ON THE CONVERGENCE OF STOCHASTIC GRADIENT DESCENT
FOR NONLINEAR ILL-POSED PROBLEMS
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Abstract. In this work, we analyze the regularizing property of stochastic gradient descent for the
numerical solution of a class of nonlinear ill-posed inverse problems in Hilbert spaces. At each step of
the iteration, the method randomly chooses one equation from the nonlinear system to obtain an unbiased
stochastic estimate of the gradient, and then performs a “descent” step with the estimated gradient. It is
a randomized version of the classical Landweber method for nonlinear inverse problems, and it is highly
scalable to the problem size and holds significant potentials for solving large-scale inverse problems. Under
the canonical tangential cone condition, we prove the regularizing property for a priori stopping rules, and
further, establish the convergence rates under suitable sourcewise condition and range invariance condition.
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1. Introduction. This work is concerned with the numerical solution of the system of
nonlinear ill-posed operator equations

(1.1) Fiz)=vyl, i=1,...,n,

where each F; : D(F;) — Y is a nonlinear mapping with its domain D(F;) C X, and X and
Y are Hilbert spaces with inner products (-, -) and norms || - ||, respectively. The number n of
nonlinear equations in (1.1) can potentially be large. The notation y;r € Y denotes the exact
data (corresponding to the reference solution z € X to be defined below). Equivalently,
(1.1) can be rewritten as

(1.2) F(z) =y,

with F: X — Y™ (Y™ denotes the product space Y x --- x Y) and y' € Y defined by

F( 1 Fl(x) d i 1 yI
T) = — and y'=—=| ... |,
Vi \ B () Vit

respectively. The scaling n~% is introduced for the convenience of later discussions. In
practice, we have access only to the noisy data 3° of a noise level § > 0, i.e.,

ly® —y'|| = 0.

Nonlinear inverse problems of the form (1.1) arise naturally in many real-world appli-
cations, especially parameter identifications for partial differential equations, e.g., electrical
impedance tomography and diffuse optical spectroscopy. Due to the ill-posed nature of
problem (1.1), i.e., a solution may not exist and even if it does exist, the solution may
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be nonunique and highly unstable with respect to the perturbation in the noisy data 3°,
regularization is often needed for their stable and accurate numerical solutions, and many ef-
fective techniques have been proposed over the past few decades (see, e.g., [5, 15, 23, 12, 24]).
Among existing techniques, iterative regularization represents a very powerful class of solvers
for problem (1.1), including Landweber method, (regularized) Gauss-Newton method, con-
jugate gradient methods, and Leverberg-Marquardt method etc; see the monographs [15]
and [24] for overviews on iterative regularization methods in Hilbert spaces and Banach
spaces, respectively. In this work, we are interested in the convergence analysis of stochastic
gradient descent (SGD) for problem (1.1) with noisy data y°. The basic version of SGD
reads: given the initial guess x‘ls = x1, uppdate the iterate mi by

where the index iy is drawn uniformly from the index set {1,...,n}, and 7, > 0 is the
corresponding step size. SGD was pioneered by Robbins and Monro in statistical inference
[22] (see the monograph [17] for asymptotic convergence results). It has demonstrated
encouraging numerical results on diffuse optical tomography [2]. Further, a variant of SGD,
i.e., randomized Kaczmarz method (RKM), has been successful in the computed tomography
community [9, 10] with revived interest in linear regression and phase retrieval [25, 27].
Algorithmically, SGD is a randomized version of the classical Landweber method [18]

(1.4) xi+1 = xi - mF’(wi)*(F(mi) - yé)a

which may be obtained from gradient descent applied to the functional

n
(1.5) T@) = SIF@) I = -3 L)~ o

i=1
Compared with the Landweber method, SGD requires only evaluating one randomly se-
lected (nonlinear) equation at each iteration, instead of the whole nonlinear system, which
substantially reduces the computational cost per iteration and enables excellent scalability
to truly massive data sets (i.e., large n), which are increasingly common in practice due to
advances in data acquisition technologies. This highly desirable property has attracted much
recent interest in machine learning, where currently SGD and its variants are the workhorse
for many challenging training tasks involving deep neural networks [32, 26, 16, 1].

Note that due to the ill-posed nature of problem (1.1) (in the sense that the minimizer
depends sensitively on the data perturbation), the minimization problem (1.5) is also ill-
posed, and due to the inevitable presence of noise in the observational data y°, the global
minimizer (if it exists at all!) often represents a poor approximation to the exact solution '
and thus is not of interest. The goal of iterative regularization is to iteratively construct an
approximate minimizer that converges to the exact solution 2! as the noise level § — 0%, and
further, to derive convergence rates in terms of §. This is achieved by equipping an iterative
algorithm, e.g., Landweber method or SGD, with an early stopping strategy. Early stopping
allows properly balancing the deleterious effect of the perturbation § and the approximation
error of the iterates for the perturbed data y°, which respectively grows and decreases as the
iteration proceeds. Thus the setting differs greatly from well-posed optimization problems
that are extensively studied in the optimization and machine learning literature.

For a class of nonlinear inverse problems, the Landweber method is relatively well un-
derstood in terms of the regularizing property, since the influential work [8] (see also [20, 30]
for linear inverse problems), and the results were refined and extended in different aspects
[15]. In contrast, the stochastic counterparts, e.g., SGD, remains largely under-explored

2

This manuscript is for review purposes only.



79

83

121
122
123
124
125

for inverse problems, despite their computational appeals. The theoretical analysis of sto-
chastic iterative methods for inverse problems has just started, and some first theoretical
results were obtained in [13, 14] for linear inverse problems. The regularizing property of
SGD for linear inverse problems was proved in [14], by drawing on relevant developments in
statistical learning theory [31, 4, 19], whereas in [13], the preasymptotic convergence behav-
ior of RKM was analyzed. In this work, we study in depth the regularizing property and
convergence rates of SGD for a class of nonlinear inverse problems, under an a priori choice
of the stopping index and standard assumptions on the nonlinear operator F'; see section 2
for further details and discussions. The analysis borrows techniques from the works [14, 8],
i.e., handling iteration noise [14] and coping with the nonlinearity of forward map [8]. To
the best of our knowledge, this work gives a first thorough analysis of SGD for nonlinear
ill-posed inverse problems in the lens of iterative regularization.

There is a vast literature on the convergence of SGD and its variants in optimization and
machine learning; see [1, Section 4] for a comprehensive overview; see also [7] and references
therein for recent results and [6] for recent results in a Hilbert space setting. For general
nonconvex optimization problems, most of the results are concerned with the convergence
in terms of either expected optimality gap or expected norm of its gradient, with respect to
the iteration index k. However, these works focus on well-posed optimization problems, and
the ultimate goal is to find a global minimizer. This differs substantially from the setting of
ill-posed problems, e.g., (1.5). In particular, the existing convergence results of SGD cannot
be applied directly to deduce convergence (and rate) for problem (1.5), due to its least-
squares structure and different assumptions (on the forward map, instead of the objective
functional J; see Remark 2.1 below for further discussions. More closely related to this
work are the works [31, 28, 4, 19] on generalization error in statistical learning. Ying and
Pontil [31] studied an online least-squares gradient descent algorithm in a reproducing kernel
Hilbert space (RKHS), and derived bounds on the generalization error. Lin and Rosasco
[19] analyzed the influence of batch size on the convergence of mini-batch SGD. See also
the recent work [4] on averaged SGD for nonparametric regression in RKHS. There are also
major differences between these interesting works and this study. First, in these prior works,
the noise arises mainly due to finite sampling, whereas for inverse problems, it arises from
imperfect data acquisition process and enters into the data y° directly. Second, the main
focus of these works is to bound the generalization error, instead of error estimates on the
iterate. Third, these prior works analyzed only linear problems (similar to [14]), instead of
nonlinear problems of this work. Nonetheless, our proof strategy of decomposing the mean
squared error into the bias and variance components shares similarity with these works.

Throughout, we denote the iterate for the exact data y' by xj. The notation F}, denotes
the filtration generated by the random indices {é1,...,4t—1} up to the (k — 1)th iteration.
The notation ¢, with or without a subscript, denotes a generic constant, which may differ at
each occurrence, but it is always independent of the noise level  and the iteration number
k. We shall abuse || - || for the operator norm on Y™ and from X to Y (or Y™). The rest
of the paper is organized as follows. In section 2, we state the main results and provide
relevant discussions. Then in section 3 and section 4, we give the proofs on the regularizing
property and convergence rate, respectively. The paper concludes with further discussions
in section 5. In the appendix, we collect some useful inequalities.

2. Main results and discussions. To analyze SGD for nonlinear inverse problems,
suitable conditions are needed. For example, for Tikhonov regularization, both nonlinearity
and source conditions are often employed to derive convergence rates [5, 11, 24, 12]. Below
we make a number of assumptions on the nonlinear operators F; and the reference solution
zT. Since the solution to problem (1.1) may be nonunique, the reference solution ' is taken
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to be the minimum norm solution (with respect to the initial guess 1), which is known to
be unique under Assumption 2.1(ii) below [8].

ASSUMPTION 2.1. The following conditions hold:

(i) The operator F : X — Y™ is continuous, with a continuous and uniformly bounded
Frechét derivative on X.

(ii) There exists an n € (0,%) such that for any z,% € X,

(2.1) |F(z) = F(2) - F'(Z)(z — )| <l F(z) - F(@)]|.

(iii) There are a family of uniformly bounded operators R such that for any v € X,
F!(x) = RLF!(z") and R, = diag(R.) : Y™ — Y, with

IR, — 1| < crllz — 7.

(iv) The source condition holds: there exist some v € (0,3) and w € X such that
et —zy = (F'(a")* F' (z")"w.

The conditions in Assumption 2.1 are standard for analyzing iterative regularization
methods for nonlinear inverse problems [8, 15]. (i) is smilar to the A-smoothness commonly
used in optimization. (ii)—(iii) have been verified for a class of nonlinear inverse problems
[8], e.g., parameter identification for PDEs and nonlinear integral equations. The inequality
(2.1) is often known as tangential cone condition, and it controls the degree of nonlinearity
of the operator F'. Roughly speaking, it requires the map F' be not far from a linear map; see
Lemma 3.1 for the consequences. The fractional power (F'(z!)*F’(2"))” in (iv) is defined
by spectral decomposition (e.g., via Dunford-Taylor integral). Customarily, it represents a
certain smoothness condition on the exact solution x' (relative to the initial guess x1). The
restriction v < % is due to technical reasons. It is worth noting that most results require only
(i)—(ii), especially the convergence of SGD, whereas (iii)—(iv) are only needed for proving
the convergence rate of SGD.

REMARK 2.1. It is instructive to compare Assumption 2.1 with the canoical conditions
for the usual finite-sum optimization:

(2.2) F(z)=n""! Z fi(x).

Clearly problem (1.5) is a special case of (2.2), with the choice f;(z) = ||Fi(z) — y?||*. In
the literature on SGD for problem (2.2), the following two conditions are often adopted

o L-smoothness: ||F'(x) — F'(Z)|| < L||x — Z||

o \-convezity: F(z) > F (&) + (F/(&),z — &) + 3|z — &||%
Under these conditions, various convergence results have been established; see [1, Section 4].

Assumption 2.1(i) imposes boundness and continuity on the derivative F'(u), which

does not imply directly the L-smoothness condition. Nonetheless, the Lipschitz continuity of
F'(u) can be verified for a number of inverse problems, which then implies the L-smoothness
condition. Assumption 2.1(ii) requires the forward map being not too far from a linear map,
and thus one might expect a link with the A-convexity, which, however, seems not evident.
Straightforward computation gives V2J(z) = F'(x)*F'(z) + V2F (2)*(F(x) —y°). First, the
map F is not assumed a priori twice differentiable so that J(x) admits a Hessian V?J(x).
Second, if the Hessian V2F does exist, then Taylor expansion gives

IF(z) = F(z) = F'(2)(z = 2)|| = |5 V2F(@) (@ - 2)* + O(|lz — 2P) || < nll F(z) - F(z)].
4
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Unfortunately it does not imply directly that V2F is small. Further, F'(z)*F'(x) is usually
only positive semidefinitive, since the linearized operator F'(x) is degenerate (e.g. compact)
for most ill-posed inverse problems, so even if V2F(Z) is small, generally one cannot ensure
V2J(z) > 0, i.e., the convexity. In sum, (2.1) does not imply the \-convexity condition.
Thus Assumption 2.1 is not directly comparable with standard assumptions for SGD, and
the convergence results in [1] cannot be applied directly.

We also need suitable assumptions on the step size schedule {7 }72 ;. The choice is viable
since max; sup,¢ x ||Fy (z)| < oo, by Assumption 2.1(i). The choice in Assumption 2.2(i) is
more general than (ii). The latter choice is often known as a polynomially decaying step
size schedule in the literature.

ASSUMPTION 2.2. The step sizes {ng}r>1 satisfy one of the following conditions.
(i) i max; sup,e x | Ff(2)[|* < 1 and 35,2 ni = oo.

(ii) mk = nok™, with a € (0,1) and no < (max; sup,¢ x ||F/(z)[|*)~*.

Due to the random choice of the index i, the SGD iterate xi is random. There are
several different ways to measure the convergence. We shall employ the mean squared norm
defined by E[||-||?], where the expectation E[-] is with respect to the filtration F. Clearly, the
iterate x§ is measurable with respect to Fj. The first result gives the regularizing property
of SGD for problem (1.1) under a priori parameter choice. The notation N (-) denotes the
kernel of a linear operator.

THEOREM 2.1 (convergence for noisy data). Let Assumption 2.1(i)-(4) and Assump-
tion 2.2(i) be fulfilled. If the stopping index k(6) € N satisfies lims_o+ k(§) = oo and
limg_, o+ 02 ngf n; = 0, then there exists a solution x* € X to problem (1.1) such that

lim E[||2?s — 2*]|?] = 0.
Jim Ell|z5 ) — 2] = 0
Further, if N(F'(z")) ¢ N(F'(z)), then

lim E[||«$4 — =[] = 0.
Jim Elad — ')

REMARK 2.2. The conditions on k(&) in Theorem 2.1 are identical with that for the
Landweber method [8, Theorem 2.4]. Note that consistency does not require a monotonically
decreasing step size schedule, and holds for a constant step size.

Next we make an assumption on the nonlinearity of the operator F' in a stochastic sense.

ASSUMPTION 2.3. There exist some 6 € (0,1] and cg > 0 such that for any function
G:X = Y" and z =tz + (1 — t)z', t € [0,1], there hold

E[|(I - R.,)G(x2)|%)? < crE[l|z) — 2P| E[|G(22)%)?,
E[|(I - R:)G()|%? < crEll|z] — «t |22 E[|G(2])]?]%.

Assumption 2.3 is a stochastic version of Assumption 2.1(iii), and strengthens the cor-
responding estimate in the sense of expectation. The case § = 0 follows trivially from
Assumption 2.1(iii), by the boundedness of the operator R,, whereas with § = 1, it recovers
the latter when specialized to a Dirac measure. It will play a role in the convergence rate
analysis, by taking G(z) = F(z)—y° and G(z) = F'(2")(z—2") (see the proofs in Lemma 4.1
and Lemma 4.6), and it enables bounding the terms involving conditional dependence.

The next result gives a convergence rate under a priori parameter choice, i.e., bound on

the error ei = xi — ', in terms of § and k etc. The notation [-] denotes taking the integral
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part of a real number, provided that ||F'(z")*F’(2")|| < 1 and 5y < 1. The assumptions in
Theorem 2.2 are identical with that for the Landweber method [8], except Assumption 2.3.
The strategy of the error analysis is to split the mean squared error E[||e?||?] using bias-
variance decomposition: with bias ||E[e]||* and variance E[||e§ — E[e]|?],

(2.3) Elllexl*) = IE[]]® +Ellleg — E[eR]||).

The former contains the approximation error and data error, whereas the latter arises from
the random choice of the index i;. Due to the nonlinearity of the operator F', the two terms
interact with each other (and also E[||F’(x")el||?]); see Theorem 4.4 and Theorem 4.7. This
leads to a coupled system of recursive inequalities for E[||ed|?] and E[||F’(z")e %], and
thus the analysis differs substantially from that for linear inverse problems in [14] and the
Landweber method for nonlinear inverse problems [8].

THEOREM 2.2. Let Assumption 2.1, Assumption 2.2(ii) and Assumption 2.3 be fulfilled
with ||lw|| and no being sufficiently small, and 2 be the SGD iterate defined in (1.3). Then

forallk <k* = [(H%”)_@VH?U*M] and small € € (0,5), there hold

E[”eg'P] < C*k—min(2u(1—a),a—e)Hw”2 and E[||F’(xT)ei||2] §C*k_min((1+2y)(l_a)’1_€)||’w||2,

where the constant c¢* depends on v, «, ng, n and 0, but is independent of k and 6.

REMARK 2.3. When « € (0,1) is close to 1, setting k = k* gives

Elle). 2] < ¢ |lwl|=F 625 and E[|F'(z1)e. 2] < ¢ ||w|| T 675

These rates are comparable with that for the Landweber method for nonlinear inverse prob-
lems [8, Theorem 3.2 ] and SGD for linear inverse problems [1/, Theorem 2.2]. The restric-
tion O(k_(“_e)) is due to the computational variance arising from the random index iy, and
for small o, the convergence rate may suffer from a loss. It is noteworthy that for v > 1/2,
the convergence rate is suboptimal, just as the classical Landweber method, and thus SGD
may suffer from a saturation phenomenon. It is an interesting open question to remove the
saturation phenomenon.

REMARK 2.4. In practice, the domain D(F) C X is often not the whole space X, es-
pecially for parameter identifications for PDEs, where box constraints arise naturally due
to physical constraints. When the domain D(F) C X is a closed convex set, e.g., box con-
straints, it can be incorporated into the algorithm by a projection operator P [29], i.e.,

é § d\* § 8
Tpyr1 = P(xy, — nkF{,c (xp)" (Fiy (23) — yzk))
Howewver, the presence of the projection P significantly complicates the analysis. The exten-

ston to the constrained case is an interesting open question.

3. Convergence of SGD. Now we analyze the convergence of SGD, and give the
proof of Theorem 2.1. We first recall a useful characterization of an exact solution z* [8,
Proposition 2.1].

LEMMA 3.1. The following statements hold under Assumption 2.1(i)-(ii).
(i) The following upper and lower bounds hold:

T 1F @)@ = D) < |F(2) - F@)| < =1 (2)(z - 2)].

(ii) If x* is a solution of problem (1.1), then any other solution T* satisfies x* — &* €
N(F'(x*)), and vice versa.

This manuscript is for review purposes only.



250 The next result gives a crucial monotonicity result of the mean squared error.

251 PROPOSITION 3.1. Under Assumption 2.1(i)-(ii) and Assumption 2.2(i), for any solu-
252 tion x* to problem (1.1), there holds
253 Ella* = af 1 [1”) = Elllz* — 22*] < = (1 = 2n)mE[|F(23) — 4°[1%]
1
384 + 2 (1 + m)SE[|F(2}) — y°[1%]=.
256 Proof. Completing the square using the definition of the iterate xi in (1.3) gives
. * ) * &
257 lz* = @ |I* = ™ — 23|
358 = — 2 (F], () (@} — &), By (23) — w3, ) + 0| B, ()" (B (22) — w3, )IIP.

260 Using the splitting Fj, (xz)(xi —z*) = (Fi, (xi) — yfk) + (yfk — yJr ) + (y;rk - F, (:ri) —

ik

261 F) (2)(z* — 22)), by the condition n||F} (2)||* <1 in Assumption 2.2(i), we obtain

262 &% — 2f g 12 = l|l2* — 2 ||

263 = — 21 (Fy () — iy, Fip () — 93, ) + R |, ()" (P (22) — w3 11?
264 — 2y, — y;rka Fi () —v3,)

265 - 277k<y;rk — Fy, () = F (a3) (2" — 23), Fy, () — y0.)

266 < — i (Fi, (Cﬂi) - yfka F;, (xi) - y?,) - 277k<y§5k - Z/jkaik (xi) - yi&k>
368 — 20k (), — Fu(2) — F, (@) (" — 2), Fiy (2) — 03,).

269 Next, by the measurability of xj with respect to Fj, Cauchy-Schwarz inequality and As-
270 sumption 2.1(i), we have

271 Eflz* — 2411 — lla* — a1 Fi)
272 < —mllF(3) = y°I° = 20(y® =y, F(23) —¢°)
273 =20 (y" — F(a}) — F'(ap) (2" —a7), F(}) —¢°)
274 < =l Fap) = 117 + 2m 0l F(22) — || + 2menl| F(2) =y F(27) — |l
378 <l F(23) = ° (20 = DIIF(22) = y°l| +2(1 +n)d).
277 Last, taking full conditional yields the desired assertion ]
278 Below we analyze the convergence of SGD for exact and noisy data separately.
279 3.1. Convergence for exact data. The next result is direct from Proposition 3.1.
280 COROLLARY 3.2. Let Assumption 2.1(i)-(ii) and Assumption 2.2(i) be fulfilled. Then
281 for the exact data y', any solution x* to problem (1.1) satisfies
282 Ell|lz* =z |®] = Ellla* — zxl*] < (1 = 2m)mE[| F(a) — y'[1%],
oo
283 D mE[IF () — y'|7] < g lla™ — .
284 k=1
285 REMARK 3.1. Corollary 3.2 shows that the mean squared error E[||xy — z*||?] is mono-

286 tomically decreasing, but the mean squared residual E[|F(xy) — y'||?] is not necessarily so.
287 The latter reflects the fact that the estimated gradient is not guaranteed to be descent.
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The next result shows that the sequence {zx}r>1 is a Cauchy sequence.

LEMMA 3.3. Under Assumption 2.1(i)-(it) and Assumption 2.2(i), for the exact data
y', the sequence {zy}r>1 generated by SGD (1.3) is a Cauchy sequence.

Proof. The argument below follows closely [8, Theorem 2.3], which can be traced back
to [21]. Let z* be any solution to problem (1.1), and let e := xy — z*. By Corollary 3.2,
E[||ex ||?] is monotonically decreasing to some € > 0. Next we show that the sequence {x }r>1
is actually a Cauchy sequence. First we note that E[(-,-)] defines an inner product. For any
j >k, choose an index ¢ with j > ¢ > k such that

(3.1) Elly' — F(zo)lI’] <Ellly" — F(z)|?], ¥k <i<j.
By the inequality E[||e; — ex||?]? < E[|le; — es||?]% + E[|les — ex][?]7 and the identities

Ellle; — eell’] = 2E[(e¢ — e;, ee)] + Ellle; 1] — Efllee]”],

(3.2) ) 5 5
Elllec — exll"] = 2E[(er — ex;, e0)] + Elllex[|"] — Efl|ec]|"],

it suffices to prove that both E[|le; — e/||?] and E[||e; — ex||?] tend to zero as k — oo. For
k — oo, the last two terms on each of the right-hand side of (3.2) tend to e — e = 0, by
the monotone convergence of E[||ex||?] to €, cf. Corollary 3.2. Next we show that the term
E[(es — ex, e¢)] also tends to zero as k — oco. Actually, by the definition of zy, we have

-1 £—1
eo—er =Y (eip1—e) =Y miF (2:)" (] — Fi,(x:)).
i=k 1=k

By triangle inequality and Cauchy-Schwarz inequality, we have

-1
E[(er — ex, en)]] < mlBUF, (2:)*(u], = Fi (1)), e0)|
i=k
—1
=Y nilElyl, — F (@), Ff () (@" — 21 + 25 — 20))|
i=k
£—1
=Y nilBly" = F(:), F' () (@ — @i + 2 — 20))|
i=k
! 1 1
< niE[lly" = Fa) |P)ZE[|F (z:) (2" — :)]*)2
i=k
! 1 1
+ > nElly" = F(a)P]ZE[| F' (2:) (2; — 20)|%)7 =T+ 1L
i=k

By Assumption 2.1(ii) and Lemma 3.1(i), we bound the first term I by
-1
1 . 1
1< (1+n) ) nElly! = F(a:)[P)2E[| F(z*) = F(a:)|)2
i=k

-1
= (1+n) Y _nEllyt = F)]?)-
i=k

8
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Likewise, we bound the term II by triangle inequality and the choice of ¢ in (3.1) as:

-1

< (14n) Y mElly’ = F(a) P2 E[I(F(xe) —yh) + (v = F(a))|*)2

i=k

-1
2(1+n) > mEllly" - F(x:)]?)-
i=k

The last two estimates together imply |E[(e; — e, e)]] < 3(1 +1) Zf;,i nE[lly" — F(z:)|?.
Similarly, one can deduce E[(e; — eg, e0)]| < 3(1 + )Z2 —, mE[lly" — F(x;)|[?]. These two
estimates and Corollary 3.2 imply that the right-hand sides of (3.2) tend to zero as k — oc.
Hence both {ej}r>1 and {x;}r>1 are Cauchy sequences. |

LEMMA 3.4. Under Assumption 2.1(i)-(i1) and Assumption 2.2 (i), there holds
lim E[||F(zr) - y'[*] =0
k—o0

Proof. Lemma 3.3 implies that {zy}r>1 is a Cauchy sequence. By Assumption 2.2(i),
sup,cx [|[F'(z)|| < ¢ for some cp > 0. Further, for any z,Z € X, there holds

1F(z) = F@)I < @ =m) 7 F @)z = )| < ep(l—n) " |lo - 2.

Thus, {F(zx) — y'}x>1 is a Cauchy sequence, and E[||F(xx) — y'||?] converges. Now we
proceed by contradiction, and assume that limy_, E[||[F(zx) — y'||?] > 0. Then there
exist some € > 0 and k* € N, such that E[||F(z;) — y'||?] > € for all k£ > k*. Hence, by
Assumption 2.2(i),

ZﬂkE 1 (zx) = y'|%] Z mE[| F(xx) —y'|%] Z U
k=1 k=k* k="

which contradicts the inequality Y po , miE[||F(2x) — y||*] < oo from Corollary 3.2. n]

Now we can state the convergence of SGD for the exact data y. Below z denotes the
unique solution to problem (1.1) of minimal distance to x.

THEOREM 3.5 (Convergence for exact data). Let Assumption 2.1(i)-(ii) and Assump-
tion 2.2(i) be fulfilled. Then for the evact data y', the sequence {xy}r>1 generated by SGD
converges to a solution x* of problem (1.1):

lim E[||zx —2**] = 0.
k—o0

Further, if N(F'(z1)) ¢ N(F'(x)), then
lim E[||z —zf||?] = 0.
k—o0

Proof. Since {xj}r>1 is a Cauchy sequence, it has a limit, denoted by z*. Further, «*
is a solution, since by Lemma 3.4, the mean squared residual E[||y" — F(x)||%] converges
to zero as k — oo. Note that problem (1.1) has a unique solution of minimal distance to
the initial guess x; that satisfies 2t — z; € N (F'(z"))*; see Lemma 3.1. If N(F'(z1)) C
N(F'(xy,)) for all k = 1,2,..., then clearly, z, — 1 € N(F'(z")*, k = 1,2,.... Hence,
ot —o* =2t — 2 + 2y — 2* € N(F'(21))*. This and Lemma 3.1 imply 2* = 2. d

9

This manuscript is for review purposes only.



348
349

w W
ot Ot Ot Ot Ut

SERIURE R

w w W

w W
(AL
D Ot

o
3

w
S S
co

O

360

382

385
386

387

388

REMARK 3.2. Theorem 3.5 does mot impose any constraint on the step size schedule
{nk}32, directly, apart from the fact that it should not decay too fast to zero. In particular,
it can be taken to be a constant step size. This result slightly improves that in [1/, Theorem
2.1], where a decreasing step size is required (for linear inverse problems). The improvement
is achieved by exploiting the quadratic structure of the functional J(x) in (1.5) (and the
tangential cone condition in Assumption 2.1(i)), whereas in [1]] the consistency is derived
by means of bias-variance decomposition.

3.2. Convergence for noisy data. The next result gives the stability of the SGD
iterate o), with respect to the noise level § (at § = 0).

LEMMA 3.6. Let Abbumption 2.1(i) be fulfilled. For any fized k € N and any path
(i1y. vy ip— 1) € Fyi, let x and xk be the SGD iterates along the path for exact data y' and
noisy datay respectively. Then

lim E[||z¢ — x||?] = 0.
oJim [l2f — z& 7]

Proof. We prove the assertion by mathematical induction. It holds trivially for k£ = 1.
Now suppose that it holds for all indices up to k and any path in Fi. By the definition, for
any fixed path (i,...,i), we have

1 — T = (@f — an) — e ((F (20)" = F (2n)") (Fy (23) = 97,
+ F, ()" (B (@) = 93,) = (Fa () = y),))-
Thus, by triangle inequality,
(3.3) l2f 1 = @l < Mg = zull + ol F, (22)" = F, () | i (23) = i, |
+mllF, () N (Fi (23) = w5,) = (P (1) — )1
Next we show that for any fixed k, sup(;, ;. ,)ez, |zk is bounded. Indeed, by Assump-
tion 2.1(i), max; sup,ex || F}(x)|| < cp for some c¢p > 0. Then, by Lemma 3.1(i)
2
lznsr = 27| < llx = 2| + mllF, ()" I () =yl | < (L4 miegy) o — 2]
This and an induction argument show that the claim. Similarly,
1 (@) = 95| < I1F @) = Fip (x|l + I1Fs () =yl |+ llyd, =i,
< £ (lad — anll + e — a* ) + 6,

and consequently,

5 B 5 s
k1 = rpall < Nk — il + e (725 (e — zall + llow — 271) + OIF, ()" — F, (2x)" |

+epl| (B (2) = 95,) = (Fiy () =y},

< |2, — @xll + 2nper (525 (25, — zxll + [l —2*[]) +6)
+epl[((Fi(2) = 93,) = (Fi(2x) =yl ),

This and mathematical induction shows that for any fixed k, sup, ;. .)ez, 22 — o

is uniformly bounded. Let ¢ = sup(i17.‘_’ik71)efk(||xi — k|| + ||lxx — x*||) + 6. Then it
follows from (3.3) that

. ) _ : o 2 . / I\ _ ot *
Jim g — @il < lim 2wl em Jim ([ ()~ F (a)° ]

10
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+or lim ||(F, (@) = y5) = (Fo(@r) =yl
Then the desired assertion follows from the continuity of the operators F; and F] in As-
sumption 2.1(i), the induction hypothesis, and taking full expectation. |
Now we can prove Theorem 2.1 on the regularizing property of SGD.

Proof of Theorem 2.1. Let {d,,}n>1 C R be a sequence converging to zero, and y,, := yon
a corresponding sequence of noisy data. For each pair (,,yn), we denote by k, = k(d,)
the stopping index. Further, we may assume that k,, increases strictly monotonically with
n. By Proposition 3.1 and Young’s inequality 2ab < ea? + ¢ 'b%, with the choice a =
E[||F(x2) — ¥O12)2, b= (1+n)d and e =1 — 21 > 0:

Ellla* - 341 [1%) = Elllz” — 23]*) < — (1 — 20)mE[||F(23) — 4°|1%)

1 1+ n)?
oL+ )E(IFD) — 77} < ST 52

1-2n

Then for any m < n, summing the inequality with § = §,, from k,, to k, — 1 and applying
triangle inequality lead to

. o 1+n
Ellzyr — 2*|°] < E[llay» — 2*||°] + ———d2 Z nj

. 1+77
?] + 2E[||w,, — =*|1] + Z

< 2E[||zyn, — ax

By Theorem 3.5, we can fix a large m so that the term E[||zy, — z*||?] is sufficiently
small. Since the index k,, is fixed, we may apply Lemma 3.6 to conclude that the term
IE[Hxi’:n — a1, ]|?] tends to zero as n — oo. The last term also tends to zero under the

condition lim,, s 02 Zf;l 1; = 0. This completes the proof of the first assertion. The case
N(F'(z")) € N(F'(z)) follows similarly as Theorem 3.5. 0

4. Convergence rates. Now we prove convergence rates for SGD under Assump-
tion 2.1, Assumption 2.2(ii) and Assumption 2.3; see Theorem 4.8 and Theorem 2.2 for the
results for exact and noisy data, respectively. We employ some shorthand notation. Let

K n
1
K,=F(z), K=-——= : d B=K'K=-) KK,
e, n LYK

Further, we frequently adopt the shorthand notation
k

(4.1) II(B) = H(I n:B),
i=j
with the convention Hf(B) =1 for j >k, and for s > 0 and j € N, we define,
§=s+3 and ¢ =BT, (B

The rest of this section is organized as follows. By bias variance decomposition, we first
derive two important recursions for the mean || B*E[e{]|| and variance E[||B* (el — E[e2])|1?],
for any s > 0, in subsection 4.1 and subsection 4.2, respectively, and then use the recursions
to derive convergence rates under a priori parameter choice in subsection 4.3.

11
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4.1. Recursion on the bias. First, we derive a recursion on the bias of the SGD

iterate xi. The following bound on the linearization error is useful.

LEMMA 4.1. Under Assumption 2.1(iii), there holds
IF(z) = F(a') = K(z — 2| < | K (e —ab)|[|lz — T

Further, under Assumption 2.3, there holds

1 c 1 )
E[|F(z}) = F(a') = K (2} —a")?)? < SHE[IK (2}, — ")) 2Ef|2g — 27?2

Proof. Let z; = tx + (1 — t)x. By the mean value theorem and Assumption 2.1(iii),

|F(z) - F(a") - K(z - )] < | / (F'(2) - K)(x — 2t

1
CR
S/O I(R:, — DE(x —at)||dt < - 1K (z — )}z — |-

This shows the first estimate. Similarly, using Assumption 2.1(iii) and Assumption 2.3 with

the choice G(x) = K(x — zT), we obtain

1
E[|F(2}) - F(a') - K (2} —2")|")2 S/O E[|(R., — DK (2}, —2")|I") 2t

1
1 9 CR 1 0
<crE[|| K (2}, — 2")|’]2 /0 E[||z — 2'|*)2dt < T+ QE[IIK(xi — D) |PI2E[||2), — =T||*]=.

This completes the proof of the lemma.
5 —

|

The next result gives a useful representation of the mean E[el] of the error e} = 29 —zf.

LEMMA 4.2. Under Assumption 2.1(iii), the error e} satisfies

k
Ele} 1] = I} (B)er + Z L (B (—(y" = y°) +Elvy]),

with the vector vy, € Y™ given by

(4.2) ve = —(F(a}) = F(ah) = K(a} — ") + (I = R} (F(}) — ).

Proof. The definition of the SGD iterate # in (1.3) and the relation F (z9)* =

(R;ki F (ah) = K, R;’“i* from Assumption 2.1(iii) directly imply

i =€) — MK K (2] — ab) = e K (ul, = 2)) + e K vk
with the random variable v}, ; defined by
(4.3) Vi = —(Fi(p) = Fi(a") = Ki(a} —a") + (I = R (Fi(a}) — 7).
Thus, by the measurability of 9 (and thus € ) with respect to Fy, ]E[eiﬂ\]:k] is given by
Ele} 1| Fi] = (I = meB)e}, — mK* (y" = y°) + me K vy

Then taking full conditional and applying the recursion repeatedly complete the proof.
12
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A55 REMARK 4.1. The term vy, in (4.2) includes both the linearization error (F(x§)—F(z')—
156 K(z§ — 1)) of the nonlinear operator F' and the range invariance of the derivative F'(x) in
457 Assumption 2.1 (ii)—(1ii).
458 The next result gives a useful bound on E[v;].
459 LEMMA 4.3. Under Assumption 2.1(i)-(iii), for v; defined in (4.2), there holds
e 1 1 1 1
160 IELw;]l| < S2RE[||e] 2Bl B2 eS|[)? + crEl[l|e]]*]20.
461 Proof. By the triangle inequality, there holds
Bl < IR ~ Flah) ~ K] — o) + B~ B () )| = L+1

464 The bound on I follows from Lemma 4.1 and Cauchy-Schwarz inequality as
¢ C 1 1
468 1< LE[|e] || Kefl] < LE[lef P12 ]| Ke ]2

467 For the term II, by triangle inequality, Cauchy-Schwarz inequality and Lemma 3.1,

468 IL:= |[E[(I = Rys)(y" = F@i)II < E[I( = Rys)(y° — F(a5))]]

463 < £ E[eI1KeS 1) + crElIeS 18 < Efle]|)2 (L ENKe}]*]2 + crd).

471 Combining these estimates with the identity ||Ke}|| = ||B%e§»|\ gives the assertion. O
472 Last, we bound the error E[e$] in a weighted norm. The cases s = 0 and s = % will be

473 employed in the convergence analysis.

474 THEOREM 4.4. Under Assumption 2.1, for any s > 0, there holds

k
j_— s s+v 5 (3—n)c i 15 1 [ 1
175 |IBUE[alll < 65t lwl + an(bj((2(171)7,;21[4:[”6?”2]2E[HB263’H2]2 + crE[l|ef 1776 + 5)-
A76 j=1
477 Proof. By Lemma 4.2 and triangle inequality,

k

478 IB°Eleg ]Il < T+ nyIl;.
j=1

179 with I = || BSIIf(B) (21 — 27)|| and II; = ||B*TI%, | (B)K*(E[v;] — (y" — ¢°))||. It suffices to
480 bound the terms I and II;. By Assumption 2.1(iv),

483 1= ||B°*II}(B) B w|| < |1} (B) B> [lwl.
483  To bound the terms II;, we have
s * s+ 1
484 1 < ||B°IL 1 (B)K*(E[v;] = (y" = y")|| < 1B 21151 (B)I|(IE[vy]]| + 6.
486 This, Lemma 4.3 and the notation ¢; complete the proof. O
487 REMARK 4.2. The bound on E[el] depends on the variance of the iterate x0 (via the

188 terms like E[||ed||?] etc.), which differs from the linear case [14]. This is one of the com-
189 plications for nonlinear inverse problems. The weighted norm || BEle}]| is useful since the
190 upper bound in Theorem 4.4 involves E[||Bz¢l|?], i.e., s = 1. For linear inverse problems,
191 Ry =1 and cg =0, and the recursion simplifies to || BSE[e) ]| < o5 ||w| + Z?zl 10;936,
492 i.e., the approximation error and data error, respectively.

13
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193 4.2. Recursion on variance. Now we turn to the computational variance E[|| B* (29 —
104 E[22])]|?], which arises from the random index ix. First, we bound on the variance in terms
495  of iteration noises N, and N, o (defined in (4.4) below).

496 LEMMA 4.5. Under Assumption 2.1(iii), for the SGD iterate x3, there holds
k

w07 E[|B* ()41 — Elega DI Z 5 EIN,1 1] +QZZW73¢S¢ E[IN: 1 [HIN; 21}
j=1 =1 j=1

o S S Noal [Nyl

499 i=1j=1
500 with the random variables Nj1 and N; o respectively given by

Nji = (K(2d —at) — K; (2 — 2D)pi,) + (0 =) = (] —90)es,),

501 (4.4)
Nj,2 = _E[Uj] + Uji; Pijs

502 where v, and vy ,; are given in (4.2) and (4.3), and p; = (0,.. .,0,n2,0,.. .,0) denotes the
503 canonical ith Cartesian basis vector in R™ scaled by nz.

504 Proof. Similar to the proof of Lemma 4.2, we rewrite the SGD iteration (1.3) as
505 (4.9) 2y = @), — K Ko (@ — 2T) = meKG (yl, — vh) + e onas

506 with vy, ; defined in (4.3). By the definition of vy, in (4.2) and the measurability of 2 with
507 respect to Fy, we obtain

308 Bl 1| P = o — meB(aj, — 27) — e K (y" = 4°) + Koy
510 Taking full conditional yields

513 (4.6) E[xiﬂ] = E[z}] — miBE[z) — 2'] — e K* (y' — 4°) + ne K *Eluy,).
513 Thus, subtracting (4.6) from (4.5) shows that zj, := 20 — E[z}] satisfies

51 (47 i1 = (I — i B) 2k + ne My,

516 with z; = 0 and the iteration noise M; given by M; = M; 1 + M; 2, where

o M = (B(a —2') = K K, (2] — ah) + (K" (y" = °) = K7 (], —92)),
p18 Mjz = —(K*E[v;] — K} vj,)-

520 Repeatedly applying the recursion (4.7) with z; = 0 leads to

521 2o = Y TTE, (B)M;

522 With the decomposition of M; = M; 1 + M, 2, we directly obtain

w5 ElBaal?) = Y me BB, (B)Mi., BT, (B)M;.1)]
i=1 j=1
14
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k k
+23 > BB, (B)M; 1, B'TIY,  (B)M; 5)]

=1 j=1

k k
ZanjEKBSHfH(B)MmB 115, 1 (B)Mj2)] == 1+ 11 + 1L
i=1 j=1

Below we simplify the three terms. Since x? is measurable with respect to JF;, we have

E[M;1|F;] = 0, which directly implies the independence E[(B*M, 1,B°M,1)] = 0, i # j.
Indeed, for i > j, EKBSMLMBSM]‘JH.FIL] = <BSE[M1‘71 i],BSMj71> = 0, and taking full
conditional yields the claim. Thus, the term I simplifies to

I= Zn [1B°IL5 1 (B) M ||?].
Further, for ¢ > j, a similar argument yields E[(B°M, 1, B*M; 2)] = 0 and thus

=2 nnE[(B T}, M1, BT, M;5)].

i=1 j=i

Now we further simplify M;; and M;,. By the definitions of N;; and N; o, with (K*)f
being the pseudoinverse of K*, we have (K*)TM; = N; 1+ N; 2. Thus, by triangle inequality,

S

E[|B* 2]’ <Y mJE(I B 215 (B)|*| Ny |)

+ 233 ml| B I (B) 1B 210 (B)[BL| Ni || N2 ]

i=1 j—i

+ ZZ%IIB%HM( B 2115 (B)IIE]| N2 |V,

i=1 j=1

2]

This completes the proof of the lemma. 0
The next result bounds the iteration noises N; 1 and NN .

LEMMA 4.6. Under Assumption 2.1(i)-(iii) and Assumption 2.3, for N;1 and N;o de-
fined in (4.4), there hold

N
m\»—A

n (E[||B2e|)2 +9),
c 2] 1 1
(ESTEBE] B2 €S |) + crd)El[e} 7).

(4.8) E[|| ;1%
(4.9) E[||N; 2|l 1% <n

Nl

Proof. By the measurability of x? with respect to F;, we have E[K; (37:;S —al)i, | F;] =
K (x? — z1). Then by bias-variance decomposition, we have

E[l|(K (5 — at) = Ki, (25 — a)ei,)IP1F5] < B[ K, (2 — 2y, |1°[ 5]

i

=n"" Z 13 (25 — 2D = nl| K (5 - 2")?,
i=1

15
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585
586
587
588

and then by taking full expectation, we obtain

E[J|( (22 — at) — Ki, (20 — 2)py, )27 < n2E[|| K (af — 2T)]?)2

Similarly, E[||(y" — ¢°) — (yj] - yfj)goij |2]2 < nz4. This and triangle inequality show the
estimate (4.8). Similarly, by the measurability of x? with respect to F; and bias variance
decomposition, we deduce (with Ex; denoting taking expectation in F})

El(Elv;] = vji,0:,) 1] <Ex,[Elllv.q, 01,1171 F51] = nEl]lv; 1),

ie., E[||[(Elv;] — Uj’ijgoij)Hg]% < n%E[||vj||2]%. Then by triangle inequality, Assumption 2.3
and Lemma 4.1,

Ellv[I*)* < E(I(F () — F(a') = K (2§ —2)[*1F +E[I(I - Ryo)(F(a5) —4")*]2
< SB[ Ke|PPE[[e]]%)F + cr(LE[| Kl + 0)E[ed]?]?

= (SR Kel[?]2 + crd)E[[l€]1?]%.

This completes the proof of the lemma. 0

REMARK 4.3. Note that the convergence analysis in [14] relies on the independence
E[(B°M;, B°M;)] = 0 for j # . This identity is no longer valid for nonlinear inverse
problems, although it still holds for the linear part M;1: E[(B°M;j., B*M;1)] =0 for j # L.
The conditional dependence among the iteration noises M; o poses one big challenge to the
convergence analysis, and the splitting of the conditionally dependent and independent com-
ponents will plays a role in the analysis below. Assumption 2.3 is to compensate the condi-
tional dependence.

REMARK 4.4. The constants in Lemma 4.6 involve an unpleasant dependence on n as
1

nz, due to the variance inflation of the estimated gradient. It can be reduced by various
stmtegzes, e.g., mini-batch or variance reduction.

Last, we give a bound on the variance E[||B*(z — E[z{])||?]. This result will play an
important role in the error analysis in subsection 4.3.

THEOREM 4.7. Let Assumption 2.1(i)—(iii) and Assumption 2.3 be fulfilled. Then for
any s € [0, 3], there holds

k
{15 Blek ] — ok < 36" ENB P + 07

S 48 = c 1 1
+2n§j§jmm¢¢ (1B2 €212 + 8)( B BR[| B2 €3]|2)% + crd)E]ed|2)2

=1 j=1i
2
0 c 1 1
+n(zm (Gorlsml| B eI} + cro)Efle]))#)

Proof. The assertion follows directly from Lemma 4.5 and Lemma 4.6. |

4.3. Convergence rates. This part is devoted to convergence rates analysis of SGD
under Assumption 2.1(ii). We analyze the cases of exact and noisy data separately. For exact
data, the bounds involve constants that are more transparent in terms of their dependence
on various algorithmic parameters. First we analyze the case of exact data yf, and the bound

16
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619

boils down to the approximation error and computational variance. Further, we assume that
|B]| <1 and 1y < 1 below, which can be easily achieved by rescaling the operator F' and
the data y/y°. The analysis relies heavily on various technical estimates in Appendix A,
especially Proposition A.1.

THEOREM 4.8. Let Assumption 2.1, Assumption 2.2(i1) and Assumption 2.3 be fulfilled
with ||w||, @ and ny being sufficiently small. Then the error ey, = xy, — x' satisfies

E[”ek”2] < C*HwHQkfmin(2u(17a),afe), E[||B§6k||2] < C*Hw”Qkfmin((l+2u)(lfoz),lfe)

)

where € € (0, %) is small, and ¢* is independent of k, but depends on «, v, ng, n, and 0.

2
(2+6— W)CR)

Proof. For any s > 0, Theorem 4.4 and Theorem 4.7 give (with ¢y = o=

1 1 2
E[lIB* ek (COZﬂgéf? Eflle; I BB e; ]2 + 65w
(4.10) +znco(znz¢s (1B el )(Zws (1B e 13 le;11%]%)

SR l
+”CO(Z’W (1B e; 71 2E[lle; ] ) +nZnJ 2E[| B e ?).

Jj=1
Under Assumption 2.2(ii), Lemma A.1 and Lemma A.2 directly give
(S + V)s+u < (S + V)eru(l _ a)qus

st E+1 7(1704)(1/+s).
S T L (e e
Note that the function z—s is decreasing in s over the interval [0, 1], and the function 1712_%

is decreasing in « over the interval [0, 1] (and upper bounded by 2). Thus, for 7y < 1 and
any 0 < v,s < £, there holds (with ¢, = 27)

noe”

(4.11) st <, (k+1)"H9i-a),

Let a; = E[||e;]|2] and b; = E[||B2¢;||?]. Since ||B|| < 1, we have ¢ < ¢3 forany 0 <5< s
Then setting s = 0 and s = 1/2 in the recursion (4.10) and applying (4.11) lead to

k
2
Ak+1 <(Co 277]% ;b; + cvllwl|(k + 1)_V(1_a)) +”Z77;2‘(¢f)2b

k
(4.12) +2nco(zm¢§b§)(zm¢jb; ;)+nc0(2m¢;b; N
i=1 j=1 Jj=1

. 14)
brs1 <(co n; Jla;bj2+c,,|\w||(k+ 1)~ (%+v)(1—a)) —|—n( n2(65)2b;
=1 Jj=1
. k
413) + > )+2ncO(zm¢1b2)(Zw}bf i)Wo(Zw}bi of)"

j=1

J=[5]+1

[

with r = min(3 + v, ﬁ) € (3,1). The rest of the proof is to prove

(4.14) ap < *lw]?k™? and by < ¢ |jw|]?k77.
17

This manuscript is for review purposes only.



620

621
622
623
624

625

629

630

631
632

638

639
640

641

642

643

644

645
646

where f = min(2v(1 — «),a — ¢€) and v = min((1 + 2v)(1 — a),1 —¢), and ¢* > 0 is to be
specified. The proof is based on mathematical induction. When k = 1, (4.14) holds trivially
for any large ¢*. Now we assume that (4.14) holds up to the case k, and prove it for the case
k+ 1. Actually, it follows from (4.12) and the induction hypothesis that (with o = ¢*||w||?)

k

1 Bty _

aksr <(co0 D midd i + el + 1) a) +ng§jnj )2
=1

(a15) o+ 2neog™ (ZW )(ZW S e (Lo )
j=1

Next we bound the terms on the right-hand side. By Proposition A.1, we have
k 1
Y méjiF <e(k+1)77 and an i < ekt 1)’
o

with ¢; = 2572 (271 B(L,¢) +1), ¢ = (L —1)(1—a) > 0, and ¢z = 2%59(a~" +2). Then we
derive from (4.15) that

(4.16) art1 < ((cocro+ eol|wl])? + neso + ncocdotts + negeio ) (k +1)7"°

Next we bound by, similarly. It follows from (4.13) (with r = min(3 + v, ﬁ) €(3,1)
and the induction hypothesis that

2
brt1 <(COQZ77J¢1 S pelwl|(k4+1)"GT )(1*@)

j=1
(5]

(4.17) +TLQ(ZT7]2 (95)%577 + Z n;(62)%) 77)

j=15]+1
0 K +08 il +08\ 2
6 e 4 PG oA =4 .
+2ncO91+2(Zm¢}z 2)(an¢}3 2 )+n6391+0(z77j¢j.7 : ) :
i=1 j=1 j=1

By Proposition A.1, there hold

k £

Bty 1 _ _
an(b;j 2 Ak+1)773 Zn 2577 + Z 77] 1257 < ch(k4+1)77
j=1

J=1 i=[%]

(ijmqs}r%)(imw”@ ) < k1) me Ak )73,
i=1 j=1

with & =23(C 420714 1), § = 200 ¥ Ba” 4 1), ¢ =23 (3 ~v - )1 )
4(08)"" 4+ 1) and ¢j =23 (¢"1 4+ 2(#B) " + 1). These estimates and (4.17) yield

(4.18) brs1 < ((cocio + cullw|])? + ncho + 2ncocy 2p115 4 nc2df ot (k +1)77

18
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649 In view of (4.16) and (4.18), upon dividing by p, assertion (4.14) holds if we can show the
650 existence of a ¢* > 0 such that

651 (coclg% + cl,c*fé)2 + neg + ZHCQC%Qg + ’I?,CQC%QG <1,

653 (coc, 0% + cc® 2)% + nch + 2neoc2o® + ne2d2o? < 1.

2—2r

654 Since the constants ¢y and ¢, are proportional to 7y and 7 (with the exponent 1 >
555 2 — 2r > 0), respectively, for sufficiently small 7, there holds nmax(cg,ch) < 1. Now for

656 sufficiently small ||w]|| and large ¢* such that p is small, the above two inequalities hold. This
657 completes the induction step and the proof of the theorem. 0
658 REMARK 4.5. E[||B2ey|?] decays as E[|| Bz ey ||?] < ck—min((+20)A=).1=€) “yhich, fora

659 close to unit, is comparable with that for the Landweber method [8]: | B2 ey < ck~(+2)(=) ]|
660 The factor k=19 limits the fastest possible rate. This restriction arises from the compu-
661 tational variance, due to the random selection of the row index iy, which limits the conver-
662 gence rate B[|lex||?] to O(k=™in(v(1=e).a=))  Thys for order optimality, the largest possible
663 smoothness inder is v = %, beyond which SGD suffers from suboptimality, similar to the
664 Landweber method for nonlinear inverse problems [8]. Further, it shows the impact of the

665  exponent a: a smaller o may restrict the error E|lex]|?] to O(k~(@~9).

666 REMARK 4.6. The exponent « in the step size schedule in Assumption 2.2(ii) enters
667 nto the constant ¢* via the constants c1,...,c} ete, and the constant cq is independent of c.
668 The constants cy, . .., cy blow up either like (1—a)~! as a — 17, according to the well-known

669 asymptotic behavior of the Beta function, or like o™ as o — 0T . These dependencies partly
670  exhibit the delicacy of choosing a proper step size schedule for SGD.

671 REMARK 4.7. We briefly comment on the “smallness” conditions on w, ng and 0 in
672 the analysis. The smallness assumption on w in the source condition in Assumption 2.1 (iv)
673 appears also for the classical Landweber method [8] and the standard Tikhonov regularization
674 [5, 11], and thus it is not surprising. The smallness condition on ng is to control the influence
675 of the computational variance, and in a slightly different context of statistical learning theory,
676 similar conditions also appear in the convergence analysis of variants of SGD. The smallness
677 condition on 0 is only to facilitate the analysis, i.e., a concise form of the constant ¢4, and the
678 assumption can be removed at the expense of a less transparent (but more benign) expression
679  for c; see the proof in Proposition A.1 and also Remark A.1.

680 Last, we prove the main result in this work, i.e., Theorem 2.2, which gives the conver-
681 gence rate of SGD (1.3) for noisy data y°.

682 Proof of Theorem 2.2. The main proof strategy is similar to that of Theorem 4.8. Let
683 a; = E[|[€}]|?] and b; = E[\|B2e‘5|| ]. Then with ¢y = %, repeating the argument of

684 Theorem 4.8 leads to

685 Gesn <(Z%¢ coa?b? + cpa?é + ) + o wl(k + 1)—V<1—a>)2
j=1
o\ 2
686 +nZn] b2+(5 —l—n(Zn](b cob +crd)a f)
Jj=1

k
687 +2n<z b2 +0) )(Z’Wb cob + cgrd)a J%)

P =

19
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k
. 2
688 b1 < ( Z njqb} (coaj% bj% + cRaj%(? +6) + ¢ llwl|(k + 1)*(u+5)(17a))
j=1

689 —‘,—nzn] b2+(5 +n(2nj¢ COb +CR5) g%)Q

j=1

690 +2n<z b2 +6)<Zm¢ cob + crod) ]%)

691 =1

E

692 Like in the proof of Theorem 4.8, the goal is to show
693 (4.19) ar, < clw|?k™? and by < ¢ lw|?k77,

694 forall k < k* = [(”%”)7 e ], with 8 = min(2v(1 —a),a—€) and v = min((1+2v)(1—
695 «),1 —¢), and the constant ¢* > 0 to be specified. By the choice of k*, for any k < k*,

696 (4.20) ks < k) ||y,
697  Now the proof proceeds by mathematical induction. When k = 1, (4.19) holds trivially for

698 any sufficiently large ¢*. Now we assume (4.19) holds up to some k < k*, and prove it for
699 k+1 < k*. Upon substituting the induction hypothesis, with ¢ = ¢*||w||?, we obtain

k
1 Bty 1.8 1) 2
700 agpi1 g(anqb]? (co0j 4 eroti T 04 6) + ollwl|(k+ 1) 0 )>

j=1
k 1
o (421) +nzm (0257% 07 +20( Yo moi (o2 +9))
i=1
o ._08 o ._68\2
702 (anqb cog 7% 4 cpb)o?] 2>+n(ZnJ¢ 002 7% 4 cpd)o?] 2) .
703 =1

704 Next, using Proposition A.2, we obtain
1
705 (4.22) apgr < ((01(609 +(cro? + Dwl)) + cullwl)? + 2n(c20 + es]w]?)
706 +2nc (o} + wll)(coo? + crllwl)o? +nek(coot + erllwl)?e”) (k+1) 77
e

708 with the constants cq, . .., c3 given in Proposition A.2. Similarly, it follows from the induction
709  hypothesis that

k
- 2
10 besn (Y m6h(co0s ™+ enoti B+ 0) + e flwl (k + 1)~ 07w HD)
j=1

k
e (423) +”Zn?(¢>})2(% iy +2n(2m phict +0)

w‘g

2 0 ._68 1_g o ._08\2
712 (Zm (co0® ™% + crd)o?j 2)+”(Z7]j¢]1‘(30923 > +cpd)o?j ) :

713 j=1
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from which and Proposition A.2, it follows that

1
bkt 3((006'19 +es(ere? + Dlwl + evllwl)® + 2n(cho + cslw]f)

(424)  +2n(chod + chllwl)(eocho? + cnchlwl)of +nleochod +encllw]e”) (k+1)7,

with the constants ¢}, ..., c§ given in Proposition A.2. In view of (4.22) and (4.24), for small
|lw]| and ng, repeating the argument for Theorem 4.8 (and noting that ¢1,c2, c3, ¢h tend to
zero as 1y — 07) concludes the existence of a ¢* > 0 such that (4.19) hold. This completes
the induction step and the proof of Theorem 2.2. O

5. Concluding remarks. In this work, we have provided a convergence analysis of
stochastic gradient descent for a class of nonlinear ill-posed inverse problems. The method
employs an unbiased estimate of the gradient, computed from one randomly selected equa-
tion of the nonlinear system, and admits excellent scalability to the problem size. We
proved that it is regularizing under the traditional tangential cone condition with a priori
parameter choice, and also showed a convergence rate under canonical source condition and
range invariance condition (and its stochastic variant), for a polynomially decaying step size
schedule. The analysis combines techniques from both nonlinear regularization theory and
stochastic calculus, and the results extend the existing works [8] and [14].

There are several avenues in both theoretical and practical aspects for further research.
First, it is important to verify the assumptions for concrete nonlinear inverse problems,
especially nonlinearity conditions in Assumption 2.1(ii)—(iii) and Assumption 2.3, for e.g.,
parameter identifications for PDEs, which would justify the usage of SGD. Several important
inverse problems in medical imaging are of the form (1.1), e.g., electrical impedance tomog-
raphy and diffuse optical spectroscopy. These applications often involve natural physical
constraints, e.g., positivity, which the algorithm should be adapted to preserve. Second, the
source condition employed in the work is canonical, and alternative approaches, e.g., varia-
tional inequalities and conditional stability, should also be studied for convergence rates [24],
or the Frechét differentiability of the forward operator in Assumption 2.1 may be relaxed
[3]. Third, the influence of various algorithmic parameters, e.g., mini-batch, random sam-
pling, step size schedules (including adaptive rules) and a posteriori stopping rule, should
be analyzed to provide useful practical guidelines.

Acknowledgements. The authors are grateful to the associate editor, Professor Frank
E. Curtis, and two anonymous referees for helpful comments.

Appendix A. Auxiliary estimates. In this appendix, we collect several auxiliary
inequalities that have been used in the convergence rates analysis. Most estimates follow
from routine but rather tedious computations. We begin with a well known estimate on
operator norms (see, e.g., [19] [14, Lemma A.1]).

LEMMA A.1. For any j < k, and any symmetric and positive semidefinite operator S
and step sizes n; € (0, S| 7] and p > 0, there holds

k
I - ns)sm) < —

i=j (Zf:j i)

Below we need the Beta function B(a,b) = fol 57711 — s)’~'ds for any a,b > 0. Note
that for fixed a, the function B(a,-) is monotonically decreasing,.
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755 LEMMA A.2. Forn; = noj~® with o € (0,1), r € [0,1), 8 € [0,1], and v = oo + 3, the
756 following estimates hold

757 Zm > (1=2"H (1 —a) ok +1)'77,

k-1 ‘
758 knijrj_ﬁ < ,},’é*TB<1 - 1- ,y)kT‘Oé-‘rl—T—’y, e [Oa 1)7’7 < 1a

j=1 (Ze=j+1 7e)

k-1 , 21—k, <1,

759 Yo P < {4k Ik, y=1, +2"% Pk,
760 =1 Lt=j e 29(y - D)7y >,
761 Proof. The first estimate follows from the fact 1 — (k+1)*~! > 1 —2"1 for k > 1 that

k+1
762 Zm 2170/ s %ds=no(1 —a) H((E+ 1) =1)>n(1 —a) 11 =22k 4+ 1)
763 = 1

764 To prove the second estimate, we note n; > nok™* for any ¢ = 5+ 1,...,k and thus
k
765  (A.1) no* Z n; > k~%(k - j).
i=j+1

766  Thus, if y=a+ 8 <1 and r <1,

k—1 ) k—1 k

W S e Y- < e [ s
j=1 (ZZ:j+1 i) j=1 0

768 =y " B(1—r,1 =)k

770 Similarly, if » = 1, it follows from (A.1) that

k—1 k—1
m i<k Y -

j=1 Zé—j+1 Ne j=1

k—1
772 —kaZ] E—j)"t+ k> Z J (k="
J=[51+1

773 <9ko~! Z] T4 2P Z
774 =[5]+1

775 Simple computation gives

k-l [5] (1="'E)', velo,),
776 (A.2) Y (k—j)' <2k and Y i <{ 2k, y=1,
j=[5]+1 i=1 Yy -1, v > 1

777 Combining the last three estimates gives the assertion for the case r = 1.

778 Next we recall two useful estimates.
22
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779

780

781

782

783

788

789
790
791

792

793

794

795

796

797

798

799

802

803
804

LEMMA A.3. Forn; =noj~* with o € (0,1), 5 €[0,1] and r > 0, there hold

[

[Nk

] 2
Z J j -8 < Caﬁ’rk—r(l—u)+max(0,1—2a—,8),
j=1 (Zé =j+1 W)
k—1 .
77] jfﬁ < C;,ﬁﬂlkf((er)omLﬁ)%»max(O,lfr)’

k T
%]_’_1 (Zf:j—‘—l W)

Jj=

where we slightly abuse the notation k= ™00 for Ink, and c, 5, and Co.p. aTE given by

223‘_261, 200+ B > 1, 5, r>1,
Capr=20"¢ 2, 2+ p =1, and ¢, 5, = QRatBpl=r L 2, r=1,

92a+8-1 o or—1

m, 20{+5<1, T r<1.

Proof. The proof is based on (A.1) and (A.2) and essentially given in [14, Lemma A.3],
but the constants are corrected. 0

The next result collects some lengthy estimates needed in the proof of Theorem 4.8.

PROPOSITION A.1l. Let = min(2v(l — a),a —¢), v =min((1 + 2v)(1 — a),1 — €) and
r = min(3 + v, 2(11_;)) Then under the conditions in Theorem 4.8, i.e., |B|| <1, 1m0 <1
and 6 being sufficiently small, with ¢ = (5 — v)(1 — ), the following estimates hold:

k
(A3) S mozi <ei(k+1)7%, an T < ea(k+1)7F
j=1
(%] k k
(Ad) S22+ ST )T <estk+ 1) Y nioliT T <k +1)7F,
J=1 j=151+1 j=1
k k
(A5) (Yo moli=?) (Xomoli ™) <eslh+ 1) Zwl T <ok 1) R
i=1 j=1

1 i
with ¢ = 251 (27 B(4,0)+1), ¢ = 28no(a™142), ¢5 = 2022 (Ba~ 1 41), ¢4 = 23 ((1 4

28714+ 1), 5 =27(((A —v—0v)(1—a)) 1 +4(08) " + 1)2 and cg =27 (¢ +2(08) "1 +1).
Proof. Tt follows from Lemma A.1 and the condition ||B]| <1 that

k—1
e _1 Ui . —a—2
ZWJ¢2 2 2e) 2Zﬁ] > + ok 2
=1 (Zzzl 17¢)2

< (77052_13(%» l—a—3)+no)k = "3,

By the definitions of 8 and 7, we have I’T”‘f% = g, and 1—a—2 > () (1-0a):=¢

Thus, the monotonicity of the Beta function, and the inequality 2k > 7_Ic +1 for k£ > 1 imply
the first inequality of (A.3). Now by Lemma A.l and Lemma A.3,

[N~}

k ) k—1 2_
(A6) S n3(62)%7 < (2¢)7 B = 4 || BE |22
j=1 j=1 Zf:jJrl nj
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806
807

808

814

815
816

817

818

819

824

826

827
828

829

1 2(200+9)
20 +v—1

<o ((26)* k=(1=0) | (9¢)~lol 204 =07 |n | 4 || B ||2/f2a*7).

Now, for any r > 0, there holds
(A.7) s "Ins < (er)”!, Vs>0,

and thus k= VInk = k= %(k~'Ink) < e~ 'k~#. Further, by the definition of v, 2a + v <
min(2,1 +2a) <2, and since e < §, 2a+v— 12> «,

2
(A8) o =1+ gy <l+a”!

Then, the last three estimates (with ||B]] < 1) imply
an )24 *7<2ﬁ770( 1+2)(k+1)*ﬁ

This proves the second inequality in (A.3).
Next, by letting r = min(3 +v, 2(11’601)) € (3,1), and using (A.7) and (A.8), Lemma A.1

and Lemma A.3 and the monotonicity of % for s € [0, 1], the first part of (A.4) follows from

an $;)%577 + Z HC

j=[£]+1
(5]

2
: (2@_1(; 5 S Z

B 22r(2a +'Y) 21+2a+'y
< 2 2r—k,—'y I (a+7) Ink Qk—Qa v < k 1)~

”) + gk
Ze =j+1 77@

7 'H-Gﬁ

and

1 'y+6} and then set o to

Now, we bound the sum Z?:l n; cbjl Jj~7 forany o € [
# to complete the proof. By Lemma A.1 and Lemma A.2, there hold

2a+0 ~k77, a+o<l1,
(A.9) anqb}j_” <e! ka -7 Ink, a+o=1,
' et agon .
k
(A.10) > midiTe < e 2R Ink 4 ok
[5]+1

First, we choose o = BJF'Y By (A.7),since (1—a—3)"'<¢Ha+?<1,|B|<1and
no < 1, we obtain

k
e ._ Bty
TR T I

j=15]+1

H'Mw

K ﬁ
domidyi T
j=1

<203l (1—a-— g)*lk*% 4 olte

+’Y+5

Sl lnk+770k T <eqk+1)"7,

ol
2
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832 due to the inequality gltatfF €2, from the definitions of the exponents 8 and 7. This

833 shows the second inequality of (A.4). Since 0 is small, we may assume 6 < 2*111 —-1<
834 1’7" — 1. Then by the relations y =1—a+ § and 8 < 2v(1 — «), direct computation shows

835 17a7% > (3—v—0v)(1—a) > 0. Further, since § < 1_Ta71, min(%,lfaf%) = %.

836 Hence, it follows from (A.9) and (A.10), with o = 3 and # that

k k J 14+a+2
. 1.2 1._atos 2072 2 2
837 (;m@% 2)<;T}j¢jj 2 >§(e(1—a—%)+ c lnk+1>
a+21to8 14208
838 X (Mk—min(?,l—a—g) —+ Q;k_%lnk—i—k_%)k’_'y
839 ell —a—=—— ¢

210 Then we move one factor k=% from the second bracket to the first and bound by (A.7):

k k a+2L 14+a+2
o 1.2 1‘,L66) ( 2072 2 2 o8 )
841 oy 2 oy 2 < kT Ink+1
(et ) (S ) < (5 it
205 pltot ey
i .
842 X(e(l—a—”+05)+ c k™ lnk+1)kz
2
3 <P(((F—v =01 —a) ™ +468) " + 1) (k+1) 7,
845 proving the first inequality of (A.5). The other estimate in (A.5) follows similarly by choosing
816 0 = 1 and hence omitted. 0
847 REMARK A.1. The proof of Proposition A.1 implies Zf;ll nj(bjl-j_% < (¢CT'42Ink)k 3.

848  The log factor Ink seems not removable, and precludes a direct application of mathemati-
849  cal induction in the proof of Theorem 4.8. The extra factor j_% due to Assumption 2.3
850  gracefully compensates the log factor Ink using (A.7). The smallness condition on 6 can
851 be removed at the expense of less transparent dependence. Specifically, by Lemma A.2, with
852 o =a+ 2% there holds

2
r +08 1 12;0]6_%’ o<1 08 +68
55 ) mdpiT 2 < —=Q 4k 0Dk, o=1 +2"7e kT2 k4 k(P
j=1 ek 20_f~(1-a=3) o>1
854 o—1 )
855 Instead of applying (A.7) directly, we rearrange the terms and discuss the caseso < 1,0 =1
856 and o > 1 separately with the argument in the proof of Proposition A.1 and obtain

k k
857 (Z??i(ﬁ}i_%)(Z??jéﬁ}j_%) <co27(k+1)77,
i=1 j=1

859  with the constant c, given by

(1—0o)" ' +408) 1 +1, o<1,
860 e =18 C1+80p)7+1, o=1,
200—-1)"1+3¢C1+1, o>1.

861
862 The next result gives some basic estimates used in the proof of Theorem 2.2.
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863 PROPOSITION A.2. Under the induction hypothesis of Theorem 2.2 and (4.20), there
864  hold

w6 axen <((ex(eoo + (ere® + Dlfwl) + el + 2n(eze + eslwll?)

866 203 (0% + [lwl]) (oot +exllwl)o? + ned(eoo + exllwl)?e”) (k+ 1)~
1
867 bryr < ((600'19 +c5(cro? + 1)|lwll + e [lwl])® + 2n(cho + es[lw]?)
1 1 0 1 _
% +on(chod + chllwl)eochol + chenlwl)e? + nleocho + henlluwl)?e”) (k+ 1)
870  where the constants c1,ca,c3 and ¢, ..., cy are given in the proof.
871 Proof. First, it follows directly from Lemma A.1, Lemma A.2, and Lemma A.3 and the
872 assumptions ||B|| <1 and ng < 1 that for any o € [0,1 — «),
: 3 5 o—11(1
873 (A.11) > mie2iT <ng(27'B(3 d—a—o0)+ 1)k =7,
j*l
874 (A.12) an 2 <mo(ll —2a] P +a "t +1) i=cy,
875

376 where we have abused the writing 0~! for 1. Meanwhile, by Proposition A.1, we have

ol B

877 (A.13) Zmé "2 <c¢(k+1)"2 and an JTV<c(k4+1)7F

879 with ¢; = 2§n§ (27'B(3,0)+1), ¢ = (3—v)(1—a) and ¢z = 2°n9(a™+2). By (A.11)-(A.13)
880 and the monotonicity of the Beta function, and k + 1 < k* (cf. (4.20)), we obtain

k
1 o4 —
881 > o2 (cooi™ "% + cro?j~ %6 +3) <cocro(k +1)"% + (cro? + Der(k+1)" 770
552 <er(coo+ (cro? + Dwl)(k+1)~%
883 an (07572 +6)% <2(ca0 + csl|w|?)(k +1)~°
884

885 Likewise, by the monotonicity of the Beta function, we deduce

k k
1 1 0
886 (quﬁf (0%i"% + 5)) (meb; (co0®j ™% + CR5)QgJ’*7ﬁ)
i=1 j=1
o 2, 1 1 o -8B
887 <ci(e? + |lwl)(coe? + crllwle? (k+1)77,
k 6 6B 1 2]
888 Znﬂb 002 7% +crd)o?jT < eilcoo® +crlwl)o® (k+1)72
889 J=1

890 The last four estimates give (4.21). Now we prove (4.23). By Proposition A.1, we have

k
843 2 2 - _
891 anqb;j < (k+1)73, Zn] o557 + Z n(¢2)% 77 < h(k+1)77
J=1 J=[5]+1
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892
893

894
895

896
897

898

899

900

903
904

908

909

910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929

k k
(Someli#)(Domeli= ™) < Bk + 1) me Wk +1)E,
i=1 j=1

with o =23(C4 250 4 1), ch =2 Gt 41, ¢ = 28(((3 v - 01— )+

4(08)~1+1) and ¢} = 2% (("1+2(8) "1 +1). Further, by (A.9) and (A.10), for any o € [0, 2],

k
TN Tl < T 2l —a) T+ 1= o
j=1

With these estimates and (4.20), we deduce

~

Bty 1.8
> bk (co0i™ T + cro?i TR0+ 68) <(cocho + chcro? +1)||wl|)(k+1)7F,

k
1o _
> 03 (8))%(025 7% +0)* <2(cho + esl|w]*)(k + 1)
j=1
k
o ._68 ;) 1 / (4 x
> néi(co0?iTF +crd)o?i T <(cocho® + cherlwl)e? (k+1)73,
Jj=1

1
wl-lere the second line is due .to (A.12) and th(-a inequali‘.cy. Z§=1 n%(gb})z < Z?zl 77?((1)5)2
(since ||B|| < 1). Last, repeating the argument in Proposition A.1 gives

M\»—A
I\J

5
ol

(Zm 2 )(Zm (co0®5 ™% + crd)o® s~

1 1 A —
<(ch0? + chllwl)(eocso? + cherwll)o? (k + 1)

)

Then combining the last four estimates yields the desired bound on by 1. 0

T o @m » a =

M.

G.
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