set subjects

Dataset Training set Testing set Class assignment
for XGBoost

AD vs Healthy AD vs Mixed
Control Control

Alzheimer’s Disease 160∗ 160∗ 127 0
Parkinson’s Disease 0 702 (50) 40 1
Multiple Sclerosis 0 702 (122∗) 25 1
Schizophrenia 0 702 (97∗) 56∗ 1
Bipolar Disorder 0 702 (28) 20 1
Cardiovascular Disease 0 702 (235∗) 108 1
Rheumatoid Arthritis 0 702 (353) 88∗ 1
Chronic Obstructive Pulmonary Disease 0 702 (127) 88 1
ALS 0 702 (52) 0 1
Pooled Controls 127∗ 702∗ 262 1

Entire datasets from each disease were assigned to either the “Training Set” for classification model development or the “Testing Set” for
validation purposes. Datasets with the larger number of diseased subjects were prioritized into the training set to increase discovery. Two
types of classification models were developed, the first (“AD vs Healthy Control”) was developed using only the 160 AD and associated 127
healthy control samples, and the second (“AD vs Mixed Controls”) was developed using the same 160 AD samples, and 6,318 upsampled
mixed controls. The pooled controls in the “AD vs Healthy Control” training set originates only from AD datasets. Sample numbers provided
in brackets are before upsampling. Sample numbers with an asterisk (∗) indicates multiple datasets were available, and subject numbers
shown are a sum across these datasets.



U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

H. Patel et al. / Gene Expression Biomarker Specific for AD 11

Table 3
Classification model performance

AD vs Healthy Control AD vs Mixed Control

Sensitivity 48.7% (34.7–64.6) 40.8% (27.5–52.0)
Specificity 41.9% (26.8–54.3) 95.22% (93.3–97.1)
PPV 13.6% (9.9–18.5) 61.35% (53.8–69.6)
NPV 81.1% (73.3–87.7) 89.7% (87.8–91.4)
Balanced Accuracy 45.3% (36.0–56.0) 67.99% (61.9–72.9)
AUC 0.45 (0.34–0.60) 0.86 (0.82–0.90)
AUC Rating Test not useful Very Good
CUI+ve 0.07 (0.04–0.12) 0.25 (0.16–0.32)
CUI+ve Rating Poor Poor
CUI –ve 0.34 (0.2–0.46) 0.85 (0.84–0.87)
CUI –ve Rating Poor Excellent

The table provides the average performance measurements form validating a thousand “AD vs Healthy Control”
and a thousand “AD vs Mixed Control” classification models on the same testing set. A students T-test between the
“AD vs Healthy Control” and “AD vs Mixed Control” classification performances reveals a significant difference
for all metrics (p < 2.20e–16). The values provided in brackets () are the 95% confidence interval.

Fig. 3. Testing set raw prediction comparison by (a) the thousand “AD vs Healthy Control” classification models and (b) the thousand “AD vs
Mixed Control” Classification models. Samples with a probability of ≤ 0.5 are predicted to be AD. Controls represent pooled non-diseased
subjects from all datasets. AD, Alzheimer’s disease; BD, bipolar disease; CD, coronary artery disease; COPD, chronic obstructive pulmonary
disease; MS, multiple sclerosis; PD, Parkinson’s disease; RA, rheumatoid arthritis; SCZ, schizophrenia.

The models were initially built using default param-596

eters; however, after model refinement, an average597

of 89.4 predictive genes (95% CI = 66.0–116.0)598

were selected with the optimum hyperparameters599

identified as eta = 0.12 (95% CI = 0.01–0.20),600

max depth = 4.1 (95% CI = 2–5), gamma = 0601

(95% CI = 0–0), min child weight = 1 (95%602

CI = 1–1), subsample = 1 (95% CI = 0.95–1), col-603

sample bytree = 0.77 (95% CI = 0.5–1), alpha = 0.02604

(95% CI = 0–0.1), lambda = 0.9 (95% CI = 0.1–1),605

and nrounds = 1173.1 (95% CI = 297.9–6956.3).606

The “AD vs Mixed Control” classification mod- 607

els were evaluated in the testing set and achieved 608

an average 40.8% (95% CI = 27.5–52.0) sensitiv- 609

ity, 95.2% (95% CI = 93.3–97.1) specificity, and a 610

balanced accuracy of 68.0% (95% CI = 61.9–72.9). 611

Additional classification performance metrics are 612

provided in Table 3. A students T-test detects a sig- 613

nificant difference (p < 2.20e–16) between all of the 614

“AD vs Healthy Control” and “AD vs Mixed Control” 615

performance metrics. The “AD vs Mixed Control” 616

classification performance outperforms the typical 617
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“AD vs Healthy Control” classification models in618

all performance metrics, except for sensitivity, where619

a decrease in performance is observed from 48.7%620

to 40.8%. Nevertheless, due to the “AD vs Mixed621

Control” classification model predicting less false622

positives, an increase in the average PPV (61.4%,623

95% CI = 53.8–69.6) is observed when compared to624

the “AD vs Healthy Control” classification models625

average PPV (13.6%, 95% CI = 9.9–18.5). This is626

further emphasized in Fig. 3b, where the raw proba-627

bility predictions for all individuals in the testing set628

are more correctly and confidently predicted by the629

“AD vs Mixed Control” Classification models when630

compared to the typical “AD vs Healthy Control”631

classification models.632

The “AD vs Mixed Control” classification model633

average AUC score is 0.86 (95% CI = 0.82–0.9)634

which translates to a “very good” diagnostic test635

[26]; however, the average clinical utility val-636

ues (CUI+ve = 0.25 [95% CI = 01.6–032] and CUI637

–ve = 0.85 [95%CI = 0.84–0.87]) suggests this clas-638

sification model is “poor” in detecting AD but639

“excellent” to rule out “AD” [27].640

The “AD vs Mixed Control” classification641

model’s predictive features642

The thousand “AD vs Mixed Control” classifi-643

cation models identified, on average, 89 predictive644

features (genes) to discriminate between AD and non-645

AD subjects with an average balanced accuracy of646

68% (95%CI = 61.9–72.9). Only 800 of the 1,681647

available genes were selected by anyone of the thou-648

sand models as a predictive feature, with 11 being649

consistently selected by all one thousand models.650

These 11 genes are KDM3B, TH1L, RARA, SPEN,651

NDUFA1, THYN1, UBR4, BSDC1, LDHB, LPP,652

and BAG5. Gene set enrichment on these genes iden-653

tified “The citric acid (TCA) cycle and respiratory654

electron transport” (q-value = 0.03) and HIV Infec-655

tion (q-value = 0.03) as the only biological pathways656

significantly enriched; however, when incorporating657

a background gene list (the 1,681 genes available for658

selection by the classification model algorithm), no659

pathway was significantly enriched.660

DISCUSSION661

Previous attempts to identify a blood-derived gene662

expression signature for AD diagnosis have relied663

on the typical approach of training machine learning664

algorithms on AD and cognitively healthy subjects 665

only. This may inadvertently lead to classification 666

models learning expression signatures that may be 667

of general illness rather than being disease-specific. 668

Validating such a classification model in a heteroge- 669

neous aging population may fail to distinguish AD 670

from similar mental health disorders, neurodegener- 671

ative diseases, and common elderly health disorders. 672

To explore this potential issue, two AD classifica- 673

tion models were developed and evaluated. The first 674

model (“AD vs Healthy Control”) was developed in 675

160 AD and 127 complementary cognitive healthy 676

subjects, and the second (“AD vs Mixed Control”) 677

was developed in 160 AD and 6,318 upsampled non- 678

AD subjects comprising of PD, MS, BD, SCZ, CD, 679

RA, COPD, ALS, and healthy subjects. 680

Both types of classification models were evaluated 681

in the same external independent cohort compris- 682

ing of AD, PD, MS, BD, SCZ, CD, RA, COPD, 683

and healthy subjects totaling 814 subjects. A thou- 684

sand “AD vs Healthy Control” and a thousand “AD 685

vs Mixed Control” classification models were devel- 686

oped, refined, and evaluated to account for the 687

randomness introduced during the bootstrap upsam- 688

pling and the model development process. 689

The “AD vs Healthy Control” classification 690

models perform poorly in a heterogeneous aging 691

population 692

The typical approach of developing a classification 693

model trained on AD and complementary cognitive 694

healthy control subjects produced models with an 695

average sensitivity of 48.7% (95% CI = 34.7–64.6) 696

in an independent cohort of 127 AD subjects. On 697

average, these models perform worse than a previous 698

attempt which attained a sensitivity of 56.8% when 699

validated in an independent testing set of 118 AD 700

subjects [11]. However, the study in question only 701

built and evaluated a single model and in this study, 702

97/1000 models attained a higher sensitivity. Nev- 703

ertheless, on average, the “AD vs Healthy Control” 704

models in this study are very much similar to identify- 705

ing AD samples based on complete randomness alone 706

(assumed to be 50%). Furthermore, when evaluating 707

these models in a heterogeneous aging population, a 708

process often neglected by previous studies, low aver- 709

age specificity of 41.9% (95% CI = 26.8–54.3) was 710

attained, which equates to a very low average PPV 711

of only 13.6% (26.8–54.3). This is reiterated in the 712

high misclassification of PD, MS, BD, SCZ, CD, RA, 713

COPD, and healthy subjects as AD in the testing set. 714
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Since misclassification was observed in all groups,715

including large portions of the healthy controls, the716

“AD vs Healthy Control” classification models are717

most likely not capturing signals of AD, dementia, or718

general illness, but is most likely a result of technical719

noise, individual study batch effects, and overfitting.720

This is mirrored in the model’s performance metrics,721

which translates to a “poor” clinical utility in detect-722

ing the presence and absence of AD. Overall, the723

typical approach of AD classification model devel-724

opment failed to accurately distinguish AD subjects725

in a heterogeneous aging population consisting of PD,726

MS, BD, SCZ, CD, RA, COPD, ALS, and relatively727

healthy controls.728

The “AD vs Mixed Control” classification729

models outperforms the typical “AD vs Healthy730

Control” classification models731

The “AD vs Mixed Control” classification mod-732

els attained a validation PPV average of 61.4% (95%733

CI = 53.8–69.6) and an NPV average of 89.7% (95%734

CI = 87.8–91.4), which outperforms the validation735

PPV average of 13.6% (26.8–54.3) and NPV aver-736

age of 81.1% (73.3–87.7) achieved by the “AD vs737

Healthy Control” classification models. However,738

this improvement was at the cost of sensitivity, which739

was reduced from an average of 48.7% (“AD vs740

Healthy Control”) to an average of 40.8% (“AD vs741

Mixed Control”). Nevertheless, an overall increase in742

the clinical utility of the “AD vs Mixed Control” clas-743

sification model was measured and according to the744

recommended CUI interpretations in [27], the model745

is “poor” in “ruling in” AD but “excellent” in “ruling746

out” AD.747

The increase performance of the “AD vs Mixed748

Control” classification model is most likely the result749

of incorporating additional related mental health and750

common elderly health disorders into the classifi-751

cation model development process, which allowed752

the machine learning algorithm to learn more com-753

plex relationships between genes to differentiate754

between AD and non-AD subjects. This is reflected755

in the average 57 (95% CI = 18–101) genes and 54756

(95%CI = 18–211) nrounds (trees) being used for pre-757

diction in the “AD vs Healthy Control” classification758

models, which is increased to an average 89 (95%759

CI = 66–116) genes and 1173 (95% CI = 298–6956)760

nrounds for the “AD vs Mixed Control” classification761

models. Together with the CUI interpretations, the762

classification model seems to have learned expression763

signatures that are typically not AD, rather than iden-764

tifying AD. Although this has improved the ability to 765

distinguish AD from other related diseases and cog- 766

nitively healthy controls, the sensitivity of the model 767

was reduced and needs to be further improved for this 768

type of research to be beneficial in the clinical setting. 769

Predictive features consist of age-related markers 770

Age is one of the most significant risk factors 771

for AD, and the prevalence of the disease is known 772

to increase with age. A meta-analysis study investi- 773

gating blood transcriptional changes associated with 774

age in 14,983 humans, identified 1,496 differentially 775

expressed genes with chronical age [29], of which 776

two genes (LDHB and LPP) are consistently used 777

as a predictive feature in all one thousand “AD vs 778

Mixed Control” classification models. The datasets 779

used in this study were publicly available, and as such, 780

were accompanied with limited phenotypic informa- 781

tion, including age. Therefore, age was not accounted 782

for during the classification model developmental 783

process. However, as this study uses a variety of 784

common elderly health disorders, in addition to the 785

3 AD datasets, and study designs generally incor- 786

porate complementary age-matched controls, it is 787

highly unlikely the classification model is predict- 788

ing age alone but is more likely using a combination 789

of signals including age to distinguish AD. Without 790

age information for all subjects, this study is unable to 791

conclude how age is influencing the model prediction 792

process. 793

Limitations 794

All data used in this study were publicly avail- 795

able, and as such, many were accompanied by limited 796

phenotypic information, including sex, which was 797

predicted based on gene expression when miss- 798

ing. Therefore, this study was unable to incorporate 799

additional phenotypic information during the clas- 800

sification model building process, which has been 801

shown to improve model performance [11]. Informa- 802

tion such as comorbidities, age, and medications are 803

unknowns, which could be affecting model perfor- 804

mances in this study. For instance, control subjects 805

in this study that originated from non-AD datasets 806

were screened negative for their corresponding dis- 807

ease of interest but were not screened for cognitive 808

function, i.e., control subjects from the CD datasets 809

were included in their retrospective dataset if they did 810

not have CD, they were not necessarily checked for 811

cognitive impairment. Therefore, some misclassified 812
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control subjects may indeed be on the AD spectrum,813

and it is important to note subjects from the pooled814

control group were most misclassified as AD by the815

“AD vs Mixed Control” classification models. How-816

ever, it is also important to note the training set used817

to develop the “AD vs Mixed Control” classifica-818

tion model also contains these controls which have819

not been screened for AD. If these controls or age-820

related disease subjects are comorbid with AD, the821

classification model may have inadvertently learned822

to be biased toward a subgroup of AD subjects with823

no comorbid with any other disease, hence the low824

sensitivity validation performance when introduc-825

ing additional datasets into the classification model826

developmental process.827

This study involved a number of subjects clinically828

diagnosed with a health issue, and therefore were829

most likely on some sort of therapeutic treatment to830

manage or treat the underlying disease, another piece831

of vital information generally missing from publicly832

available datasets and from this study. As therapeutic833

drugs have been well-known to affect gene expression834

profiling, including memantine, a common drug used835

to treat AD symptoms [30], the “AD vs Mixed Con-836

trol” classification models may have inadvertently837

learned gene expression perturbations due to ther-838

apeutic treatment rather than disease biology, and839

would, therefore, fail in the clinical setting to diag-840

nose AD subjects who are not already on medication.841

To address this issue along with co-morbidity, clear842

and detailed phenotypic information would be needed843

for all subjects, which is encouraged for future studies844

planning to submit genetic data to the public domain.845

Finally, this study used datasets generated on846

11 different microarray BeadArrays, resulting in847

datasets ranging from 22277–54715 probes prior848

to any QC. Coupled with differences in BeadAr-849

rays designs across platforms, the overlap of genes850

was drastically reduced to 1,681 common “reli-851

able detected” genes across all datasets, and most852

likely may have also inadvertently lost some disease-853

specific changes. To address this issue, these subjects854

need to be expression profiled on the same microarray855

platform and ideally the same expression BeadArray,856

which currently does not exist in the public domain.857

However, the advances in sequencing technologies,858

which can capture expression changes across the859

whole transcriptome, can potentially solve this issue860

and future studies are encouraged to replicate this861

study design with RNA-Seq data with detailed pheno-862

typic information when/if available, albeit, this may863

bring new challenges.864

Conclusion 865

This study relied on publicly available microarray 866

gene expression data, which too often lacks detailed 867

phenotypic information for appropriate data analysis 868

and needs to be addressed by future studies. Nev- 869

ertheless, with the available phenotypic information 870

and limited common “reliably detected” genes across 871

the different microarray platforms and BeadArrays, 872

this study demonstrated the typical approach of 873

developing an AD blood-based gene expression clas- 874

sification model using only AD and complementary 875

healthy controls fails to accurately distinguish AD 876

from a heterogeneous aging population. However, 877

by incorporating additional related mental health 878

and common elderly health disorders from differ- 879

ent microarray platforms and expression chips into 880

the classification model development process can 881

result in a model with improved “predictive power” 882

in distinguishing AD from a heterogeneous aging 883

population. Nevertheless, further improvement is still 884

required in order to identify a robust blood transcrip- 885

tomic signature more specific to AD. 886
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J, Doré V, Fowler C, Li Q-X, Martins R, Rowe C, Tomita934

T, Matsuzaki K, Ishii K, Ishii K, Arahata Y, Iwamoto S,935

Ito K, Tanaka K, Masters CL, Yanagisawa K (2018) High936

performance plasma amyloid-� biomarkers for Alzheimer’s937

disease. Nature 554, 249-254.938

[7] Kiddle SJ, Sattlecker M, Proitsi P, Simmons A, Westman E,939

Bazenet C, Nelson SK, Williams S, Hodges A, Johnston C,940

Soininen H, Kłoszewska I, Mecocci P, Tsolaki M, Vellas B,941

Newhouse S, Lovestone S, Dobson RJB (2014) Candidate942

blood proteome markers of Alzheimer’s disease onset and943

progression: A systematic review and replication study. J944

Alzheimers Dis 38, 515-531.945

[8] Chiam JTW, Dobson RJB, Kiddle SJ, Sattlecker M (2014)946

Are blood-based protein biomarkers for Alzheimer’s disease947

also involved in other brain disorders? A systematic review.948

J Alzheimers Dis 43, 303-314.949

[9] Rye PD, Booij BB, Grave G, Lindahl T, Kristiansen L,950

Andersen HM, Horndalsveen PO, Nygaard H a., Naik M,951

Hoprekstad D, Wetterberg P, Nilsson C, Aarsland D, Sharma952

P, Lönneborg A (2011) A novel blood test for the early detec-953

tion of Alzheimer’s disease. J Alzheimers Dis 23, 121-129.954

[10] Booij BB, Lindahl T, Wetterberg P, Skaane NV, Sæbø S,955

Feten G, Rye PD, Kristiansen LI, Hagen N, Jensen M,956

Bårdsen K, Winblad B, Sharma P, Lönneborg A (2011) A957

gene expression pattern in blood for the early detection of958

Alzheimer’s disease. J Alzheimers Dis 23, 109-119.959

[11] Voyle N, Keohane A, Newhouse S, Lunnon K, Johnston C,960

Soininen H, Kloszewska I, Mecocci P, Tsolaki M, Vellas961

B, Lovestonea S, Hodges A, Kiddle S, Dobson RJB (2016)962

A pathway based classification method for analyzing gene963

expression for Alzheimer’s disease diagnosis. J Alzheimers964

Dis 49, 659-669.965

[12] Roed L, Grave G, Lindahl T, Rian E, Horndalsveen PO,966

Lannfelt L, Nilsson C, Swenson F, Lönneborg A, Sharma P,967
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Fornage M, Liu Y, Gharib SA, Stranger BE, De Jager PL,1060

Aviv A, Levy D, Murabito JM, Munson PJ, Huan T, Hof-1061

man A, Uitterlinden AG, Rivadeneira F, van Rooij J, Stolk1062

L, Broer L, Verbiest MMPJ, Jhamai M, Arp P, Metspalu A,1063

Tserel L, Milani L, Samani NJ, Peterson P, Kasela S, Codd1064

V, Peters A, Ward-Caviness CK, Herder C, Waldenberger1065

M, Roden M, Singmann P, Zeilinger S, Illig T, Homuth1066

G, Grabe H-J, Völzke H, Steil L, Kocher T, Murray A,1067

Melzer D, Yaghootkar H, Bandinelli S, Moses EK, Kent1068

JW, Curran JE, Johnson MP, Williams-Blangero S, Westra1069

H-J, McRae AF, Smith JA, Kardia SLR, Hovatta I, Perola M,1070

Ripatti S, Salomaa V, Henders AK, Martin NG, Smith AK,1071

Mehta D, Binder EB, Nylocks KM, Kennedy EM, Klen-1072

gel T, Ding J, Suchy-Dicey AM, Enquobahrie DA, Brody1073

J, Rotter JI, Chen Y-DI, Houwing-Duistermaat J, Kloppen-1074

burg M, Slagboom PE, Helmer Q, den Hollander W, Bean1075

S, Raj T, Bakhshi N, Wang QP, Oyston LJ, Psaty BM, Tracy1076

RP, Montgomery GW, Turner ST, Blangero J, Meulenbelt1077

I, Ressler KJ, Yang J, Franke L, Kettunen J, Visscher PM,1078

Neely GG, Korstanje R, Hanson RL, Prokisch H, Ferrucci1079

L, Esko T, Teumer A, van Meurs JBJ, Johnson AD (2015)1080

The transcriptional landscape of age in human peripheral1081

blood. Nat Commun 6, 8570.1082

[30] Huang H, Nguyen T, Ibrahim S, Shantharam S, Yue Z, Chen1083

JY (2015) DMAP : A connectivity map database to enable1084

identification of novel drug repositioning candidates. BMC1085

Bioinformatics 16, S4.1086

[31] Sood S, Gallagher IJ, Lunnon K, Rullman E, Keohane1087

A, Crossland H, Phillips BE, Cederholm T, Jensen T, van1088

Loon LJC, Lannfelt L, Kraus WE, Atherton PJ, Howard R,1089

Gustafsson T, Hodges A, Timmons JA (2015) A novel multi-1090

tissue RNA diagnostic of healthy ageing relates to cognitive1091

health status. Genome Biol 16, 185.1092

[32] Scherzer CR, Eklund AC, Morse LJ, Liao Z, Locascio JJ,1093

Fefer D, Schwarzschild MA, Schlossmacher MG, Hauser1094

MA, Vance JM, Sudarsky LR, Standaert DG, Growdon JH,1095

Jensen RV, Gullans SR (2007) Molecular markers of early1096

Parkinson’s disease based on gene expression in blood. Proc1097

Natl Acad Sci U S A 104, 955-960.1098

[33] Calligaris R, Banica M, Roncaglia P, Robotti E, Finaurini S,1099

Vlachouli C, Antonutti L, Iorio F, Carissimo A, Cattaruzza1100

T, Ceiner A, Lazarevic D, Cucca A, Pangher N, Marengo1101

E, di Bernardo D, Pizzolato G, Gustincich S (2015) Blood1102

transcriptomics of drug-naı̈ve sporadic Parkinson’s disease 1103

patients. BMC Genomics 16, 876. 1104

[34] Goertsches RH, Hecker M, Koczan D, Serrano-Fernandez P, 1105

Moeller S, Thiesen HJ, Zettl UK (2010) Long-term genome- 1106

wide blood RNA expression profiles yield novel molecular 1107

response candidates for IFN-beta-1b treatment in relapsing 1108

remitting MS. Pharmacogenomics 11, 147-161. 1109

[35] De Jager PL, Jia X, Wang J, De Bakker PIW, Ottoboni L, 1110

Aggarwal NT, Piccio L, Raychaudhuri S, Tran D, Aubin C, 1111

Briskin R, Romano S, Baranzini SE, McCauley JL, Pericak- 1112

Vance MA, Haines JL, Gibson RA, Naeglin Y, Uitdehaag 1113

B, Matthews PM, Kappos L, Polman C, McArdle WL, 1114

Strachan DP, Evans D, Cross AH, Daly MJ, Compston A, 1115

Sawcer SJ, Weiner HL, Hauser SL, Hafler DA, Oksenberg 1116

JR (2009) Meta-analysis of genome scans and replication 1117

identify CD6, IRF8 and TNFRSF1A as new multiple scle- 1118

rosis susceptibility loci. Nat Genet 41, 776-782. 1119
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