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A B S T R A C T

Quantification of fear conditioning is paramount to many clinical and translational studies on aversive learning.
Various measures of fear conditioning co-exist, including different observables and different methods of pre-
processing. Here, we first argue that low measurement error is a rational desideratum for any measurement
technique. We then show that measurement error can be approximated in benchmark experiments by how
closely intended fear memory relates to measured fear memory, a quantity that we term retrodictive validity.
From this perspective, we discuss different approaches commonly used to quantify fear conditioning. One of
these is psychophysiological modelling (PsPM). This builds on a measurement model that describes how a
psychological variable, such as fear memory, influences a physiological measure. This model is statistically
inverted to estimate the most likely value of the psychological variable, given the measured data. We review
existing PsPMs for skin conductance, pupil size, heart period, respiration, and startle eye-blink. We illustrate the
benefit of PsPMs in terms of retrodictive validity and translate this into sample size required to achieve a desired
level of statistical power. This sample size can differ up to a factor of three between different observables, and
between the best, and the current standard, data pre-processing methods.

1. Introduction

Fear conditioning and the ensuing fear memory can be con-
ceptualized as a psychological construct, or in neurobiological terms as
a synaptic process, and neither of these is directly observable in humans
(or indeed, in most non-human experiments). Thus the quantification of
fear conditioning is usually achieved by measuring motor behavior,
autonomic nervous system responses, or verbal reports, during or after
presentation of a conditioned stimulus (CS): for example, freezing in
rodents (Wotjak, 2019), verbal reports and sweating in humans
(Boucsein, 2012), as well as bradycardia (Castegnetti et al., 2016) and
increased startle response (Brown, Kalish, & Faber, 1951) across many
mammals including humans. Although these different observables are
sometimes used interchangeably, they differ in several important ways
(see (Ojala & Bach, 2019) for a comprehensive review). One is that they
may not all relate to the same underlying psychological or synaptic
process. For example, lesion studies suggest that verbal report of con-
tingency knowledge depends on hippocampal plasticity, while skin
conductance responses (SCR) may depend on amygdala plasticity
(Bechara et al., 1995). Next, plasticity-altering drugs appear to have
differential impact on SCR and on fear-potentiated startle (Bach,

Tzovara, & Vunder, 2018; Soeter & Kindt, 2010). Finally, SCR and pupil
size have been suggested to index different components of the same
learning process (Tzovara, Korn, & Bach, 2018). Assuming that several
observables relate to the same learning process, they may be imbued
with different levels of measurement error. For example, fear-po-
tentiated startle appears to differentiate CS+/CS- with much higher
effect size than SCR in a retention test without reinforcement (Khemka,
Tzovara, Gerster, Quednow, & Bach, 2017). Finally, it turns out that
even the same observable can be quantified in a surprising variety of
ways, even for rather specific constructs: for example, 16 different
methods of quantifying extinction retention from SCR have been
identified in the literature (Lonsdorf, Merz, & Fullana, 2019). In some
circumstances, different quantification methods for the same ob-
servable engender substantially different levels of measurement error
(Staib, Castegnetti, & Bach, 2015).

For any researcher planning a clinical or translational fear con-
ditioning study, this raises the question: what is the “best” observable
among many different ones, and what is the “best” quantification for
this observable? In this article, we focus on a situation where different
observables, or quantifications thereof, can be assumed to index the
same learning process. In this case, “best” may refer to low
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measurement error in inferring true scores (translating into high sta-
tistical power), low complexity of the measurement system (to be ap-
plicable in clinical settings), low financial cost, or a mixture of these.
These different criteria can be interrelated. For example, to achieve a
desired level of statistical power, a researcher may opt for a low-cost
observable with high measurement error (therefore requiring many
subjects that also cost money) or a high-cost measure with low mea-
surement error (therefore requiring few subjects).

In this paper, we first discuss a formal framework to answer such
statistical and economic questions. This retrodictive validity framework
allows selecting measurement methods based on their measurement
error. We then present a suite of methods that may have potential to
reduce measurement error. This approach, which we have termed
psychophysiological modelling, engenders various mathematical (bio-
physical or descriptive) measurement models, some of which are re-
levant to human fear conditioning research (Bach et al., 2018; Bach &
Friston, 2013). Most of these models are implemented in the open-
source toolbox PsPM; some others are available in the toolboxes Le-
dalab (Benedek & Kaernbach, 2010b), cvxEDA (Greco, Valenza, Lanata,
Scilingo, & Citi, 2015) and Pupil (Hoeks and Levelt, 1993), but were
developed primarily for applications outside fear conditioning.

2. Why do we need this?

From a clinical perspective, where the goal is to help patients, it
may appear that the reduction of measurement error provides only
incremental benefit, not offsetting the investment. Here, we argue that
reduction of measurement error offers a route towards standardization,
and in order to increase statistical power may be preferable over large
sample size. The benefit of standardisation has been extensively cov-
ered in previous reviews (e.g. (Tackett, Brandes, King, & Markon,
2019); and recent work has highlighted how minor changes in data
preprocessing can have major impact on conclusions drawn from a
particular data set (Lonsdorf et al., 2019; Silberzahn et al., 2018;
Steegen, Tuerlinckx, Gelman, & Vanpaemel, 2016). Statistical power,
on the other hand, is a function of sample size and effect size. Sample
size is often constrained by resources, and some patient groups are
difficult to come by, limiting how much one can increase statistical
power by increasing sample size. Also, increasing sample sizes incurs
costs for each study, whereas increasing effect size by adopting a dif-
ferent measure requires adoption cost only once, and after that confers
benefits in perpetuity. Furthermore, increasing sample sizes can be
done only prospectively, whereas improved measures can potentially be
applied retrospectively to existing datasets. All of this motivates in-
creasing effect size rather than sample size. Effect size is a function of
the effect magnitude and its variance, with the variance being de-
termined by inter-individual variation of effect magnitude, and mea-
surement error. In our case, measurement error is composed of in-
accuracy and imprecision in quantifying the true fear memory
(encompassing, but not restricted to, the measurement error of the re-
cording device). For a particular experimental intervention, the effect
magnitude and its inter-individual variation are usually not under ex-
perimental control, but one can still attempt to maximize statistical
power by minimizing measurement error. Increasing statistical power is
likely to yield tangible benefits for patients. Low statistical power not
only means that true population effects are more likely to go un-
detected, but also that significant effects are less likely to indicate true
population effects (Button et al., 2013; Ioannidis, 2005) and that re-
ported effect sizes will, on average, be larger than the true population
values (Loken & Gelman, 2017). This could be of importance for etio-
logical and translational research. For example, Duits et al. (Duits et al.,
2015) conducted a meta-analysis of 44 individual fear conditioning
studies including 963 anxiety patients and 1222 healthy persons. De-
spite the very large sample, significant results are weak and in-
compatible (see for detailed discussion (Fullana et al., 2019)). Stan-
dardising measurement models between the studies that went into the

meta-analysis, and increasing statistical power of the measurement
models, is one possible way of achieving clearer conclusions. Notably,
the application of new measurement models to existing data can also be
applied post-hoc, as long as the original psychophysiological signals are
available. This means one could increase statistical power of existing
data sets in a mega-analysis. A translational example for inconsistent
findings concerns the reminder/extinction intervention to reduce fear
memory (Schiller et al., 2010). Replication studies were mixed, with a
similar number of studies replicating these findings, or not replicating
them (Kredlow, Unger, & Otto, 2016). While a meta-analysis suggested
an overall effect of the reminder manipulation (Kredlow et al., 2016),
an influence of - as yet unknown - boundary conditions is discussed
(Lee, Nader, & Schiller, 2017; Phelps & Hofmann, 2019). Investigating
these boundary conditions with high-error measures will require large
sample sizes; reducing measurement error could potentially reduce the
cost associated with these studies and thereby accelerate the translation
into clinical application. Also here, mega-analysis of existing data sets
with improved analysis methods is possible and may be useful.

3. Retrodictive validity: assessing the “goodness” of a measure

Measurement error cannot be precisely quantified because the true
scores of a psychological variable are unknown. To overcome this
problem, we have suggested using calibration experiments to influence
a psychological variable (e.g. fear memory) and compare its intended
values (as surrogate “true” values) with their reconstruction from the
physiological measurement, for example SCR (Bach et al., 2018; Bach &
Friston, 2013). We term this approach “retrodictive validity” as it at-
tempts to retrodict the (intended) values of the experimental manip-
ulation. (Note we have previously used the term “predictive validity”,
which however has a potential for confusion (Cronbach & Meehl,
1955)). For example, one could use a very simple fear conditioning
experiment with CS+ and CS- that are perceptually easy to distinguish,
and assume that most participants will learn the difference between CS
+ and CS-. In this dichotomous case, the effect size (e.g. Cohen's d) of
the difference between CS+ and CS- in an SCR measure constitutes this
measure's retrodictive validity, i.e. it quantifies how “good” that SCR
measure is. While there is certainly between-subjects variation in fear
memory (effect magnitude) across participants, this aberration of the
true scores from the intended values is constant, i.e. independent of the
data pre-processing method. Therefore, tuning the pre-processing
strategy to increase retrodictive validity is likely to decrease the mea-
surement error. We refer the reader to Bach, Melinscak, Fleming, and
Voelkle (2020) for a formal derivation of the statistical method, and the
boundary conditions of its applicability.

This approach now allows choosing the data-preprocessing method
that yields the highest effect size in an independent benchmark ex-
periment, or optimising the pre-processing method to this end (Bach
et al., 2018). To the extent that different observables (e.g. startle eye
blink and pupil size responses) index the same learning component, it
may also help choosing between observables. Furthermore, it allows
more meaningful power analyses than what is current standard prac-
tice. Many power analyses in clinical intervention studies are based on
effect size estimates from (small) pilot intervention trials. However,
effect size estimates from small samples tend to be biased towards
larger values, compared to the true population values (Button et al.,
2013). Basing power calculations for validation studies on the reported
effect size estimates from pilot samples will lead to underpowered
studies. However, as pointed out above, the effect size of an interven-
tion on a fear memory measure is determined by the effect size of the
intervention on fear memory, and measurement error. Given a parti-
cular measurement error, the effect size takes its largest possible value
when the effect of the intervention has no variability. This puts an
upper limit on possibly measurable intervention effect sizes, and this
upper limit is easy to establish by estimating the retrodictive validity of
a measure in a control sample (ie. without intervention) (Bach et al.,
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2018). This then establishes a lower limit on sample sizes required to
test an intervention. It turns out that even this lower sample size limit
can be higher than what is standard in the field of translational inter-
vention research. For example, a power analysis in Bach, Tzovara, et al.
(2018) revealed that to achieve 80% power for detecting an at least
50% reduction of fear memory in a retention test after a placebo-con-
trolled drug intervention, at least N = 74 participants would be re-
quired if fear memory is measured by fear-potentiated startle. Ac-
cording to a benchmark experiment with non-optimized hardware
(Khemka et al., 2017), N = 156 participants would be required, and
using SCR under the same experimental circumstances and with the
best available pre-processing strategy would already require a sample
size of N = 470 (Khemka et al., 2017). While these numbers are based
on effect size estimates from relatively small samples under particular
experimental settings, and their numerical values may not generalise,
their differences illustrate how small changes in data collection and pre-
processing can have dramatic economic consequences in terms of the
funds required to run a study. For a given laboratory, it is straightfor-
ward to calculate what the additional number of participants will cost,
and weigh this against the cost of an alternative measurement system,
or the switch to a different data pre-processing strategy. We refer the
reader to Bach et al. (2018, 2020) for methodological detail.

4. Measurement models

The observables used to infer fear memory usually provide con-
tinuous data time series, such as SCR, ECG, or pupil size recordings.
There are two principled ways how such time series can be statistically
analysed. The first is to enter data from all time bins either into one
statistical model, or into a series of independent statistical models, and
correct results for the dependency of data points, or for the number of
statistical tests, respectively. This procedure is useful when the tem-
poral profile of the observable is unknown or highly variable. However,
when for example analysing SCR, many researchers would regard this
approach of using correlated data from many time bins as inefficient
and impractical. Instead, in most published papers, conditioned SCR
time series are condensed into one number per trial, for example SCR
peak amplitude during a specified time window, usually combined with
criteria on onset and ascent of the SCR. The resulting response estimate
is often further summarised, for example by averaging over trials, and
subtracting CS- from CS+ responses. In discriminative fear con-
ditioning, the paired difference between CS+ and CS- is often implicitly
treated as a measure of fear memory expression.

This process of compressing a continuous data time series into a few
small numbers is an example for a heuristic measurement model. This
measurement model summarises accumulated expert knowledge into
recommendations for data pre-processing, often in the form of pub-
lication guidelines (e.g. Blumenthal et al., 2005; Boucsein et al., 2012).
For SCR, such guidelines specify, among other things, possible shapes
and latencies of CS-evoked SCR. They implicitly assume that CS+ will
lead to activity in the sudomotor nerve with higher frequency, or in-
volving more neurons, compared to CS-, and thus engender higher SCR
amplitude.

In the following, we explore an alternative to this heuristic ap-
proach: formalising accumulated expert knowledge into a mathemati-
cally explicit measurement model, and statistically inverting this mea-
surement model. We have termed this approach psychophysiological
modelling (Bach & Friston, 2013) and we note that it is similar to
measurement models used for fMRI data analysis. Formally related
approaches are found across many fields of psychology, for example
item-response theory (Embretson & Reise, 2013), expected utility
models in behavioural economics (Camerer, 1995), drift-diffusion
models in decision psychology (Forstmann, Ratcliff, & Wagenmakers,
2016), or associative learning models (Mathys, Daunizeau, Friston, &
Stephan, 2011). Structural equation modelling constitutes an over-
arching formalism to embed this type of measurement models (Bollen,

1989; Muthén, 2002).
Notably, both the heuristic and the model inversion approach are

accessible to optimisation: they can be tuned to maximise retrodictive
validity. In principle, it is also possible to create data analysis techni-
ques based on retrodictive validity alone, without any heuristic or
mathematical measurement model, in a machine-learning model ag-
nostic to underlying physiology (see e.g. Greco et al., 2017 for a mixed
model-based/model-free approach), although the potential of this
concept is not clear at the time of writing.

Finally, we note a hybrid approach that was developed specifically
for SCR and combines statistical model inversion with heuristic analysis
(Alexander et al., 2005; Benedek & Kaernbach, 2010a, 2010b; Greco
et al., 2015). Here, a physiological model is statistically inverted to
yield the most likely time series of sudomotor nerve firing, given SCR
data. In order to infer psychological variables from this estimated
neural time series, a heuristic peak-detection approach is used.

All psychophysiological models developed by our laboratory are
available in an open-source software, called PsPM (bachlab.org/pspm).
We note an additional psychophysiological model that was developed
for pupil size analysis (Hoeks & Levelt, 1993); because it is not used in
the context of fear conditioning, we refer the reader to Bach et al.
(2018) for a review.

5. Psychophysiological modelling

If the mapping from psychological variable to (time series of) phy-
siological signals (so-called forward model) is fully described, it can be
inverted to find the most likely value of the psychological variable,
given the measured data (Bach & Friston, 2013). In other words, the
value of the psychological variable becomes a parameter in the forward
model and is estimated using standard statistical techniques. While
some parts of this mapping cannot be fully known (because the psy-
chological variable is unobservable), they can be reasonably well ap-
proximated under plausible assumptions. For example, for SCR, the
mapping from sudomotor nerve activity to SCR can be empirically in-
vestigated with intraneural recordings (we term this “peripheral
model”) (Gerster, Namer, Elam, & Bach, 2017). The mapping from
psychological variable to neural activity (we term this the “neural
model”) can be approximated by replacing the psychological variable
with an external stimulus (Bach, Flandin, Friston, & Dolan, 2009; Bach,
Flandin, Friston, & Dolan, 2010). The combination of both mappings
yields a psychophysiological model (PsPM), which is inverted to infer
values of the psychological variable in an experimental context, given
the measured physiological data.

In the following, we specifically discuss the different models im-
plemented in PsPM. We note that PsPM encompasses a variety of psy-
chophysiological models, and that there are usually several models for
the same observable. These models make different assumptions, which
are suitable in particular experimental circumstances (just as there are
different peak-scoring procedures). We would generally advocate using
a model only in the context of experimental circumstances under which
these assumptions are reasonable. For example, the fear conditioning
SCR model has been evaluated in paradigms with relatively short CS/
US intervals (up to 4 s). The model makes assumptions about plausible
sudomotor firing patterns during the CS/US interval, and these may be
unrealistic for much longer intervals; hence the model should not be
used under these conditions. On the other hand, there is no reason to
restrict model use to exactly the same situation as what it has been
developed for. For example, the SCR model for fear conditioning has
been formally evaluated only for a small number of CS, but there is no
reason to suspect that sudomotor activity, or the shape of the SCR,
would depend on perceptual features of the CS, and so the basic as-
sumptions appear generalizable to this situation.

In order to create a PsPM, it is first necessary to accumulate
knowledge on the forward mapping - the neural and the peripheral
model. This is why PsPMs have first been constructed for measures for
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which the forward mapping was already well-known, such as SCR.
Once the forward model is established and mathematically formalised,
it can be inverted using standard statistical techniques. The model it-
self, and the inversion routine, usually contain some parameters or
settings that are based on approximations or expert intuition. These are
then optimized on independent samples to maximise retrodictive va-
lidity. Most PsPMs act on pre-processed (filtered and artefact-reduced)
data, and the pre-processing process can be optimized as well (see e.g.
Bach, Friston, & Dolan, 2013; Khemka et al., 2017; Staib et al., 2015 for
examples).

PsPMs have been designed for estimating various psychological
variables from different physiological signals (see Bach et al., 2018 for a
comprehensive summary), including models for SCR (Bach, 2014a,
2014b; Bach, Daunizeau, Friston, & Dolan, 2010; Bach, Daunizeau,
Kuelzow, Friston, & Dolan, 2011; Bach et al., 2009; Bach, & Flandin
et al., 2010; Bach & Friston, 2012, 2013; Bach, Friston, & Dolan, 2010;
Bach et al., 2013; Bach & Staib, 2015; Gerster et al., 2017; Staib et al.,
2015), pupil size responses (Korn & Bach, 2016; Korn, Staib, Tzovara,
Castegnetti, & Bach, 2017), heart period/heart rate changes
(Castegnetti et al., 2016; Paulus, Castegnetti, & Bach, 2016), respiratory
responses (Bach, Gerster, Tzovara, & Castegnetti, 2016; Castegnetti,
Tzovara, Staib, Gerster, & Bach, 2017), and startle eye blink EMG
(Khemka et al., 2017). In the following, we give a brief overview of
those models that have been used for inferring fear memory in classical
fear conditioning tasks.

5.1. Skin conductance responses

5.1.1. Background and model
Conditioned stimuli (CS) elicit a SCR, which differs in amplitude

between CS+ and CS-, and occurs at some point before the time point
of possible unconditioned stimulus (US) delivery (Boucsein, 2012).
Because SCR have a long tail (> 120 s even for standardly filtered data
(Bach, & Flandin et al., 2010)), CS and US responses overlap within and
between trials, depending on the experimental timings. PsPM takes this
overlap into account. There are two SCR models implemented in PsPM.
One (termed “non-linear model”) assumes variable latency, duration
and amplitude of a CS-induced, neural input, and estimates these
parameters from observed SCR time series (Bach, & Daunizeau et al.,
2010). The amplitude of this neural input is assumed to linearly relate
to fear memory strength. This model was optimized for experiments
with short (up to 4 s) CS-US interval. The other model (termed “GLM”)
describes evoked, constant-latency, SCR (Bach, 2014a; Bach et al.,
2009; Bach, & Flandin et al., 2010; Bach et al., 2013). It could possibly
be used to analyse conditioned and unconditioned responses in fear
conditioning experiments, if they can be assumed to have constant la-
tency and duration. In particular for very short CS-US intervals (< 2 s),
the flexibility of estimating response latency in the non-linear model
may not be needed and the increased degrees of freedom may lead to
overfitting.

5.1.2. Data pre-processing
In addition to model-based analysis of SCR, the software package

PsPM provides quality control and an interface for visual artefact an-
notation; annotated artefacts are automatically excluded from model
inversion.

5.1.3. Evaluation
The non-linear model has been compared with Ledalab and peak

scoring by ourselves. This study investigated fear acquisition (ie. under
continuous reinforcement) in two experiments with 3.5 s CS-US interval
(Staib et al., 2015). In both experiments, PsPM-derived fear con-
ditioning estimates distinguished CS+ and CS- better (i.e. had decisi-
vely higher retrodictive validity) than standard peak-scoring, or Le-
dalab-derived estimates (Benedek & Kaernbach, 2010b). Peak scoring
yielded a weighted average effect size of 0.44, Ledalab an effect size of

0.53, and PsPM an effect size of 0.75. For our example of testing a
placebo-controlled fear memory intervention with at least 80% power
to detect a 50% reduction in fear memory with a one-tailed test, these
effect sizes translate into minimum sample sizes of N = 514 for peak-
scoring, N = 342 for Ledalab, and N = 174 for PsPM. A different re-
search team evaluated the GLM approach in two fear conditioning ex-
periments with short (4 s) CS-US interval (Green, Kragel, Fecteau, &
LaBar, 2014); notably this is a situation in which our previous work
suggests that the GLM approach may be suboptimal (Bach, & Daunizeau
et al., 2010). This study compared several peak-scoring methods, Le-
dalab, and PsPM. Different from our own validation, their aim was not
to distinguish CS+/CS-. Instead they averaged over CS+/CS- trials and
sought to distinguish different experimental phases and conditions. In
one experiment, they found that the GLM approach distinguished
conditioning/extinction/renewal phases better than all other methods.
In another experiment, they sought to distinguish pre-conditioning
phase, conditioning phase, and three conditions from a generalization
phase. They found that manual peak scoring distinguished these five
conditions better than any other method (Green et al., 2014). We note
that it is somewhat less clear to what extent these phases and conditions
should theoretically be different.

5.2. Pupil size responses

5.2.1. Background and model
Pupil size is mainly influenced by ambient luminance, but pupil

dilation is also observed in relation to psychological processes (Hoeks &
Levelt, 1993; Korn et al., 2017). We have shown, across several ex-
periments, that CS elicit pupil size responses that depend on the type
and sensory modality of the CS, but the difference between a response
elicited by CS+ and CS- is rather constant across experiments (Korn
et al., 2017). This difference is time-locked to the CS, as we have em-
pirically shown for CS/US intervals up to 6 s (Korn et al., 2017). The
PsPM for fear-conditioned pupil size responses estimates the magnitude
of fear memory strength as amplitude of a neural input into the pu-
pillary system (Korn et al., 2017), using a GLM approach under the
assumption of constant response latency. PsPM also implements a
model for illuminance responses, which can be used to correct data for
pupil size changes induced by luminance changes (Korn & Bach, 2016).

5.2.2. Data pre-processing
For ensuring suitable data quality, PsPM includes an automated

artefact correction algorithm that can also combine two pupil mea-
surements into a less noisy one (Kret & Sjak-Shie, 2019), a possibility to
account for the pupil foreshortening error due to gaze deviation (Hayes
& Petrov, 2016), and features to exclude data points based on loss of
fixation. Missing data points due to saccades, blinks, or loss of fixation,
are automatically ignored for the model inversion.

5.2.3. Evaluation
In several experiments, the model for fear-conditioned pupil size

responses had decisively higher retrodictive validity than peak-scoring
(Korn et al., 2017). In this paper, pupil size was measured during fear
acquisition (ie. under continuous reinforcement) in five experiments
with different CS modalities (auditory, visual, somatosensory). Ex-
cluding the first experiment, on which the PsPM was developed, peak-
scoring yielded a weighted average effect size of 0.60, and PsPM an
effect size of 0.82. For our example of testing a placebo-controlled fear
memory intervention with at least 80% power to detect a 50% reduc-
tion in fear memory, these effect sizes translate into minimum sample
sizes of N = 278 for peak-scoring, and N = 150 for PsPM. Responses to
the US can be fully disambiguated from responses to the CS (Korn et al.,
2017), such that it is in principle possible to analyse trials with a US,
and to analyse the US response itself. We note that there is no in-
dependent evaluation of the method as yet.
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5.3. Fear-conditioned bradycardia

5.3.1. Background and model
CS + elicit a reduction in heart rate, or equivalently an increase in

heart period, in many species including humans (see Castegnetti et al.,
2016 for a review of studies). Heart period (the reciprocal of heart rate)
has been shown to linearly relate to parasympathetic neural input into
the heart (Parker, Celler, Potter, & Mccloskey, 1984; Rosenblueth &
Simeone, 1934) and is therefore more likely to linearly relate to psy-
chological variables than heart rate (Berntson, Cacioppo, & Quigley,
1995). The model therefore takes heart period as input, which is in-
terpolated between heart beats into a continuous time series (Paulus
et al., 2016). We have demonstrated across several experiments that,
similar to fear-conditioned pupil size responses, a CS elicits a heart
period response with dynamics that depend on the type and sensory
modality of the CS, but the difference between responses elicited by CS
+ and CS- is rather similar across experiments (Castegnetti et al.,
2016). Different from pupil size, this difference occurs with a constant
latency before the time point of possible US delivery (Castegnetti et al.,
2016, see Castegnetti et al., 2017 for a CS/US interval of 6 s). The PsPM
for fear-conditioned bradycardia estimates the magnitude of fear
memory strength as amplitude of the neural input (Castegnetti et al.,
2016) in a GLM approach that assumes constant latency of the response.

5.3.2. Data-preprocessing
The model takes a continuous, interpolated heart period time series

as an input. To create this time series, PsPM includes several algorithms
to detect heartbeats from ECG or pulse oximetry data, including an
interface for semi-automatic visual inspection, and an interpolation
facility that includes quality control for implausible values.

5.3.3. Evaluation
The method was evaluated in four experiments with different CS

types (visual, auditory) with 3.5 or 4.0 s CS/US interval during fear
acquisition (ie. under continuous reinforcement). There is no standard
peak-scoring method available for this type of measurement; our own
peak-scoring methods provided decisively worse retrodictive validity
than the PsPM-based method (Castegnetti et al., 2016). Due to the lack
of an alternative standard method we cannot make strong statements on
PsPM's benefit here. Excluding the first experiment, on which the PsPM
was developed, PsPM yielded an effect size of 0.97. For our example of
testing a placebo-controlled fear memory intervention with at least 80%
power to detect a 50% reduction in fear memory, this effect size
translates into a minimum sample size of N = 108.

5.4. Respiration amplitude responses

5.4.1. Background and model
There is a dearth of studies on phasic respiration changes due to

brief stimuli in general, and during fear conditioning in particular (see
Van Diest, Bradley, Guerra, Van den Bergh, & Lang, 2009 for a notable
exception). Across several experiments, we have shown that CS induce
a respiration amplitude response with shape that depends on type and
sensory modality of the CS, but that the difference in response to CS+
and to CS- is rather similar and characterised by an early reduction in
respiration amplitude and a later increase (Castegnetti et al., 2017).
Notably, the model was developed on single-chest belt data. It is
therefore not clear yet whether the form of the response curve indicates
an overall change in breathing or a shift from thoracic to abdominal
breathing and back. Experiments with two chest belts will be required
to determine this question (Binks, Banzett, & Duvivier, 2007). There is
some indication that the conditioned respiration response occurs with a
constant latency before the time point of possible US delivery, although
the available evidence is not entirely conclusive (Castegnetti et al.,
2017). The PsPM for fear-conditioned respiration amplitude estimates
the magnitude of fear memory strength as amplitude of a neural input

(Castegnetti et al., 2017).

5.4.2. Data pre-processing
The model takes a continuous, interpolated respiration amplitude

time series as an input. To create this time series, PsPM includes al-
gorithms to detect inspiration onset and quantify respiration amplitude
from single chest belt measurements that use bellows- or cushion-based
systems.

5.4.3. Evaluation
There is no standard peak-scoring method available for this type of

measurement; our own peak-scoring methods provided decisively
worse retrodictive validity than the PsPM-based method (Castegnetti
et al., 2017). Due to the lack of an alternative standard method we
cannot make strong claims on PsPM's benefit. Excluding the first ex-
periment, on which the PsPM was developed, PsPM yielded an effect
size of 0.61. For our example of testing a placebo-controlled fear
memory intervention with at least 80% power to detect a 50% reduc-
tion in fear memory, this effect size translates into a minimum sample
size of N = 268.

5.5. Fear-potentiated startle

5.5.1. Background and model
Loud sounds with sudden onset elicit a motoric startle response in

many mammal species, which is supposed to protect the organism from
predator attack (Yeomans, Li, Scott, & Frankland, 2002). This startle
response is modulated by the presence of a fear-conditioned CS+, a
phenomenon termed fear-potentiated startle ((Brown et al., 1951), see
for review (Bach, 2015)). In humans, startle response is easily quanti-
fied by measuring the activity of the orbicularis oculi muscle using
electromyography (Blumenthal et al., 2005). The PsPM for startle eye
blink responses estimates latency and amplitude of a (not necessarily
modulated) neural input into the startle circuit (Khemka et al., 2017).
Fear memory strength is assumed to be the difference between neural
input into the startle system during a CS+, and a CS-.

5.5.2. Data pre-processing
The PsPM takes as input data a pre-processed electromyography

time series; pre-processing was optimized to enhance retrodictive va-
lidity (Khemka et al., 2017) and is implemented in the PsPM toolbox.

5.5.3. Evaluation
There are many different peak-scoring methods available for fear-

potentiated startle. We found pronounced differences between PsPM
and different peak-scoring approaches in individual experiments, but
no consistent benefit of any one method (Khemka et al., 2017). Ex-
cluding the first experiment, on which the model was developed, PsPM
yielded an effect size of 0.96 in two experiments that did not use op-
timized hardware. For our example of testing a placebo-controlled fear
memory intervention with at least 80% power to detect a 50% reduc-
tion in fear memory, this effect size translates into a minimum sample
size of N = 110.

6. Discussion

High statistical power is desirable for answering a range of clinical
and translational questions in fear conditioning research. High statis-
tical power can be achieved by increasing sample size, or by increasing
accuracy and precision of a fear memory measure, and its pre-proces-
sing. In order to quantify the goodness of a method for measuring fear
memory strength, it is necessary to make assumptions. One assumption
is that there are experiments that create distinguishable values of fear
memory strength. This allows for quantification of how well a method
recovers this intended difference, something we term here “retrodictive
validity”. Optimising fear conditioning measures to yield high
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retrodictive validity increases statistical power. As one among several
strategies to quantify fear memory, PsPM inverts a statistical model of
how fear memory influences physiological processes. PsPMs have been
developed for SCR, pupil size, bradycardia, respiration amplitude, and
fear-potentiated startle. Several of them offer higher retrodictive va-
lidity than automated peak-scoring methods. Crucially, differences in
retrodictive validity can translate into substantial differences for
minimum required effect sizes, for example to test fear memory inter-
ventions. While the absolute numbers we have provided depend on the
precise experimental circumstances, their differences are substantial:
the sample size for the worst quantification method can be almost three
times as large as for the best quantification method. As long as different
observables relate to the same learning component, the framework of
retrodictive validity also allows to compare different observables
against one another: for example, to measure fear memory retention
under formal extinction (i.e. in the absence of reinforcement), fear-
potentiated startle may offer much higher retrodictive validity than
SCR or bradycardia (Khemka et al., 2017). Again, this translates into a
minimum required sample size that can be three times as large for one
measure as compared to another.

None of these psychophysiological measure provides very large ef-
fect sizes to distinguish CS+ and CS-, raising a question whether there
are better behavioural assessments of fear memory, beyond declarative
memory which may depend on a different learning process (Bechara
et al., 1995). To our knowledge, no such measures exist, and we have
empirically shown that CS-evoked SCR, pupil size, and bradycardia,
provide higher retrodictive validity for inferring fear memory than a
measure of Pavlovian-to-instrumental transfer (Xia, Gurkina, & Bach,
2019). This state of affairs could motivate further investment into im-
proving psychophysiological measures. While we generally advocated
selecting the most precise measure, it appears, however, that not all
psychophysiological measures relate to the same underlying learning
process. In particular, it has been suggested that SCR may not relate to
US prediction but rather to CS associability (Li, Schiller, Schoenbaum,
Phelps, & Daw, 2011; Zhang, Mano, Ganesh, Robbins, & Seymour,
2016), which is higher for CS + than CS- in a partial reinforcement
schedule as typically used in human research. Pupil size, on the other
hand, may more unambiguously relate to US prediction (Tzovara et al.,
2018). This is a possibility that will require further investigation and
could guide the choice of fear conditioning measures over and above
retrodictive validity considerations.

Furthermore, the psychophysiological modelling approach in gen-
eral – and the methods implemented in the PsPM toolbox specifically –
have been evaluated only in limited experimental circumstances and by
a small group of researchers. More methodological research on these
and other methods could help establishing a clearer picture on what the
best measurement approach is in different research scenarios. A per-
ennial problem for continuous-time measures with long tails is that CS
and US (or US omission) responses overlap. Thus, it is important to
demonstrate that discriminability of CS+/CS- trials is not due to a
confounding impact of US (or US omission) responses (see Bach &
Friston, 2012 for an example of such demonstration). Finally, while for
some measures such as SCR the forward mapping is well known, rela-
tively simple, and accessible by intraneural recordings, (Boucsein,
2012), for some others such as heart period responses the response
dynamics are incompletely understood. Here, in particular CS- re-
sponses can be rather variable (Paulus et al., 2016), while the CS+/CS-
difference appears more stereotypical (Castegnetti et al., 2016). Such
variability can limit the development of suitable PsPMs. We note that
this may equally limit heuristic methods, such that independent of the
measurement model, more research on “classical” psychophysiological
forward mappings appears warranted.

As a limitation of the retrodictive validity criterion in general – and
independent of whether one uses PsPM or heuristic analysis strategies –
optimized procedures that increase retrodictive validity are optimal in a
strict sense only under the same (or similar) experimental procedures

used in the benchmark experiment. It may still be possible to generalise
them in simple cases such as going from one pair of CS colours in a
benchmark experiment to another pair of colours in a substantive ex-
periment, where a body of evidence suggests that this does not sub-
stantially alter the shape of a CS-induced SCR. In other cases, such as
increasing the complexity of an intra-trial procedure, or the timing of
events, this may be more difficult. There are however many applica-
tions even of a very strict approach. For example, one can keep a
memory retention test exactly equal between the benchmark experi-
ment, and the substantive research, and add “memory editing” (Phelps
& Hofmann, 2019) interventions before the test. Under these circum-
stances, it is likely that the most utile method generalizes from the
benchmark to the intervention experiment, as long as it measures the
attribute that the memory editing technique is supposed to alter.

With the development of the retrodictive validity criterion and the
openly available toolbox PsPM, we hope to encourage clinical and
translational researchers to maximise the benefit they can obtain from
their fear conditioning measures: by using it, by contributing to it, or by
developing alternative high-validity measures. Current developments
include novel measurement modalities as well as combinations of dif-
ferent fear memory measures.
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