
Efficient Environment Guided Approach for Exploration of Complex
Environments

Daniel Butters1, Emil T. Jonasson2, Robert Stuart-Smith1 and Vijay M. Pawar1,3

Abstract— Remote inspection of a complex environment is a
difficult, time consuming task for human operators to perform.
The need to manually avoid obstacles whilst considering other
performance factors i.e. time taken, joint effort and infor-
mation gained represents significant challenges to continuous
operation. This paper proposes an autonomous robotic solution
for exploration of an unknown, complex environment using a
high DoF robot arm with an eye in hand depth sensor. The
main contribution of this work is a new strategy to find the
next best view by evaluating frontier regions of the map to
maximise coverage, in contrast to many current approaches
which densely sample joint or workspace configurations of the
robot. Multiple utility functions were evaluated that showed
different behaviours. Our results indicated that the presented
algorithm can explore an arbitrary environment efficiently
while optimising various performance criteria based on the
utility function chosen, application constraints and the desires
of the user.

I. INTRODUCTION

For many situations, the task of teleoperating a robot to
inspect an unknown environment is either too difficult or
impractical to work effectively, particularly for continuous
monitoring. Whilst there are a number of real-world scenar-
ios that would benefit from robust autonomous inspection,
the scale and complexity of these applications poses great
challenges for established methods of navigation and data
capture [1].

Inspection subjects can range from search and rescue to
industrial infrastructure, such as a large network of tunnels
or a cluttered nuclear site. Monitoring these environments
presently rely on solutions that involve a human operator. In
situations that are time-critical, these methods often lead to
areas of missing information, and sub-optimal path planning
[2]. When monitoring the health of large scale sites, this
can become a limiting factor, for example when using
a digital twin asset management tool [1] in being able
to anticipate faults and make better decisions that ensure
operational efficiency. By using autonomous robots with
collision aware planning strategies, in this paper we explore
solutions that help maximise mapping coverage whilst also
providing robust solutions to the challenges of operating in a
cluttered environment. We believe these methods will enable

1Authors are members of the Autonomous Manufacturing
Laboratory within the Department of Computer Science,
University College London, Gower Street, WC1E 6BT, UK.
daniel.butters.16@ucl.ac.uk

2Author works at Remote Applications in Challenging Environments
(RACE), UK Atomic Energy Authority, Culham Science Centre, Abingdon,
OX14 3BD, UK. emil.jonasson@ukaea.uk

3 Corresponding Author: v.pawar@ucl.ac.uk

(a) 7 DoF Robot arm and
sensor.

(b) Concept diagram of the algorithm from
a top-down view.

Fig. 1. The hardware used and concept diagram. Sampling the robot
workspace for sensor positions reduces the solution space from 7 to 3
dimensional space.

further research in exploring complex spaces to produce
more complete data sets for better inspection performance.

For a robot to autonomously explore an unknown environ-
ment, it must be able to identify new locations to move to
and acquire new information. As discussed by Yamauchi et
al [3], the over-arching question can be described as “Given
what you know about the world, where should you move to,
to gain as much new information as possible?” Introduced as
frontier-based exploration, their work investigates strategies
that help robots move between known free-space and un-
known space explore the environment. To date, researchers
are beginning to evaluate the effectiveness of these strategies
on real robots. Further, building upon work by Shade et al
[4], in order to develop generalised solutions beyond specific
operating conditions, there is a clear need for methods that
enable robots to: 1) explore efficiently in three dimensions
2) require no prior knowledge of the environment, 3) operate
without infrastructure which might provide pose estimation
(such as fixed camera networks, radio beacons, or pre-placed
markers) 4) be scalable to larger environments.

In this paper, we present a novel approach to collision
aware frontier exploration and demonstrate it working on
a real 7 DoF (degree of freedom) robot. To test the perfor-
mance of our method, we developed an evaluation framework
using a set of complex scenarios, specifically comparable
to environments observed when exploring a nuclear site.
Based upon these results, we highlight the trade-offs in robot
behaviour depending on different priorities of the exploration

strategy employed. In doing so, we extend previous work in
developing autonomous exploration strategies deployed on
high-DoF robot arms. We also further our understanding for
how frontier-based approaches could be used to automate the
monitoring of large scale and complex environments without
human intervention.

II. RELATED WORK

The topic of motion planning for autonomous exploration
has been well studied in recent years. Blaer et al [5] described
an approach for data acquisition in a large environment using
2D next best view planning. For systems with high degrees of
freedom in planning, strategies for exploration are commonly
greedy methods that iteratively determine the next best view.
Yamauchi et al [3] demonstrated the first instance of frontier
based exploration, where this was described as the boundary
between observed and unknown regions.

Vasquez-Gomez et al [6] proposed a method for using
octrees to represent the environment being explored, and
for performing fast visibility computations using hierarchi-
cal raycasting. This was only applied in an environment
mostly free of occlusions or obstacles. Shade et al [4] used
frontier based exploration with a potential vector field to
enable exploration of the environment, but encountered high
computational costs with this method.

Many current approaches evaluate a large number of
robot configurations for their potential information gain. For
example, Paul et al [7] described a method to evaluate
the information gain of a viewpoint by raycasting densely
through the field of view of the sensor. With high DoF sys-
tems, methods that require sampling these configurations can
become computationally expensive. Quin et al [8] extends
this approach by optimising the coverage of the path between
viewpoints. However, this was demonstrated in environments
with limited complex objects or obstacles within the robot
workspace.

The metric used to determine the next best view can
vary between different approaches. An algorithm which
used utility functions for choosing next best views with
a high DoF arm was proposed by Vasquez-Gomez et al
[9], demonstrated in an environment with no obstacles. An
approach to surface exploration by continually optimising the
coverage of the surface by an MAV in motion was proposed
by Song et al [10]. This was demonstrated in simulated
environments where obstacles were sparse. An approach
which combined space exploration and object recognition
tasks by using different metrics for each objective was
proposed by Friedrich et al [11], however this was operated
over a small area with very simple obstacles and a low DoF
robot arm.

The application of exploration in hazardous, particularly
nuclear environments was explored by Nagatani et al [12],
however this was a teleoperated robot.

Compared to the state of the art, this paper demonstrates
a system that uses frontier based exploration with adap-
tively scaled raycasting to quickly determine the visibility of
unknown areas of the map. The raycasting was performed

from frontier voxels to the robot workspace to determine
visibility given the constraints of the robot. The next best
view was then chosen by ranking the visible voxels using
one of several utility functions. Unlike other studies to our
knowledge, this algorithm was tested in environments with
dense obstacles and many occlusions in order to show how
the algorithm is robust to complex environments which are
classically difficult to explore autonomously.

III. ENVIRONMENT GUIDED EXPLORATION
ALGORITHM (EGEA)

This paper proposes a method for exploring a volume with
a fixed base robotic arm using an eye in hand depth sensor.
The volume to be explored, V , is predefined with a bounding
box which is fixed with respect to the world frame. In this
study the shape of the volume was a cuboid which contained
the environment being explored.

This algorithm iteratively searches for the next best motion
plan for the robot arm, given the current information known
about the environment. The motion plan is chosen via various
utility functions, described in the following section.

The proposed method directly estimates the potential in-
formation gain from different regions of the map by measur-
ing the number density of unknown voxels on the frontier of
the known regions of the map. Then, raycasts are performed
to evaluate which regions on the frontier are possible to be
viewed by the robot. EGEA evaluates regions of the map
directly for their information gain and then a path plan is
found to view that area. This approach aims to significantly
reduce the number of raycast operations performed when
compared to other methods because the robot workspace is
sampled over 3 dimensions for sensor positions instead of a
high dimensional sampling of robot joint configurations (i.e.
a 7 DoF robot results in a 7 dimensional problem).

Figure 1(b) shows a concept diagram of the algorithm
from a top down view. This algorithm uses the Octomap
library [13] to record current knowledge of the environment.
Octomap is a 3D voxel grid which allows efficient neigh-
bour searching and raycasting. Typically, each voxel can be
labelled as one of three states: Occupied, Free and Unknown.
In this work the voxels representing the environment include
a fourth state: Unreachable. A voxel can only be one state
at a time.

Occupied - The voxel has been observed as an obstacle.
Free - The voxel has been observed as free of obstacles.
Unknown - The voxel has not been observed.
Unreachable - The voxel can not be observed by the

robot. The voxel is obscured by other Occupied voxels, or
the path planner has failed to find a path to observe the voxel.

Algorithm 1 provides pseudocode for EGEA, starting
with the robot in a random pose within an unexplored
environment. The variables are defined in Table I.

At the first iteration, the robot is at a random pose and
it is assumed that the sensor can observe at least one voxel
within the bounding box of the environment. The robot is
also assumed to have enough free space to make an initial
movement to view the environment, and then move into

Algorithm 1: Pseudocode for EGEA
Input : Octomap M, Octomap RoughMap,

Frontier Voxels F
while While number Of Voxels(F)> 0 do

F = M.get Frontier Voxels();
Lrough =d 3

√
number O f Voxels(F)e×LM;

RoughMap.set Voxel Length(Lrough);
RoughMap.calculate IG(F);
TargVoxels = set of Voxels in RoughMap where
IG(Voxel)> (AveIG−1);

if Method 1 then
TargVoxel = max(IG)(TargVoxels);
Pmotion = f ind Motion Plan(TargVoxel);

else if Method 2 then
TargPlans = f ind Motion Plan(TargVoxels);
Pmotion = max(IG

jointEffort)
(TargPlans);

else if Method 3 then
TargPlans = f ind Motion Plan(TargVoxels);
Pmotion = min(jointEffort)(TargPlans);

execute(Pmotion);
end

regions of the workspace containing obstacles. For every
iteration, the Octomap representing the environment, M, is
inputted. The set of frontier voxels, F , is generated by
selecting all Unknown voxels that are adjacent to Free or
Occupied voxels. Rays are cast between each voxel in F
and sampled positions within the robot workspace. Rays are
unsuccessful if they intersect with an Occupied voxel. If no
rays successfully reach the robot workspace, the voxel state
is set to Unreachable and removed from F .

RoughMap, described in Table I, counts the frontier voxels
that intersect with each voxel in RoughMap. This is defined
as the Information Gain (IG) of the voxel, and approximates
the volumetric number density of frontier voxels within M.

The side length of the voxels in RoughMap is determined
by the formula Lrough = d 3

√
number O f Voxels(F)e × LM .

This formula means that each voxel in RoughMap has at
least as much volume as the sum total volume of voxels in
F . This guarantees that any one voxel in RoughMap cannot
be saturated by frontier voxels (i.e. if the number of voxels in
F is 10, the volume of a voxel in RoughMap will be at least
11.) Changing the side length of the voxels in RoughMap
during each iteration allows the algorithm to roughly sample
the environment when there are many frontier voxels, and
finely sample the environment when there are few remaining.

The voxels in RoughMap are ranked by their IG. The
algorithm then chooses a target location from which to
observe more of the environment. In this study, six methods
for choosing the target and the associated motion plan were
considered and divided into three utility functions, called
Method 1, 2 and 3 respectively:

Method 1 is the simplest utility function as it does not
consider the joint effort of viewing a given target. The
voxel with the greatest information gain is chosen as the

Variable Definition
M The Octomap representing the environment. The voxels

in M can be Occupied, Free, Unknown or Unreachable.
LM The length of one side of a voxel within M (metres)
F Frontier Voxels - Set of Unknown voxels within M that

are adjacent to Free or Occupied voxels
RoughMap A separate Octomap that is superimposed over the same

coordinates as M. This map generally has a higher
voxel side length than M, so multiple voxels within
M will intersect with each voxel in RoughMap. Each
voxel in RoughMap is assigned an integer value called
Information Gain (IG).

Lrough The length of one side of a voxel within RoughMap
(metres)

IG - (In-
formation
Gain)

The integer value assigned to a voxel in RoughMap that
corresponds to the number of voxels in the set F that
intersect with that voxel. This metric approximates the
volumetric number density of F .

AveIG The average Information Gain of all voxels within
RoughMap

Pmotion The result of the path planning when given a target voxel.

TABLE I
VARIABLE DEFINITIONS FOR ALGORITHM 1

target. This method was the quickest in terms of computation
because only one target is considered.

Methods 2 and 3 both consider multiple voxels within
RoughMap as potential targets. In order to reduce the num-
ber of targets, only the voxels with IG > AveIG− 1 were
considered. For each target, a robot motion was planned and
the joint effort of this plan was computed. The joint effort is
defined as the absolute change in joint angle between start
and end states in the path plan, summed over all joints. For
methods 2 and 3, the motion plan with the best value of the
respective utility function is chosen.

Method 2 chooses the motion plan which maximises
the value of the fraction (IG

jointEffort). This aims to maximise
Information Gain while minimising joint effort.

Method 3 chooses the motion plan which minimises
the value of the variable (jointEffort). Minimising the joint
movements of the robot can result in less wear on the robot
and hence reduce the hardware maintenance.

For each utility function, two methods for choosing the
plan to view a given target were tested:

First Path means that when a target voxel was chosen,
the planner tests potential camera poses within the robot
workspace to view the target voxel. As soon as a viable path
was found, this path was chosen. This variant is represented
in Table II by (F). Least Effort Path means that given a
target voxel, the planner tests a sample of poses within the
robot workspace, and returns the path with the least joint
effort. This variant is represented in Table II by (L).

IV. EXPERIMENTAL SETUP

To evaluate the approach proposed in this paper, both
hardware and simulated experiments were performed. Three
experiments were performed on real hardware, and one
experiment was in simulation. All environments and the
associated Octomap are shown in Figure 2.

The algorithm was run on the same Intel Core i7-6700
CPU for all experiments. The simulation used the Gazebo
Robot Simulation software that is packaged with ROS Ki-
netic. The Gazebo sensor plugin [14] was used to simulate

the same sensing capabilities as the hardware. ROS was used
for communication between all systems.

The robot used in both lab and simulated environments
was a KUKA iiwa 800, a 7 DoF robot arm mounted to a
fixed base. The hardware used is shown in Figure 1(a). The
RGBD sensor was rigidly mounted to the end effector along
the axis of rotation for the final joint of the robot arm. The
RGBD sensor used is the Asus Xtion Pro. This sensor has a
range of 0.5m to 5m, and can provide coloured point clouds
at a rate of 30 fps with a resolution of 640x480 points. The
environments used for exploration are described here.
• Cluttered Lab - A large section of a lab, with a 4x8x4m

sized bounding box and a total volume of 128m3.
• Boxes - A set of boxes arranged to provide difficult ge-

ometries, inside a 1x2x1m bounding box. The obstacles
in this environment were within the robot workspace,
restricting the motion of the robot.

• Pipes - A set of pipes that provided many occlusions
inside a a 1x2x1m bounding box. Pipes are inside the
robot workspace, restricting the motion of the robot.

• Simulated Industrial - A CAD model of the pre-
conceptual design of the Upper Port of the EU-DEMO
reactor, based on the 2018-RM configuration model
[15]. A 4.5x4x4m bounding box was used.

The metrics used to evaluate the performance of the
algorithm are listed below.
• Time (mins) - The total time taken for the algorithm

to finish. The algorithm finishes when the Octomap M
contains no Unknown voxels, or when the decrease in
Unknown voxels between each iteration plateaus.

• Percent Coverage (%) - The percentage of the envi-
ronment that is either Occupied or Free. This was the
number of voxels that are Occupied or Free divided by
the total number of voxels within the bounding box.

• Viewpoints Considered - The total number of potential
camera poses that were evaluated by the algorithm when
computing the path of the robot.

• Iterations - The total number of iterations of the
algorithm before stopping.

• Joint Effort (radians) - The sum of the absolute
rotation carried out by all joints within the robot arm
throughout the course of the algorithm.

• Computation Time (%) - The percentage of the total
time which was spent computing the path of the robot.
The remaining portion of time is the robot moving.

For each environment, the algorithm was run 3 times for
each of the 6 different utility functions. For all experiments
the map was continually updated with sensor information at
30 Hz. The utility functions are described in Section III.

V. EXPERIMENTAL RESULTS
Table II shows the full results for each method and

environment. The M1 (F) method has significantly greater
joint effort on average than the other methods, and performed
the task slightly quicker than other functions. This suggests
that a suitable compromise can be found within the three
utility functions M2 (F), M3 (F) and M1 (L).

(a) Cluttered Lab Environment
(Photo)

(b) Cluttered Lab Environment (Oc-
tomap)

(c) Boxes Environment (Photo) (d) Boxes Environment (Octomap)

(e) Pipes Environment (Photo) (f) Pipes Environment (Octomap)

(g) Simulated Industrial Environment
(CAD)

(h) Simulated Industrial Environment
(Octomap)

Fig. 2. (Left) Environments used in experiments. (Right) Octomap of
each environment after exploration. Occupied voxels are shown as solid
colour, Unreachable voxels are black and Frontier voxels are light green
and translucent.

Figure 3 suggests that there is an inverse relationship
between the time taken to explore an environment and the
joint effort required by the system. A possible reason for this
relationship is that the two methods that take the most time,
M2 (L) and M3 (L) have the two largest average Viewpoints
considered (5398 and 4425 respectively). These two methods
also have the largest percentage of the time spent computing
over all environments at 92.29% and 91.68% respectively.
More viewpoints were considered when using these methods,
but the robot spent less time and joint effort when moving
between poses.

This suggests these two methods are more suitable for
applications in which minimising the movement of the
robot is a higher priority than the time taken to carry out
the exploration. This is particularly relevant in the nuclear
industry, where it is important to preserve the components
of the robots for as long as possible [16]. When components
wear out, repairing the equipment can be expensive and delay
other operations being carried out in the environment.

Figure 4 suggests a negative correlation between coverage

(a) Cluttered Lab Environment
M1 (F) M1 (L) M2 (F) M2 (L) M3 (F) M3 (L)

Time (mins) 4.33(1.64) 6.07(0.91) 6.44(2.71) 13.67(4.46) 5.94(3.09) 9.39(3.81)
Percent Coverage (%) 86.78(2.94) 84.29(0.99) 85.69(0.70) 80.87(4.15) 79.49(12.01) 71.85(17.47)
Viewpoints Considered 91(69) 944(118) 2648(979) 14809(4562) 2451(1110) 9853(4772)
Iterations 12.33(4.04) 16.00(2.00) 16.67(6.03) 16.33(4.93) 16.00(7.00) 11.67(4.93)
Joint Effort (radians) 104.54(44.85) 38.06(4.70) 57.54(5.47) 24.28(3.37) 46.22(21.93) 16.30(7.81)
Computation Time (%) 79.57(0.60) 88.33(0.99) 85.97(1.96) 95.06(0.49) 86.12(1.83) 95.03(0.36)

(b) Boxes Environment

Time (mins) 0.75(0.09) 1.36(0.01) 0.83(0.26) 4.84(0.44) 1.02(0.13) 6.84(2.03)
Percent Coverage (%) 94.88(0.63) 93.48(0.91) 91.72(1.47) 94.32(1.44) 95.08(1.18) 94.31(1.18)
Viewpoints Considered 126(42) 610(180) 569(182) 2360(541) 583(99) 3068(1152)
Iterations 9.00(1.00) 10.33(3.06) 7.33(1.53) 7.33(1.15) 9.67(0.58) 9.33(2.52)
Joint Effort (radians) 57.59(8.51) 42.24(11.71) 33.08(7.86) 21.51(1.75) 35.10(4.22) 22.52(3.43)
Computation Time (%) 13.19(2.05) 55.54(8.15) 40.40(2.77) 91.28(0.56) 42.23(5.38) 91.89(1.33)

(c) Pipes Environment

Time (mins) 0.51(0.08) 1.08(0.20) 0.63(0.15) 3.72(0.15) 0.67(0.08) 3.96(0.16)
Percent Coverage (%) 89.30(1.06) 91.49(5.19) 90.76(4.17) 88.75(1.98) 86.02(2.49) 89.43(2.14)
Viewpoints Considered 102(53) 354(102) 377(162) 1455(90) 245(115) 1711(102)
Iterations 6.33(1.53) 6.00(1.73) 6.00(1.00) 6.00(1.00) 5.67(1.15) 7.00(0.00)
Joint Effort (radians) 37.76(13.03) 23.20(8.07) 28.05(8.39) 17.02(3.81) 22.94(5.10) 18.79(1.09)
Computation Time (%) 12.84(2.32) 68.14(7.46) 37.56(1.58) 91.06(0.86) 42.28(5.42) 90.15(0.59)

(d) Simulated Industrial Environment

Time (mins) 2.16(0.47) 1.22(0.53) 3.60(1.95) 2.74(0.77) 2.03(0.35) 2.45(0.96)
Percent Coverage (%) 91.33(4.61) 59.08(5.25) 80.76(10.15) 34.92(11.86) 79.57(7.60) 44.64(9.78)
Viewpoints Considered 210(137) 767(257) 3335(2159) 2970(884) 1811(151) 3068(1219)
Iterations 23.00(5.29) 13.00(4.36) 31.67(15.53) 6.67(2.08) 17.33(2.52) 6.67(2.52)
Joint Effort (radians) 202.37(48.16) 36.78(3.02) 128.09(71.91) 8.42(3.66) 75.32(24.37) 9.41(4.02)
Computation Time (%) 14.36(2.91) 48.72(6.8) 46.99(1.68) 91.74(0.87) 43.46(4.00) 89.65(2.02)

TABLE II
RESULTS FROM HARDWARE EXPERIMENTS (A,B,C) AND THE SIMULATED EXPERIMENT (D). THE BOLD NUMBER IS THE MEAN AND THE BRACKETED

NUMBER IS STANDARD DEVIATION. ALL RESULTS ARE FROM THREE TRIALS FOR EACH METHOD PER ENVIRONMENT.

Fig. 3. Average Joint Effort (radians) vs Time (mins) for each method
over all environments. The error bars represent the standard deviation.

percentage and time taken. An explanation for this relation-
ship is that the lowest coverage utility functions (M2 (L) and
M3 (L)) give priority to finding a path with the least joint
effort. If the robot takes low effort paths between viewpoints,
then it is less likely to observe regions far away from the
frontier. The highest coverage utility function, M1 (F), has
the least time taken and the largest average joint effort. This
could be useful when the application selects operation time

as higher priority than increased wear on the robot.
It is important to note that the average coverage percentage

was different for each environment. This occurred because it
is not always possible to observe the whole environment from
a limited robot workspace. The portion of the volume that is
not observable varies for each environment. The algorithm
is attempting to maximise the coverage given a fixed robot
base position.

Figure 5 shows the paths of M1 (F) and M3 (F) as a set of
orange and blue lines respectively. These paths illustrate the
different behaviours exhibited. The paths are superimposed
upon a 3D model of the boxes environment generated by a
SLAM algorithm [17] run in parallel with EGEA.

This demonstrates an ability to support other tasks, such as
building a 3D model of the environment, during exploration.
This figure also shows that the two methods result in differing
behaviours in the robot, with the M1 (F) method producing
larger distances between successive viewpoints when com-
pared to the M3 (F) method.

VI. CONCLUSIONS

In this research, a novel approach to the frontier explo-
ration algorithm has been proposed. This approach has been
demonstrated to work in multiple environments involving
real hardware and in simulation. These environments var-
ied from small scale lab contexts to large scale industrial
environments. This algorithm could be adapted for robotic
platforms with different sensing and movement capabilities.

Fig. 4. Coverage (%) vs Time (mins) for each method over all environ-
ments. The error bars represent the standard deviation.

(a) Upper View (b) Front View

Fig. 5. The path of the sensor using Method 1 (orange line) and Method 3
(blue line) when exploring the box environment. The path is superimposed
upon a 3D model generated using a SLAM algorithm [17].

This algorithm enabled evaluation of multiple strategies
for choosing the next best viewpoint for gaining informa-
tion from an environment. In particular, this algorithm has
demonstrated quick exploration with a small computational
load given the high dimensional nature of the problem. The
algorithm has also demonstrated an ability to optimise for
reduced motion of the robot with a similar level of explo-
ration. This can result in greater operational longevity of the
robot, and reduced costs and time lost due to maintenance.

Future investigations outside the scope of this work in-
clude performing a comparison study with other state of
the art algorithms. Alternative methods to reduce the search
space could be explored, such as choosing areas within
the environment by clustering the unknown voxels. The
performance of the algorithm could be measured when
planning for exploration with quadcopters and mobile ground
based robots. In addition, demonstrating EGEA in a real
industrial environment will present opportunities to establish
the strengths of this algorithm in real world scenarios.

ACKNOWLEDGMENT

The presented work was supported by the Engineering
and Physical Sciences Research Council (EP/N018494/1).
This work has been carried out within the framework of

the EUROfusion Consortium and has received funding from
the Euratom research and training programme 2014-2018
under grant agreement No 633053. The views and opinions
expressed herein do not necessarily reflect those of the
European Commission.

REFERENCES

[1] A. Adán, B. Quintana, and S. A. Prieto, “Autonomous mobile
scanning systems for the digitization of buildings: A review,”
Remote Sensing, vol. 11, no. 3, 2019. [Online]. Available:
http://www.mdpi.com/2072-4292/11/3/306

[2] A. Singh, S. H. Seo, Y. Hashish, M. Nakane, J. E. Young, and A. Bunt,
“An interface for remote robotic manipulator control that reduces task
load and fatigue,” in 2013 IEEE RO-MAN, Aug 2013, pp. 738–743.

[3] B. Yamauchi, “A frontier-based approach for autonomous exploration,”
in Proceedings 1997 IEEE International Symposium on Computational
Intelligence in Robotics and Automation CIRA’97. ’Towards New
Computational Principles for Robotics and Automation’, July 1997,
pp. 146–151.

[4] R. Shade and P. Newman, “Choosing where to go: Complete 3d
exploration with stereo,” in 2011 IEEE International Conference on
Robotics and Automation, May 2011, pp. 2806–2811.

[5] P. S. Blaer and P. K. Allen, “Data acquisition and view planning for
3-d modeling tasks,” in 2007 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Oct 2007, pp. 417–422.

[6] J. I. Vasquez-Gomez, L. E. Sucar, and R. Murrieta-Cid, “Hierarchical
ray tracing for fast volumetric next-best-view planning,” in 2013
International Conference on Computer and Robot Vision, May 2013,
pp. 181–187.

[7] G. Paul, P. Quin, A. W. K. To, and D. Liu, “A sliding window approach
to exploration for 3d map building using a biologically inspired bridge
inspection robot,” in 2015 IEEE International Conference on Cyber
Technology in Automation, Control, and Intelligent Systems (CYBER),
June 2015, pp. 1097–1102.

[8] P. Quin, G. Paul, A. Alempijevic, D. Liu, and G. Dissanayake, “Effi-
cient neighbourhood-based information gain approach for exploration
of complex 3d environments,” in 2013 IEEE International Conference
on Robotics and Automation, May 2013, pp. 1343–1348.

[9] J. I. Vasquez-Gomez, L. E. Sucar, and R. Murrieta-Cid, “View plan-
ning for 3d object reconstruction with a mobile manipulator robot,”
in 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Sept 2014, pp. 4227–4233.

[10] S. Song and S. Jo, “Online inspection path planning for autonomous
3d modeling using a micro-aerial vehicle,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA), May 2017, pp. 6217–
6224.

[11] C. Friedrich, V. Zielke, M. Toussaint, A. Lechler, and A. Verl,
“Environment modeling for maintenance automation-a next-best-view
approach for combining space exploration and object recognition
tasks,” in 2017 13th IEEE Conference on Automation Science and
Engineering (CASE), Aug 2017, pp. 1445–1450.

[12] K. Nagatani, S. Kiribayashi, Y. Okada, S. Tadokoro, T. Nishimura,
T. Yoshida, E. Koyanagi, and Y. Hada, “Redesign of rescue mobile
robot quince,” in 2011 IEEE International Symposium on Safety,
Security, and Rescue Robotics, Nov 2011, pp. 13–18.

[13] A. Hornung, K. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“Octomap: An efficient probabilistic 3d mapping framework based on
octrees,” vol. 34, 04 2013.

[14] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), vol. 3, Sep. 2004, pp. 2149–2154 vol.3.

[15] I. Farquar, “AWP2018-RM-2-T004 D006 - Integrated RM CAD
model,” EUROfusion (IDM: 2N88G8), Tech. Rep., 2019.

[16] C. Damiani et al., “Overview of the iter remote maintenance design
and of the development activities in europe,” Fusion Engineering and
Design, vol. 136, pp. 1117 – 1124, 2018, special Issue: Proceedings
of the 13th International Symposium on Fusion Nuclear Technology
(ISFNT-13).

[17] T. Whelan, R. F. Salas-Moreno, B. Glocker, A. J. Davison, and
S. Leutenegger, “Elasticfusion: Real-time dense slam and light source
estimation,” The International Journal of Robotics Research, vol. 35,
no. 14, pp. 1697–1716, 2016.

