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In this article, we develop a computational model of obsessive compulsive disorder (OCD). We pro-

pose that OCD is characterized by a difficulty in relying on past events to predict the consequences of 

patients' own actions and the unfolding of possible events. Clinically, this corresponds both to patients' 

difficulty in trusting their own actions (and therefore repeating them), and to their common preoccupa-

tion with unlikely chains of events. Critically, we develop this idea on the basis of the well-developed 

framework of the Bayesian brain, where this impairment is formalized as excessive uncertainty regard-

ing state transitions. We illustrate the validity of this idea using quantitative simulations and use these 

to form specific empirical predictions. These predictions are evaluated in relation to existing evidence, 

and are used to delineate directions for future research. We show how seemingly unrelated findings 

and phenomena in OCD can be explained by the model including: a persistent experience that actions 

were not adequately performed and a tendency to repeat actions; excessive information gathering (i.e. 

checking); indecisiveness and pathological doubt; overreliance on habits at the expense of goal-directed 

behavior; and over-responsiveness to sensory stimuli, thoughts, and feedback. We discuss the relation-

ship and interaction between our model and other prominent models of OCD, including models focus-

ing on harm-avoidance, not-just-right experiences, or impairments in goal-directed behavior. Finally, 

we outline potential clinical implications and suggest lines for future research. 
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Obsessive compulsive disorder (OCD) is a 

psychiatric disorder characterized by intrusive 

thoughts, urges or images (i.e., obsessions) that cause 

marked distress or anxiety, and repetitive behavioral or 

mental rituals (i.e., compulsions; American Psychiatric 

Association, 2013). Some prominent theories explain 

compulsivity as resulting from a neurocognitive 

impairment in goal-directed control, leading to 

repetitive, rigid and habitual behavior (Gillan, 

Kosinski, Whelan, Phelps, & Daw, 2016; Robbins, 

Gillan, Smith, de Wit, & Ersche, 2012; Voon et al., 

2015). Conversely, traditional cognitive-behavioral 

models consider compulsions to be goal-directed 

behaviors, specifically driven by attempts to prevent 

potential harm implicated by obsessions (i.e. harm-

avoidance; Foa & Kozak, 1996a; Salkovskis, 1999). 

Yet other models emphasize the role of not just right 

experiences (NJREs) in OCD, defined as subtle 

experiences that specific actions, movements, or 

external stimuli are currently not 'just-right' (e.g., "the 

picture is not hanging perfectly straight"; e.g., Coles 

and Ravid, 2016). Here, we aim to integrate these 

previous theories in a novel computational model of 

OCD. 

 OCD patients often report excessive uncertainty 

and pathological doubt, which have been described as 

hallmark features of the disorder (Dar, 2004; Dar, Rish, 

Hermesh, Taub, & Fux, 2000; Frost & Shows, 1993; 

Pitman, 1987b; Sarig, Dar, & Liberman, 2012). Indeed, 

OCD was called 'folie a doute' – the doubting disorder.  

Clinically, it has been suggested that uncertainty and 

doubt in OCD are driven by inferential processes 

overestimating the diversity of possible chains of 

events (i.e. obsessing about everything that could 

happen; Aardema, O’Connor, Pélissier, & Lavoie, 

2009). Indeed, it has been shown that eliciting such 

'what could happen' scenarios in non-clinical 

participants induces OCD-like cognitions (Giele, Van 

den Hout, Engelhard, Dek, & Hofmeijer, 2011). 

Normally, people can use prior experience to predict 

both the consequences of their actions, and the 

evolution of external events. Here we suggest that OCD 

is characterized by an impairment in this prediction 

mechanism (especially – but not uniquely – relating to 

the consequences of one’s own actions).  

To illustrate, consider yourself leaving home, 

inserting your wallet into your bag. Normally this 

behavior would allow you to form a highly confident 

belief that your wallet is there (given prior experiences 

with similar actions). In many cases you will have no 

need of sensory information (e.g., looking inside the 

bag or making sure that you can feel the wallet). 

However, consider a situation in which you knew that 

your hand is trembling, or alternatively, that your bag 

has a hole in it. In such cases you will be insecure that 

your wallet is in your bag, despite placing it there. 

Therefore, you will rely more heavily on your senses, 

and probably will also periodically check that your 

wallet is still in your bag. 

Formally, alternative locations of the wallet may be 

thought of as alternative states. The term state refers to 

a configuration of the environment at a given time. 

Clearly, the true state of the total environment is very 

complex, and the location of the wallet is a small part 

of it. Our model is based on the Bayesian brain 

framework (Friston, 2010; Knill & Pouget, 2004), 

where the true state of the environment is assumed not 

to be directly observable (i.e. a hidden/latent state). 

Rather, the brain is assumed to probabilistically infer 

states (e.g., the location of the wallet) by integrating 

different sources of information: sensory input and 

predictions regarding how states evolve (i.e. state 

transitions). First, sensory input is assumed to have a 

close but probabilistic relationship with the hidden 

state. For example, the feeling of a bulge in the bag can 

be used as evidence that the wallet is likely there, but is 

not conclusive (and different sensory modalities have 

different reliabilities). Another source of information is 

beliefs regarding the probabilistic relationship between 

actions and their consequences (we use the term action-

dependent transitions to refer to this relationship). For 

example, inserting the wallet in the bag makes it likely 

to be in the bag. Finally, one can use previous 

knowledge about the way states evolve over time 

(henceforth: action-independent transitions) as another 

source of information. For example, having seen the 

wallet in the bag in the past makes it likely to be in the 

bag now. Both sorts of predictions can help infer 

present states (from past states and actions; particularly 

when current sensory input is ambiguous), and predict 

future states (from present states and current or future 

actions). 

The Bayesian brain framework further assumes that 

the perceived uncertainty of different sources of 

information determines the relative weights they are 

given in this inferential process (Knill & Pouget, 2004). 

This allows us to formalize the process in which not 

being able to rely on past states or one's actions (as in 

the hole in the bag or trembling hand examples above) 

leads to increased gathering of sensory information 

(e.g., actively feeling the bulge in your pocket to verify 

that the wallet is there; Figure 1). Using this 

formalization, we propose that patients with OCD have 

difficulties in using actions and past states as reliable 
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sources of information even in predictable and 

relatively stable situations, leading to excessive 

reliance on sensory information (e.g., checking to 

verify that the wallet is there even when the bag has no 

hole in it; returning to the kitchen to verify that the 

stove is off, although it was turned off before leaving 

the kitchen), as well as to overall uncertainty regarding 

the current state (i.e. current location of wallet or 

whether the stove is off). Thus, we suggest "excessive 

uncertainty regarding state transitions" (which we 

term also "transition uncertainty”) to be a core feature 

of OCD. In other words, we suggest that there is a 

difficulty in being able to understand and predict 

changes (or the lack thereof) from one state to the next, 

particularly but not exclusively, in the case in which 

such changes are influenced by the individual's actions. 

Using this computational perspective allows us to 

formulate specific, testable hypotheses. Specifically, 

we show that increased transition uncertainty should: 

 

1) impair the ability to rely on action planning and 

execution as sources of  information regarding 

the successful completion of actions, creating a 

recurring experience that (compulsive) actions 

were not done 'right' ;  

 

2) lead to excessive checking and foraging 

behaviors, and, under some conditions – 

overreliance on habits. 

 

3) increase the weighting of immediate feedback 

at the expense of predictions about state 

transitions, which can potentially explain 

different types of obsessions, including 

intrusive thoughts and patients' sensory over-

responsiveness.  

 

We begin by providing a more elaborate 

introduction to the Bayesian brain framework (a 

glossary of major computational terminology is 

presented in Appendix A). Then, we investigate the 

above hypotheses via a review of relevant findings and 

computational simulations designed to establish the 

quantitative explanatory strength and specificity of the 

proposed model. Finally, we discuss the relationship of 

our model to other models of OCD, as well as the 

model’s specificity to OCD in relation to other 

disorders which have related impairments.  

 

 

 

 

The Bayesian brain and active inference  

Predictions shape our experiences and functioning 

in the world. For example, having your car go straight 

has a completely different meaning if you expect it to 

turn left (e.g., after turning the steering wheel). The 

computational quantity underlying such an experience 

is termed a prediction error (PE). Predictions and PEs 

have been implicated in a broad variety of cognitive 

and behavioral processes. The highly influential predic-

tive coding framework suggests that perception entails 

the integration of top-down predictions (e.g., the ex-

pected motion of the car after turning the steering 

wheel)  and bottom-up information (e.g., sensory input 

regarding the car's actual motion; Friston, 2010; Rao & 

Ballard, 1999; Shipp, Adams, & Friston, 2013). The 

predictions depend on representations that have a 

greater spatiotemporal scale or degree of abstraction 

(e.g. representations of the occluded parts of a visual 

objects, or of the next word in a sentence) and are 

formed via experience. Bottom-up sensory input is pro-

cessed only to the extent that it generates a PE (e.g., a 

surprising next word in a sentence, having the car to go 

straight despite turning the wheel). 

At the neurobiological level, the brain was sug-

gested to constitute a hierarchical model in which 

higher levels send predictions (about the causes of sen-

sory inputs – represented by neural activity) to lower 

levels. Lower levels compute PEs (the difference be-

tween the predicted and actual activity at that level) and 

return these PEs to the higher levels, which then use 

them to refine the original predictions (for an illustra-

tion see Edwards, Adams, Brown, Parees, & Friston, 

2012; Figure 1 and 3). Predictive coding is efficient in 

the sense that it prioritizes unexpected stimuli (hence 

most likely to be informative) in the allocation of re-

sources. Furthermore, the incorporation of previous ex-

perience improves the accuracy of perception by mini-

mizing the impact of sensory noise.  

Computationally, predictive coding models imple-

ment Bayesian inference (Bogacz, 2017; Friston, 2010; 

Knill & Pouget, 2004). Bayes theorem provides the op-

timal way of integrating prior beliefs (predictions) and 

current (sensory) evidence, by weighting each accord-

ing to its uncertainty (or noise; mathematically meas-

ured as variance). This is also known as precision-

weighting of the PEs, because computationally, the 

weight of the PEs is determined by the relative preci-

sion (inverse variance) of the prior belief and the cur-

rent evidence. For example, as sensory input becomes 

more informative (less noisy), PEs are given a higher 

weight. 
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The notion of the weight of a PE is important. Due 

to sensory and neuronal noise, no stimulus is ever fully 

predictable. The precision-weighting of the PE has a 

key role in accounting for the expected noise when 'de-

ciding' the extent to which PEs should update inference 

and learning. Greater weight could make even trivial 

deviations from predictions appear important and sali-

ent, rather than disregarded as mere noise. This, in turn 

could result in abnormal cognitive, behavioral and 

emotional responses (Fletcher & Frith, 2009). 

Bayesian inference in a dynamic world with active 

agents 

Usually, with time and learning, predictions (de-

rived from past data) become increasingly reliable. 

However, in dynamic environments, these predictions 

should become more uncertain when it is likely that the 

environment has changed – which is often the case 

when one acts on the environment. Figure 1 illustrates 

this effect, showing that the relative weight of sensory 

information increases when the uncertainty regarding 

state transitions increases. In other words, when one be-

lieves that the environment is likely to change (possibly 

as a consequence of one's actions) in an unpredictable 

fashion (i.e., under high transition uncertainty), current 

information and sensory evidence should be considered 

more reliable than previously accumulated knowledge 

(which is likely no longer relevant). This results in an 

increase in the weight assigned to the PEs. It is im-

portant to note that increased transition uncertainty also 

leads to increased uncertainty regarding inferred hid-

den states. 

Predictions regarding action-dependent state transi-

tions (in addition to sensory feedback) can serve as in-

formation regarding the consequences (e.g. the comple-

tion) of an action. Such predictions will be given 

greater weight when sensory feedback is missing or un-

reliable (J. Moore & Haggard, 2008). Consider the case 

of washing one's hands after going to the bathroom. In 

this case, there is no sensory feedback that can guaran-

tee that one’s hands are in a germ-free state. For most 

people, a conclusion of ‘sufficient cleanliness’ may be 

reached given handwashing, as the probability of tran-

sitioning from a ‘dirty’ to a ‘clean’ state, given hand-

washing, is high. However, if the probability for this 

transition is more uncertain, this inference will be less 

likely, and sensory evidence may be unable to compen-

sate. We return to this example below. 

 

Active inference 

The above examples describe the role of Bayesian 

inference in action and perception. The active inference 

framework integrates action planning and selection 

within the same Bayesian model (Friston, 2010, 2011). 

For technical details, please see the Supplemental Ma-

terial, Bogacz (2017) and Buckley, Kim, McGregor 

and Seth (2017). A basic tenet of active inference is that 

action planning can be performed using Bayesian infer-

ence on expected (rather than actual) observations 

(Friston, 2011; Friston et al., 2016), and that actions oc-

cur to resolve discrepancies between these expectations 

and actual observations. For example, from previous 

experience one can predict that when pressing the light 

switch, the light will turn on, and one will be able to see 

the objects in the room. Thus, using Bayesian inference 

on the expected observation involved in seeing the ob-

jects in the room, one can infer the optimal sequence of 

actions to be performed (i.e., policies, referring to a 

planned sequence of actions). Note that this involves a 

reformulation of goals as high-level expected states 

(priors; Friston, 2011). In that sense, high-level expec-

tations (e.g., finding an object in the room), propagate 

downwards and induce lower-level expected observa-

tions (e.g., a lit room), used to infer the actions pre-

dicted to realize these expectations.  

The process of selecting one of several (discrete) 

courses of action (i.e., policies) is formalized in active 

inference as a process of Bayesian model comparison, 

balancing accuracy and uncertainty. That is, actions are 

selected not only based on their expected consequences 

(i.e. whether one can either gain or learn something 

from taking the action), but also on the basis of how 

(un)certain these consequences are (FitzGerald, Dolan, 

& Friston, 2014; Friston et al., 2016). Transition uncer-

tainty makes it hard to predict which action will lead to 

the best consequences (see Figure 1). This challenge 

can be dealt with in several ways. First, it has been 

shown that high transition uncertainty increases infor-

mation gathering behaviors (Parr and Friston, 2017), 

designed to improve the predictions regarding the con-

sequences of potential actions (by constantly updating 

these predictions). Second, such a challenge in goal-di-

rected action selection can lead one to use simpler be-

havioral strategies, which do not require planning 

ahead (FitzGerald et al., 2014; Friston et al., 2016). 

Computationally, such behaviors have been argued to 

depend either on the simple, accumulated values of the 

different actions, while disregarding possible future 

changes in the environment (i.e. model-free learning; 

Daw, Niv, & Dayan, 2005), or in even simpler cases – 

on the degree to which these actions were repeated in 
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the past (i.e habitual behavior; FitzGerald et al., 2014), 

or simpler still – on innate (Pavlovian) responses (Dorf-

man & Gershman, 2019). In these cases, behavior is 

governed solely by the past, while ignoring potential 

changes in the environment that could render the past 

irrelevant. Thus, because high transition uncertainty 

can greatly increase the uncertainty of goal-directed 

policies, simpler heuristic strategies may be prioritized 

Figure 1 – An illustration of the effect of transition uncertainty on Bayesian inference. Inference regarding current states 

is based on precision-weighted (with precision denoted by width of arrows) integration of sensory information, and 

predictions derived from previous states and policies (i.e., sequences of actions; policies are not involved in the case of 

action-independent state transitions). Inference regarding future states and possible actions is based on current states and 

knowledge regarding the transitions (i.e. relationship) between the three. Panel A shows that when state-state and action-

state transitions are known with sufficient certainty, the relative weight of sensory information (i.e., relative weight of 

sensory prediction errors) is reduced, and goal-directed action selection is easier. Panel B shows that when transitions 

are unreliable, sensory information is more important, and planning is much more difficult. Note that sensory uncertainty 

is equal in both panels. Backward arrows between states refer to the fact that knowledge about current states can be used 

to inform knowledge about previous states and actions.    



 FRADKIN ET AL. 6 

over potentially more effective (but uncertain) goal-di-

rected ones.  

Excessive transition uncertainty in OCD 

We propose excessive uncertainty regarding state 

transitions to be a core computational impairment in 

OCD, that interacts with other key mechanisms (e.g., 

harm-avoidance). We discuss both action-dependent 

and action-independent transitions, as both may be rel-

evant to OCD symptomatology, although the former 

might have a more specific role, given the importance 

of repetitive, compulsive behavior in the clinical syn-

drome. We now review existing empirical data and pre-

sent novel simulations pertaining to the hypotheses 

(presented above) derived from this computational im-

pairment.  

High transition uncertainty leads to persistent 

experiences that actions were not adequately 

performed. 

The repetitive nature of compulsions makes patients 

look as if they are stuck in a loop, unable to achieve a 

sense of completion (Pitman, 1987b, 1987a; Summer-

feldt, 2004). Based on this phenomenology, Pitman 

(1987b) suggested that "the obsessive-compulsive’s in-

ternal comparator mechanism is faulty. No matter what 

perceptual input it receives, it continues to register mis-

match […]. It may be that in fact the action was well 

done, but the defective comparator cannot register it"  

(p. 340). According to his framework, obsessions are 

conceptualized as excessive mismatch signals, whereas 

compulsions are the behavioral output designed to min-

imize these errors signals, though without long-term 

success. This idea has been highly influential in inspir-

ing theoretical and empirical work (e.g., Coles & 

Ravid, 2016; Gehring, Himle, & Nisenson, 2000). 

When integrated within the Bayesian brain frame-

work, such excessive mismatch signals can be formal-

ized as highly weighted action-related PEs (relative to 

the weighting of predictions). Indeed, high uncertainty 

regarding action-dependent state transitions can reduce 

reliance on action execution (and the accompanying 

predictions regarding its consequences in the world) in 

assessing whether the action's goal was achieved. Such 

an impairment increases the relative weighting of sen-

sory information in inferences about the consequences 

of actions, highlighting even trivial deviations from 

predictions (experienced as doubts, obsessions or 

NJREs). It also leads to an overall uncertainty regard-

ing the completion of actions.  

Several studies have shown that OCD is related to 

increased weighting of sensory feedback when asked to 

reproduce a specific muscle tension, even when the 

sensory feedback was false (Lazarov, Dar, Liberman, 

& Oded, 2012a, 2012b; Lazarov, Liberman, Hermesh, 

& Dar, 2014; Zhang et al., 2017). Critically, these find-

ings were specific to OCD, and did not generalize to 

anxiety disorders (Lazarov et al., 2014). Here, we argue 

that these results can be explained by decreased confi-

dence in predictions regarding action-dependent transi-

tions (due to increased transition uncertainty), render-

ing patients more reliant upon sensory feedback. In-

deed, our explanation is supported by a study manipu-

lating the availability of such predictions (Ezrati, Sher-

man, & Dar, 2018). In that study, participants were first 

asked to either rotate their heads to a specific angle (ac-

tive condition), or let the experimenter rotate their 

heads (passive condition). Participants were then asked 

to reproduce the rotation angle. Higher (subclinical) 

OC symptoms were associated with less accurate repro-

duction of the rotation angle in the active condition but 

not in the passive condition. Because the two condi-

tions differ only in the availability of predictions re-

garding action-dependent transitions as an additional 

source of information in the active condition, this im-

plies increased transition uncertainty. 

Self-generated movements are known to be associ-

ated with down-weighting of their (expected) sensory 

consequences (i.e. sensory attenuation). A familiar ex-

ample is our inability to tickle ourselves (Blakemore, 

Wolpert, & Frith, 2000). Indeed, additional evidence 

for patients' impairments in utilizing predictions re-

garding action-dependent transitions comes from stud-

ies showing decreased attenuation of sensory conse-

quences of self-generated actions in OCD (Gentsch, 

Schütz-Bosbach, Endrass, & Kathmann, 2012; Rossi et 

al., 2005). This suggests that even when the sensory 

feedback of an action should be ignored, it is inter-

preted as critical information, being registered as a 'not 

just right' signal. 

Illustrative computational simulations. To demon-

strate more concretely how increased uncertainty re-

garding action-dependent transitions leads to overreli-

ance on sensory feedback, and the obsessional experi-

ence that an action was not done 'just right', we con-

ducted an illustrative simulation of Bayesian integra-

tion of information during hand-washing. We applied a 
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particle filter, which is a flexible Bayesian inference al-

gorithm suitable for the integration of (continuous) 

observations and state dynamics (Sanborn, 2017; 

Speekenbrink, 2016). The particle filter was used to ex-

amine the effects of uncertainty regarding the predic-

tion that hand-washing decreases dirtiness. To focus 

specifically on action-dependent transitions, we as-

sumed that actual and predicted dirtiness change only 

when the agent washes their hands. To simplify, we as-

sumed that agents use a univariate sensory signal (inte-

grating all available sensory information) which is, ob-

jectively and subjectively, highly noisy (i.e. we usually 

do not have precise sensory information regarding how 

dirty/contaminated our hands are). Hand dirtiness was 

measured on an arbitrary scale, from 0 (absolutely 

clean) to 100 (very dirty). At each timepoint, the agent 

integrates predictions and sensory observations to esti-

mate the current level of dirtiness, and its uncertainty. 

The focus of these simulations was on the perceptual 

and inferential qualities of hand-washing, rather than 

on the generation of action itself. Thus, we applied a 

simplistic, illustrative control algorithm, in which hand 

washes were assumed to be discrete events. The proba-

bility of handwashing at any (discrete) timepoint is a 

function of the agent’s confidence (i.e. the 95% credi-

ble interval) that its hand dirtiness surpasses a prede-

fined threshold. A more detailed and realistic account 

of actions under transition uncertainty is delineated in 

the active inference simulations below. The code used 

for all the simulations presented in this paper can be 

found in http://doi.org/10.17605/OSF.IO/2X8VD.  

The results of this simulation are presented in Figure 

2. Panel A represents optimal estimation of transition 

uncertainty (i.e. a healthy control agent), and panel B 

corresponds to overestimated transition uncertainty 

(i.e. an agent 'with OCD'). Figure 2 demonstrates how 

excessive transition uncertainty results in inferred 

states that are more uncertain (wider blue credible in-

tervals) and more affected by the noisy sensory input 

(green dots). For this reason, they are less representa-

tive of the real levels of hand dirtiness (black line). This 

Figure 2 – Results of the hand-washing simulations, for simulated 'healthy controls' with optimal transition 

uncertainty (A), and 'OCD patients' with overestimated transition uncertainty (B). The black curve represents 

the true state (hand dirtiness), green dots represent the sensory feedback regarding dirtiness. The blue bars 

represent the posterior estimates of dirtiness. The red line represent the subjective criteria for 'sufficient clean-

liness', and black dots on the top represent simulated hand-washing episodes. This figure shows how an agent 

with increased transition uncertainty relies less on predictions stemming from action execution (action-de-

pendent state transitions), leading to higher reliance on sensory feedback, higher uncertainty, a paradoxical 

increase in uncertainty following compulsive actions, and more handwashes. 

http://doi.org/10.17605/OSF.IO/2X8VD
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results in more instances in which the inferred state sur-

passes the goal or threshold (red line), thus resulting in 

more washing behavior (black dots on the top of the 

plot). In other words, the agent remains uncertain as to 

whether their hands are clean enough, and is unable to 

ignore meaningless not-just-right (not clean-enough) 

sensory experiences – and therefore washes again. No-

tably, greater action-dependent transition uncertainty 

led to an increase in the overall posterior uncertainty 

only after washing. This effect can partially explain the 

well-documented paradoxical effect of compulsions on 

increasing uncertainty and additional compulsive urges 

(for a review see van den Hout, van Dis, van Wouden-

berg, & van de Groep, 2018).  

This setup has also allowed us to examine how al-

tering other parameters of the model, which relate to 

other previously suggested etiological factors in OCD, 

affects inference. We examined the effects of: a) mak-

ing the cleanliness threshold stricter, corresponding to 

a higher importance of being clean (Figure 3A); and b) 

introducing an affective bias in which negative stimuli 

(i.e. my hands are dirtier) have a higher weight (Figure 

3B), by using a left-skewed distribution to represent the 

relationship between hidden states and observations 

(corresponding with the belief that 'my hands look 

cleaner than they really are’). Both cases resulted in 

more washing behaviors (first row, black dots), and the 

affective bias manipulation also resulted in a biased in-

ference (i.e. a bias towards the belief that one's hands 

are dirty). However, the pattern of compulsive behavior 

was different in these cases, as it seemed to gradually 

decrease with time. In contrast, in the case of transition 

uncertainty, washing behavior led to an increase in un-

certainty and the probability for additional washing. 

More generally, uncertainty regarding the posterior 

dirtiness was increased only in the case of transition un-

certainty (Figure 2B). Stated otherwise, these alterna-

tive potential impairments predict an experience of be-

ing certain that one's hands are too dirty, whereas tran-

sition uncertainty leads to an experience of having 

doubts that one's hands might be dirty. Indeed, the large 

majority of patients with OCD have insight into their 

symptoms, and acknowledge that they are not certain 

about their obsessions (e.g., Foa and Kozak, 1995). 

Figure 3 – Results of the hand-washing simulations for alternative possible explanations for OCD-like behavior. 

Panel A corresponds with an agent with a strict criterion for cleanliness (corresponding with importance of being 

clean or general perfectionism). Panel B corresponds with an agent with an affective bias, giving a higher weight for 

negative evidence (i.e. dirty hands). This was accomplished by using a skewed likelihood distribution, such that the 

agent believes that positive outcomes 'cannot be trusted'. Although both types of alternative impairments increase 

washing behavior, they do not result in increased uncertainty or the paradoxical effect of action on increasing uncer-

tainty depicted in Figure 2.  
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Thus, if increased uncertainty is indeed a key charac-

teristic of OCD, these alternative potential impairments 

seem to have a lower explanatory power for that aspect 

of OCD phenomenology. Of course, an alternative is 

that these processes interact or occur simultaneously.  

It is important to consider the necessary conditions 

for obtaining these simulation results. First, the as-

sumption that objective sensory noise is considerably 

larger than objective transition uncertainty is critical to 

ascertain that predictions (and their uncertainty) have a 

considerable impact on normal inference. For example, 

a substantial reduction in objective sensory noise elim-

inated the effects described above, because sensory in-

formation regarding dirtiness became sufficiently pre-

cise. This questions the relevance of our model to com-

pulsive situations in which precise sensory feedback is 

available (e.g., seeing that the stove is off). To account 

for situations in which one does receive precise feed-

back it is important to consider that (Bayesian) infer-

ence is not limited to the time in which feedback is ob-

tained, but likely occurs when feedback is no longer (or 

not yet) available. For example, it is mainly when one 

can no longer see any evidence for the state of the 

stove/door (e.g., after leaving the room) that doubt and 

checking will be likely to emerge. Similarly, transition 

uncertainty will also affect inference regarding future 

feedback. Below we present active inference simula-

tions demonstrating how such mechanisms can lead to 

the emerge of excessive checking and other symptoms.   

In contrast to the effects of sensory noise, the simu-

lation results were robust to violations of other assump-

tions. For example, whereas using a normal distribution 

to model action-dependent transitions implies some 

chance that handwashing might increase dirtiness, us-

ing a trimmed distribution instead did not eliminate the 

effect of transition uncertainty on compulsive hand-

washing. Similarly, the results were not substantially 

altered when using a different Bayesian inference algo-

rithm (the Kalman filter). Finally, allowing actual and 

predicted dirtiness to change even when no washing 

was performed (i.e., including action-independent tran-

sitions) resulted in compulsive checking behavior, but 

eliminated the paradoxical effect of washing demon-

strated above. 

To summarize, in this section we suggested that un-

certainty regarding action-dependent transitions under-

lies OCD patients' obsessional experience or feeling 

"that actions that they perform are incompletely 

achieved […] though to observers these actions may 

appear to have been performed perfectly well" (Pitman, 

1987a, p. 226). Specifically, as demonstrated by the 

simulations above, uncertainty regarding the expected 

consequences of actions makes one both overly sensi-

tive to noisy sensory feedback (which produces transi-

ent experiences that the action did not reach its goal), 

and highly uncertain about the environment's (or their 

own) state. The predictions resulting from this simula-

tion are supported by empirical findings regarding in-

creased uncertainty and overreliance on sensory feed-

back during simple actions in OCD. Furthermore, our 

simulations provide insight into the paradoxical effect 

of compulsions on increasing uncertainty and thereby 

stimulating yet more compulsions (van den Hout et al., 

2018). That is, actions (including compulsive actions) 

necessarily result in a change in the environment, 

which, combined with increased uncertainty regarding 

such changes will have a destabilizing effect on one's 

beliefs regarding the state of the environment (or their 

own). Interestingly, other previously suggested etiolog-

ical factors in OCD (i.e., a stricter threshold for clean-

liness, and an affective, negative bias) generated a dif-

ferent pattern, not involving increased uncertainty or 

such a paradoxical effect of compulsions. 

High transition uncertainty leads to compulsions, 

and to the predominance of habits over goal-

directed behavior 

We propose above that increased transition uncer-

tainty can lead to PEs of increased weight, evident in 

the form of an obsessional experience that actions were 

not well executed. Here, we discuss the relevance of 

increased transition uncertainty to the understanding of 

compulsive behaviors. We focus on three common con-

ceptualizations of compulsions: i) as a response to ob-

sessions; ii) as exaggerated checking and information 

gathering behavior; and iii) as excessive habitual be-

havior.  

First, some compulsions can be conceptualized as a 

response to, and an attempt to minimize highly 

weighted sensory PEs. This idea was already illustrated 

in the hand-washing simulations presented above, 

where increasing transition uncertainty resulted in 

higher reliance upon sensory input, leading to transient 

experiences (i.e. obsessions or NJREs) that things are 

not as expected (see Figure 2). Then, because the agent 

was assumed to have a prior belief (i.e., goal) regarding 

how things should be (e.g., having clean hands), such 

obsessions lead to compulsive washing. 

Second, compulsions in OCD are often formalized 

as attempts to reduce uncertainty and doubts by various 

checking behaviors. Numerous studies have demon-

strated increased perceptual information gathering be-

havior in OCD even in neutral contexts, evident in 
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longer search times and more fixations in visual search 

tasks (Toffolo, van den Hout, Engelhard, Hooge, & 

Cath, 2016; Toffolo, van den Hout, Hooge, Engelhard, 

& Cath, 2013), and more checking behavior in change 

detection tasks (Clair et al., 2013; Jaafari et al., 2013; 

Rotge et al., 2008). Furthermore, such increased infor-

mation gathering appears to be specific to OCD, and is 

not evident in anxiety disorders (Toffolo et al., 2016). 

In active inference, action serves the role of sam-

pling the environment as a method of improving one's 

model of the world, thus minimizing potential future 

PEs. Indeed, it has been shown that greater transition 

uncertainty leads to increased (visual) information 

gathering (Parr & Friston, 2017). Considering the wal-

let example above, this makes perfect sense: If one can-

not rely on past states and actions to infer present states, 

the optimal behavior is to continue gathering infor-

mation. From this perspective, excessive checking be-

havior, evident even in neutral environments, could be 

interpreted as evidence for increased uncertainty re-

garding state transitions.  

Third, a considerable body of literature conceptual-

izes OCD as an impairment in the balance between 

goal-directed and habitual behavior (Gillan et al., 2014, 

2011; Gillan & Robbins, 2014). More generally, com-

pulsivity has been characterized by maladaptive behav-

ior that appears to have no goal-directed value, instead 

reflecting stimulus-driven, habitual behavior that often 

results in adverse consequences (Robbins et al., 2012). 

However, whereas overreliance on habits usually en-

tails perseverative, inflexible behavior, a recent meta-

analysis showed that OCD patients exhibit impaired 

performance not only when required to shift behavior 

(indicating perseveration), but also when required not 

to shift behavior (potentially indicating overly explora-

tory responses; Fradkin et al., 2018). Furthermore, it is 

unclear whether overreliance on habits in OCD entails 

a difficulty in inhibiting habits, stronger habit learning, 

or in fact an impairment of goal-directed control (Gil-

lan et al., 2016; Gillan & Robbins, 2014). Critically, 

early studies have shown that the acquisition of auto-

matic stimulus-response associations (mostly in the 

context of procedural learning) is impaired in OCD pa-

tients, who instead seem to over-recruit controlled, 

goal-directed strategies (Deckersbach et al., 2002; 

Rauch et al., 1997; Rauch et al., 2007), which might 

suggest overly deliberate goal-directed behavior. 

These apparent contradictions suggest that there is a 

need for a principled account as well as boundary con-

ditions, explaining when OCD patients over-rely on 

habits, and when they exhibit overly deliberate or ex-

ploratory goal-directed behavior. We suggest that given 

the active inference conceptualization of the arbitration 

between goal-directed and habitual behavior, both 

types of behavior flow naturally from increased transi-

tion uncertainty. High transition uncertainty results in 

higher uncertainty regarding goal-directed policies be-

cause it is harder to predict future states resulting from 

these policies. Thus, since transition uncertainty makes 

goal-directed behavior computationally expensive and 

highly uncertain, habits become Bayes-optimal actions.  

Furthermore, when conceptualizing habits as 

learned expectations regarding one's actions in a given 

state (i.e., "how do I usually behave in this context"; 

FitzGerald et al., 2014; Friston et al., 2016), one could 

hypothesize that exaggerated habitual behavior will 

emerge in OCD only for responses that were repeated 

with sufficient consistency to form such expectations. 

In contrast, in accordance with the results of a recent 

meta-analysis of cognitive flexibility in OCD (Fradkin 

et al., 2018), tasks that do not supply consistent feed-

back supporting the repetition of a specific policy (such 

as probabilistic reversal learning tasks) are expected to 

elicit more exploratory and volatile behavior, rather 

than more habitual behavior, in OCD (see Hauser et al., 

2017; Vaghi et al., 2017 for compatible results). This 

could also explain why most habitual, repetitive com-

pulsions occur in everyday situations (e.g., hand-wash-

ing, door-locking, etc.), rather than in unusual situa-

tions (e.g., having to make major life decisions), where 

uncertain state transitions induce indecisiveness. For 

example, choosing between dishes on a unfamiliar res-

taurant menu could easily paralyze an OCD patient 

with indecision (e.g., Frost and Shows, 1993). In con-

trast, this can be avoided by restricting the range of res-

taurants and ordering the same dishes.  

Illustrative computational simulations. To make 

these ideas more concrete we conducted several simu-

lations of decision making in two different reversal 

learning tasks. Reversal learning tasks are suitable for 

investigating transition uncertainty because they re-

quire participants to infer whether past cue-outcome 

contingencies predict present cue-outcome contingen-

cies (corresponding with action-independent transition 

uncertainty). In the first task, resembling classic tasks 

commonly administered to OCD patients to measure 

perseveration and habit learning (Fradkin et al., 2018), 

participants are required to detect contingency changes 

via trial-and-error. Here, we used a task (see Figure 4A) 

where the (simulated) agent was expected to choose, on 

each trial, between three cues. The agent knows that 

only one cue is correct at any time, and that the correct 



 FRADKIN ET AL. 11 

cue's identity (i.e. context) can change occasionally. 

The agent was provided with rewarding/punishing 

feedback with respect to whether the correct cue was 

chosen. 

In the second task, we examined exploratory behav-

ior more directly by allowing agents to choose a cue 

that reveals the current context (i.e., correct cue) di-

rectly, without risking loss. This more closely reflects 

checking behavior in real life. In this task (correspond-

ing to the three-arm maze, as described in Friston et al., 

2016; see Figure 4B), only two of the cues had utilitar-

ian value (i.e. gain/loss), whereas a third cue (i.e. the 

checking, green colored, cue) could be used to check 

which of the ‘utilitarian’ cues is currently correct. On 

each trial, the agent was required to plan two steps 

ahead, under the assumption that checking (in the first 

step) usually serves the role of informing a decision (in 

the second step). Checking behavior had no cost other 

than missing the opportunity for a gain in this time step. 

To discriminate exploratory behavior from simple 

avoidance of a possible loss, the agent was also given 

the option of doing nothing.  

Following a key assumption in active inference 

(Friston et al., 2016; Parr & Friston, 2017), in both 

tasks participants were assumed to have a motivation to 

Figure 4 – a representation of the agent's 

generative models in the active inference 

MDP models.  

Panel A corresponds with a simple reversal 

learning task, with three possible cues, only 

one of which is correct (leading to positive 

outcome with probability a) at each trial.  

Panel B corresponds to a reversal learning 

task with two cues, and one 'checking' cue 

allowing the agent to reveal the current con-

text (i.e. correct cue), without the need to 

click on the exploitative cues directly (i.e. 

avoiding the risk for a punishment). In both 

panels, b corresponds with perceived transi-

tion uncertainty, and a corresponds with ac-

tual cue-outcome contingencies. 
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both maximize rewards (and minimize losses) and min-

imize uncertainty and potential future PEs. Another 

cardinal assumption delineated above is that the rela-

tive weight given to goal-directed policies and habits is 

determined by their relative uncertainty, such that hab-

its emerge under two conditions: high uncertainty re-

garding the ability of goal-directed policies to reach 

their goals, and a sufficient opportunity to learn habits 

(i.e. form a prior regarding one's behavior). 

Figure 5 – Probabilities for chosen policies in a reversal learning task with three cues (L – left, R – right, M- 

middle; see Figure 4A), when increasing transition uncertainty (decreasing b), in an active inference MDP scheme. 

State-outcome contingencies (a) are set to 1 across these simulations (i.e. a deterministic reversal learning task). 

For each figure, the actual states on each trial are presented as colored lines at the top (blue = left cue, red = right 

cue). The left panel depicts the results of this simulation when not allowing the agent to learn habits, whereas in 

the middle panel – habit learning is allowed. The right panel represents a case where habit learning is allowed, 

but reversal occurs at the 10th trial (rather than the 30th, as in the other simulations), thus impeding the possibility 

to learn habits (due to insufficient exposures to this behavior). Increasing transition uncertainty leads to more 

‘exploratory’ and volatile behavior in the left and right panels where habit learning is removed or reduced, but to 

more rigid and perseverative behavior in the middle panel where it is allowed. 
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The agent's performance on these tasks was mod-

eled using well-developed active inference Markov de-

cision process schemes (MDPs; Friston et al., 2016, 

2015; Parr & Friston, 2017). MDPs (in this case, par-

tially observable MDPs) provide a probabilistic, math-

ematical framework suitable for modeling behavior 

where an agent may select between distinct actions at 

particular timepoints (i.e. a discrete state-space). Hid-

den states are assumed to evolve over time according 

to a state transition probability distribution, and to gen-

erate observable outcomes according to a likelihood 

distribution (describing the relationship between states 

and observations). Here we briefly describe the gener-

ative model for hidden context states (i.e., the currently 

relevant cue), and for observable affective outcomes 

(e.g., reward/punishment). In Figure 4, a represents the 

(actual and estimated) probability for a rewarding out-

come when choosing the correct cue. For simplicity we 

assume that estimated transition precision is repre-

sented by a constant b value for all states and trials (e.g., 

b = 0.9 corresponds with the agent's belief that the prob-

ability of a state x remaining unchanged at the next 

time-step is 0.9). The full generative model (see Sup-

plemental Material) also includes hidden states and ob-

servable outcomes relating to the position where the 

agent has clicked (this is necessary to allow for action 

in active inference). 

Three additional probability distributions were used 

in specifying the generative model: First, a uniform 

prior probability over states at t=1 was specified (the D 

vector in the Supplemental Material), meaning the 

agent doesn’t know which cue is correct before starting 

the task. Second, the agent's preferences regarding out-

comes (also defined as prior beliefs, in the C vector) 

give rewards a very high probability (i.e. the agent ex-

pects to make actions that lead to rewards). Specifi-

cally, there was a difference in log-probability of 10 

(𝑒5/(𝑒−5 + 𝑒5) = 0.9999) between rewarding and 

unrewarding outcomes, making the former overwhelm-

ingly more desired. Third, to model habit learning, 

agents were allowed, in some simulations, to learn their 

own behavior (stored in the E vector), which then de-

termined the prior probability of policies, irrespective 

of their expected outcome. The full generative model, 

and mathematical principles underlying learning and 

action in this scheme can be found in the Supplemental 

Material. 

Illustrative simulation results for the first task (sim-

ple reversal learning), with a set to 1 (i.e. a determinis-

tic cue-outcome relationship) are presented in Figure 5, 

depicting the probabilities for different actions (here 

choosing the left, right or middle cue), whereas the cor-

rect cues' colors are presented on the top part of the fig-

ure (i.e. the 'left/blue' cue is correct in the first part of 

the task, and the 'right/red' cue is correct in the second 

part). The left column demonstrates how increasing 

transition uncertainty (i.e., decreasing b), when not al-

lowing agents to learn habits, produces more explora-

tory and volatile behavior. This happens because high 

transition uncertainty means that, even if the agent be-

lieves a specific cue is correct at the first time-step, it is 

still uncertain whether this cue will still be correct at 

the next time-step. The middle column shows that when 

allowing the same agent to learn habits, transition un-

certainty causes an increased reliance on habits, mani-

festing as perseverative selection of the left cue even 

after it is no longer advantageous (i.e. after the rever-

sal). Note that even in this scenario, transition uncer-

tainty also increases exploration before reversal, such 

that it takes the agent more time to learn habits. Finally, 

the rightmost column demonstrates the effects of one 

possible boundary condition for precluding habit learn-

ing, by introducing the reversal on an earlier stage (10th 

vs. 30th trial). This blocks the effect of transition uncer-

tainty on perseveration, because in this case the agent 

does not have sufficient time to learn habits.  

Figure 6 presents the average results from this sim-

ulation (averaged over 500 repetitions) in terms of the 

proportion of the different types of errors frequently re-

ported in reversal learning tasks. Panel A replicates the 

results of Figure 5, showing that when impeding (left 

plot) or reducing (via early reversal; right plot) habit 

learning, increasing transition uncertainty results in 

more errors, with no evidence for a specific increase in 

perseveration. Rather, both choices of the previous cue 

(perseverative errors) and choices of the third (middle, 

gold) cue that is not reinforced either before or after the 

reversal (non-perseverative errors) likely indicate in-

creased exploratory behavior. In contrast, when allow-

ing for habits to form, higher transition uncertainty in-

creases only perseverative errors after reversal. In all 

three scenarios, high transition uncertainty also in-

creases errors before reversal.  

Panel B focuses on the scenario where habit learn-

ing is allowed (with a reversal at t=30), while examin-

ing the effects of increasing the actual uncertainty of 

state-outcome mappings (reducing a). Notably, 

whereas under deterministic contingencies (a = 1), in-

creased transition uncertainty induces more persevera-

tion (mirroring the top-middle figure), under probabil-

istic contingencies, it reduces perseveration while in-

creasing non-perseverative errors. The reason for this 
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is that inconsistent (i.e. probabilistic) feedback to be-
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havior makes behavior less consistent, and thus less 

likely to become habitual. 

Figures 6C and 6D depict a qualitative comparison 

of the effect sizes predicted by the model (calculated as 

the ratio of % errors for simulated high vs. low transi-

tion uncertainty agents), to real effect sizes obtained 

from a recent meta-analysis of flexibility in OCD 

(Fradkin et al., 2018). Whereas the magnitudes of the 

effect sizes cannot be directly compared (due to design 

and scaling differences), the general pattern in these re-

sults is consistent (see Figure 6D - effect sizes were 

standardized to provide a relative measure). As pre-

dicted by the model, OCD patients made both more 

perseverative and non-perseverative errors in determin-

istic tasks (Figure 6C), although effect sizes for the for-

mer are more pronounced (Figure 6D). By contrast, on 

probabilistic tasks, non-perseverative errors are more 

common, and in fact there is no clear evidence for per-

severation (Figure 6C). One inconsistency is that the 

model predicts slightly fewer perseverative errors in 

OCD patients, whereas real data suggests a null effect. 

However, it should be noted that fewer perseverative 

errors were found in some probabilistic tasks included 

in the meta-analysis (Fradkin et al., 2018, Figure 3), 

and these inconsistencies might reflect differences in 

design or the operationalization of perseverative errors. 

Figure 7 depicts the probability for different policies 

in second task: when the agent is given the option for 

explicit checking (i.e. choosing a cue that cannot con-

tain reward or loss – only information regarding con-

text). The features of the generative model for this are 

shown in Figure 4B. In this task, there may be reward 

at either the left or right cues, whereas the bottom 

(checking) cue provides information about the current 

position of the reward. On each trial, the agent was re-

quired to choose a two-step policy, where in each step 

the options were – left cue (L), right cue (R), check (C), 

or do nothing (N). The top left plot on Figure 7 – using 

a similar format to Figure 5 –  replicates previous re-

sults (Friston et al., 2016), demonstrating a transition 

from an exploratory to a strictly exploitative strategy 

(when the agent is no longer checking before choosing 

the left cue), and falling back to exploration after the 

reversal. Consistent with our model, increased transi-

tion uncertainty (descending the left column, Figure 7) 

increases checking behavior, by preventing the agent 

from shifting to an exploitative strategy. Thus, an agent 

with high transition uncertainty always has to verify 

that the context did not change.  

Next, we examined what happens (in the second 

task) when making checking behavior obsolete, by ex-

posing the agent to the correct context at the beginning 

of each trial from trial 45 onwards (yellow shaded area, 

Figure 7 middle column). Unsurprisingly, this results in 

purely exploitative behavior after trial 45, except for 

very high transition uncertainty, where checking con-

tinues (note that in this case the policy of first staying 

at the initial/neutral position can be considered as 

checking rather than just doing nothing). Furthermore, 

when allowing the agent to learn habits (right column, 

Figure 7), even more moderate values of transition un-

certainty (b=0.8) cause checking behavior to continue, 

even when it serves no epistemic goal, because in this 

case checking behavior itself became a habit. This can 

be thought of as evidence for increased epistemic habits 

under high transition uncertainty, i.e. habitual infor-

mation gathering even when nothing more can be 

learned. This resonates with the OCD-related phenom-

enology of continuing checking even when there is 

strong evidence that everything is OK.  

This setup also allowed us to explore the role of 

harm-avoidance (representing either a trait, or a context 

variable) in the generation of OCD-related behavior. 

To do this, we used the same paradigms as before, but 

varied the aversiveness of incorrect decisions. Techni-

cally, this is achieved by increasing the prior precision 

of losses/punishments by a substantial amount (con-

verting the log prior probability of losses to -10 instead 

of -5; decreasing this number further did not alter the 

conclusions below). As shown in Figure 8, harm-avoid-

ance alone (when b = 1) cannot explain the ‘over-ex-

ploratory’ and habitual behaviors predicted by in-

creased transition uncertainty, as observed in previous 

reversal learning studies of OCD (Fradkin et al., 2018). 

In fact, an agent with both high transition uncertainty 

and increased harm-avoidance was slightly less explor-

atory (fewer errors before reversal, and fewer non-per-

severative errors after reversal) and less habitual (fewer 

perseverative errors when allowing agents to learn hab-

its) than an agent with high transition uncertainty alone. 

This was true in a reversal learning task where checking 

the current state of the environment entailed the risk of 

obtaining a loss (see Figure 4A). However, in a setting 

that allowed the agent to check without risking loss (i.e. 

in the second task in which the checking option was 

separated from the stimuli leading to reward or loss; see 

Figure 4B), greater harm-avoidance did result in in-

creased checking behavior (compare the first row of 

Figure 9, incorporating harm-avoidance when b = 1, to 

that of Figure 7 which does not include harm-avoid-

ance). However, greater transition uncertainty (in the 

presence of habit learning) uniquely causes habitual 

checking when checking itself is devalued.  Further-

more, increasing harm avoidance alone (even to much 
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Figure 7 – Probabilities for chosen policies in a reversal learning task with two cues (L – left, R – right) and an additional 

explicit 'checking' cue (C; see Figure 4B), when increasing transition uncertainty (decreasing b), under an active inference 

MDP scheme. On each trial the agent chooses a two-step policy, corresponding with two sequential actions. Each action 

(within a policy) can be one of the following: choosing the left or right cue, choosing the checking cue, or doing nothing 

(N). Note that at some instances the simulation shows that several alternative policies can be chosen (depicted by grayscale 

rectangles representing the relative probability of these policies). The left and middle panels depict the results of this sim-

ulation when not allowing the agent to learn habits. In the middle and right panels, the epistemic value of checking behavior 

is devalued from trial 45 onwards, because from this point the agent is exposed to the current context at the beginning of 

each trial. In the right panel, habit learning is allowed. It can be seen that increased transition uncertainty leads to increased 

checking behavior. When habits are allowed to form, habitual checking that has no epistemic value emerges. 
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higher levels – not presented here) never resulted in 

strictly exploratory policies (i.e. exclusive checking be-

havior – where the agent checks in both time-steps, de-

picted as 'CC' policies in Figure 9). In contrast, such 

behavior was evident when either increasing transition 

uncertainty to extreme levels (e.g., b = 0.51; not pre-

sented here), or when increasing both harm-avoidance 

and transition uncertainty (Figure 9, bottom row). To-

gether, this suggests that although it could clearly con-

tribute to some symptoms in OCD (including the pre-

ponderance of harm-related obsessions), harm-avoid-

ance alone cannot explain findings of both more vola-

tile behaviors and increased habitual behaviors in re-

versal learning tasks and daily life. 

To summarize, in this section we demonstrate how, 

under active inference, high transition uncertainty en-

tails many of the kinds of behavior observed in OCD 

patients both in the lab (e.g., reversal learning experi-

ments) and in day-to-day life (i.e. compulsions). Com-

pulsions can be conceptualized as responses to obses-

sions or NJREs, as excessive information gathering be-

havior driven by doubts and uncertainty, and as exag-

gerated habitual responding. Using simulations, we 

have shown how transition uncertainty leads to indeci-

siveness and volatile behavior that can be replaced by 

inflexible (habitual) behavior when the setting allows 

the agent to use simple behavioral strategies (e.g., to 

form habits). These simulations focused on action-in-

dependent transition uncertainty, because it plays a 

central role in tasks measuring inflexibility and overre-

liance on habits by introducing action-independent 

contingency shifts (e.g., reversal learning tasks). How-

ever, action-dependent transition uncertainty is also ex-

pected to cause a difficulty in planning that may be 

avoided by relying on habits and other heuristic strate-

gies. Note that, whether action dependent or not, tran-

sitions describe a mapping from states to states. Action 

becomes involved through contextualizing this map-

ping. 

Figure 8 – The effects of harm-avoidance and different levels of transition uncertainty (as b decreases, transition 

uncertainty increases) on the types of errors agents are expected (averaged over 500 simulations) to make in a reversal 

learning task (see Figure 6). Harm avoidance counteracts the effects of transition uncertainty seen in Figure 6: i.e. it 

almost never leads to an increase in errors in this task. 
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We also show that traditional accounts of OCD fo-

cusing on harm-avoidance cannot explain poor perfor-

mance in reversal learning tasks. However, in real-life 

situations (which are often similar to the second task), 

the effects of transition uncertainty on behavior will be 

magnified in potentially harmful situations, where the 

Figure 9 – Probabilities for chosen policies in a reversal learning task with two cues (L – left, R – right) and an additional 

explicit 'checking' cue (C; see Figure 4B), for a harm avoidant agent, with a concurrent increase in transition uncertainty. 

These results should be compared to Figure 7, which does not include harm-avoidance. In this task, the effects of harm-

avoidance are consistent with those of transition uncertainty, whereas the combination of the two results in exclusive 

checking behavior (i.e. C,C policies). 
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need to avoid potentially negative transitions is empha-

sized. Figure 10 summarizes the predictions ensuing 

from the results of this simulation (and the hand-wash-

ing simulation).  

High transition uncertainty can explain 

abnormalities in the processing of sensory, 

thought-related and reward prediction errors in 

OCD. 

In this section we review previous findings related 

directly to the processing of PEs in OCD. Above we 

focused mainly on the effects of transition uncertainty 

on the planning and perception of actions, including the 

processing of action-related PEs. Here, we examine 

whether OCD is characterized by an increased 

weighting of PEs across different domains, and 

whether this can contribute to the understanding of 

OCD phenomenology that does not involve action, in-

cluding sensory over-responsiveness and intrusive 

thoughts. 

Sensory prediction errors in OCD. At the phenom-

enological level, increased PE weight predicts in-

creased behavioral and emotional responses to mun-

dane sensory stimuli (i.e. sensory over-responsive-

ness). Indeed, numerous studies have shown sensory 

over-responsiveness (and related phenomena) in OCD 

and OC-related disorders (Ben-Sasson, Dickstein, 

Lazarovich, & Ayalon, 2017; Ben-Sasson & Podoly, 

2017; Dar, Kahn, & Carmeli, 2012; Lewin, Wu, Mur-

phy, & Storch, 2015; Wu, Lewin, Murphy, & Storch, 

2014).  

Critically, sensory over-responsiveness per se can 

result from various causes. More direct evidence for an 

Figure 10 – A graphical summary of the postulated mechanisms leading to different classes of compulsions. Particularly 

the figure delineates the interactions between transition uncertainty, harm-avoidance, and overreliance on habits as 

predicted by the simulations.   
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impairment in predictive processes in perception comes 

from studies demonstrating impaired sensory gating in 

OCD (Ahmari, Risbrough, Geyer, & Simpson, 2012; 

Hashimoto et al., 2008; Hoenig, Hochrein, Quednow, 

Maier, & Wagner, 2005; Swerdlow, Benbow, Zisook, 

Geyer, & Braff, 1993; but see de Leeuw, Oranje, van 

Megen, Kemner, & Westenberg, 2010). ‘Sensory gat-

ing’ is a historical term for the finding that predictable 

stimuli evoke weaker behavioral, attentional and neu-

ronal responses than unpredictable stimuli. Impaired 

sensory gating was operationalized in the above studies 

as increased electrophysiological (e.g., P50) or motor 

(e.g., startle reflex in a prepulse inhibition paradigm) 

responses to predictable stimuli. These findings are 

consistent with the idea that sensory over-responsive-

ness in OCD is the result of increased weighting of sen-

sory PEs.  

Although imprecise predictions make predictable 

stimuli more salient, they also make unpredictable 

stimuli relatively less salient (Adams, Stephan, Brown, 

Frith, & Friston, 2013; Friston, 2005). This is often 

measured by ERP components sensitive to the violation 

of regularities, e.g. the mismatch negativity (MMN), 

and the P300. Only two studies have examined the 

MMN in OCD, with no evidence for a difference (from 

controls) in amplitude, but some evidence for a differ-

ent topography (Oades, Zerbin, Dittmann-Balcar, & 

Eggers, 1996; Towey et al., 1994). The P300 has been 

examined in a larger number of studies, with most of 

them demonstrating lower P300 amplitudes for odd-

balls in OCD (Kim et al., 2003; Malloy, Rasmussen, 

Braden, & Haier, 1989; Sanz, Molina, Martin-Loeches, 

Calcedo, & Rubia, 2001; Towey et al., 1994; but see 

Mavrogiorgou et al., 2002). Interestingly, in two of 

these studies, OCD patients exhibited higher P300 am-

plitudes for regular stimuli (Malloy et al., 1989; Towey 

et al., 1994), replicating the effects regarding sensory 

gating discussed above. 

Another line of evidence consistent with this hy-

pothesis was reported in a preliminary, but intriguing, 

study (Ray Li et al., 2000) using a binocular rivalry par-

adigm. A different object was projected to each eye, 

and participants were asked to report what they per-

ceived. In such experiments, participants usually report 

perceptual switching (i.e., alternations between per-

ceiving the two objects). Bayesian models explain per-

ceptual switching as resulting from the brain's attempts 

to choose the best model (i.e. posterior distribution) 

that minimizes PEs (i.e. explains the data), and that due 

to the contradictory sensory evidence, considerable PEs 

remain for each model (Weilnhammer, Stuke, Hessel-

mann, Sterzer, & Schmack, 2017). This study found in-

creased perceptual switching in OCD (Ray Li et al., 

2000), which is predicted by increased weighting of 

PEs.  

Intrusive thoughts as prediction errors. Many ob-

sessions have no relationship with sensory input, in-

stead corresponding with thoughts, urges or images 

(sometimes called autogenous obsessions; Lee, Kwon, 

Kwon, J, & Telch, 2005). Interestingly, several theories 

have suggested that predictive processes might be in-

volved in our trains of thought and how we experience 

them (Gallagher, 2000; Martin & Pacherie, 2013; Ster-

zer, Mishara, Voss, & Heinz, 2016). Indeed, several 

studies have shown that OCD is related with experienc-

ing one's thoughts as being less related to both the cur-

rent external context (Julien, O’Connor, & Aardema, 

2009; Seli, Risko, Purdon, & Smilek, 2016) and the 

previous train of thought (Fradkin, Eitam, Strauss, & 

Huppert, 2019b; Fradkin & Huppert, 2018). In addi-

tion, a recent study has shown that participants with 

high obsessive compulsive symptoms can experience 

even predictable thoughts (where predictability was op-

erationalized by manipulating semantic context) as in-

trusive (Fradkin et al., 2019b).   

Thus, unpredictable transitions between thoughts 

may result in unusual thoughts (given a context) and 

thoughts experienced as intrusive (even if they are ob-

jectively predictable). Although promising, these re-

sults are limited by their subjective nature, and future 

research should attempt to devise neural and computa-

tional measures of PEs in thought processes.  

Reward prediction errors in OCD. Reward PEs, re-

ferring to the response to feedback that is either worse 

or better than expected, can be conceptualized as an-

other type of PE (which affects confidence regarding 

policies; FitzGerald, Dolan, & Friston, 2015). Con-

sistent with our hypothesis, OCD patients exhibit in-

creased reward PE signals in the anterior cingulate cor-

tex (Hauser et al., 2017), and a stronger influence of 

reward PEs on action (Vaghi et al., 2017). Interestingly, 

in the latter study, the authors report that patients acted 

as if the contingencies had to be learned anew on each 

trial. As discussed above, such behavior indicates a be-

lief that present states (and therefore outcomes) cannot 

be reliably predicted by past states – thus providing ev-

idence for increased transition uncertainty (although 

this was reported only with regards to a latent 'Bayesian 

belief' driving action, but not in a model of meta-cog-

nitive self-reported confidence).  

Some studies have attempted to study reward PEs 

indirectly by focusing on a related ERP component, 

feedback related negativity (FRN). Results have been 
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inconsistent across studies (Endrass and Ullsperger, 

2014), although the modulation of these effects by ex-

pectancies (as in the case of the P300 above) has not 

been examined to our knowledge. Another ERP com-

ponent that has been studied intensively in OCD (and 

in other anxious groups) is the error related negativity 

(ERN), with most studies showing increase in OCD 

(Endrass and Ullsperger, 2014). Although the ERN is 

evoked by erroneous responses (and not by feedback) 

it has been argued to express a PE (Holroyd & Coles, 

2002). However, ERP studies in OCD have yet to for-

malize the computational processes underlying these 

ERP signals. Such analysis is essential for the FRN and 

ERN which are related to multiple processes, involving 

the evaluation of the feedback valence and magnitude 

(Sambrook & Goslin, 2015), or conflict monitoring 

(Yeung, Botvinick, & Cohen, 2004), respectively. 

Prediction errors and uncertainty. It is important to 

note that increased weighting of PEs could, theoreti-

cally, result also from underestimation of sensory 

noise. However, there is an important difference be-

tween this case and the case of increased transition un-

certainty: Greater transition uncertainty leads to greater 

uncertainty in posterior beliefs, whereas an increase in 

sensory precision would lead to overconfidence. Con-

sistent with the former proposition, there exists a pleth-

ora of clinical and experimental evidence supporting 

the notion of elevated uncertainty in OCD. Specifically, 

OCD patients have been shown to exhibit increased un-

certainty in episodic memory (Cougle, Salkovskis, & 

Wahl, 2007; Hermans et al., 2008; Hermans, Martens, 

De Cort, Pieters, & Eelen, 2003), and other domains 

(Dar, 2004; Dar et al., 2000; Tuna, Tekcan, & 

Topçuoğlu, 2005; but see Tekcan, Topçuoǧlu, & Kaya, 

2007), greater decision thresholds (Banca et al., 2014) 

and indecisiveness (Frost & Shows, 1993). In that 

sense, excessive doubt, which can be defined as in-

creased uncertainty regarding the current (or past) state 

of the world, is a natural consequence of increased tran-

sition uncertainty. Furthermore, indecisiveness in OCD 

has been associated with greater reliance on external 

feedback (Sarig et al., 2012), as expected in the case of 

increased weighting of PEs combined with greater un-

certainty. 

To summarize, we suggest that increased weighting 

of PEs in OCD explains findings of increased responses 

to predictable stimuli. Phenomenologically, it could ac-

count for sensory over-responsiveness in OCD, as well 

as the experience of intrusive thoughts. Importantly, 

overweighting of sensory information does not imply 

better (or less noisy) processing. On the contrary, de-

pending on the context, overweighting of sensory data 

often implies an impairment in processing, as it leads 

to a failure of the use of prior information to contextu-

alize new data, and to better attenuate sensory noise. 

Finally, this increased weighting of PEs seems more 

likely to be the result of high transition uncertainty than 

underestimation of sensory noise. Indeed, in two stud-

ies (Ray Li et al., 2000; Vaghi et al., 2017), increased 

weighting of PEs was related to perceiving the world as 

highly unstable. 

Discussion 

In this theoretical paper, we suggest that obsessive 

compulsive pathology can be traced back, at the com-

putational level, to excessive uncertainty regarding 

state transitions. This means that patients have a diffi-

culty in predicting how events and sensations unfold 

(particularly but not exclusively as a consequence of 

their own actions). This makes the world appear less 

predictable and less controllable. More specifically, 

high transition uncertainty results in i) increased rela-

tive weighting of PEs – manifesting in patients' experi-

ences that actions were not performed correctly, obses-

sional thoughts and sensory over-responsiveness, and 

ii) compulsions – conceptualized as responses to obses-

sions, excessive checking, and overreliance on habits 

(including habitual checking formalized as epistemic 

habits). The different effects of transition uncertainty 

on patients' symptoms and cognition are summarized in 

Figure 11. 

We first demonstrated the effects of uncertainty re-

garding action-dependent transitions (using a particle 

filter) on increased reliance on noisy sensory feedback 

(potentially resulting in obsessions and NJREs), and 

decreased confidence (particularly, a paradoxical effect 

of compulsions on increasing uncertainty) during the 

estimation of current states (e.g., how clean my hands 

are). We then demonstrated the effects of transition un-

certainty on the process of planning and action selec-

tion (using an active inference MDP model), leading to 

indecisiveness and increased information gathering, 

and a compensatory overreliance on habits. Compul-

sions are implicated as responses to current PEs and un-

certainty in the former, and as a means of preventing 

future PEs in the latter. Interestingly, these two tem-

poral orientations may correspond to the difference be-

tween compulsions driven by certain intrusive thoughts 

(i.e. autogenous obsessions) or NJREs (e.g. the experi-

ence that a specific action was not done right), and 

compulsions driven by attempts to avoid potential fu-

ture harm. Importantly, these two apparently distinct 

modelling approaches appeal to the same (Bayesian) 
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generative modelling approach and examine the influ-

ence of the same parameter (transition uncertainty) in 

two different domains. 

Notably, whereas previous accounts have suggested 

mild but wide-ranging learning impairments in OCD 

(e.g., Fradkin et al., 2018; Leplow, Murphy, & Nutz-

inger, 2002), our model and simulations predict spe-

cific types of errors in specific experimental contexts, 

due to the very specific computational quantity that we 

propose is altered (transition uncertainty). According to 

this model, OCD patients are expected to exhibit a pat-

tern of increased vigilance and indecisiveness, resulting 

in errors of changing one's behavior (and over-explora-

tion) even in the absence of objective contingency 

shifts. However, in highly stable environments, in 

which simple behavioral strategies (e.g., habits) can be 

temporarily adaptive, we predict a compensatory and 

inflexible over-reliance on such strategies (which 

should result in perseverative errors; see Figure 10). 

Moreover, given the hypothesized impairment in relia-

bly predicting action-dependent transitions (even in 

stable environments), our model predicts that actions 

(e.g., compulsions) result in a paradoxical increase in 

uncertainty and thus lead to further compulsive action 

(see Figure 10). Notwithstanding this specificity, our 

model can accommodate a gradient of behavioral im-

pairments, as a function of both the level of transition 

uncertainty (which may vary across different individu-

als with OCD; see Figures 5-9 demonstrating such a 

gradual decrease in performance) and potential com-

pensatory mechanisms (e.g., habits). 

This perspective complements several previous 

models of OCD. First, prominent models highlight the 

role of impaired goal-directed control in OCD (e.g., 

Gillan et al., 2016). Our model is consistent with these 

ideas, while suggesting excessive transition uncertainty 

as the specific mechanism driving impaired goal-di-

rected control, and delineating the task-related moder-

ators explaining different behavioral consequences of 

this impairment. Thus, at the most basic level, patients 

experience fundamental indecisiveness, difficulty in 

predicting the consequences of potential behaviors, and 

over-sensitivity to new information. However, certain 

environments (e.g., stable environments or experi-

mental contexts inducing over-training) allow patients 

to avoid the computational, cognitive and emotional 

costs of these impairments by relying on simpler strat-

egies. In this sense, our model attempts to explain how 

seemingly incompatible behaviors (both indecisive and 

repetitive) can co-exist in OCD.  

Figure 11 – A summary of the different postulated effects of transition uncertainty on OCD patients' symptoms, experience 

and cognition. As shown in Figure 1, excessive transition uncertainty affects several aspects of Bayesian inference. The 

current figure shows how these different aspects lead to the different findings and simulation results delineated in the paper. 
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Although we focused on the case in which such sim-

pler strategies involve habitual behavior (leading to 

perseverative behavior), the same principles can be 

conceptually extended to other types of heuristic be-

havioral strategies, such as model-free reinforcement 

learning schemes. In both cases, the difficulty in pre-

dicting the future leads patients to over-rely on the past. 

A related mechanism might be in play in the case of the 

development of compulsive rules (e.g., washing hands 

exactly 10 times). Using such a rule might help patients 

avoid goal-directed strategies (e.g., wash hands in a 

way that will lead to a certain reduction in estimated 

dirtiness). The development of the specific rule (i.e. 

number of times) might reflect a habitual policy that 

acquires a specific number of (for example) hand-

washes simply because it was done previously, and this 

policy (and number) is reinforced each time it occurs. 

Alternatively, we could see this as a higher level infer-

ence about the transition uncertainties. That is, when 

one is unsure that a single handwash will reduce esti-

mated dirtiness, a policy of repeated handwashes can 

be used to obtain sufficient certainty a priori. 

Second, the ‘seeking proxies for internal states’ 

(SPIS) model (Lazarov et al., 2014) focuses on patients' 

increased weighting of objective sensory evidence, at 

the expense of internal information. Specifically, these 

authors argue that OCD patients have attenuated access 

to, and greater uncertainty regarding 'internal states', in-

cluding perception, memory, emotional states, muscle 

tension, proprioception and more. The SPIS model sug-

gests that patients seek external proxies (e.g., environ-

mental stimuli, rules or behaviors) to compensate for 

this uncertainty. Whereas we agree that patients rely 

more on external information, our model suggests a dif-

ferent reason underlying this phenomenon. We propose 

that the internal information patients have trouble rely-

ing upon corresponds with predictions regarding state 

transitions (including predictions regarding external 

states). Therefore, the proposed model builds upon the 

SPIS model while focusing on a specific computational 

impairment based on the well-established Bayesian 

brain framework. This creates some divergence in pre-

dictions from the SPIS model. For example, proprio-

ception is considered an (attenuated) internal state in 

the SPIS model, but a (highly weighted) source of sen-

sory information in our model. Paradigms comparing 

patients' performance in active vs. passive movement 

(the latter weakening action-dependent predictions, yet 

leaving proprioceptive feedback intact) can be used to 

support this divergent prediction (Ezrati et al., 2018). 

Third, Szechtman and Woody (2004) suggested that 

repetitive behavior in OCD stems from an inability to 

utilize signals for the completion of tasks related to 

wellbeing and security. The authors also speculate that 

because many OCD-related behaviors have no objec-

tive satiety signal (e.g., hands are clean enough), nor-

mally such information relies on the execution of action 

itself. Whereas we agree that action execution serves as 

information for action completion (a process that is dis-

rupted in OCD), our account bases this idea on estab-

lished Bayesian accounts of action perception. Indeed, 

a related account linking the Szechtman and Woody 

(2004) model to impaired Bayesian inference (and the 

overweighting of improbable hypothetical, threat-re-

lated scenarios) has been suggested by Moore (2015). 

In contrast to these accounts, we suggest a domain-gen-

eral core impairment, whereas prominent symptoms are 

expressed in specific domains that carry evolutionary 

or personal importance (see below).  

Fourth, recently, Levy (2018) has suggested that 

OCD is related to increased precision for sensory PEs 

and actions, leading to increased attention to normally 

automatic processes. Whereas we concur with the gen-

eral idea, we argue that this is the specific result of ex-

cessive uncertainty regarding state transitions.  

Finally, classic cognitive behavioral models of 

OCD focus on the effects of anxiety (following obses-

sions) on motivating compulsions, which are reinforced 

by anxiety reduction (Foa & Kozak, 1996b). Whereas 

we address the emergence of anxiety in OCD below, 

we emphasize here that we view transition uncertainty 

as a basic vulnerability factor that likely interacts with 

other key factors (e.g. negative reinforcement of com-

pulsions due to anxiety reduction) contributing to the 

clinical presentation.  

Cognitive behavioral models of OCD also focus on 

various high-level meta-cognitive beliefs regarding ob-

sessions and compulsions such as inflated responsibil-

ity, thought-action fusion and intolerance of uncer-

tainty. We believe an important future step is to theo-

retically and empirically examine the potential link be-

tween excessive transition uncertainty and the emer-

gence of such beliefs (see Levy, 2018, who discusses 

some potential directions). For example, intolerance of 

uncertainty is a potentially multifactorial concept that 

could result from increased intolerance of typical levels 

of uncertainty (e.g. about threat), and/or typical intoler-

ance of increased levels of uncertainty (in any one of 

multiple domains). Thus, intolerance of uncertainty in 

OCD can be the result of increased transition uncer-

tainty. Indeed, several studies have demonstrated that 

OCD patients show both less consistent behavior (as 

predicted in the case of increased transition uncer-

tainty), and increased avoidance (implying intolerance) 
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of ambiguous choices (characterized by uncertainty re-

garding states and state transitions; Pushkarskaya et al., 

2017, 2015). Furthermore, due to its potentially multi-

factorial nature, intolerance of uncertainty may result 

from different mechanisms in other disorders. 

Uncertain state transitions, anxiety and harm-

avoidance in OCD  

OCD has been long considered an anxiety disorder, 

and despite its recent exclusion from this category 

(APA, 2013), it is hard to deny the involvement of 

stress, anxiety and threat-related contents in many 

OCD subtypes. The link between stress, anxiety and 

transition uncertainty is likely not coincidental, as un-

predictable environments have been long known to pre-

cipitate anxiety (Grupe & Nitschke, 2013). Indeed, a 

recent account of stress suggests that "stress occurs if 

we are surprised by our sensations, and we are uncer-

tain about what to do to safeguard our physical, mental 

and social wellbeing" (Peters, McEwen, & Friston, 

2017, p. 184). Clearly, exaggerated uncertainty regard-

ing state transitions will increase one's uncertainty re-

garding the optimal strategies to ensure wellbeing. 

Thus, although high transition uncertainty is proposed 

here to be a basic vulnerability factor, even manifested 

in non-threatening circumstances, its behavioral and af-

fective consequences should be especially prominent in 

contexts relevant for survival and wellbeing. Indeed, 

the results of the simulations incorporating both harm-

avoidance and transition uncertainty have shown that in 

some cases (when checking itself is not dangerous) 

harm-avoidance, here interpreted as a moderating con-

textual variable (i.e. situations potentially involving se-

rious harm), amplifies the effects of transition uncer-

tainty: leading to more instances of excessive checking 

and exploration (see Figure 10). Therefore, it is not sur-

prising that OCD symptoms are usually (although not 

always) related to negative, threat-related content. 

The common clinical focus of OCD on threat-re-

lated contents also raises the question of whether ex-

cessive perception of threat or excessive trait harm-

avoidance can explain OCD more parsimoniously than 

our model. We used the simulations above to investi-

gate this question, operationalizing harm-avoidance as 

an excessive need to avoid either punishments or con-

tamination, or as a negatively biased (instead of more 

uncertain) perception of reality. These simulations 

show that harm-avoidance can explain repetitive wash-

ing and checking but cannot explain other important 

findings in OCD. These include excessive doubt and 

uncertainty that are paradoxically increased after ac-

tion, increased epistemic habits (i.e. continuing to 

check even when there is no information to gain), as 

well as over-exploratory and habitual responses in re-

versal learning tasks. Harm-avoidance also cannot ex-

plain other findings not included in the simulations, 

such as overreliance on exteroception during a muscle 

tension reproduction task, greater information gather-

ing in non-threatening tasks, and greater perceptual 

switching. However, this does not preclude that possi-

bility that both transition uncertainty and harm-avoid-

ance are elevated in OCD. Interestingly, whereas in 

some cases these two factors had an additive effect on 

checking behavior, in other cases (e.g. when checking 

itself had a cost), increased harm-avoidance counter-

acted the effects of transition uncertainty. This gener-

ates specific, testable predictions regarding the possible 

interaction between these two factors, which need to be 

tested in future studies (see Figure 10).  

Although harm-avoidance cannot fully explain 

OCD phenomenology, the agents in the simulations 

were assumed to have the goals of having clean hands 

or obtaining rewards. In active inference such goals 

take the form of high-level priors. Thus, whereas tran-

sition uncertainty explains the forms of behaviors ob-

served in OCD, high-level priors can help explain their 

specific contents. Common themes of many compul-

sions (e.g. washing) could be explained by priors that 

have arisen through evolution, due to their value in pro-

moting survival (Szechtman & Woody, 2004). Further-

more, some predetermined policies (i.e. habits) to 

threatening stimuli could themselves be determined (in 

terms of the prior probability of these policies) via pro-

cesses developed during evolution (see Boyer and Lié-

nard, 2006). Other more idiosyncratic symptoms could 

be explained by priors acquired through personal expe-

rience (e.g., Huppert and Zlotnick, 2012). 

Whereas we have outlined evidence supporting our 

prediction that elevated transition uncertainty should be 

evident in neutral in addition to threatening (symptom-

related) contexts, a non-intuitive prediction of our 

model is that OCD patients might also overestimate the 

probability of transitioning to positive states. Experi-

mentally, this could relate to the interaction between 

transition uncertainty and task domain (e.g., rewards 

vs. losses). The literature is inconsistent in regard to 

whether over-exploration and habitualization in learn-

ing tasks in OCD appears in reward conditions, loss 

conditions or both (e.g., Hauser et al., 2017; Push-

karskaya et al., 2017), and research investigating tran-

sition uncertainty in different task domains is needed. 

Illusions of control (e.g., Reuven-Magril et al., 2008) 
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may also be related to being overly optimistic regarding 

action-dependent transitions. Clinically, such a mecha-

nism could help account for magical thinking, which is 

elevated in OCD, and the persistent belief that a ritual 

will work, despite not having a clear relationship with 

the expected results. These speculations could be tested 

in future experiments, that emphasize positive (yet un-

predictable) state transitions (e.g., by artificially result-

ing in unpredictable outcomes matching participants' 

goals; see Metcalfe and Greene, 2007). 

Finally, an interesting and as yet unresolved issue 

concerns the specificity of these ideas of OCD com-

pared to anxiety disorders, such as generalized anxiety 

disorder, which have been argued to result from uncer-

tainty regarding future threats (Grupe & Nitschke, 

2013). Indeed, a compelling reinforcement learning 

model of anxiety proposes that anxiety itself could re-

sult from pessimistic resolution of various forms of un-

certainty: about future action choices, environmental 

state transitions, or the current state (Zorowitz, Mo-

mennejad, & Daw, 2019). We hypothesize that exces-

sive uncertainty in anxiety disorders is less related to 

action-dependent state transitions (i.e. a difficulty in 

predicting the consequences of one's actions), which is 

a key component in our model of OCD. Furthermore, 

as we show in the hand-washing simulations, such an 

impairment leads to a paradoxical increase in uncer-

tainty and additional compulsive urges following (com-

pulsive) actions – a specific characteristic of OCD. A 

second distinction, partially related, is that in our model 

of OCD, transition uncertainty relates to both threaten-

ing and neutral states, whereas anxiety is more specifi-

cally related to threatening states. Direct comparisons 

of performance in experiments with patients with OCD 

vs. those with anxiety disorders support these distinc-

tions. For example, excessive checking in neutral tasks 

was found only in OCD but not in anxiety (Toffolo et 

al., 2016). Similarly, impairments in predictive pro-

cesses in thoughts (both negative and neutral) was 

found in high OC participants, but not in highly anxious 

participants (Fradkin et al., 2019b). Finally, increased 

weighting of exteroceptive evidence was found in OCD 

but not in anxiety disorders (Lazarov et al., 2014). 

However, future studies are needed to test the hypoth-

eses we raise here. 

Future directions  

Having established the face validity of the proposed 

model in relation to the empirical data and phenome-

nology of OCD, we hope to characterize subject-spe-

cific phenotypes by estimating the parameters of the 

model from behavioral data (e.g., reversal learning 

tasks). Crucially, we would estimate not just the transi-

tion uncertainty but a range of other, potentially inter-

acting parameters. These could include prior prefer-

ences (e.g., harm-avoidance), prior beliefs about poli-

cies (e.g., habits) and sensory uncertainty. By correlat-

ing these parameter estimates with individual symp-

toms and cognitions (e.g, transition uncertainty as a 

global impairment that interacts with increased preci-

sion of losses – i.e., harm avoidance – in specific OCD 

subtypes, such as checking and washing), we hope to 

be able to understand how the interaction between sub-

ject-specific beliefs and changes in transition uncer-

tainty induce a range of OCD phenotypes (and related 

phenomena, such as excessive doubt and intolerance of 

uncertainty).  

Transition uncertainty was defined here as one's 

(in)ability to predict present and future states from ac-

tions or past states. Whereas we suggest that both types 

of transitions are less predictable in OCD, we also spec-

ulated that action-dependent transitions might play a 

more specific role. Future research should examine the 

contribution of these two processes to OCD pathology 

and anxiety. One way of investigating this question is 

to use a reversal learning task in which actions do not 

change the environment (e.g., Yu and Dayan, 2005). 

Alternatively, one can examine patients' expectancies 

when observing a different agent performing such a 

task.  

The ideas presented here deal with several domains 

of active inference, and touch upon the complex, hier-

archical nature of the Bayesian brain. These include the 

sorts of generative models required for continuous mo-

tor-control, and those needed to plan over successive 

time-steps, and deal with sequences in time. While 

these are different sorts of inference, they can be uni-

fied through the use of hierarchical generative models 

(for recent examples of this, see Friston, Parr, & Vries, 

2017; Parr & Friston, 2018). These accounts rest upon 

the idea that the brain may represent dynamics over 

time as a sequence of short trajectories. Uncertainty re-

garding transitions at one level likely influence the 

other levels, and PEs at lower levels can propagate to 

higher levels. Indeed, from a clinical perspective, com-

pulsions themselves range from a repetition of short, 

basic sub-actions (e.g., repeating simple movements 

due to a not-just-right experience) to more elaborate be-

havioral sequences (e.g., repeating a full sentence, or a 

relatively complex washing behavior). Nonetheless, fu-

ture work is needed to better localize the computational 

pathology in the Bayesian hierarchy.  
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Neural predictions. Classical neuroanatomical 

models of OCD implicate the cortico-striato-thalamic-

cortical circuit (CSTC), and specifically the orbitofron-

tal cortex (OFC), anterior cingulate cortex (ACC) and 

the striatum, although other areas are involved as well 

(e.g., the dorsolateral prefrontal cortex, the cerebellum, 

amygdala; for reviews see Chamberlain & Menzies, 

2009; Menzies et al., 2008; Milad & Rauch, 2012). In-

terestingly, recent findings and models suggest that the 

OFC has a pivotal role in the representation of hidden 

states (Behrens et al., 2018; Hampton, Bossaerts, & 

O’doherty, 2006), particularly those that are related to 

current task or goals or have a significant biological 

meaning (Parr, Rikhye, Halassa, & Friston, 2019; 

Schuck, Cai, Wilson, & Niv, 2016; Wikenheiser & 

Schoenbaum, 2016). Furthermore, a recent study has 

shown that rapid changes in firing patterns in the OFC 

are consistent with the representation of transitions be-

tween hidden states during a probabilistic learning task 

(Nassar, Bruckner, & Frank, 2019). The striatum, in 

turn, is thought to be associated with the selection and 

regulation of behavioral policies, and the integration of 

goal-directed and habitual policies (Graybiel & Graf-

ton, 2015; Parr & Friston, 2018).  

The involvement of the OFC and the striatum in the 

coding of hidden states and policies, respectively, sug-

gests that CSTC abnormalities in OCD might corre-

spond to the types of computations we focus on in our 

model. However, previous theoretical approaches ex-

plained these same CSTC abnormalities as pertaining 

solely to an imbalance between goal-directed and ha-

bitual behavior (Gillan & Robbins, 2014). To directly 

examine the biological plausibility of our model, future 

studies should focus more specifically on potential neu-

roanatomical markers of state transitions in OCD. One 

direction would be to follow Nassar and colleagues 

(2019) by examining rapid fluctuations in BOLD activ-

ity in the OFC (using representational similarity analy-

sis) as a marker of state transitions. Another direction 

could be to search for a more stable marker of the un-

certainty of state transitions. One caveat here is that 

other than evidence for the involvement of noradrena-

line in the coding of volatility (Yu & Dayan, 2005), the 

neuroanatomical substrates of transition uncertainty are 

not well understood. One plausible idea is that if OFC 

activity represents hidden states, OFC intrinsic connec-

tivity may correspond with characteristics of the distri-

bution of the relationship between states, i.e., state tran-

sitions. Indeed, a recent study demonstrated a loss of 

numerous excitatory synaptic protein transcripts in 

OFC in post mortem OCD patients (Piantadosi, Cham-

berlain, Glausier, Lewis, & Ahmari, 2019): a potential 

cause of transition uncertainty. A different direction is 

to examine whether manipulations of OCD-related cir-

cuitry results in the types of behavior seen in the simu-

lations above. In a seminal study, Ahmari and col-

leagues (2013) reported that repeated stimulation of the 

CSTC circuit in mice resulted in 'compulsive-like' per-

severative grooming. Interestingly, acute stimulation 

resulted in an excessive locomotion, which might re-

flect increased exploration, but further work is required 

to establish this. 

Impairments in Bayesian inference in other 

disorders.  

Bayesian models have been suggested to account 

for various psychiatric disorders, including psychosis 

(Adams et al., 2013; Fletcher & Frith, 2009; Sterzer et 

al., 2018) autism (ASD; Cruys et al., 2014; Lawson, 

Rees, & Friston, 2014; Palmer, Lawson, & Hohwy, 

2017; Pellicano & Burr, 2012), and tic disorders (Rae, 

Critchley, & Seth, 2019). This is not surprising: if the 

brain performs (or approximates) Bayesian inference, 

many neuropsychiatric disorders will likely be explica-

ble in Bayesian terms. The deeper question is whether 

these computational models can show how the diverse 

but partially overlapping risk factors of these disorders 

(O’Connell, McGregor, Lochner, Emsley, & Warnich, 

2018) lead to both shared and distinct abnormalities, 

generating disorder-specific experimental and compu-

tational predictions. 

Autistic spectrum disorders. Several theoretical ac-

counts (for a review see Palmer et al., 2017), suggest 

that abnormal sensory processing in ASD results from 

overweighting of sensory PEs at the expense of priors 

(Cruys et al., 2014; Pellicano & Burr, 2012), possibly 

explained by excessive estimates of volatility (or meta-

volatility, i.e. uncertainty regarding how unstable state 

transitions are; Lawson et al., 2017). However, a more 

recent study has shown reduced weighting of more re-

cent evidence in ASD, suggesting reduced estimates of 

volatility (Lieder et al., 2019).  

Along with this similarity, one important distinction 

is that current models and findings in ASD do not touch 

upon action-dependent transition uncertainty, but ra-

ther focus on Bayesian inference in general (e.g., Pelli-

cano & Burr, 2012), or volatility estimates (e.g., Law-

son et al., 2017). Furthermore, ASD is a developmental 

disorder which is characterized by social impairment. 

Indeed, Bayesian inference impairments in ASD have 

been suggested to stem from a more specific impair-

ment in the interplay between social cues and the pre-
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cision of interoceptive PEs (Atzil, Gao, Fradkin, & Bar-

rett, 2018; Quattrocki & Friston, 2014). Relatedly, a 

plausible hypothesis is that when Bayesian inference 

impairments originate at a very early developmental 

stage (as it likely occurs in ASD), a different clinical 

picture will emerge. However, there are yet no data or 

simulations regarding the way in which the onset of im-

pairments in Bayesian inference (e.g., transition uncer-

tainty) influences the resulting clinical picture. 

Schizophrenia. Perhaps the first application of 

Bayesian inference models to psychopathology was in 

the context of psychotic symptoms (for a review see 

Sterzer et al., 2018). We have recently suggested that 

the computational differences between OCD and schiz-

ophrenia may be quantitative in their basis (Fradkin, 

Eitam, Strauss, & Huppert, 2019a). In OCD, the imbal-

ance between sensory and higher-level precision might 

be not as great as in schizophrenia, such that sensory 

PEs (and the unease they induce) can be resolved by 

actions or beliefs regarding the stability or controllabil-

ity of the environment, rather than by changing more 

fundamental beliefs about the self and reality (in schiz-

ophrenia; see Corlett et al., 2018; Fradkin et al., 2019a). 

This suggests that the distinctions between psychiatric 

disorders might be related to differences in the type and 

level of priors used to explain away highly weighted 

sensory PEs. This hypothesis could be tested empiri-

cally by experimentally manipulating higher level pri-

ors. For example, in a recent study from our group 

(Fradkin et al., 2019b), task-instructions were used to 

induce a prior belief regarding thought insertion. This 

caused non-psychotic, high OC participants to interpret 

their excessive thought-related PEs as inserted 

thoughts. 

Other fronto-striatal disorders. Recent simulation 

work has shown that transition uncertainty is also one 

potential cause of impulsive behavior, specifically de-

lay discounting (Mirza, Adams, Parr, & Friston, 2019). 

Impulsivity is one of the core features of attention def-

icit hyperactivity disorder (ADHD), which also exhib-

its partial epidemiological and neurobiological overlap 

with OCD (Brem, Grünblatt, Drechsler, Riederer, & 

Walitza, 2014). To our knowledge, there is no work on 

Bayesian inference in ADHD. However, increased be-

havioral variability and exploration have been impli-

cated in a recent model (Hauser, Fiore, Moutoussis, & 

Dolan, 2016). Interestingly, recent computational work 

has proposed that both OCD and ADHD patients ex-

hibit increased exploration and increased weighting of 

the most recent outcome, whereas only ADHD patients 

exhibit increased reward sensitivity (Norman et al., 

2018). This might help explain why ADHD is charac-

terized by increased risk-taking and novelty seeking, 

and OCD with risk avoidance. That is, a difficulty in 

predicting the consequences of actions should lead to 

more risk taking and distractibility when one assigns 

higher importance or probability to rewards than to 

losses.  

Tic disorders (TDs), showing considerable comor-

bidity with OCD (Sheppard, Bradshaw, Purcell, & Pan-

telis, 1999), have been recently suggested to involve 

abnormal precision over policies, leading to the for-

mation of excessive stereotyped, habitual movements 

(tics; Rae et al., 2019). Common to both disorders may 

be an imbalance of precision between goal-directed 

policies, and habits. Where the disorders are distinct, 

the primary pathology may differ: increased ’move-

ment’ precision in TDs, versus transition uncertainty in 

OCD (which affects policies but has additional, cogni-

tive and affective components). 

Implications for treatment.  

Formalizing OCD under the active inference frame-

work provides an opportunity to consider computation-

ally-informed targets for interventions. Notably, alt-

hough we suggest a core pathology in transition uncer-

tainty, the alleviation of the phenomenological effects 

of this pathology can be produced by focusing on other, 

interacting components. One such target is the subjec-

tive importance (i.e. precision) of prior preferences and 

goals (Peters et al., 2017). So, for example, having 

more flexible criteria for cleanliness is expected to al-

leviate the effects of transition uncertainty simulated 

above. Similarly, the MDP simulations have shown that 

trait or state increases in the subjective cost of harm 

strengthen the effect of transition uncertainty. Another 

target concerns the mitigation of the downward effects 

of transition uncertainty on shifting the balance be-

tween goal-directed and habitual behavior. Theoreti-

cally this can involve either interfering with habit learn-

ing (computationally, this corresponds with increasing 

the precision of the E matrix - prior beliefs over poli-

cies), or increasing the precision of goal-directed poli-

cies.  

The current gold-standard treatments for OCD in-

clude cognitive-behavioral therapy (CBT; Foa and 

Kozak, 1996), and SSRIs (Pizarro et al., 2014). Treat-

ment augmentation with atypical antipsychotics (Veale 

et al., 2014) has become increasingly common. It is 

tempting to speculate that different treatments might in-

fluence different targets. For example, SSRIs might 

play a role in regulating the perceived threat resulting 
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from high transition uncertainty. Correspondingly, 

SSRIs have been shown to be most effective in OCD 

subtypes in which harm-avoidance plays a major role 

(Landeros-Weisenberger et al., 2010). Furthermore, 

most studies have shown that SSRIs do not improve 

neuropsychological functioning related to persevera-

tion or non-perseverative errors (Mataix-Cols, Alonso, 

Pifarre, Menchon, & Vallejo, 2002; Nielen & Den 

Boer, 2003; Roh et al., 2005). In contrast, dopamine has 

been linked to the encoding of the precision over poli-

cies, and the balance between goal-directed and habit-

ual policies (Parr & Friston, 2018). This raises the hy-

pothesis that dopaminergic medication may alleviate 

perseveration but not the core transition uncertainty im-

pairment. Indeed, preliminary findings suggest that do-

pamine antagonist administration reduces persevera-

tion in OCD (Ersche et al., 2011), but can also increase 

errors that are due to an instable response style (i.e., 

difficulty in maintaining a response set in the Wiscon-

sin card sorting test; De Geus, Denys, & Westenberg, 

2007).  

CBT involves two cardinal components: exposure, 

often aimed at helping patients tolerate the risk and un-

certainty associated with their obsessions, and response 

prevention, aiming directly at reducing compulsive rit-

uals (Foa, Steketee, Grayson, Turner, & Latimer, 

1984). Computationally, exposure may serve the role 

of regulating perceived threat, as well as the emotional 

effects of transition uncertainty (i.e., anxiety-provoking 

transitions). Response prevention is traditionally con-

sidered to be necessary for exposure to work effectively 

(Foa & Kozak, 1996b), but it can also serve a role in 

decreasing the prior probability of habitual compul-

sions (similarly to habit-reversal treatment in OC-re-

lated disorders; Gillan & Robbins, 2014). If indeed a 

partial dissociation exists in the computational param-

eters affected by these two components, computational 

phenotyping might help guide therapeutic focus.  

Finally, an interesting yet difficult question is 

whether difficulties in transition uncertainty can be 

remedied directly. Preliminary evidence suggests that 

errors indicating excessive exploration or oversensitiv-

ity to feedback were not improved by existing treat-

ments, including dopaminergic agents (Ersche et al., 

2011) or CBT (Freyer et al., 2011), and a more system-

atic research of this question is required. One possible 

direction involves the use of cognitive training pro-

grams aimed at reducing the biased estimation of tran-

sition uncertainty, along the lines that led to the devel-

opment of cognitive remediation programs. This first 

requires the development and psychometric validation 

of tasks that directly measure transition uncertainty in 

different contexts.  

More generally, we believe that the model proposed 

here provides a novel perspective regarding the subjec-

tive experience of OCD patients. For example, we 

show how deficits in goal-directed control may be 

closely linked to self-reported indecisiveness and 

doubts. Furthermore, we propose a unitary account for 

explaining the diversity in the types of obsessions in 

OCD (e.g., intrusive thoughts vs. NJREs), as well as for 

understanding patients' different motivations to engage 

in compulsive behavior. We believe that this can enrich 

clinicians' understanding of their patients and provide a 

framework for new computational studies of OCD.   

 

Appendix A – Glossary 

State  - a configuration of the environment at a 

given time 

Hidden/latent state – a state that is not directly ob-

servable, but must be inferred from different sources of 

information – sensory observations and predictions re-

garding state transitions (see below). 

State transitions – a (probabilistic) description of 

how states evolve over time. State transitions can be af-

fected either by actions (action-dependent state transi-

tions) or not (action-independent state transitions). 

Transition uncertainty – uncertainty about the 

state transition probabilities, (i.e. being unsure whether 

things will change). When transition uncertainty is 

high, past states and/or actions are not predictive of pre-

sent or future states.  

Precision – inverse variance/uncertainty. High un-

certainty is equivalent to low precision. 

State-space model – a formal mathematical model 

defining how states relate to each other and to observa-

tions. The core problem of simple state space models is 

to infer hidden states by using these relations.  

Bayesian state-space model – a state-space model 

where hidden states, state transitions, and the relations 

between states and observations are represented as 

probability distributions (characterized by their mean 

and variance/uncertainty), and where inference follows 

Bayes’ theorem. 

Particle filter – an algorithm that can solve Bayes-

ian state space models (under minimal assumptions). 

Distributions of states, state transitions and observa-

tions are represented by 'particles', with each particle 

representing a sample (one possible value) from the re-

spective distribution.  
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Bayesian brain – the idea that the brain uses Bayes-

ian inference (or approximations of it) to integrate pre-

dictions (e.g., predictions regarding state transitions) 

and sensory observations, by weighting each according 

to its uncertainty. This process allows the brain to infer 

a probability distribution over hidden states. 

Prediction errors / PEs – a quantifiable difference 

between the brain's prediction (e.g., perceptual predic-

tion) and its actual input.  

Predictive coding – a neurobiological framework 

describing how the brain implements Bayesian infer-

ence over states that change continuously (as in percep-

tion). It does this by passing messages (predictions and 

prediction errors) up and down a hierarchy of neuronal 

populations. 

Active inference – an extension of Bayesian infer-

ence schemes (including predictive coding) to action, 

such that prediction errors can either be resolved by 

changing the model (perception) or the sensory input 

(action). Briefly, the brain uses Bayesian inference on 

expected (rather than actual) observations to select pol-

icies (see below). Movement itself can also be de-

scribed as Bayesian inference on expected propriocep-

tive observations (e.g., how the posture of my hand 

should change to realize the sensations I expect, such 

as gripping a cup). Actions serve both to fulfill goals 

(utilitarian goals) and to minimize uncertainty (epis-

temic goals). 

Policy – a sequence of actions 

Markov decision process (MDP) – a mathematical 

framework for modeling decision making (i.e. policy 

selection). Active inference (see above) can be used to 

solve MDPs (i.e., to infer the optimal policy, while tak-

ing into account the relations between policies, states, 

and observations). 
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Supplemental material 

 

Hand-washing, particle filter simulations 

Particle filters are a set of sampling algorithm used 

for Bayesian inference for state-space models, which 

include both observation uncertainty and transition un-

certainty (Speekenbrink, 2016). In contrast to the Kal-

man filter, which provides a analytic Bayesian solution 

to state space models, particle filters are not limited to 

Gaussian variables. The reasons for which we chose to 

use particle filter, rather than a Kalman filter in these 

simulations are reviewed below. 

State-space models describe the evolution of latent 

states 𝑥1:𝑇 as a first-order Markovian process, where 

each state depends probabilistically only on the previ-

ous state: 

𝒑(𝒙𝒕) = 𝒑(𝒙𝒕|𝒙𝒕−𝟏, �̂�𝒑
𝟐) (S1) 

 

, where �̂�𝑝
2 represents a transition uncertainty parame-

ter, which can be variance, or other uncertainty param-

eters in the case of other distributions. The observation 

at time t (𝑜𝑡) depends probabilistically only on the la-

tent state at time t (𝑥𝑡): 
 

𝒑(𝒐𝒕) = 𝒑(𝒐𝒕|𝒙𝒕, �̂�𝒐
𝟐) (S2) 

 

, where 𝜎𝑜
2 represents an observation uncertainty pa-

rameters, which again can be the variance or other un-

certainty parameters.  

A generic particle filter represents estimated latent 

states with a finite set of particles generating a Monte-

Carlo distribution. At each time step, particles are 

weighted in accordance with Equation S2. This proce-

dure, known as importance sampling (Speekenbrink, 

2016) generates an approximate posterior distribution, 

integrating the prior estimate of the latent state (particle 

distribution before weighting), and the likelihood dis-

tribution (Equation S2). Most particle filters then use a 

resampling procedure, where particles are resampled in 

proportion to their weights, resulting in a particle dis-

tribution where the relative number (rather than the 

weights) of the particles represent the relative posterior 

probability of each particle. This resampling step was 

shown to be critical to prevent the 'particle degenera-

tion problem'. As a final step, the particle set at time t 

is propagated in correspondence with Equation S1, to 

account for transition uncertainty (i.e. process noise). 

We used a particle filter (rather than a Kalman filter) 

for two reasons. First, although we assumed that the 

evolution of latent states is Gaussian, we also assumed 

that the observations are generated from a Gaussian 

distribution truncated at zero, to represent the idea that 

any evidence for hands' dirtiness cannot reach negative 

values (i.e. hands can be perfectly clean at most). Sec-

ond, to model an affective bias which can be described 

as the belief that the latent state generating observable 

information is usually more negative than the observa-

tion, we used a skewed normal distribution, with a neg-

ative skew. In our case, this corresponds with the belief 

that one's hands are usually dirtier than they look/feel.  

The actual sensory variance, denoted by 𝜎𝑜
2 was set 

to 50, whereas actual process noise (i.e. transition un-

certainty) was set to 0.1. To focus on action-dependent 

transitions, process noise was set to 0 when no action 

(i.e. hand-washing) was applied. The values of obser-

vation noise and process noise are important only in re-

lation to one each other. Sensory noise was set to a con-

siderably higher value than process noise to represent 

the assumption that sensory feedback regarding hand 

dirtiness is in most cases highly non-informative (ex-

cept for relatively infrequent cases were one can actu-

ally see dirt on one's hands).  Whereas hand washing 

changes hand dirtiness, we assumed that it does so in a 

relatively predictable fashion; that is: we assumed that 

hand washing is a more informative cue than sensory 

information regarding hand dirtiness. 

Finally, as a simple response model, the probability 

with which agents were assumed to wash their hands 

was determined in accordance with the proportion of 

particles surpassing a specific criterion, which repre-

sents a subjective criterion for "how clean does one ex-

pect/need one's hands to be". Hand washing was as-

sumed to decrease the actual hand dirtiness by a (arbi-

trary) factor of 0.8. A multiplicative rather than addi-

tive factor was used, to account for the idea that hand 

washing can never yield perfectly clean hands, and that 

the effects of hand washing decrease for cleaner hands. 

The only modeling assumption critical for the results of 

the simulation is that of representing hand washing as 

a sequential Bayesian inference, whereas some of the 

more peripheral assumptions described above could be 

relaxed with no marked effect on the results of the sim-

ulation. 

We now describe the particle filter algorithm used 

for these simulations. In this algorithm, 𝑥𝑡 represents 

the level of hand dirtiness at time t, estimated by a set 

of P particles:  𝑥𝑡
(𝑝)

. At each time t, the weight of each 

particle is denoted by 𝑤𝑡
(𝑝)

. 𝑝𝑤𝑎𝑠ℎ𝑡 corresponds with 

the probability of washing one's hands at time t. The 

model included 3 free parameters. First, b corresponded 

with the ratio of the estimated state uncertainty (�̂�𝑝
2) to 

the actual state uncertainty (𝜎𝑝
2), and it was set to 1 for 
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simulated control subjects, and to 100 to simulated 

OCD patients (see Figure 3A vs 3B, respectively, for 

results). 𝑐 corresponded with the cleanliness criterion, 

and it was set to 5 in all but the 'perfectionism' simula-

tion, where it was set to 1 (see Figure 3A for results).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, 𝛼 corresponds with the skew parameter of 

the skewed normal distribution, and it was set to 0 (cor-

responding to a Gaussian distribution) for all but the 

'affective bias' simulation (see Figure 3B for results). 

1000 particles were used for the simulations. In the al-

gorithm below, asterisks correspond with changes in 

the real world (rather than in the Bayesian estimate 

thereof):

Particle filter algorithm 

1. *(Actual state) 𝒙𝟎 = 𝟏𝟎𝟎 (initial level of dirtiness) 

2. (Initialize) sample P particles from �̂�𝟎
(𝒑)
~𝑵( 𝒙𝟎, 𝟏𝟎𝟎) 

3. For t=1….T 

a. *(Action) 𝒘𝒂𝒔𝒉𝒕~𝑩𝒆𝒓𝒏𝒐𝒖𝒍𝒍𝒊 [𝑷(�̂�𝒕−𝟏
(𝒑)

> 𝒄)] 

 

b. *(Actual state)  {
𝒊𝒇 𝒘𝒂𝒔𝒉𝒕 = 𝟏      𝒔𝒂𝒎𝒑𝒍𝒆 𝒙𝒕~𝑵(𝒙𝒕−𝟏 ∗ 𝟎. 𝟖, 𝝈𝒑

𝟐)

𝒊𝒇 𝒘𝒂𝒔𝒉𝒕 = 𝟎                                      𝒔𝒆𝒕 𝒙𝒕 = 𝒙𝒕−𝟏
  

 

c. *(Observation) sample a random observation from 𝒐𝒕~𝑵(𝒙𝟏, 𝝈𝒐
𝟐) 

 

d.  (Propagate) {
𝒊𝒇 𝒘𝒂𝒔𝒉𝒕 = 𝟏      𝒔𝒂𝒎𝒑𝒍𝒆 �̂�𝒕

(𝒑)
~𝑵(�̂�𝒕−𝟏

(𝒑)
∗ 𝟎. 𝟖, �̂�𝒑

𝟐)

𝒊𝒇 𝒘𝒂𝒔𝒉𝒕 = 𝟎                                      𝒔𝒆𝒕 �̂�𝒕
(𝒑)
= �̂�𝒕−𝟏

(𝒑)
 

with �̂�𝒑
𝟐 = 𝝈𝒑

𝟐 ∗ 𝒃 

 

e. (Weight) Weight particles in accordance with 𝒘𝒕
(𝒑)
~𝑺𝑵(𝒐𝒕, �̂�𝒐

𝟐, 𝜶) 

with ∑𝒘 = 𝟏 

 

f. (Resample) Resample particles �̂�𝒕
(𝒑)

in accordance with 𝒘𝒕
(𝒑)
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The free energy framework 

The free energy framework has been suggested as a 

unified theory of cognition and action, and it can be 

viewed as proposing a specific mathematical frame-

work for conceptualizing and quantifying predictive 

processing in the brain. Interested readers can found de-

tailed theoretical reviews (Friston, 2010), and mathe-

matical tutorials (Bogacz, 2017; Buckley, Kim, 

McGregor, & Seth, 2017) elsewhere. Here we briefly 

describe the very basic mathematical principles relating 

the free energy framework to the  Bayesian brain, and 

predictive coding. 

In most realistic cases Bayesian inference requires 

non-analytic approaches. The particle filter presented 

above is an example of one type of solutions which use 

sampling techniques to approximate Bayesian infer-

ence. Whereas sampling provides asymptotically cor-

rect solutions with infinite sample size, finite samples 

provide an approximation of the exact solution. This 

weak point of sampling techniques has been suggested 

to make it appropriate to explain the often non-optimal 

cognition (Sanborn, 2017).  

Another set of solutions provide tools for Bayesian 

inference in complex scenarios by approximating the 

true posterior distribution by a simpler distribution. 

This class of solutions, called variational Bayes, con-

verts the Bayesian inference problem to an optimiza-

tion problem, focusing on finding the distribution that 

best approximates the true posterior. Specifically, as-

suming the exact Bayesian posterior is: 

 

𝒑(𝒙|𝒐) =
𝒑(𝒙, 𝒐)

𝒑(𝒐)
=

𝒑(𝒐|𝒙)𝒑(𝒙)

∫𝒑(𝒐|𝒙)𝒑(𝒙)𝒅𝒙
. 

(S3) 

 

In variational inference, p(x|o) is approximated by 

another, simpler distribution q(x), with the goal of min-

imizing the dissimilarity between these two distribu-

tions. The most common measure of dissimilarity is the 

Kullback-Leibler divergence, defined as: 

 

𝑲𝑳(𝒒(𝒙), 𝒑(𝒙|𝒐))

= ∫𝒒(𝒙)𝐥𝐧 
𝒒(𝒙)

𝒑(𝒙|𝒐)
𝒅𝒙 

(S4) 

 

Note than when q(x) equals p(x|o), their ratio is 

equal to 1, and its logarithm, as well as the entire ex-

pression is equal to zero.  

Critically, solving the KL divergence is still impos-

sible, because it requires one to know the posterior dis-

tribution, p(x|o). However, one can substitute this term 

by its definition above (Equation S3), which gives: 

𝐾𝐿(𝑞(𝑥), 𝑝(𝑥|𝑜)) = ∫𝑞(𝑥)ln 
𝑞(𝑥)

𝑝(𝑜, 𝑥)
𝑝(𝑜)

𝑑𝑥 

= ∫𝑞(𝑥) ln
𝑞(𝑥)𝑝(𝑜)

𝑝(𝑜, 𝑥)
𝑑𝑥 

= ∫𝑞(𝑥) [ln
𝑞(𝑥)

𝑝(𝑜, 𝑥)
+ ln 𝑝(𝑜)] 𝑑𝑥 

= ∫𝑞(𝑥) ln
𝑞(𝑥)

𝑝(𝑜, 𝑥)
𝑑𝑥 +∫𝑞(𝑥) ln 𝑝(𝑜) 𝑑𝑥 

= ∫𝒒(𝒙) 𝐥𝐧
𝒒(𝒙)

𝒑(𝒐, 𝒙)
𝒅𝒙 + 𝐥𝐧𝒑(𝒐) 

 

(S5) 

 

, where the transitions between the second and third 

lines were based on logarithm product rule; the transi-

tion from the third to the fourth line was based on inte-

gral rules; and the transition from the fourth to the last 

line was based on the fact that ln 𝑝(𝑜) is a constant and 

thus can be pulled out the integral, whereas the integral 

of q(x) is 1, because it is a probability distribution. 

The integral in the last line if Equation S5 is called 

free energy (F), such that Equation S5 can be expressed 

as: 

 

𝑲𝑳(𝒒(𝒙), 𝒑(𝒙|𝒐)) = 𝑭 + 𝐥𝐧𝒑(𝒐). (S6) 

 

Now, recall that our objective here is to minimize 

the KL divergence. Because ln 𝑝(𝑜) is a constant with 

respect to q(x), instead of minimizing the KL we can 

simply minimize the free energy. Thus, in variational 

Bayes, approximate Bayesian inference is done by min-

imizing free energy. This explains why according to the 

free energy framework, the (Bayesian) brain acts to 

minimize free energy. 

Note further that we can rearrange the terms in 

Equation S6, to: 

 

𝑲𝑳(𝒒(𝒙), 𝒑(𝒙|𝒐)) − 𝑭 = 𝐥𝐧𝒑(𝒐). (S7) 

 

 Because the KL divergence is, by definition, al-

ways positive,  the negative free energy is also the 

lower bound for ln 𝑝(𝑜). That means, that: 

 

𝑭 ≥ − 𝐥𝐧𝒑(𝒐). (S8) 
 

Equation S8 also serves a critical role in the free en-

ergy framework, because the term on its right side is 

called surprisal in information theory, and it quantifies 

the extent to which observations are novel to the agent 

(i.e. observations with low probability are most surpris-

ing). This means, that by minimizing free energy one 
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affectively minimizes surprisal. Indeed the key theoret-

ical assumption of the free energy framework is that all 

living organisms strive to minimize surprisal, which ul-

timately stands for staying in the homeostatic bounda-

ries allowing for their existence  (e.g., for a fish, being 

out of the water is a highly surprising observation). 

In terms of cognition, q(x) can be thought of as be-

liefs regarding the true state of the world x. Minimizing 

variational free energy thus minimizes the difference 

between one's beliefs and observed outcomes inter-

preted in light of a probabilistic generative model with 

assumptions regarding how observations and latent 

states covary:  

𝑭 = ∫𝒒(𝒙)[𝐥𝐧𝒒(𝒙) − 𝐥𝐧𝒑(𝒙, 𝒐)]𝒅𝒙

= 𝑬𝒒[𝐥𝐧𝒒(𝒙)

− 𝐥𝐧𝒑(𝒙, 𝒐)] 

(S9) 

 

In active inference, the selection of policies (or ac-

tions) is also assumed to be guided by free energy min-

imization. However, here agents are assumed to strive 

to minimize their expected free energy (rather than the 

current free energy), because this process is assumed to 

occur during planning. Mirroring Equation S9, ex-

pected free energy, given a specific policy 𝜋 can be de-

fined as: 

𝐺 = 𝐸𝑞[ln 𝑞(𝑥|𝜋) − ln 𝑝(𝑥, 𝑜|𝜋)] 

= 𝐸𝑞[ln 𝑞(𝑥|𝜋) − ln 𝑝(𝑥|𝑜, 𝜋) − ln 𝑝(𝑜|𝜋)] 

= 𝑬𝒒[𝐥𝐧𝒒(𝒙|𝝅) − 𝐥𝐧𝒑(𝒙|𝒐, 𝝅)] − 𝑬𝒒[𝐥𝐧𝒑(𝒐|𝝅)] 

 (S10) 

 

Note that the expectation here is with respect to a 

‘posterior predictive’ distribution 𝑞(𝑜, 𝑥|𝜋) =
𝑝(𝑜|𝑥)𝑞(𝑥|𝜋), so that we take expected future obser-

vations into account.   Assuming that the agent's pref-

erences (prior expectation) regarding outcomes do not 

depend on the selected policy, the expected free energy 

becomes: 

 

𝑮(𝝅) = 𝑬𝒒[𝐥𝐧𝒒(𝒙|𝝅) − 𝐥𝐧𝒑(𝒙|𝒐, 𝝅)]⏟                  
𝒆𝒑𝒊𝒔𝒕𝒆𝒎𝒊𝒄 𝒗𝒂𝒍𝒖𝒆

− 𝑬𝒒[𝐥𝐧𝒑(𝒐)]⏟        
𝒆𝒙𝒕𝒓𝒊𝒏𝒔𝒊𝒄 𝒗𝒂𝒍𝒖𝒆

 

≈ −𝐸𝑞[𝐾𝐿(𝑞(𝑥|𝑜, 𝜋), 𝑞(𝑥|𝜋))] − 𝐸𝑞[ln 𝑝(𝑜)] 

= 𝐸𝑞[𝐻[𝑝(𝑜|𝑥)]] − 𝐻[𝑞(𝑜|𝜋)] − 𝐸𝑞[ln 𝑝(𝑜)] 

(S11) 
 

 

This formula weights the epistemic value, and the 

extrinsic value of a policy. The second line shows that, 

if we approximate 𝑝(𝑥|𝑜, 𝜋)𝑞(𝑜|𝜋) ≈ 𝑞(𝑥, 𝑜|𝜋), we 

can rewrite the epistemic value as an expected KL-Di-

vergence (or information gain). The third line rewrites 

epistemic value involving two terms. First, the ex-

pected free energy of a policy decreases as the state 

transitions become more uncertain, as they lead to a 

greater uncertainty about future outcomes, or a greater 

entropy of the predictive distribution 𝑞(𝑜|𝜋). Thus, for 

example, when a certain policy is believed with high 

certainty to bring in a certain state, 𝐻[𝑞(𝑜|𝜋)] is low, 

signaling that following that policy provides less 

knowledge, because there is limited uncertainty to re-

solve. Second, the expected free energy decreases fur-

ther, as the observations are more informative, that is – 

as they disambiguate one's prediction regarding the 

consequences of a policy. The ambiguity associated 

with a given policy may be expressed as the entropy of 

the likelihood (first term on line 3 of Equation S11), as 

this expresses the fidelity with which states map to out-

comes. In sum, policies related with states character-

ized by relatively high state uncertainty and relatively 

low observational noise have a higher epistemic value. 

Finally, the extrinsic value of policies is formalized in 

active inference in accordance with the prior distribu-

tion over observations. That is, desired outcomes are 

defined as observations with high prior probability, 

such that policies expected to result in desired out-

comes have a lower expected free energy. 

 

Generative model for the active inference simula-

tions 

The MDP scheme used in our simulations closely 

resembled the one specified in (Parr & Friston, 2017), 

with the addition of habit learning, represented as the 

prior probability over policies (𝐸(𝜋)), which is learned 

over time. Thus, policy selection is a softmax function 

(𝜎) of these prior beliefs, and the expected free energy 

of each policy (see above), with the inverse temperature 

parameter 𝛾:   

 

𝒑(𝝅) = 𝝈[𝐥𝐧𝑬(𝝅) − 𝜸 ∙ 𝑮(𝝅)]. (S12) 
 

As described above, the expected free energy of a 

policy is a function of beliefs regarding state transitions 

for that policy, beliefs regarding the state-outcome 

mapping, prior preferences regarding outcomes, and 

prior belief regarding the initial state, defined respec-

tively as:  

𝑝(𝑥𝑡+1|𝑥𝑡 , 𝜋) = 𝐶𝑎𝑡(𝐵(𝑢)),           𝑢 = 𝜋(𝑡) 

𝑝(𝑜𝑡|𝑥𝑡) = 𝐶𝑎𝑡(𝐴) 
𝑝(𝑜𝑡) = 𝐶𝑎𝑡(𝐶) 

                       𝒑(𝒙𝟏) = 𝑪𝒂𝒕(𝑫) (S13) 
In the current scheme, the outcome and state space 

are each defined in terms of two factors. That is, the 
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state space is factorized into hidden states defining po-

sition (e.g., where did the agent 'click'), and hidden 

states defining the context (i.e. the correct cue). 

Whereas the transition matrix (B) for position states de-

pends on the action u, the transition matrix for context 

states is defined irrespective of action. Specifically, the 

probability of each context to persist on the next time 

step is parameterized by the parameter b, which is at 

the focus of the current simulations. It is important to 

note that b here refers to the estimated transition uncer-

tainty (i.e. from the agent's perspective). The actual 

probability for state transitions was 0 (with the excep-

tion of one, predefined transition at the reversal trial). 

The outcome space is factorized into two factors: 

exteroceptive outcomes, that are informative about the 

agent's position, and affective (which could be defined 

as interoceptive) outcomes which could be a reward, a 

punishment or a neutral affective outcome. Each hid-

den state (in terms of both position and context) is 

mapped to an outcome. The exteroceptive outcome 

(position) is a deterministic (identity) function of the 

position state, whereas the affective (interoceptive) out-

come is a probabilistic function of the joint position-

context state. Here we assume that the probability for a 

reward, given that the agent has chosen the correct cue 

(e.g., choosing the left cue in the context that the left 

cue is correct), is defined by a, whereas the probability 

of reward for each of incorrect cues is 1-a.  

The D vectors (i.e. initial states) were parameterized 

with Dirichlet priors. The agent beliefs each trial starts 

from the initial/baseline position (position states fac-

tor). In the first trial, the agent has a relatively non-in-

formative (symmetric Dirichlet, with the concentration 

parameter 𝛼 = 4) prior regarding context (context 

states factor), and this belief is updated on each trial, 

based on the generative model and observed outcomes. 

Policies were defined only in terms of position states, 

because the agent had no direct influence on context 

states. Correspondingly, habits were learned only for 

position related policies. Habits were also parameter-

ized in terms of a symmetric Dirichlet prior, where the 

concentration parameter defines the amount of prior 

certainty in a given policy (see Figure 4). Finally, the C 

vector (i.e. preferred outcomes) was set to include pref-

erences for affective outcomes, and no preferences for 

position outcomes (i.e. the agent prefers to get rewards, 

but has no preference regarding its position per se).  

 

Specific generative model for task 1. 

In task 1 there were 4 hidden position states, and 3 

hidden context states. The transition matrix for posi-

tion, for each policy, was defined such that each action 

(in this task policies were of length-1) leads directly to 

the respective position. For example, for policy 'L': 

𝐵𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(′𝐿
′) =

𝑁
𝐿
𝑅
𝑀

   [

0 0
1 1

0 0
1 1

0 0
0 0

0 0
0 0

] 

                                  𝑁 𝐿 𝑅 𝑀 
 

Here, the transitions occur from state represented by 

each column to those represented by rows, with states 

being: neutral/initial position (N), left position (L), 

right position (R), and middle position (M). The transi-

tion matrix for context, independent of action, was de-

fined as (Here L, R and M refer to context and not to 

the agent's position) : 

𝐵𝑐𝑜𝑛𝑡𝑒𝑥𝑡 =
𝐿
𝑅
𝑀

   [

𝑏 0.5 ∗ (1 − 𝑏) 0.5 ∗ (1 − 𝑏)

0.5 ∗ (1 − 𝑏) 𝑏 0.5 ∗ (1 − 𝑏)
0.5 ∗ (1 − 𝑏) 0.5 ∗ (1 − 𝑏) 𝑏

] 

                                      𝐿                      𝑅                     𝑀 

 

The likelihood matrix for position (𝐴𝑒𝑥𝑡𝑒𝑟𝑜𝑐𝑒𝑝𝑡𝑖𝑣𝑒) 

for each context was a simple identity matrix (implying 

a deterministic relationship between position states and 

observed positions). The likelihood matrices for  affec-

tive outcomes prescribe the probability for a reward 

given the position and context states. So for example, 

when the left cue is correct, the likelihood matrix map-

ping position states (columns) to affective outcomes 

(rows) is (note that the ‘L’, in the left term, here refers 

to the context in which the left cue is correct – not to 

the policy ‘choose left cue’, as in the transition matrix 

above): 

𝐴𝑎𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒(′𝐿
′) =

𝑁𝑒𝑢𝑡𝑟𝑎𝑙
𝑅𝑒𝑤𝑎𝑟𝑑

𝑃𝑢𝑛𝑖𝑠ℎ𝑚𝑒𝑛𝑡
   [
1     0    0         0
0 𝑎
0 1 − 𝑎

1 − 𝑎 1 − 𝑎
𝑎 𝑎

] 

                                                       𝑁        𝐿         𝑅        𝑀 
 

Specific generative model for task 2. 

In task 2 there were 4 hidden position states, and 2 

hidden context states. The transition matrix for posi-

tion, for each policy, was defined such that each action 

(in this task policies were of length-2) leads directly to 

the respective position, with the exception of the utili-

tarian cue positions (left/right) being absorbing states, 

such that once entered (in a given trial) the agent stays 

in this position until the end of the policy (see Friston 

et al., 2016). Thus, for example, for policy 'L': 

 

𝐵𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(′𝐿
′) =

𝑁
𝐿
𝑅
𝐶

   [

0 0
1 1

0 0
0 1

0 0
0 0

1 0
0 0

] 

                                  𝑁 𝐿 𝑅 𝐶 
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The transition matrix for context, independent of ac-

tion, was defined as: 

 

𝐵𝑐𝑜𝑛𝑡𝑒𝑥𝑡 =
𝐿
𝑅

   [
𝑏 1 − 𝑏

1 − 𝑏 𝑏
] 

                       𝐿          𝑅 
 

In this task, the exteroceptive likelihood matrix in-

cluded information regarding position, as well as infor-

mation signaling context when the agent was at the 

'checking' (C) position state. So, when the left cue is 

correct, the exteroceptive likelihood matrix is: 

𝐴𝐸𝑥𝑡𝑒𝑟𝑜𝑐𝑒𝑝𝑡𝑖𝑣𝑒(′𝐿′) =

𝑁
𝐿
𝑅

𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = 𝐿
𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = 𝑅

 

[
 
 
 
 
1 0 0 0
0 1 0 0
0
0
0

0
0
0

1
0
0

0
1
0]
 
 
 
 

                                                                                                   

                                                           𝑁 𝐿 𝑅 𝐶 
 

, and when the right cue is correct it becomes: 

𝐴𝐸𝑥𝑡𝑒𝑟𝑜𝑐𝑒𝑝𝑡𝑖𝑣𝑒(′𝑅′) =

𝑁
𝐿
𝑅

𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = 𝐿
𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = 𝑅

 

[
 
 
 
 
1 0 0 0
0 1 0 0
0
0
0

0
0
0

1
0
0

0
0
1]
 
 
 
 

                                                                                               

                                                           𝑁 𝐿 𝑅 𝐶 
 

The likelihood array for affective outcomes de-

scribes the probability for a reward given the position 

and context states. Here the affective outcome of both 

the initial and the checking positions is neutral (defined 

as 0 in the C matrix). So for example, when the left cue 

is correct, the likelihood matrix mapping position states 

(columns) to affective outcomes (rows) is: 

 

𝐴𝑎𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒(′𝐿
′) =

𝑁𝑒𝑢𝑡𝑟𝑎𝑙
𝑅𝑒𝑤𝑎𝑟𝑑

𝑃𝑢𝑛𝑖𝑠ℎ𝑚𝑒𝑛𝑡
   [
1     0    0  1
0 𝑎
0 1 − 𝑎

1 − 𝑎 0
𝑎 0

] 

                                                                       𝑁    𝐿         𝑅     𝐶 

 Note also, that in the second task a was set to 1 

(only deterministic state-outcome contingencies), be-

cause otherwise the outcome of checking behavior 

should also have been defined as probabilistic, adding 

a currently unnecessary level of complexity. 
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