
Genetic Programming and Evolvable Machines manuscript No.
(will be inserted by the editor)

Unimodal optimization using a genetic-programming-based
method with periodic boundary conditions

Rogério C. B. L. Póvoa · Adriano S. Koshiyama ·
Douglas M. Dias · Patrı́cia L. Souza · Bruno A. C.
Horta

Received: date / Accepted: date

Abstract This article describes a new genetic-programming-based optimization method us-
ing a multi-gene approach along with a niching strategy and periodic domain constraints.
The method is referred to as Niching MG-PMA, where MG refers to multi-gene and PMA
to parameter mapping approach. Although it was designed to be a multimodal optimization
method, recent tests have revealed its suitability for unimodal optimization. The definition
of Niching MG-PMA is provided in a detailed fashion, along with an in-depth explanation
of two novelties in our implementation: the feedback of initial parameters and the domain
constraints using periodic boundary conditions. These ideas can be potentially useful in
terms of other optimization techniques. The method is tested on the basis of the CEC’2015
benchmark functions. Statistical analysis shows that Niching MG-PMA performs similarly
to the winners of the competition even without any parametrization towards the benchmark,
indicating that the method is robust and applicable to a wide range of problems.

R. C. B. L. Povóa
Department of Electrical Engineering, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, 22451
900, Brazil
Apparat AS, Bergen, Hordaland, 5058, Norway
E-mail: rogerio.povoa@apparat.no

A. S. Koshiyama
Department of Computer Science, University College London, Gower Street, London, WC1E 6BT, UK
E-mail: a.koshiyama@cs.ucl.ac.uk
ORCID: http://orcid.org/0000-0001-7536-1503

D. M. Dias
Department of Electronics and Telecommunications, Faculty of Engineering, Rio de Janeiro State University,
Rio de Janeiro, 20550 900, Brazil
E-mail: douglas.dias@uerj.br
ORCID: http://orcid.org/0000-0002-1783-6352

P. L. Souza
LabSem/CETUC, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, 22451 900, Brazil
E-mail: plustoza@cetuc.puc-rio.br

B. A. C. Horta
Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941 901, Brazil
E-mail: bruno@iq.ufrj.br
ORCID: http://orcid.org/0000-0002-3952-1474

2 Rogério C. B. L. Póvoa et al.

Keywords Optimization · Evolutionary computation · Genetic programming · Niching
methods · Periodic boundary conditions · Parameter mapping approach

1 Introduction

Genetic programming (GP) [22] is a type of evolutionary algorithm in which the solution
space is defined by a set of computer programs that evolve in a competitive way through the
application of bio-inspired operators and selection criteria. Commonly applied for symbolic
regression [29], classification [10] and search based software engineering [14,13,23,24,50],
GP has interesting approaches such as Genetic Semantic Programming with Local Search
(GSGP-LS) [6], a hybrid method combining geometric semantic [34] and a local strategy
to optimize the parameters that characterize the individuals at each generation. Neverthe-
less, GP has rather few implementations and benchmark studies in the field of numerical
optimization.

Despite the popularity and efficiency of several Evolutionary Algorithms (EAs) for nu-
merical optimization, such as Genetic Algorithms (GAs) [16], Particle Swarm Optimization
(PSO) [9], and Differential Evolution (DE) [46], GP allows for the interpretability and un-
derstanding of the solution of a problem through the analysis of its programs, which enables
new insights and discoveries. Some promising GP-based optimization methods have been
reported in this field: (i) Cartesian Genetic Programming (CGP) [48,33]; (ii) Embedded
Cartesian Genetic Programming (ECGP) [48]; (iii) Positional Cartesian Genetic Program-
ming (PCGP) [49], (iv) Parameter Mapping Approach (PMA) [40]; (v) Optimization by Ge-
netic Programming (OGP) [21]; and (vi) Multimodal Genetic Programming (MMGP) [51].
Although these methods are promising, only a few comparative analysis on benchmark func-
tions have been performed and they are starting to be used in some different applications like
machine learning [41,45] and digital circuits [3].

PMA and Multi-Gene-PMA (MG-PMA as we call it in this paper, but the authors orig-
inally used the acronym OGP) are optimization methods that use GP to map initial pa-
rameters into optimal input parameters for an objective function. In 2013, Koshiyama [21]
showed the performance of MG-PMA for certain benchmark functions without the need to
specify the domain of those functions. This advantage allows the use of such method for
solving problems with unknown domain. In 2018, a preliminary study was performed by
us [39], applying a niching MG-PMA method for multimodal optimization (MMO) prob-
lems. More specifically, the 20 multimodal functions from the 2017 benchmark of the IEEE
CEC Special Session on Niching Methods for Multimodal Optimization [26] were used to
compare Niching MG-PMA with the best methods of the CEC competition.

In summary, our results revealed no significant difference between Niching MG-PMA
and other considered methods. If one takes into account that the other methods were highly
tuned to perform well on this benchmark [26], the results indicate the potential of Niching
MG-PMA for general and real-world application problems. Interestingly, our previous work
[39] (only about multimodal problems) also showed that this method performs best for the
first five functions (p1 to p5) of the benchmark, which are the functions with the lowest
number of solutions. This led us to consider that Niching MG-PMA, in principle designed
for multimodal problems, could perform even better on unimodal optimization problems.
Therefore, the objective of the present work is twofold: (i) provide a formal and more com-
plete definition of the method that was only superficially introduced by us in 2018 [39]; and
(ii) evaluate the performance of the method on unimodal optimization problems using the
well known unimodal benchmark functions of the CEC 2015 competition [28].

Unimodal optimization using a GP-based method with periodic boundary conditions 3

This paper is organized as follows: Section 2 presents the niching multi-gene parameter
mapping approach (Niching MG-PMA) and the methods used for its development (MG-
PMA and the feedback of the parameter values); Section 3 shows our recent normalization
technique used to follow domain constraints based on the periodic boundary conditions
(PBC); Section 4 shows the set of unimodal benchmark functions and the configurations
used in the experiments of this work; Section 5 presents the results; and Section 6 presents
closing remarks and suggestions for future work.

2 Multi-gene genetic programming for numerical optimization

2.1 Parameter Mapping Approach

PMA [40] is a GP-based method designed for parameter optimization and tuning (POT)
problems. POT methods are used to perform the tuning or the optimization of these parame-
ters, for which at least one initial set of parameters is required. These methods then produce
a set of adapted parameter values. In PMA, a population of GP programs represents a set
of possible mapping functions that transforms initial parameters into adapted ones. These
adapted values are submitted to an objective (evaluation) function, resulting in a value that
defines the quality of the solution. GP iteratively improves such functions by mapping ini-
tial parameters until (sub)optimal values are found. Figure 1 presents this POT approach
by PMA, where a GP program maps an array of initial parameter values (r1,r2,r3) into an
array of adapted ones (P1,P2,P3), considering a problem for which the solution is the point
(0,0,0). Over the generations (from G0 to Gn), the GP program evolves to a better solution;
the nearest point to (0,0,0).

Fig. 1 Transformation performed by PMA in a typical POT method.

4 Rogério C. B. L. Póvoa et al.

The variables of these mapping functions are represented by the initial parameters. As
variables of a mathematical function can assume more than one value, the representation
of these parameters cannot be only an array as in Figure 1. The initial parameters are rep-
resented in PMA by a matrix M containing n rows and m columns, where n is the dimen-
sionality of the objective function and m is a user-defined number at the beginning of the
optimization. Each mapping function generated by GP uses a random column as its vari-
ables and the constants are made available by GP constants (also called ephemeral random
constant by Koza [22]). These constants are initialized using a random number generator at
generation zero and remain unaltered during the evolutionary process. Figure 2 illustrates
this process. Results found by Pujol and Poli [40] suggested that PMA is as effective as well
established methods in the literature, such as GA, PSO and DE.

Fig. 2 Schematic representation of the PMA procedure. The aim of PMA is to find a program that maps
the initial parameter values (xic) into the optimal parameter values (x∗i) for a given system (c is a column of
initial parameter values, selected by each tree/program). The current best candidate parameters correspond to
adapted values from the mapping of the initial parameters. The fitness value indicates how well a program
performs this mapping. As GP, PMA also utilizes random numbers as constants in its individuals. During
the evolution process, the initial parameter values, the GP-constants and the objective function are always
the same (static) while PMA functions, candidates parameters values and the corresponding fitness values
change (dynamic).

2.2 Multi-gene parameter mapping approach

In PMA, the parameters to be optimized are not individually encoded, but mapped by a
single function. The method works fairly well for trivial problems, as shown by Pujol and
Poli [40]. For example, consider X∗i = 0 for all i, the optimal parameters for f (.). Thus, if
an individual encodes the function PMA(xi) = xi− xi, the optimization problem is solved.
However, when the set of optimal solutions is not trivial, PMA tends to face more difficulties.
Consider a second example in which X∗i = 1+ ri, where ri ∼ Unif(−1,1). In this case, it is
more difficult to find a PMA(Xi) function that solves the optimization problem. This is
discussed in details by Pujol and Poli [40].

In view of further improving GP-based optimization algorithms, this work presents a
generalization of the PMA method, where a set of equations is responsible for certain pa-

Unimodal optimization using a GP-based method with periodic boundary conditions 5

rameters rather than a single one being responsible for all. This is achieved through multi-
gene genetic programming (MGGP) [15], a generalization of the canonical GP, in which
most components are similar, but MGGP denotes an individual as a complex tree structure,
also called genes. Each tree structure can be considered as a partial solution to the problem,
and the final output results from the linear combination of them. From this point on, the gen-
eralization of PMA, introduced in the present work, will be referred to as multi-gene param-
eter mapping approach (MG-PMA). Preliminary studies with early implementations of the
multi-gene approach to PMA were performed. The results were compared to those obtained
by GA, PSO, DE and PMA [21] and applied to optimize the parameters of a spiking neural
network for clustering problems [45]. There the method was referred to as optimization by
genetic programming (OGP). However, since it was in fact a generalization of PMA, the
acronym MG-PMA seems more appropriate as it acknowledges the previous PMA method.
This work recommends the usage of OGP for referring to the emerging field of GP-based
optimization methods.

Figure 3 depicts the main differences between a single tree and a multi-tree approach.
While PMA represents all parameters to be optimized by a single function (Figure 3.a), MG-
PMA separates the optimization problem into k parts, where k is the number of equations
of MGGP. For example, for k = 4, MG-PMA assigns to each equation the responsibility of
searching for a quarter of the solution. Figure 3.b shows the function found by MG-PMA to
solve a hypothetical optimization problem. In the limiting case, when k equals the number
n of parameters to be optimized (k = n), MG-PMA assigns to each parameter an equation
that receives an arbitrary value and returns it transformed by the decoded equation in the
individual. By contrast, when k = 1, MG-PMA becomes PMA. Note that, in the limiting
case (k = n), it is not mandatory to include initial parameters values (xi j, as in Figure 2.13) in
the terminal set of MGGP, but the GP constants are still required. Since each function is only
responsible for one parameter of the objective function, a mapped value of one parameter
can be represented by a result of arithmetical combinations of constants. In this case, MG-
PMA searches a function of constants for each parameter.

Fig. 3 Representation of individuals in PMA and MG-PMA. (a) PMA represents all parameters to be opti-
mized by a single function. (b) MG-PMA partitions the optimization problem into k parts. In this example,
for k = 4, MG-PMA assigns to each of the four equations the responsibility of optimizing a quarter of the
problem. The optimal parameters are represented by points on the graphs.

6 Rogério C. B. L. Póvoa et al.

In general, the pseudo-code of MG-PMA for any objective function is described as in
Algorithm 1. Similarly to PMA, MG-PMA starts by setting the initial parameters matrix
Mnxm. Then, MG-PMA specifies the population parameters (e.g., population size and num-
ber of generations) and genetic operators (e.g., crossover rate and mutation rate), which are
commonly defined in a GP execution. Once they are established, an additional parameter k
defines the number of trees encoded in an individual. The function SplitInitialParameters
(see Algorithm 2) uses the initial parameters and k as input to define how the initial param-
eters should be partitioned into the number of trees in MG-PMA. Partitioning is done so
that each tree receives the same number of initial parameters. If it is not possible to evenly
divide the parameters, the first trees receive more parameters. For example, for n = 5 and
k = 5 each tree receives an initial parameter, while for n = 5 and k = 3, the first two trees
receive two initial parameters while the last tree receives only one initial parameter.

Data: Objective Function
Output: Optimal Parameters
- InitialParameterValues← Initialize();
- GPConstants← Initialize();
- Set parameters for MG-PMA;
- Set k ;
- t← 0 ;
- SplitInitialParameters(InitialParameters, k);
- Start Population(t);
- Fit← Evaluate(Population(t));
while Stop criterion 6= FALSE do

t← t +1;
Population(t)← Select(Population(t−1));
Population(t)← ApplyOperators(Population(t));
Fit← Evaluate(Population(t));

end

Algorithm 1: Pseudocode of MG-PMA for a generic objective function.

Input : Initial Parameters and Parameter k
- MaxParametersPerTree← ceil(CountRows(InitialParameters)/k);
- Parts[MaxParametersPerTree,k]← Create segments with k parts;
- NumberParametersParts[k]← All elements equal to 0;
- CountParameters← 0;
- IndexParameters← 1;
while CountParameters < CountRows(InitialParameters) do

for CurrentPart← 1 to k do
if CountParameters < CountRows(InitialParameters) then

NumberParametersParts[CurrentPart]← NumberParametersParts[CurrentPart]+1;
CountParameters←CountParameters+1;

else
break;

end
end

end
for CurrentPart← 1 to k do

for Index← 1 to NumberParametersParts[CurrentPart] do
Parts(Index,CurrentPart)← InitialParamenters(IndexParameters);
IndexParameters← IndexParameters+1;

end
end

Algorithm 2: Pseudocode of the SplitInitialParameters algorithm: division of the
initial parameters into k trees.

Unimodal optimization using a GP-based method with periodic boundary conditions 7

A population is then randomly created, consisting of individuals with k functions each.
Each individual selects a random column of the initial parameters matrix so as to simulate
the “variables” of the mathematical equations which, in turn, are evaluated by the objective
function. After the evaluation of the entire population, it is verified whether the stopping
criterion is satisfied. If so, then the current population is returned, otherwise the algorithm
enters in a loop that is only interrupted when the stop criterion is reached. During the loop,
three operations are performed: selection, application of operators and evaluation. The first
one chooses, based on some heuristic methods (e.g., roulette and tournament) [38], the en-
tities of the following population. Subsequently, the function ApplyOperators (see Algo-
rithm 3) is called to apply elitism and one of these four genetic operators: (i) mutation;
(ii) direct reproduction; (iii) high-level crossover (it exchanges the genes of two individuals
to generate two new individuals [39]); (iv) or low-level crossover (similar to canonical GP
[22]). The frequency of use of these genetic operators is determined by the set of parameters
at the beginning of MG-PMA. Finally, this new population is re-evaluated and once again
it is verified whether the stopping criterion has been reached or not. If yes, then the current
population is returned, otherwise the whole process is repeated.

Input : Population
Output: New Population
- NewPopulation← ApplyElitism(Population);
while Size(NewPopulation) 6= Size(Population) do

Parent1← SelectOneIndividual(Population);
Flip← Random Number Between 0 and 1;
if Flip < Mutation Probability then

NewPopulation← ApplyMutation(Parent1);
else if Flip < Sum of Mutation and Direct Reproduction Probabilities then

NewPopulation← ApplyDirectReproduction(Parent1);
else

Parent2← SelectOneIndividual(Population);
FlipCrossover← Random Number Between 0 and 1;
if FlipCrossover < High Level Crossover Probability then

NewPopulation← ApplyHighLevelCrossover(Parent1,Parent2);
else

NewPopulation← ApplyLowLevelCrossover(Parent1,Parent2);
end

end
end

Algorithm 3: Pseudocode of ApplyOperators algorithm: MG-PMA genetic operators.

2.3 Feedback of the parameter values

One of the most damaging problems in overall optimization is the premature convergence of
the objective function to a local minimum (or maximum) [32]. Several factors can cause this
problem: lack of genetic diversity, poorly adjusted control parameters, poorly established
stopping criterion and complexity of a problem for a particular optimization method. Since
MG-PMA works by mapping initial values into adapted ones, it is natural that for some
problems, this mapping may be very complex or even impossible. The MG-PMA approach
with feedback aims not only at mapping initially fixed values but also at updating these
initial values dynamically. As GP trees represent functions, using updated values can result
into a completely different solution, which favors to escape from a local optimum.

8 Rogério C. B. L. Póvoa et al.

This update of the initial values is made from time to time during the evolution process
through a control parameter or when the optimization converges to a certain value for many
generations (determined by the user also by a control parameter). When one of these criteria
is met, one column of the initial values matrix is replaced by the adjusted values, generated
by the best individual of the current generation. This approach was developed hoping that
larger steps in the search space are obtained, so as to avoid premature convergence allowing
more randomization to the optimization process. We have performed preliminary tests which
showed this improvement by pointing to better solutions without premature convergence.
However, not sufficient statistical tests were performed to prove this hypothesis. Figure 4
illustrates the MG-PMA with feedback process.

Fig. 4 Schematic representation of MG-PMA with feedback procedure. MG-PMA with feedback is a linear
combination of programs that maps the initial parameter values (xic) into the optimal parameter values (x∗i) for
a given system (where i varies from 1 to n and c varies from 1 to m). The current best candidate parameters
correspond to adapted values from the mapping of the parameter values. The fitness value indicates how
well a program performs this mapping. As GP, MG-PMA with feedback also utilizes random numbers as
constants in its individuals. From time to time the parameter values are updated to those of the best candidate.
During the evolution process, the GP-constants and the object function are always the same (static) while
the parameter values, MG-PMA functions, candidates parameters values and the corresponding fitness values
change (dynamic).

This replacement of the parameter values by adapted values is performed from the first
column (c = 1 in Figure 4) to the last column (c = m in Figure 4). After replacing all the
columns, the MG-PMA with feedback repeats the process of choosing to update the initial
values from the first to the last column.

2.4 Niching multi-gene parameter mapping approach

Niching multi-gene parameter mapping approach (Niching MG-PMA) is an MMO method
that aims at exploring the search space while maintaining population diversity, using MG-
PMA with feedback, clearing procedure [37] and local optimization.

Following the concepts of the clearing procedure, Niching MG-PMA uses the idea of
dominant individuals in subpopulations [37]. Each subpopulation is formed by individuals
that are within the clearing radius and only winners are selected for the application of the

Unimodal optimization using a GP-based method with periodic boundary conditions 9

genetic operators. In Niching MG-PMA, all individuals who are not winners are removed
from the population and new individuals are generated from the winners coming from the
application of the genetic operators.

Another important characteristic of Niching MG-PMA is that it is a memetic algorithm
that combines global with local optimization. The objective of the local optimization is to
refine the global search since after applying the clearing method only the winner of a given
region of the search space will be in that area. Therefore, local minimization/maximization
should be sufficient to bring that winner close to a local (or global) minimum/maximum. The
frequency of the local optimization is an input parameter but, based on our previous work,
there is an indication that the best results are obtained when local optimization is applied at
every generation.

We performed preliminary tests in an attempt to find the global optimum of the bench-
mark functions using only local optimization algorithms. This approach often resulted in
the stagnation of the optimization by finding local optima, and, then, it was necessary to
combine algorithms of local and global optimization so that the global optimum could be
found.

2.4.1 Niching MG-PMA Procedure

Algorithm 4 presents the pseudocode of Niching MG-PMA. Similarly to MG-PMA, Niching
MG-PMA starts with the initialization of the initial parameters and GP constants, and the
configuration of the Niching MG-PMA parameters, which are: the number of trees (k), the
frequency of updating initial parameters (f eedbackFrequency) and the frequency of local
optimization (localOptimizationFrequency).

Data: Objective Function
Output: Multiple Optimal/Sub-Optimal Solutions
- InitialParameterValues← Initialize();
- GPConstants← Initialize();
- Set parameters for Niching MG-PMA;
- Set k, f eedbackFrequency, localOptimizationFrequency;
- t← 0 ;
- AllIndividuals← an empty vector;
- SplitInitialParameters(InitialParameters, k);
- Start Population(t);
- Fit← Evaluate(Population(t));
while Stop criterion 6= FALSE do

t← t +1;
Population(t)← Niching(Population(t−1));
if mod(t,localOptimizationFrequency) then

Population(t)← LocalOptimization(Population(t));
end
Population(t)← Select(Population(t));
AllIndividuals and Population(t)← ApplyOperators(Population(t));
Fit← Evaluate(Population(t));
if mod(t, f eedbackFrequency) then

InitialParameterValues← Feedback(Population(t));
end

end
- MultipleSolutions← CheckSolutions(AllIndividuals);

Algorithm 4: Pseudocode of Niching MG-PMA for a generic objective function.

The allocation of the initial parameters to the trees is performed in the same way as in
MG-PMA (function SplitInitialParameters presented in Algorithm 2). The population

10 Rogério C. B. L. Póvoa et al.

is initialized and the individuals are selected according to the function Select for applica-
tion of the genetic operators (function ApplyOperators in the Algorithm 3), generating new
individuals that are also evaluated.

Until the stopping criterion is met, the Niching function identifies the winners and re-
moves individuals that are within a distance shorter than the clearing radius (relative to dom-
inant individuals) from the population. If the current generation number is a multiple of the
localOptimizationFrequency parameter, the function LocalOpt locally optimizes the posi-
tion of the winners in the search space using the quasi-Newton algorithm and the gradients
are estimated by finite differences [19]. The selection process and the application of the ge-
netic operators are then performed, generating new individuals for the following population.
Niching MG-PMA evaluates these individuals and, if the current generation is a multiple
of the f eedbackFrequency parameter, the Feedback function updates the initial parameters,
replacing one of the columns of the initial parameters matrix by the best individual of the
current generation.

Once the stopping criterion is met, the function CheckSolutions searches for optimal
and sub-optimal solutions among all the winners found during the optimization process.

3 Domain Constraints with Periodic Boundary Conditions

Metaheuristics such as GA, PSO and DE follow the domain constraints of the objective func-
tion that are imposed by limiting the search range of each parameter entering the objective
function. GP and its variations are not subjected to this limitation because the parameters
are generated by computer programs. In PMA [40], Pujol and Poli used the following linear
transformation :

ADAPT = LOWER+OUT× (UPPER−LOWER) (1)

where ADAPT is the adapted value of the parameter, LOWER is the lower limit of the search
range, UPPER is the upper limit of the search range and OUT is the output of the GP tree
[40]. However, this transformation does not work for every type of function, as, for instance,
when the function is periodic with more than one solution.

Our preliminary work [39] introduced another way to normalize the output of the GP
trees by applying periodic boundary conditions (PBC) in the parameter space. In this work,
we present PBC in more detail. This approach was inspired by the geometric PBC method
used by the molecular modelling community [25] in order to remove surface effects and to
minimize finite-size effects in molecular simulations. The domain-constraint technique pro-
posed here is a box-constrained, considering that the objective function is inside a “box” that
is replicated in all dimensions. In molecular simulations the box is in fact a 3D construction,
but the dimensionality of the box, in the present context, is given by the dimensionality of
the objective function. A parameter value generated by a GP tree may be outside the central
box (i.e. in one of its periodic images). The PBC method translates that value, placing it
back into the central box through multiple sums or subtractions of the box size. Equation 2
presents the transformation for a value outside the limits of the objective function:

EDGE =

{
LOWER ,OUT < LOWER
UPPER ,OUT > UPPER

NBOX =
|OUT−EDGE|

SIZEBOX

Unimodal optimization using a GP-based method with periodic boundary conditions 11

ADAPT =

{
UPPER− (NBOX−bNBOXc)×SIZEBOX ,OUT < LOWER
LOWER+(NBOX−bNBOXc)×SIZEBOX ,OUT > UPPER

(2)

where ADAPT is the adapted value of the parameter, EDGE is the nearest edge from the
output of the GP tree, LOWER is the lower limit of the search range, UPPER is the upper
limit of the search range, OUT is the output of the GP tree, NBOX is the number of boxes
away from the domain, and SIZEBOX is the box size along this dimension.

Figure 5 shows an example of the normalization based on the PBC applied to a point
outside of the domain constraints of a multimodal function. Figure 5.a shows this point
outside the objective function domain (green dot, position (16,0)) and in Figure 5.b it is
put back into the domain (black dot, position (−4,0)) from the replicated images of this
function.

Fig. 5 Example of the normalization, based on the PBC applied to an output (green dot, position (16,0))
of a GP tree outside of the domain constraints. The linear transformation replicates images of the box and
identifies where the outside dot should be (black dot, position (−4,0)). The parameter range determines the
size of the box.

As the domain constraint with PBC is applied to the output value of the GP trees, this
normalization is directly applied at the input values of the objective function. Thus, the
domain constraint with PBC is a box-constrained and it is limited to be used in this type of
problem with different metaheuristic methods.

12 Rogério C. B. L. Póvoa et al.

4 Benchmark and Configuration

As mentioned in Section 1, the results of the preliminary investigation [39] using Niching
MG-PMA and PBC for multimodal functions were compared to those obtained with well-
established parameter optimization algorithms showing, within the statistical significance
analysis, a similar performance to that of them all. Importantly, Niching MG-PMA outper-
formed the other methods when applied to the functions with fewer solutions (p1 to p5).
Based on this result, we claim that this method could be competitive for unimodal optimiza-
tion. The main purpose of this work is to verify this claim.

Niching MG-PMA is tested using unimodal benchmark functions of the CEC’2015 com-
petition [28], presented in Table 1. It is highly important to emphasize that the method and
configuration tested herein correspond to exactly the same method and configuration of the
previous work [39], denoted therein by Niching MG-PMA L1, where L1 implies that local
minimization was performed at every generation. Not a single parameter was tuned to im-
prove the performance on the present benchmark (see Table 2). The search for the minimum
was interrupted when the fitness of the best individual was lower than 10−8, as established
by the competition [28].

Table 1 Benchmark functions proposed for CEC’2015 competition. The table presents the name of each
function, the number of the parameters to be optimized and the global minimum.

Abbreviation Function Number of Global
Name Parameters Minimum

c1 Rotated High Conditioned Elliptic Function 10 100
c2 Rotated Cigar Function 10 200
c3 Shifted and Rotated Ackley’s Function 10 300
c4 Shifted and Rotated Rastrigin’s Function 10 400
c5 Shifted and Rotated Schwefel’s Function 10 500
c6 Hybrid Function 1 (N = 3) 10 600
c7 Hybrid Function 2 (N = 4) 10 700
c8 Hybrid Function 3 (N = 5) 10 800
c9 Composition Function 1 (N = 3) 10 900
c10 Composition Function 2 (N = 3) 10 1,000
c11 Composition Function 3 (N = 5) 10 1,100
c12 Composition Function 4 (N = 5) 10 1,200
c13 Composition Function 5 (N = 5) 10 1,300
c14 Composition Function 6 (N = 7) 10 1,400
c15 Composition Function 7 (N = 10) 10 1,500

For this test, the population was equal to 100 and the tournament size equal to 2 for
all runs. As established by the competition, 51 independent runs were performed for each
benchmark function and the maximum number of evaluations before time-out was 105. The
number of iterations for each optimization has been set for a maximum of 100 evaluations.
Since the number of evaluations is fixed and local optimization is applied to each generation,
the number of generations varies in each simulation, without exceeding the pre-established
value of number of evaluations. The number of evaluations for the first generation is equal to
the population size. For the other generations, the number of evaluations in each generation
can be calculated by adding the number of local minimization steps for each winner and the
number of new individuals generated from the winners. The total number of evaluations is
found by summing the number of evaluations of all generations. The optimization process

Unimodal optimization using a GP-based method with periodic boundary conditions 13

Table 2 General configuration of MG-PMA.

Parameters Values
Decimal GP constants rate 90%
Integer GP constants rate 0%
GP constants range [−1,+1]
Low-level crossover rate 65%
Mutation rate 30%
Direct reproduction rate 5%
High-level crossover rate 50%
Elitism rate 1%
Lexicographic pressure [30] Yes

runs while this total is less than the parameter that corresponds to the maximum number of
evaluations.

For initialization and modification of GP trees, we used the mathematical operators plus,
minus, times and protected division. The use of protected division is a GP open issue [35].
Thus, we opted for an empirical choice based on the idea of introns, where non-effective
operations do not affect the optimization process [36,5]: for a = b/c, if c = 0 then a = 0.
The remaining configuration are detailed in Table 2.

Niching MG-PMA was implemented using elements of GPTIPS 2 (Genetic Program-
ming & Symbolic Data Mining Platform for MATLAB) library of MGGP [44]. This library
allows the use of more than one mutation operator during optimization. As described in Ta-
ble 2, the probability of applying the mutation operator in the experiments was 30% (value
defined through preliminary analysis presenting low sensitivity). From the moment at which
the mutation operator was used, it was possible to perform one of the three types of mutation
[44] with the following probabilities: ordinary sub-tree mutation (90%) [15,44]; switch of
an input terminal to another one randomly selected (5%); and Gaussian perturbation of a
randomly selected constant (5%, with the standard deviation of the Gaussian used equal to
10%) – the parameter values for these three types of mutation are the default values of the
GPTIPS 2 library [44]. The initial population was generated using the ramped half-and-half
method [22] and the PBC normalization was used during the evolution process.

Different approaches can be found in the literature to determine the value of the niche
radius [27]: (i) use a single uniform niche radius [20,8]; (ii) use a variable niche radius [47,
4,11]; and (iii) avoid specifying the niche radius [47,31]. The variable niche radius approach
was used in this work. Equation 3 presents the calculation of the niche radius Rg, which is
the same approach used in preliminary tests for Niching MG-PMA [39]. The value of Rg is
changed according to the population, avoiding very large or very small sizes.

Rg =
median(AllDistancesg)

10
(3)

where Rg is the niche radius for generation g and AllDistancesg are all the distances between
the individuals of the population in generation g.

Niching MG-PMA was compared with the winners of the CEC’2015 competition: SPS-
L-SHADE-EIG [12], MVMO-SH [2], LSHADE-ND [43], DEsPA [42].

14 Rogério C. B. L. Póvoa et al.

5 Results

Table 3 and Figure 6 present the mean best fitness values (MBFVs) for Niching MG-PMA
and the best algorithms of the competition CEC’2015. It is possible to notice that SPS-L-
SHADE-EIG (the winner of the competition [12]) was able to find the global solution for 8
out of the 15 functions considered. Both LSHADE-ND and MVMO-SH found 6 solutions,
whereas both Niching MG-PMA and DEsPA found 5. In the cases, where the methods do
not find the global solution, the relative deviations of the solution with respect to the global
optima can also be analyzed and the methods can be compared in terms of the statistical sig-
nificance of the results. In general, Niching MG-PMA performed similarly to the winning
algorithms of the competition. For the function c5 and c11, Niching MG-PMA presented
inferior results (greater MBFV). For the functions c4, c7-c8 and c10 Niching MG-PMA was
also slightly worse, showing a small but still noticeable difference in terms of MBVF. Con-
sidering the functions c3, c9, c13, c14 and c15, Niching MG-PMA performed better than
DEsPA and for c14 better than LSHADE-ND. It is important to highlight that these methods
were highly parametrized [2,12,42,43] to provide good performance, specifically consid-
ering the rules and nature of the functions of the CEC’2015 benchmark, whereas Niching
MG-PMA was not. This is confirmed by the fact that we used the same configuration as in
our preliminary investigation [39].

Table 3 Mean of the best fitness values (MBFV) for all benchmark functions (c1-c15) of the competition
CEC’2015 found by SPS-L-SHADE-EIG, DEsPA, LSHADE-ND, MVMO-SH and Niching MG-PMA algo-
rithms.

Benchmark SPS-L-SHADE-EIG DEsPA LSHADE-ND MVMO-SH Niching MG-PMAFunction
c1 1.000×102 1.000×102 1.000×102 1.000×102 1.000×102

c2 2.000×102 2.000×102 2.000×102 2.000×102 2.000×102

c3 3.200×102 1.970×103 3.200×102 3.200×102 3.200×102

c4 4.010×102 4.036×102 4.030×102 4.020×102 4.150×102

c5 5.152×102 5.519×102 5.070×102 5.118×102 7.38×102

c6 6.000×102 6.016×102 6.004×102 6.014×102 6.310×102

c7 7.000×102 7.003×102 7.000×102 7.000×102 7.010×102

c8 8.000×102 8.002×102 8.003×102 8.003×102 8.160×102

c9 1.000×103 1.006×103 1.000×103 1.000×103 1.000×103

c10 1.217×103 1.008×103 1.217×103 1.217×103 1.270×103

c11 1.100×103 1.195×103 1.102×103 1.104×103 1.330×103

c12 1.300×103 1.301×103 1.301×103 1.301×103 1.300×103

c13 1.300×103 1.318×103 1.300×103 1.300×103 1.300×103

c14 1.500×103 1.709×103 4.335×103 1.500×103 1.500×103

c15 1.600×103 1.705×103 1.600×103 1.600×103 1.600×103

Table 4 shows the results of Aligned Friedman’s [7] and Iman-Davenport’s [18] tests,
along with the Holm’s procedure [17] based on the results listed in Table 3. These tests were
carried out using the KEEL software [1]. It can be seen that the average rank of SPS-L-
SHADE-EIG was the lowest (30.767) of all used algorithms.

Typically, in most statistical analysis, the value of 0.05 for the p-value is used as the
threshold for significance [7]. If the p-value is less than 0.05, the null hypothesis that there
is no difference between the configurations tested is rejected and it is concluded that there is
a significant difference between these configurations. If the p-values are greater than 0.05,
it is not possible to conclude that there is a significant difference.

Unimodal optimization using a GP-based method with periodic boundary conditions 15

Fig. 6 Chart of the mean of the best fitness values (MBFV) for all benchmark functions (c1-c15) of the compe-
tition CEC’2015 found by SPS-L-SHADE-EIG, DEsPA, LSHADE-ND, MVMO-SH and Niching MG-PMA
algorithms.

Table 4 Aligned Friedman’s and Iman-Davenport’s tests, and Holm’s procedure for pairwise comparison
between SPS-L-SHADE-EIG, DEsPA, LSHADE-ND, MVMO-SH and Niching MG-PMA algorithms. The
reference rank (R0) corresponds to the rank of the best algorithm (i = 0); in this case SPS-L-SHADE-EIG.

i Algorithm Rank
4 Niching MG-PMA 47.400
3 DEsPA 44.400
2 LSHADE-ND 36.167
1 MVMO-SH 31.267
0 SPS-L-SHADE-EIG 30.767

Test p-value
Aligned Friedman 0.022

Algorithm z = (R0−Ri)/SE p-value Holm Reject?
Niching MG-PMA 2.090 0.037 0.013 No
DEsPA 1.713 0.087 0.017 No
LSHADE-ND 0.679 0.497 0.025 No
MVMO-SH 0.063 0.950 0.050 No

Both tests (Aligned Friedmans and Iman-Davenports) found a p-value less than 0.05
(p-value = 0.022), so the hypothesis that there is no difference between the compared algo-
rithms is rejected. As the average rank of SPS-L-SHADE-EIG is the lowest, it was selected
as the control model for the Holm’s test. In Table 4, z represents the test statistic for Holms
test, where the ranks Ri of all models are compared to that of the control model R0, normal-
ized by the standard error SE. This is used to compute the p-value, which is compared to
the Holm level. If the p-value is lower than that level, the hypothesis of equality of ranks is
rejected. In that way, it is possible to conclude that there is no significant difference between
Niching MG-PMA and the best algorithms of the competition CEC’2015.

16 Rogério C. B. L. Póvoa et al.

6 Conclusions

In a recent conference paper, we introduced a new GP-based optimization method using
a multi-gene approach along with a niching strategy and periodic domain constraints. The
method was referred to as Niching MG-PMA and was tested in the context of the 20 mul-
timodal functions from the 2017 benchmark of the IEEE CEC Special Session on Niching
Methods for Multimodal Optimization [26]. To our delight, without any specific optimiza-
tion targeting the benchmark, statistical analysis revealed no significant difference between
Niching MG-PMA and the considered methods. Also, worth noting was the fact that the
method behaved significantly better for functions with a lower number of global optima,
potentially indicating that it could be even more suitable for unimodal optimization.

The present work describes the Niching MG-PMA method in a more detailed fashion,
providing an in-depth explanation of the feedback and the periodic domain constraint rou-
tines. The latter ideas can be potentially useful in terms of other optimization techniques.

In order to verify our claim that Niching MG-PMA could be a promising method for
unimodal optimization, the method was tested on the basis of the competition CEC’2015
benchmark functions. Statistical analysis showed that Niching MG-PMA performs similarly
as the winners (SPS-L-SHADE-EIG [12], MVMO-SH [2], LSHADE-ND [43] and DEsPA
[42]) of the competition even without any specific parametrization to the benchmark, indi-
cating that the method is robust and applicable to a wide range of problems.

These results are very promising, indicating that Niching MG-PMA can be applied to
real problems. Moreover, because it is a generalization of PMA [40], its principle is to map
starting points to optimal parameters of an objective function. This allows us to recommend
its use to problems where suboptimal solutions are already known and can be further opti-
mized (e.g. structural optimization of molecular structures). Besides, Niching MG-PMA is
a GP algorithm which allows the interpretation of its solutions. Thus, the mapping of known
solutions to optimal solutions can be studied, allowing new insights or discoveries in the
application areas. It is important to observe the computational cost, since the the need of
evaluation of GP expressions leads to longer Niching MG-PMA execution time, burden of
the implicit mapping principle since the development of PMA [40].

Finally, the present investigation evidences the potential of GP in the field of numerical
optimization, as well as the possibility of using multimodal strategies in unimodal optimiza-
tion problems. New possibilities of application and research appear with the results obtained
in this work are: (i) the application of Niching MG-PMA to real problems; (ii) the analy-
sis of using protected division as a mathematical operator in GP trees (e.g. other types of
definitions as for a = b/c, if c = 0 then a = 1 [22]); and (iii) an in-depth statistical analy-
sis of both the local minimization and the feedback procedure on the method. Despite the
surprisingly good results obtained without parameter tuning, demonstrating the robustness
of the algorithm with respect to parameters, future work may improve the understanding of
Niching MG-PMA’s parameter robustness.

Acknowledgements This work was supported by the Brazilian fundations CNPq and by the Rio de Janeiro
state agency FAPERJ (grant numbers E-26/203.198/2016 and E-26/010.002420/2016). This work was fi-
nanced in part by the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil (CAPES) -
Finance Code 001. We also acknowledge the support of Núcleo Avançado de Computação de Alto Desem-
penho (NACAD/COPPE/UFRJ), and Sistema Nacional de Processamento de Alto Desempenho (SINAPAD).

Unimodal optimization using a GP-based method with periodic boundary conditions 17

References

1. Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J., Garcı́a, S.: KEEL data-mining software tool: Data
set repository, integration of algorithms and experimental analysis framework. Multiple-Valued Logic
and Soft Computing 17(2-3), 255–287 (2011). URL http://www.oldcitypublishing.com/journals/mvlsc-
home/mvlsc-issue-contents/mvlsc-volume-17-number-2-3-2011/mvlsc-17-2-3-p-255-287/

2. Awad, N., Ali, M.Z., Reynolds, R.G.: A differential evolution algorithm with success-based parameter
adaptation for cec2015 learning-based optimization. In: 2015 IEEE Congress on Evolutionary Compu-
tation (CEC), pp. 1098–1105 (2015). DOI 10.1109/CEC.2015.7257012

3. Babu, K.S., Balaji, N.: Approximation of digital circuits using cartesian genetic programming. In: 2016
International Conference on Communication and Electronics Systems (ICCES), pp. 1–6 (2016). DOI
10.1109/CESYS.2016.7889978

4. Bird, S., Li, X.: Adaptively choosing niching parameters in a PSO. In: Proceedings of the 8th Annual
Conference on Genetic and Evolutionary Computation, GECCO ’06, pp. 3–10. ACM, New York, NY,
USA (2006). DOI 10.1145/1143997.1143999

5. Brameier, M., Banzhaf, W.: A comparison of linear genetic programming and neural networks in
medical data mining. IEEE Transactions on Evolutionary Computation 5(1), 17–26 (2001). DOI
10.1109/4235.910462

6. Castelli, M., Trujillo, L., Vanneschi, L., Silva, S., Z-Flores, E., Legrand, P.: Geometric semantic genetic
programming with local search (2015). DOI 10.1145/2739480.2754795

7. Derrac, J., Garcı́a, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical
tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and
Evolutionary Computation 1(1), 3 – 18 (2011). DOI 10.1016/j.swevo.2011.02.002

8. Dick, G.: Automatic identification of the niche radius using spatially-structured clearing methods. In:
IEEE Congress on Evolutionary Computation, pp. 1–8 (2010). DOI 10.1109/CEC.2010.5586085

9. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Micro Machine and Human
Science, 1995. MHS ’95., Proceedings of the Sixth International Symposium on, pp. 39–43 (1995).
DOI 10.1109/MHS.1995.494215

10. Espejo, P.G., Ventura, S., Herrera, F.: A survey on the application of genetic programming to classifica-
tion. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 40(2),
121–144 (2010). DOI 10.1109/TSMCC.2009.2033566

11. Gan, J., Warwick, K.: Dynamic niche clustering: a fuzzy variable radius niching technique for multi-
modal optimisation in gas. In: Proceedings of the 2001 Congress on Evolutionary Computation (IEEE
Cat. No.01TH8546), vol. 1, pp. 215–222 vol. 1 (2001). DOI 10.1109/CEC.2001.934392

12. Guo, S.M., Tsai, J.S.H., Yang, C.C., Hsu, P.H.: A self-optimization approach for l-shade incorporated
with eigenvector-based crossover and successful-parent-selecting framework on cec 2015 benchmark
set. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 1003–1010 (2015). DOI
10.1109/CEC.2015.7256999

13. Harman, M., Jia, Y., Langdon, W.B., Petke, J., Moghadam, I.H., Yoo, S., Wu, F.: Genetic improvement
for adaptive software engineering (keynote). In: Proceedings of the 9th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2014, pp. 1–4. ACM, New
York, NY, USA (2014). DOI 10.1145/2593929.2600116

14. Harman, M., Langdon, W.B., Weimer, W.: Genetic programming for reverse engineering. In:
2013 20th Working Conference on Reverse Engineering (WCRE), pp. 1–10 (2013). DOI
10.1109/WCRE.2013.6671274

15. Hinchliffe, M., Hiden, H., McKay, B., Willis, M., Tham, M., Barton, G.: Modelling chemical pro-
cess systems using a multi-gene genetic programming algorithm. In: J.R. Koza (ed.) Late Break-
ing Papers at the Genetic Programming 1996 Conference Stanford University July 28-31, 1996,
pp. 56–65. Stanford Bookstore, Stanford University, CA, USA (1996). URL http://www.genetic-
programming.org/gp96latebreaking.html. (print)

16. Holland, J., et al.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge (1975)
17. Holm, S.: A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6,

65–70 (1979)
18. Iman, R.L., Davenport, J.M.: Approximations of the critical region of the friedman statistic. Commu-

nications in Statistics - Theory and Methods 9(6), 571–595 (1980). DOI 10.1080/03610928008827904.
URL https://doi.org/10.1080/03610928008827904

19. Iott, J., Haftka, R., Adelman, H., Center, L.R.: Selecting Step Sizes in Sensitivity Analysis by Finite
Differences. NASA technical memorandum. National Aeronautics and Space Administration, Scientific
and Technical Information Branch (1985). URL https://books.google.no/books?id=KggDAAAAIAAJ

20. Jelasity, M., Dombi, J.: GAS, a concept on modeling species in genetic algorithms. Artificial Intelligence
99(1), 1 – 19 (1998). DOI 10.1016/S0004-3702(97)00071-4

18 Rogério C. B. L. Póvoa et al.

21. Koshiyama, A.S., Dias, D.M., Abs da Cruz, A.V., Pacheco, M.A.C.: Numerical optimization by multi-
gene genetic programming. In: Proceedings of the 15th Annual Conference Companion on Genetic and
Evolutionary Computation, GECCO ’13 Companion, pp. 145–146. ACM, New York, NY, USA (2013).
DOI 10.1145/2464576.2464651

22. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection.
MIT Press, Cambridge, MA, USA (1992)

23. Langdon, W.B.: Genetic Improvement of Software for Multiple Objectives, pp. 12–28. Springer Inter-
national Publishing, Cham (2015). DOI 10.1007/978-3-319-22183-0 2

24. Langdon, W.B., Lam, B.Y.H., Modat, M., Petke, J., Harman, M.: Genetic improvement of gpu software.
Genetic Programming and Evolvable Machines 18(1), 5–44 (2017). DOI 10.1007/s10710-016-9273-9

25. Leach, A.R.: Molecular Modelling: Principles and Applications. Pearson Education. Prentice Hall
(2001). URL https://books.google.com.br/books?id=kB7jsbV-uhkC

26. Li, X., Engelbrecht, A., Epitropakis, M.G.: Benchmark functions for cec’2013 special session and com-
petition on niching methods for multimodal function optimization. Tech. rep., Evolutionary Computation
and Machine Learning Group, RMIT University, Australia (2013)

27. Li, X., Epitropakis, M.G., Deb, K., Engelbrecht, A.: Seeking multiple solutions: An updated survey on
niching methods and their applications. IEEE Transactions on Evolutionary Computation 21(4), 518–538
(2017). DOI 10.1109/TEVC.2016.2638437

28. Liang, J.J., Qu, B.Y., Suganthan, P.N., Chen, Q.: Problem definitions and evaluation criteria for the
cec2015 competition on learning-based real parameter single objective optimization. Tech. Rep.
201411A, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China (2014)

29. Liu, Y., Cheng, Z.L., Xu, J., Yang, J., Wang, Q.W.: Improvement and validation of genetic programming
symbolic regression technique of silva and applications in deriving heat transfer correlations. Heat
Transfer Engineering 37(10), 862–874 (2016). DOI 10.1080/01457632.2015.1089745

30. Luke, S., Panait, L.: Lexicographic parsimony pressure. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2002), pp. 829–836. Morgan Kaufmann Publishers (2002)

31. Mahfoud, S.W.: Crowding and preselection revisited. Parallel Problem Solving from Nature, 2 pp. 27–36
(1992)

32. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs (3rd Ed.). Springer-
Verlag, London, UK (1996). ISBN 3-540-60676-9

33. Miller, J.F., Mohid, M.: Function optimization using cartesian genetic programming. In: Proceedings
of the 15th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO ’13
Companion, pp. 147–148. ACM, New York, NY, USA (2013). DOI 10.1145/2464576.2464646

34. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic programming. In: C.A.C. Coello,
V. Cutello, K. Deb, S. Forrest, G. Nicosia, M. Pavone (eds.) Parallel Problem Solving from Nature -
PPSN XII, pp. 21–31. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

35. Ni, J., Drieberg, R.H., Rockett, P.I.: The use of an analytic quotient operator in genetic pro-
gramming. IEEE Transactions on Evolutionary Computation 17(1), 146–152 (2013). DOI
10.1109/TEVC.2012.2195319

36. Nordin, P., Francone, F., Banzhaf, W.: Explicitly defined introns and destructive crossover in genetic
programming (1995)

37. Petrowski, A.: A clearing procedure as a niching method for genetic algorithms. In: Proceed-
ings of IEEE International Conference on Evolutionary Computation, pp. 798–803 (1996). DOI
10.1109/ICEC.1996.542703

38. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming. Published via
http://lulu.com and freely available at http://www.gp-field-guide.org.uk (2008). (With
contributions by J. R. Koza)

39. Póvoa, R.C.B.L., Koshiyama, A.S., Dias, D.M., Souza, P.L., Horta, B.A.C.: Multi-modal optimization
by multi-gene genetic programming. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp.
1–8 (2018). DOI 10.1109/CEC.2018.8477715

40. Pujol, J.C.F., Poli, R.: Parameter mapping: A genetic programming approach to function optimization.
International Journal of Knowledge-Based and Intelligent Engineering Systems 12(1), 29–45 (2008).
DOI 10.3233/KES-2008-12104

41. Pujol, J.C.F., Poli, R.: A new combined crossover operator to evolve the architecture and
the weights of neural networks using a dual representation. Tech. rep. (2009). URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.4921; ftp://ftp.cs.bham.ac.uk/pub/tech-
reports/1997/CSRP-97-12.ps.gz

42. Rueda, J.L., Erlich, I.: Testing MVMO on learning-based real-parameter single objective benchmark
optimization problems. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 1025–1032
(2015). DOI 10.1109/CEC.2015.7257002

Unimodal optimization using a GP-based method with periodic boundary conditions 19

43. Sallam, K.M., Sarker, R.A., Essam, D.L., Elsayed, S.M.: Neurodynamic differential evolution algorithm
and solving CEC2015 competition problems. In: 2015 IEEE Congress on Evolutionary Computation
(CEC), pp. 1033–1040 (2015). DOI 10.1109/CEC.2015.7257003

44. Searson, D.P.: GPTIPS 2: An open-source software platform for symbolic data mining pp. 551–573
(2015). DOI 10.1007/978-3-319-20883-1 22

45. Silva, M., Koshiyama, A., Vellasco, M., Cataldo, E.: Evolutionary features and parameter optimization
of spiking neural networks for unsupervised learning. In: 2014 International Joint Conference on Neural
Networks (IJCNN), pp. 2391–2398 (2014). DOI 10.1109/IJCNN.2014.6889566

46. Storn, R., Price, K.: Differential evolution - a simple and efficient adaptive scheme for global optimiza-
tion over continuous spaces. Tech. rep., International Computer Science Institute, Berkeley (1995)

47. Ursem, R.K.: Multinational evolutionary algorithms. In: Proceedings of the 1999 Congress on Evolution-
ary Computation-CEC99 (Cat. No. 99TH8406), vol. 3, p. 1640 (1999). DOI 10.1109/CEC.1999.785470

48. Walker, J.A., Miller, J.F.: Solving real-valued optimisation problems using cartesian genetic program-
ming. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO
’07, pp. 1724–1730. ACM, New York, NY, USA (2007). DOI 10.1145/1276958.1277295

49. Wilson, D.G., Miller, J.F., Cussat-Blanc, S., Luga, H.: Positional cartesian genetic programming. CoRR
abs/1810.04119 (2018). URL http://arxiv.org/abs/1810.04119

50. Yeboah-Antwi, K., Baudry, B.: Online genetic improvement on the java virtual machine with ecselr.
Genetic Programming and Evolvable Machines 18(1), 83–109 (2017). DOI 10.1007/s10710-016-92784

51. Yoshida, S., Harada, T., Thawonmas, R.: Multimodal genetic programming by using tree structure simi-
larity clustering. In: 2017 IEEE 10th International Workshop on Computational Intelligence and Appli-
cations (IWCIA), pp. 85–90 (2017). DOI 10.1109/IWCIA.2017.8203566

