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an-unexpected-photopolymer-drug-reactionStereolithography (SLA) 3D printing of an

antihypertensive polyprintlet: Case study of an unexpected photopolymer-drug reaction
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Abstract

The introduction of three-dimensional (3D) printing in the pharmaceutical arena has caused a* -

major_shift towards the advancement of modern medicines, including drug products with
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different configurations and complex geometries. Otherwise challenging to create via

conventional pharmaceutical technigues, 3D printing technologies have been explored for the

fabrication of multi-drug loaded dosage forms to reduce pill burden and jmprove patient

adherence. In this study, stereolithography (SLA), a vat polymerisation technigue, was used

to manufacture a multi-layer 3D printed oral dosage form (polyprintlet) incorporating four

antihypertensive drugs jncluding irbesartan, atenolol, hydrochlorothiazide and amlodipine.

Although successful in its fabrication, for the first time, we report an unexpected chemical

reaction between a photopolymer and drug. Fourier Transform Infrared (FTIR) spectroscopy

and Nuclear Magnetic Resonance (NMR) spectroscopy confirmed the occurrence of a Michael

addition reaction between the diacrylate group of the photoreactive monomer and the primary
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amine group of amlodipine. The study herein demonstrates the importance of careful selection

of photocurable resins for the manufacture of drug-loaded oral dosage forms via SLA 3D

printing technology.
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1. Introduction

Three-dimensional (3D) printing is forecasted to be a disruptive manufacturing technigue from

its ability to fabricate bespoke objects of virtually any shape and size in a layer-by-layer manner.

Structures can be created from a digital 3D file using computer-aided design (CAD) software -

or_imaging techniques to manufacture individualised entities on-demand [1]. 3D printing
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technologies have transformed a boundless field of applications including the aerospace

industry [2], food sciences [3], robotics [4] and tissue and organ modelling [5] since its

introduction.

From its advent in the pharmaceutical arena, 3D printing has already caused a paradigm shift
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in medicine manufacture. In 2016, the Food and Drug Administration (FDA) approved the first

3D printed tablet, Spritam®, which exploited the advantages of the 3D printing binder jet

technique to produce orodispersible tablets for the treatment of epilepsy [6]. 3D printing

technologies can be used to fabricate advanced oral dosage forms including orally

disintegrating tablets [7], formulations with different geometries and size [8—10], and innovative

structures [11-13] complemented with unique functions [14-20] which are otherwise

challenging or near impossible to manufacture with conventional pharmaceutical techniques.

Moreover, the fabrication of oral dosage forms by 3D printing allows the inclusion of multiple

drug compounds in a single oral product with different configurations, such as the duoCaplet

[21] or miniprintlets where doses and drug release profiles can be specifically tailored [22].

-
9}
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Several 3D printing technologies have proved their amenability in the pharmaceutical field,

including fused deposition modelling (FDM), selective laser sintering (SLS), binder jetting and

semi-solid extrusion [23]. Vat photopolymerisation techniques such as stereolithography (SLA)

[24], digital light processing (DLP) [25] and continuous liquid interface production (CLIP) [26]

are processes that utilise light irradiation (e.g. laser beam, UV and visible light) to create solid

objects from a photoreactive liquid resin. Such methods offer several advantages including

great feature resolution, a smooth surface finish and avoidance of drug thermal degradation

[27,28]. Generally, there are two main photopolymerisation systems including i) free radical

and ii) ionic reactions. In both mechanisms, a photoinitiator system is responsible to generate

reactive species (free radical, cations or anions) in order to initiate photopolymerisation [29].

Methacrylate- and acrylate-based monomers are most widely used in the free radical system,

demonstrating fast reaction rates and tunable mechanical properties [30]. Free radical

photopolymerisation is an attractive and versatile platform for the development of

pharmaceutical products as the active components can simply be blended with photocurable

monomers prior to printing and become trapped in the polymeric cross-linked network.

Previously, controlled-release drug-loaded hydrogels were successfully prepared using

poly(ethylene glycol) diacrylate as the main photocurable monomers and riboflavin as a non-

toxic photoinitiator via SLA 3D printing [31]. SLA technology has also demonstrated its success

in the fabrication of a single oral dosage forms incorporating up to six drugs [32].

Combination therapy has gained momentum with the aim of improving therapeutic outcomes

currently achieved by polypharmacy. The concurrent use of multiple medications by a patient,

however, is an ongoing concern due to the high pill burden, patient non-adherence and

increasing risk of medication errors [33,34]. To overcome such limitations, “polypills”, the

concept of incorporating more than one active pharmaceutical ingredient in a single dosage
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form, was devised as an optimised therapeutic approach for treatments such as cardiovascular

disease (CVD) [35]. Recently, a high-impact clinical study investigated the therapeutic outcome

of a single polypill containing four antihypertensive drugs [36] (atenolol, hydrochlorothiazide,

irbesartan _and amlodipine) and demonstrated that a single polypill achieved a greater

reduction in_high blood pressure when compared with the standard dose of each medication

alone.

This study aimed to explore the amenability of SLA 3D printing to fabricate a multi-layer

antihypertensive polypill (herein coined as a polyprintlet) of four antihypertensive drugs

(irbesartan, atenolol, hydrochlorothiazide and amlodipine) with a secondary aim to study the

unexpected chemical reaction between the photopolymers and drugs.
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2. Materials and mMethods

2.1 Materials

Hydrochlorothiazide (MW 297.74 g/mol), poly(ethylene glycol) diacrylate (PEGDA, average Mn

575 g/mol) and diphenyl(2, 4, 6-trimethyl- benzoyl) phosphine oxide (TPO) were purchased

from Sigma- Aldrich, UK. Irbesartan (MW 428.53 g/mol) was obtained from Sun

Pharmaceutical Industries Ltd., India. Amlodipine (MW 408.88 g/mol) and atenolol (MW 266.34

a/mol) were purchased from LKT Laboratories Inc., USA. Poly(ethylene glycol) (PEG 300,

average MW 300 g/mol) was acquired from Acros Organics, UK.

Acetonitrile (ACN, = 99.9 %, HPLC grade) was supplied by Sigma-Aldrich, UK. Formic acid

(FA, Optima, LC—MS grade) was purchased from Fisher Scientific, UK. The salts for the

preparation of the buffer dissolution media were purchased from VWR International Lid., UK.

Dimethyl sulfoxide-d6 (99.9 %) was obtained from Cambridge Isotope Laboratories, Inc., USA,

2.2. Design of the polyprintlets

[Formatted: English (United States)
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—Fhe-orderof-drugs-inthe Type-2 polyprintlet-was-changed—Four drugs were incorporated

in different regions of the polyprintlet (Fig. 1) and explored in two orientations; Type 1 and Type

2. The selected dimensions of the polyprintlet was 10mm diameter x 5mm height with a 1Tmm

layer thickness for each drug, except for irbesartan. The thickness of irbesartan layer was

doubled (2 mm) to allow a lower concentration of drug in the layer (20.9 % w/w) to obtain the

desired dose (Table 1). If the thickness of irbesartan layer was 1mm the required drug

concentration would be 41.8 % w/w, which is not printable. The Type 1 polyprintlet was

designed to incorporate the drugs with higher doses (irbesartan and atenolol) on the outer

layers and lower dosed drugs (hydrochlorothiazide and amlodipine) in the inner

layers (Table 1). The order of the drugs in the Type 2 polyprintlet was changed to have the

following arrangement; amplodipine and hydrochlorothiazide on the outer layers and irbesartan

and atenolol in the inner layers.,

. Irbesartan
. Hydrochlorothiazide

[ Amlodipine

. Atenolol

Type 1 Type 2

Fig.ure 1. 3D designs of the polyprintlets (10 mm diameter and 5 mm height).
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2.3 Preparation of photopolymer solutions

The photopolymer solutions were prepared with 1% (w/w) of diphenyl(2, 4, 6-trimethyl-benzoyl)
phosphine oxide (TPO) added to a total mass of 5 g. The pure drugs were added to each
solution according to previously calculated concentrations (Table 1). PEG 300 was added as
a diluent to decrease the crosslinking density at a ratio of 35% (w/w) PEGDA to 65% (w/w)
PEG 300. The photopolymer solutions were mixed thoroughly for 3 h at room temperature until

the drugs and photoinitiator were fully dissolved in the photopolymer solutions.

Table 1. Amount of material used for each layer in a 5 g solution preparation

Layer Drug (g) PEG 300 (g) PEGDA (g) *
Irbesartan 1.04 (20.9.% wiw) 254 (50.8.% wiw)  1.37 (27.4 % wiw) -
Atenolol 0.70 (13.9% wiw)  2.77 (55.3.% wiw)  1.49 (29.8 % wiw) -

Hydrochlorothiazide  0.35 (6.9_% w/w) 2.99 (59.8_% wiw)  1.61 (32.2.% w/w) *

Amlodipine 0.07 (1.4.% wiw) 3.17 (63.5% wiw)  1.71(34.2.% wiw)

*each formulation included 1_% (w/w) TPO.

2.4 Printing process
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The photopolymer solution was loaded into a commercial Form 1+SLA 3D printer (Formlabs

Inc., USA) equipped with a 405 nm laser. The geometry of the polyprintlet was designed with

AutoCAD 2015 (Autodesk Inc., USA) and exported as a stereolithography file (.stl) in the 3D

printer software (Preform Software v. 2.3.3 OpenFL, Formlabs, USA). The Form 1+SLA 3D

printer is designed to print uniform objects with only one material. In order to allow the use of

different materials in a single object, the operation of the printer was conducted using OpenFL.

This application programming interface was developed by FormLabs for the Form 1 and Form

1+SLA 3D printers and has previously been described in the literature [32]. The OpenFL

software allows the user to pause the printing process and raise the build platform in order to

change the material on the resin tray. After changing the material, the build platform was

lowered to its previous position and printing was resumed. Deionised water was used to rinse

the printed layer between materials to avoid cross contamination. In the material print setting,

the customised number of laser passes was selected as 10 for the first layer and 2 for the

remaining layers with a layer thickness of 100 um to achieve high resolution. The polyprintlets

were printed directly on the platform without the need of any support.

A

2.5 Polyprintlet dimensions
The polyprintlets were weighed and measured (width and height) in triplicate using a digital

calliper (0.150 mm PRO-MAX, Fowler, mod S 235 PAT).

2.6 Scanning eElectron mMicroscopy (SEM)
The polyprintlet samples were previously cut in half and attached to a self-adhesive carbon
disc mounted on a 25 mm aluminium stub, which was coated with 25 nm of gold using a sputter

coater. The stub was then placed into a FEI Quanta 200 FEG Scanning Electron Microscope

11
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(FEI, UK) at 5 kV accelerating voltage using secondary electron detection to obtain the cross-

section images of the SLA 3D printed polyprintlets.

2.7 X-ray pPowder dbiffraction (XRPD)

-Single drug-loaded discs (23mm diameter x 1mm height) and discs without drugs (control)

were printed via SLA and analysed together with the four drugs individually. X-ray powder

diffraction patterns were obtained in a Rigaku MiniFlex 600 (Rigaku, USA) using a Cu K a X-

ray source (A =1.5418 A). The angular range of data acquisition was 3—60° 2 8 with a stepwise

size of 0.02° at a speed of 5°/min. The intensity and voltage applied were 15 mA and 40 kV.

2.8 Thermal analysis

Differential scanning calorimetry (DSC) was used to characterise the single drug-loaded 3D

printed formulations, the control and the pure drug samples. DSC measurements were

performed with a Q2000 DSC (TA instruments, Waters, LLC, USA) at a heating rate of

10 _°C/min. Calibrations for cell constant and enthalpy were performed with indium

(Tm=156.6 °C, A Hf=28.71 J/q) according to the manufacturer instructions. Nitrogen was used

as a purge gas with a flow rate of 50 mL/min for all the experiments. Data were collected with

TA Advantage software for Q series (version 2.8.394) and analysed using TA Instruments

Universal Analysis 2000. All melting temperatures are reported as extrapolated onset unless

otherwise stated. TA aluminium pans and pin-holed hermetic lids (Tzero) were used with an

average sample mass of 8—10 mgq.Differential-scanning—calorimetry (DSC)was—used-to
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2.9 Determination of drug content in the photopolymer resins and 3DP polyprintlets

To quantify the drug content of the resins, aliquots of each photopolymer solution loaded with

drug were weighed and diluted together with 70 % (v/v) methanol and 30 % (v/v) water in

13



B32  volumetric flasks (10 mL). The solutions were left under magnetic stirring overnight and filtered

B33  through 0.45 um filter (Merck Millipore Ltd., Ireland). The concentration of drug was then

B34  determined by HPLC (Agilent 1260 Infinity Quaternary LC System).

B35

B36 For determination of drug loading in the polyprintlet, single drug-loaded layers were crushed

B37  and dissolved together with 70 % (v/v) methanol and 30 % (v/v) water in volumetric flasks (25

B38 mL). Samples of the solutions were left under magnetic stirring overnight then filtered through

B39  0.45 um syringe filter (Merck Millipore Ltd., Ireland) and the concentration of drug was

B40  determined by HPLC.

B41

B42  The gradient mobile phase consisted of (A) 0.1 % v/v FA in water, (B) methanol and (C) ACN

B43  which was pumped at a flowrate of 1 mL/min through a Luna 5 u Phenyl-Hexyl 5 um column,

B44 250mm x 4.6mm (Phenomenex) under the gradient program shown in Table 2. The sample

B45 injection volume was 30 pL and the total run time was 13 min, operating at room temperature

B46  at a wavelength of 215 nm.

B47 < [Formatted: Justified
Table 2. Gradient programme for the mobile phase. “ ( Formatted Table
Time (min)  0.1% FA in water (% A) Methanol (% B) ACN (% C) - | Formatted: Left
0.0 95 0 5 «  Formatted: Left
55-6.0 50 0 50 « [Formatted: Left
6.5 87 0 13 « [ Formatted: Left
9.0-10.0 77 10 13 «  Formatted: Left
11.0 95 0 5 < [Formatted: Left
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*ataresolution-of1-em*forB84-scans—The infrared spectra were collected using a Spectrum

100 FTIR spectrometer (PerkinElmer, Waltham, MA). Pure amlodipine drug powder and

PEGDA were measured as the references. Physical mixtures containing 1.39 %, 10 %, 20 %,

30 % and 50 % (w/w) of amlodipine in PEGDA were prepared by thoroughly stirring. All

samples were scanned over a range of 4000 — 650 cm—1 at a resolution of 1 cm-1 for 64

scans.

2.11 Nuclear mMagnetic rResonance (NMR) spectroscopy

performed-using-standardFopSpin-seftware{Bruker—UK)-All NMR spectra were recorded in

99.9 % DMSO-d6 (Cambridge Isotope Laboratories, Inc., USA).1H-NMR spectra of amlodipine

and PEGDA were obtained separately. In order to investigate the reaction between amlodipine

and PEGDA, sample solution of amlodipine mixed with PEGDA (molar ratio of 2:1) was

prepared. 1H and 13C NMR spectra of the solutions were obtained using a Bruker AVANCE

400 spectrometer. Data acquisition and processing were performed using standard TopSpin

software (Bruker, UK).

2.12 Dissolution testing conditions

Dissolution profiles for each 3D printed polyprintlet were obtained using USP-II apparatus

(Model PTWS, Pharmatest, Germany). Polyprintlets were first placed in 750 mL of 0.1M HCI

for 2 h to simulate gastric residence time and then transferred into 950 mL of physiological

bicarbonate buffer (Hanks buffer) (pH 5.6—7) for 35 min followed by 1000 mL of modified Krebs

buffer (pH 7-7.4 and then to 6.5). Hanks buffer (0.441 mM KH,PQOy, 0.337 mM Na,HPO, -

15
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2H,0, 136.9 mM NaCl, 5.37 mM KClI, 0.812 mM MgSQO, - 7H,0, 1.26 mM CaCl, - 2H,0,4.17

mM NaHCOQO3) was modified to form an in-situ modified Kreb’s buffer by the addition of 50 mL

of pre-Krebs solution (6.9 mM KH,PO4 and 400.7 mM NaHCQO3) to every dissolution vessel |

37.38].

The polyprintlets were tested in small intestinal environment for 3.5 h with the pH value of 5.6—

7.4, followed by pH 6.5 representing the colonic environment [37,38]. The dissolution medium

is primarily a bicarbonate buffer system in which both bicarbonate (HCOg ) and carbonic acid

(H2COg) exist in an equilibrium together with CO, (aq) resulting from the dissociation of the

carbonic acid [38]. The pH of the bicarbonate buffer is modulated and controlled by an Auto

pH System™ which incorporates a pH probe connected to a supply of CO, (pH reducing gas),

as well as to a supply of helium (pH increasing gas) [39]. During dissolution testing, the control

unit monitors the pH changes and adjusts the pH by feeding CO, or helium into the dissolution

vessel. The paddle speed of the USP-Il was fixed at 50 rpm and the dissolution media was

maintained at 37 + 0.5 °C. 1 mL samples of the dissolution media were withdrawn every half

an hour in the first 3 h, followed by every hour. The concentration of the drugs was determined

by HPLC (previously described in section 2.9) to calculate the percentage of drug released

from the polyprintlets.DBi
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3. Results and dBiscussion

The study herein demonstrates the amenability to incorporate the selected drugs in a resin to

be 3D printed via SLA. Pure amlodipine and hydrochlorothiazide readily dissolved in the

photopolymer solution although a longer time was required to completely dissolve atenolol and

irbesartan. Hydrochlorothiazide and amlodipine solutions were clear, although both of the

printed layers appeared off-white. A white solution was achieved following the homogenous

dispersion of pure atenolol in the photopolymer solution, however, after completely dissolving

the atenolol solution became clear. The irbesartan suspension was creamy and viscous as it

contained a high concentration of drug (20.8 % w/w).

Drug loaded polyprintlets were successfully fabricated as shown in Fig. 2.

Type 1 and 2 polyprintlets were printed with good resolution and consistency in shape. The

printing settings were customised and optimised for the different formulations using the

17



137
138
139
140
a1
142
143
144
145
146
147
148
149

}450

451
452
453
154
1155
156
157
158

OpenFL software. The Type 1 polyprintlet (diameter 11.2mm + 0.3 mm, height 5.4mm + 0.3

mm) was slightly wider in diameter but shorter in_height when compared with the Type 2

polyprintlet (diameter 10.4mm + 0.2 mm, height 6.7mm * 0.3 mm).

Fig.ure 2. Top view (A) and lateral view (B) of Type 1 (left) and Type 2 (right) polyprintlets.
Type 1 was loaded with (from top to bottom) irbesartan, amlodipine, hydrochlorothiazide and
atenolol. Type 2 was loaded with (from top to bottom) amlodipine, atenolol, irbesartan and

hydrochlorothiazide. The scale is in cm.

SEM imaging was used to visualise the structures of the polyprintlets (Fig. 3). The cross section

of the Type 2 polyprintlet show visible signs of separation between the four printed layers. This

indicates that the individual drug and resin did not mix during the printing process.




159
160
161
162
163
164
165
166
167

168

469
170

471
72
73
74
(75
76
w77
178
179

Amlodipine

Atenolol

Irbesartan

Hydrochlorothiazide

Fig.ure 3. SEM image of cross section of the Type 2 polyprintlet loaded with (from top to bottom)

amlodipine, atenolol, irbesartan and hydrochlorothiazide.

Pure drug samples and SLA 3D printed discs were analysed by XRD to evaluate the

incorporation of drugs in the drug-polymer matrices. The diffractogram outlines peaks of pure

atenolol at around 20 ° 2 6 (Fig. 4). Peaks at 9.5° 26, 19.5° 26 and 23.8 ° 2 6 were observed

in_pure _amlodipine _and peaks at 18.6 ° 2 6 and 28.3 ° 2 6 were shown in pure

hydrochlorothiazide. The absence of these peaks in atenolol, amlodipine and

hydrochlorothiazide 3D printed formulations indicated that the drugs existed in the amorphous

form with the absence of crystal formation during the printing process. Conversely, typical
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peaks of irbesartan at around 4.4 ° 2 6 and 12.1 ° 2 6 were still visible in the printed formulation

indicating that irbesartan was existing in its partially crystalline form in the printed formulation.

This suggests that the irbesartan drug powder may not have fully dissolved in the photopolymer

solution prior to printing.
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Figure 4. X-ray powder diffractograms of pure drugs and printed formulations.

DSC analysis of pure drugs and the 3D printed formulations were performed in order to

determine the physical state of drugs in the photopolymer solutions before and after printing.

The DSC results showed melting peaks at 154 °C, 140 °C and 273 °C for pure atenolol,

amlodipine and hydrochlorothiazide respectively (Fig. 5). No evidence of melting was observed

in the atenolol, amlodipine and hydrochlorothiazide 3D printed formulations which indicate that

the drugs completely dissolved in the photopolymer solutions before printing which was further

corroborated by the XRD findings. The DSC of pure irbesartan showed a sharp endothermic

peak at around 187 °C which corresponded to the melting point of irbesartan. A small

exothermic peak was also observed in the irbesartan printed formulation which suggests that

the irbesartan powder was not completely dissolved in the photopolymer solution.
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Fig.ure 5. DSC thermal traces of pure drugs and printed formulations.

Drug loading of irbesartan, atenolol and hydrochlorothiazide in the 3D printed layers were

slightly lower than that in the photopolymer solution which may be due to incomplete drug

extraction from the crosslinked network (Table 3). Noticeably, amlodipine was detected in

neither the photopolymer solution nor the printed layer which suggests a possible reaction

between amlodipine and PEGDA during the mixing process.Brug—leading—ef-irbesartan;
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Table 3. Drug loading in photopolymer solutions and printed individual layers.

Theoretical drug Drug loading in
Drug loading in
loading SLA 3D printed G L
Drug photopolymer « ormatted: Le
(%, wiw) layers
solutions (%, wiw)
(%, wiw)
Irbesartan 20.85 20.85 + 0.05 18.70 + 0.82 « [Formatted: Left
Atenolol 13.90 13.86 + 1.60 1266 + 0.39 < | Formatted:Let
Hydrochlorothiazide 6.95 7.10 + 0.16 6.14 + 0.01 « [ Formatted: Left
Amlodipine 1.39 _ 3 P  Formatted: Left

FTIR was firstly employed to investigate the potential cause of drug and photopolymer reaction.

Different masses of amlodipine were mixed with PEGDA until the drug was fully dissolved

accompanied with continuous magnetic stirring. Results from FTIR showed that the typical

peak of amlodipine at 3390 cm—1 (N-H bond stretching) was not observed in any of the spectra

of amlodipine-PEGDA mixtures regardless of the concentration which could indicate a possible

effect on the N-H bonds of amlodipine (Fig. 6). In addition, the intensity of C]C peak of PEGDA

at 1636 cm—1 decreased when the amlodipine:PEGDA ratio increased. As such, a further

reaction may occur with the acrylate groups as well. FHR-wasfirstly-employed-to-investigate
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Fig.ure 6. FTIR spectra of amlodipine, PEGDA and mixtures of amlodipine-PEGDA.

NMR spectroscopy was performed to confirm the reaction between amlodipine and PEGDA.

As the polyprintlets were designed to deliver a low-dose combination therapy, the

photocrosslinkable monomer PEGDA was used in _a large excess when compared with

amlodipine (1.39 % w/w). The use of this formulation for NMR study, however, did not allow

the observation of drug peaks. As such, the characteristic peaks of the combination of

amlodipine to PEGDA were not detected due to the predominant signals of the distinct PEGDA

peaks. Consequently, the molar ratio of amlodipine to PEGDA was increased to 2:1 for the

ease in amlodipine peak detection and the covalent bond between amlodipine and PEGDA

respectively. Fig. 7 shows the 1H NMR spectra of amlodipine, PEGDA and amlodipine-PEGDA

mixture and Supplementary Figure A shows the 13C NMR spectra of amlodipine-PEGDA
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mixture. 2D NMR experiments, Heteronuclear Single Quantum Correlation (HSQC)

(Supplementary _Figure Bi) and Heteronuclear Multiple-Bond Correlation (HMBC)

(Supplementary Figure Bii) facilitated the full assignment of the 1H and 13C NMR spectrum

(Fig. 7 and Supplementary Figure A respectively). Each characteristic peak of PEGDA and

amlodipine was detected in both 1D spectrum. However, an additional set of signals at 4.16,

3.62, 2.84 and 2.51 ppm (peaks labelled in green) was detected in the 1H NMR spectrum

which were assigned to the methylene groups of PEGDA after interacting with amlodipine.

Additionally, the intensity of the signals of the diacrylate group at 6.34, 6.20 and 5.91 ppm were

much lower than expected from a molar ratio of amlodipine to PEGDA of 2:1.NMR




When compared with the spectra of amlodipine and PEGDA, the integral peak areas for the -

NH- group of amlodipine and CH2=CH- of PEGDA were found to be only 0.83 and 0.10 in the

amlodipine-PEGDA mixture. In other words, a ratio of amlodipine to PEGDA of 2:0.24 was

calculated, thus indicating a loss of approximately 80 % of PEGDA due to its reaction with

amlodipine. It is proposed that the primary amine of amlodipine and the diacrylate of PEGDA

could undergo a Michael addition in mild conditions without the use of catalysts or solvents

[40]. The proton at the position 27 has only three carbon correlations in the HMBC spectrum

(Supplementary Figure A) indicating the formation of a secondary amine via the single

functionalisation of the primary amine with PEGDA. Akyol et al. described the synthesis of

novel poly(beta amino ester) macromonomers through Michael addition of various diacrylates

including PEGDA and a phosphonate that contains primary amine, as well as propyl amine

[41]. In their 1TH-NMR spectra, a change of peaks was observed due to methylene groups

attaching to a carbonyl group, nitrogen and oxygen. In addition, in the article where an example

was given for a diacrylate and an amine, the NMR results illustrated the disappearance of the

amino protons as well as the weak intensity of the acrylate peaks after they were interacting

26
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The SLA 3D printed polyprintlets were tested in the dynamic in vitro dissolution model that*

mimics the physiological conditions of the gastrointestinal tract. The drug release of atenolol,

hydrochlorothiazide and irbesartan from both formulations commenced in the gastric phase

and continued in the intestinal phase over a period of 24 h (Fig. 8). The polyprintlets were

designed and formulated to evaluate the effect of geometry on the dissolution profiles. Over

75 % of atenolol was released in the first 120 min in Type 1 polyprintlets while 55 % drug

release was achieved in the Type 2 polyprintlets in the same time. This coincided with the fact

that atenolol was located on the outer layer in the Type 1 polyprintlets where surface area to

volume ratio was higher than where it was in the Type 2 polyprintlets (inner layer) [43]. For

hydrochlorothiazide and irbesartan, minimal changes in drug release were observed on the

different surface to volume ratio of Types 1 and 2 polyprintlet. On the other hand, it was

observed that atenolol was the only formulation to reach 100 % drug release in both

polyprintlets while 48 % and 17 % of hydrochlorothiazide and irbesartan were released in total

after 24 h. This was attributed mainly to their poor aqueous solubilities (0.70 mg/mL for

hydrochlorothiazide and 0.00884 mg/mL for irbesartan) which consequently affect the drug

dissolution rates from the polymeric matrix [44,45]. No release of amlodipine was detected in

any type of polyprintlet which confirm the incompatibility of the drug via its reaction with PEGDA.

Crucially, undesirable reactions between the photoreactive monomer and the API should be

avoided when using the SLA 3D printing approach in drug delivery, otherwise the active drug

molecule could undergo possible degradation or iteration which can consequently deplete

therapeutic effects. Previously, studies involving SLA 3D printing of oral dosage forms have

demonstrated at least more than 90 % of drug contents in the printed tablets suggesting the

absence of drug-photopolymer reactions [24,32]. A recent article that utilised the DLP 3D

printing technology to fabricate oral tablets also employed FTIR to assess possible drug-

polymer_reactions. No detectable chemical reactions, however, were found in the oral

formulations [25]. This could be due to the study design of proof of concept studies;

researchers tend to select common drugs such as paracetamol, 4-aminosalicylic acid and
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theophylline to demonstrate the feasibility of using SLA 3D printing for printing drug-loaded

tablets. Herein, however, we report that the reaction between drug and polymer could be

possibly due to a Michael addition reaction under a solvent-free and catalyst-free conditions.

This therefore may represent a limitation for the advancement of the SLA 3D printing

technology in the development of oral dosage forms. Michael addition is a versatile polymer

synthesis reaction that allows the biocompatible preparation of growth polymers including

poly(amido amines), poly(amino esters) and poly(ester sulfides) [40]. Beyond primary amines,

nucleophiles such as secondary amines, thiols and phosphines could perform as Michael

donors to undergo Michael addition with numerous Michael acceptors including ester acrylates

and acrylamides, for example [46].

Active compounds which could serve as a Michael donor can react with a Michael acceptor (in

this case the PEGDA or other monomers with diacrylate groups) even during the physical

mixing procedure. To resolve this issue, other biocompatible photocrosslinkable monomers

without acrylate groups should be considered to replace PEGDA. Alternative novel

biomaterials have recently been developed for photopolymerisation-based 3D printing like

alkyne carbonate based monomers which showed considerably lower cytotoxicity and higher

conversion rates when compared with methacrylates [30]. Moreover, mixtures of

poly(propylene fumarate) (PPF)/diethyl fumarate (DEF) [47] and vegetable oil-derived epoxy

monomers [48] have also been exploited as photopolymerisable materials for SLA 3D printing.
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In this study, we successfully report the fabrication of a multi-layer antihypertensive polyprintlet

that could potentially deliver a low-dose combination therapy utilising a novel SLA 3D printing

approach. Notably, reactions between photocrosslinkable monomers (PEGDA) and one of the

drugs (amlodipine) were demonstrated and confirmed using FTIR and NMR spectroscopy. To

the best of our knowledge, the findings from our case study was the first to describe the

unexpected drug-polymer reactions in 3D printing. As such, this highlights the need to screen

for _photoreactive_monomers to ensure the compatibility of drug-loaded oral dosage forms

manufactured by SLA. This work presents the vast opportunities and consequently the

challenges that need to be addressed towards the advancement of novel and versatile

photocurable biomaterials in 3D printing for drug delivery.
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