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Abstract. Almost all drift detection mechanisms designed for classification 

problems work reactively: after receiving the complete data set (input patterns 

and class labels) they apply a sequence of procedures to identify some change in 

the class-conditional distribution – a concept drift. However, detecting changes 

after its occurrence can be in some situations harmful to the process under 

analysis. This paper proposes a proactive approach for abrupt drift detection, 

called DetectA (Detect Abrupt Drift). Briefly, this method is composed of three 

steps: (i) label the patterns from the test set (an unlabelled data block), using an 

unsupervised method; (ii) compute some statistics from the train and test sets, 

conditioned to the given class labels for train set; and (iii) compare the training 

and testing statistics using a multivariate hypothesis test. Based on the results of 

the hypothesis tests, we attempt to detect the drift on the test set, before the real 

labels are obtained. A procedure for creating datasets with abrupt drift has been 

proposed to perform a sensitivity analysis of the DetectA model. The result of the 

sensitivity analysis suggests that the detector is efficient and suitable for datasets 

of high-dimensionality, blocks with any proportion of drifts, and datasets with 

class imbalance. The performance of the DetectA method, with different 

configurations, was also evaluated on real and artificial datasets, using an MLP 

as a classifier. The best results were obtained using one of the detection methods, 

being the proactive manner a top contender regarding improving the underlying 

base classifier accuracy. 
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1. Introduction 

Most real-world problems experience a phenomenon known as concept drift [13]. 

This circumstance occurs in datasets where the joint probability distribution changes 

arbitrarily over time [34], such as a switch in the conditional probability distribution on a 

classification problem, or a modification of some moment (such as mean and variance) on 



  

a time series forecasting problem [37; 15]. Formally speaking, considering the posterior 

probability of a sample x belonging to a class y, according to [9] concept drift is any 

scenario in which this probability changes over time, that is: (Pt + 1 (y | x) ≠ Pt (y | x)). We 

can also define concept drift, in a supervised learning scenario, when the relationship 

between the input data and the target variable changes over time [13]. An environment 

from which this kind of data is obtained is considered a non-stationary environment. When 

concepts often evolve, the system may be unable to adapt to the new information, hence 

dramatically deteriorating its performance [17; 40]. 

 One of the most relevant non-stationary scenarios involves classification problems, 

such as network intrusion detection. This issue is commonly composed by an opponent (a 

human or a robot) that is seeking ways to deceive the protection method (classifier), 

introducing a drift component in the test set (new ways to break into the network, for 

example). Most classifiers are built directly from scratch and readily applied to data not yet 

seen. If the data distribution varies over time, then the model should be refitted to prevent 

harmful decisions. However, making constant adjustments to the model is ineffective, and 

becomes unfeasible in high dimensional and scalable problems [41]. 

 Another practical example of concept drift mentioned in [19; 13] is detecting and 

filtering out spam e-mails. The significance of the two classes “spam” and “ham” may vary 

over time. They are user specific, and user preferences also vary over time. Moreover, the 

variables used at time t to classify spam may be irrelevant at t+k. In this way, the classifier 

must deal with the “spammers” who will keep creating new forms to trick the classifier 

into labelling a spam as a legitimate e-mail. Other examples are consumption patterns that 

can vary according to season or availability of alternative products, weather prediction, 

inflation rate, traffic monitoring, and medical decision aiding [37; 13; 34; 17; 39]. 

 In general, concept drifts that can occur in the real world can be classified into 

several types, according to [37; 42; 13; 35, 17, 29], being the two main types abrupt and 

gradual. To differentiate both, assume the existence of two data sources, S1 and S2: 

 

• Abrupt: occurs when a concept A is abruptly switched by another concept B, that is, at 

time t the origin S1 is suddenly replaced by source S2. Some authors, like [17; 29] refers 

this drift type as sudden drift. 

• Gradual: occurs when a concept A is being exchanged for the other B gradually. In this 

case, while there is no definitive change from concept A to concept B, more and more 

occurrences of B and fewer occurrences of A are observed. Both sources S1 and S2 are 

active, but as time passes, the sampling probability of the origin S1 decreases as the 

sampling probability of the source S2 increases. At the beginning of this drift, before more 

instances are observed, one case of the S2 source can be easily mistaken for random noise.  

 Models for learning in non-stationary environments may or may not contain drift 

detection mechanisms. Most of the models found in the literature assume that the changes 

take place in a hidden context external to the model itself and, therefore, the drift cannot be 

predicted. For this reason, these models use the passive or reactive approach, where the 

model’s performance is firstly verified and, if a drift is detected, then the model reacts after 

the error has occurred. Another method would be to do it proactively, that is, by detecting 

the occurrence of drift in the input data before they are submitted for prediction (i.e., 

before receiving the true labels). The proactive approach can be more satisfactory since it 

is possible to refit the model or tweak the data previously, and thereby hope to better cope 

with the new scenario and avoid a miss-classification [13].  



  

 Rooted in the proactive approach, the main objective of this work is to propose a 

concept drift detection mechanism with the ability to anticipate eventual drifts. As this 

method is specialised in detecting abrupt drifts, we called this mechanism as DetectA, 

referring to the terms Detect an Abrupt Drift. In order to assess our contribution, we first 

performed a sensitivity analysis on the number of attributes, patterns, imbalance rate, and 

so forth, using artificial datasets with pre-defined abrupt drifts in certain classes and 

instants. Then, we conducted experiments with artificial and real datasets to verify its 

performance when coupling with a classifier in non-stationary environments,  

comparing several different approaches of the proposed method. 

 We should mention that this work is an extension of a previous contribution [43]. 

We unfolded this preceding work in multiple directions, but mainly in three aspects: (i) 

proposing a reactive version of DetectA; (ii) describing two different training strategies 

when the proactive version of DetectA is deployed jointly with a classifier; and (iii) 

applying the reactive and proactive versions of DetectA on well-established benchmark 

datasets from the concept drift detection literature. In (i) we describe a more conventional 

version of DetectA, by applying only its statistical component to flag concept drifts after 

having complete knowledge of the new batch labels. Item (ii) refers to different ways to 

hedge the classifier when the proactive version has signalled a potential drift; hence, we 

propose two learning strategies that can aid in this task. Finally, (iii) presents new results 

on coupling a multi-layer perceptron classifier with variations of DetectA (reactive and 

proactive) and the proposed training strategies (item ii), to provide evidence that when 

DetectA is deployed jointly with a classifier, it can improve its performance on non-

stationary learning scenarios. 

 We structured this paper in four additional sections. Section 2 presents the 

fundamentals of concept drift, including definitions and summary of the main algorithms 

of drift detection in the literature, in order to clarify their main contributions. Section 3 

presents the proposed drift detection mechanism (DetectA), outlining the main distinctions 

between a reactive and proactive detection method. Section 4 presents the sensitivity 

analysis and discussions on the experiments performed with benchmark databases. Finally, 

section 5 concludes this work and discusses future works.  

2. Background and Literature Review 

2.1. Existing Models for Concept Drift Detection 

The term "Change Detection" or "Drift Detection" refers to techniques and 

mechanisms for detecting drift/change by identifying change points or small intervals 

during which variations occur, such that the existing models can no longer be effective to 

predict the behaviour of the current data [13]. Concept drift detectors are methods that can 

signal that data distributions are changing, based on information about classifier’s 

performance or the incoming data. Such signals usually trigger the need to update, replace 

or retrain the model [17]. 

Concept drift can occur in several learning problems, such as classification, 

regression and time series forecasting. However, this work focuses specifically on 

classification problems. Typically, concept drift detectors are used together with a 

classification module, and they measure various properties of the data, such as standard 

deviation [12], predictive error [5], instance distribution [33], or stability [38]. Any 

changes observed in these properties are attributed to the potential presence of drift [29]. 

 



  

Method Reference Drift Type Metric 

Drift Detection 

Method (DDM) 

[12] Abrupt Tracks online error and defines 

tolerance zones 

Early Drift Detection 

Method (EDDM) 

[3] Gradual Same as DDM, but working 

with error variance 

Statistical Test of 

Equal Proportions 

(STEPD) 

[27] Abrupt/Gradual Compares the accuracy of the 

same model using different data 

history sizes  

Paired Learners (PL) [2] Abrupt/Gradual Compares the accuracy between 

two models with different time 

windows 

Exponentially 

Weighted Moving 

Average (EWMA) 

[30] Abrupt/Gradual Monitors the mean of a 

sequence of random variables 

EWMA for Concept 

Drift Detection 

(ECDD) 

[30] Abrupt/Gradual Same as EWMA, but 

controlling the false positive 

rate 

Resampling [23] Abrupt/Gradual 
Uses random permutations of 

the samples, which produce 

various training-testing splits 

from the stream of data. The 

results suggest that it is more 

robust for noisy changes. 

Hierarchical CDT (H-

CDT) 

[1] Abrupt Uses the Hotelling test to check 

if the present contents in stream 

before and after the 

modification differs 

Error distance based 

approach for drift 

detection and 

monitoring (EDIST) 

[16] Gradual Same as EDDM, but takes two 

data window and traces concept 

drift by maintaining two 

windows: one global sliding 

window and another to store the 

present example  

Hoeffding’s Bounds 

Drift Detection 

Method  (HDDM) 

[11] Abrupt/Gradual Same as DDM and EDDM, but 

applying non-parametric 

methods based on Hoeffding’s 

Bounds 

Adaptive cumulative 

windows model 

(ACWM)  

 

[31] Abrupt/Gradual The online monitoring of the 

distance between data 

distributions is evaluated using 

a dissimilarity measure based on 

the asymmetry of the Kullback–

Leibler divergence 

GraphPool 

Framework 

[45] Recurrent It extracts a concept 

representation from the current 

batch considering the 

correlation among features. 

Then, compares the current 

batch representation to the 

concept representations in the 

pool using a statistical 

multivariate likelihood test 



  

Multidimensional 

Fourier Transform 

(MFDT) 

[46] Abrupt/Gradual Employ Shannon’s and Von 

Neumann’s Entropies to 

quantify variations in data 

spaces. Also, MDFT allows 

univariate streams to be 

reconstructed in phase spaces so 

their data dependencies can be 

analyzed decide over concept 

drifts 

Table 1 – Summary of reactive detection methods. 

Several reactive drift detection mechanisms have already been proposed in the 

literature and can be used to execute the learning process in conjunction with a predictive 

model. In the case of classification problems, the classifier typically provides the class 

prediction for each input pattern and then compares its response with the correct class label 

received to see if the classifier has hit or miss each prediction. Table 1 shows some of these 

detection methods. 

These drift detection methods, as well as most of the methods found in the 

literature, work reactively, that is, they act after the occurrence of the drift and model error 

since they depend on the actual class labels of the input patterns. In classification 

problems, after receiving the complete dataset (patterns and class labels for the training and 

test sets), the detector applies a sequence of procedures to identify some change in the 

conditional class distribution - a concept drift.  

Few papers use a proactive approach, like in [18] that applies principal component 

analysis (PCA) for extracting characteristics before change detection. The authors discuss 

and show evidence that components with lower variance should be stored as extracted 

features since they are more likely to be affected by the change. The authors then choose a 

change detection criterion, based on the semiparametric log-likelihood function, which is 

sensitive to shifts in the mean and variance of multidimensional distributions. Other 

contribution, described in [44], proposes a new recurrent drift detector which incorporates 

historical drift rate information that is accurate for streams with reoccurring volatility 

trends. They have used synthetic and real data to compare their method with three state-of-

art detection mechanism, being able to show that their technique is able to lower the rate of 

false positives. However, authors point out a limitation of the technique, since it only uses 

drift interval information for predicting future drift locations by matching the drift rate 

patterns to the pattern network. 

Compared to these few proactive methods, DetectA takes a different approach to 

proactive detection: after grouping the data, the means and covariance matrices of the 

previous and current blocks are compared using statistical tests, and if this difference 

exceeds a certain threshold, drift is signalled. Through the information that comes from 

these statistical tests, we can devise manners to alleviate the impact of such expected drift, 

being a major difference when compared to current proactive approaches. The DetectA 

model will be further detailed in section 3. 

As we are going to focus on abrupt drift detection, next subsections present 

definitions and statistical methods to detect eventual drifts of this kind. 

 



  

2.2. Wide-sense Concept Drift Detection 

 Assuming that 𝑿 conditioned to class k follows a Multivariate Normal Distribution 

[14], i.e., 𝑿 | 𝐶𝑘 ~ 𝑁𝐽( 𝝁𝑪𝒌
, Σ𝐶𝑘

), then its conditional joint probability density function is 

given by: 

𝑓𝑿(𝒙|𝐶𝑘) =
1

(2𝜋)𝐽/2|𝚺𝑪𝒌|𝐽/2  𝑒
−(𝒙−𝝁𝑪𝒌

)
𝑇
𝚺𝑪𝒌

−𝟏(𝒙−𝝁𝑪𝒌
)(

1

2
) 
                                                                     (1)                

where: 

• 𝝁𝑪𝒌
= [𝜇𝑋1|𝐶𝑘

, 𝜇𝑋2|𝐶𝑘
, … ,  𝜇𝑋𝐽|𝐶𝑘

]
𝑇
is the conditional mean vector, in which the j-th entry 

is the conditional mean for the k-th class of the j-th random variable. 

• ΣCk
= 

[
 
 
 
 

σX1|Ck

2 σX1,X2|Ck
… σX1,XJ|Ck

 

σX2,X1|Ck
⋱ ⋮

⋮
σXJ,X1|Ck

… σXJ|Ck

2

]
 
 
 
 

  is the conditional covariance matrix, 

composed of variance (σXj|Ck

2 ) and covariance (σXl,Xj|Ck
) terms related to the k-th class. 

By definition, ΣCk
 is symmetric and positive, with |ΣCk

| representing the determinant of 

the covariance matrix.  

 

Based on these parameters – mean vector and covariance matrix – we explore a less 

strict condition of abrupt concept drift when compared to the one provided in [13] – that is, 

instead of looking to the harder to estimate joint distribution we rather focus our attention 

on parameters that are easy to handle statistically.  

In this sense, no abrupt drift is observed if both of the following equalities: 

𝝁𝑪𝒌
(𝑡) = 𝝁𝑪𝒌

(𝑡 + 1)                                                                                                                         (2)                                        

𝚺𝑪𝒌
(𝑡) = 𝚺𝑪𝒌

(𝑡 + 1)                                                                                                                         (3)  

holds.  However, the population parameters 𝝁𝑪𝒌
(𝑡) and 𝚺𝑪𝒌

(𝑡) are rarely known. In fact, 

what is observed is a random sample of 𝑿1
(𝑡), … , 𝑿𝑛

(𝑡)
 from the population under analysis. 

From this sample it is viable to estimate 𝝁𝑪𝒌
(𝑡) and 𝚺𝑪𝒌

(𝑡) using the maximum likelihood 

estimators [14] �̅�𝐶𝑘
(𝑡) and 𝑺𝐶𝑘

(𝑡) respectively, where �̅�𝐶𝑘
(𝑡) is a vector composed of 

arithmetical averages (�̅�𝑗|𝐶𝑘
(𝑡)) for each feature, while 𝑺𝐶𝑘

(𝑡) is a matrix, with the main 

diagonal composed of variances related to the j-th feature (𝑠𝑗|𝐶𝑘

2 (𝑡)), and the off-diagonal 

elements are the sample covariance between two different features (𝑠𝑗,𝑙|𝐶𝑘
(𝑡)). Clearly, all 

of these values are measured at time t and conditioned to class k.  

 Based on these topics, next topics present a better characterization of abrupt drift 

and hypothesis tests to detect its occurrence.  

 

2.2.1. Concept Drift and Hypothesis Test on Conditional Mean Vector 

Definition 1. An abrupt concept drift in the conditional mean vector occurs when the 
following equality does not hold: 

𝝁𝑪𝒌
(𝑡) = 𝝁𝑪𝒌

(𝑡 + 1)                                                                                                                        (4) 

then the mean vectors differ from time t to t+1. 



  

 

Observation: the equality in eq. (4) keeps the same principle of a hypothesis test: first, it is 

necessary to find an estimator for 𝝁𝑪𝒌
(𝑡), 𝝁𝑪𝒌

(𝑡 + 1) and for other quantities involved; 

second,  submit these to a hypothesis test that measures the probability of non-rejecting the 

equality between 𝝁𝑪𝒌
(𝑡) and 𝝁𝑪𝒌

(𝑡 + 1). If this probability is less or equal to the 

significance level (α), then an abrupt concept drift in the conditional mean vector has 

occurred. Figure 1 exhibits an abrupt concept drift occurring in the conditional mean vector 

of class 𝐶2. As can be noted, the decision boundary between the classes have changed, 

making the problem more challenging; since the current classifier was trained based on the 

previous boundary, it will tend to erroneous classify more elements as class 1 when they 

have been generated from class 2. 

 When eq. (4) needs to be evaluated from data, we apply the Hotelling's T2 [14]. 
Suppose two competing hypothesis: 

𝐻0: 𝝁𝑪𝒌
(𝑡) = 𝝁𝑪𝒌

(𝑡 + 1) 

𝐻1: 𝝁𝑪𝒌
(𝑡) ≠ 𝝁𝑪𝒌

(𝑡 + 1) 

 

 

Figure 1. An example of an abrupt concept drift in the mean vector. 

 

 If 𝐻0 is rejected, then we consider that an abrupt concept drift in the conditional 

mean vector has occurred. Given two random samples 𝑿1
(𝑡), … , 𝑿𝑛1

(𝑡)
 and 𝑿1

(𝑡+1)
, … , 𝑿𝑛2

(𝑡+1)
 

of size 𝑛1 and 𝑛2 respectively, with 𝑿(𝑡)|𝐶𝑘
(𝑡)

 ~ 𝑁𝐽 (𝝁𝑪𝒌
(𝑡), 𝚺𝑪𝒌

(𝑡)) and         

𝑿(𝑡+1)|𝐶𝑘
(𝑡+1)

 ~ 𝑁𝐽 (𝝁𝑪𝒌
(𝑡 + 1), 𝚺𝑪𝒌

(𝑡 + 1)). The appropriate test statistic is: 

𝑇2 = (�̅�𝐶𝑘
(𝑡) − �̅�𝐶𝑘

(𝑡 + 1))
𝑇
(
𝑺𝑪𝒌

(𝑡)

𝑛1
+

𝑺𝑪𝒌
(𝑡 + 1)

𝑛2
)

−1

(�̅�𝐶𝑘
(𝑡) − �̅�𝐶𝑘

(𝑡 + 1))                        (5) 

 

which compares the sample mean vectors �̅�𝐶𝑘
(𝑡) and �̅�𝐶𝑘

(𝑡 + 1) (estimators for 𝝁𝑪𝒌
(𝒕) 

and 𝝁𝑪𝒌
(𝑡 + 1)) in two different instants (blocks), in such manner that if 𝑇2 is “too high”, 

then 𝐻0must be rejected. 𝑺𝑪𝒌
(𝑡) and 𝑺𝑪𝒌

(𝑡 + 1) represent the samples covariance matrices. 

Given the assumptions behind the random samples, and under 𝐻0, the test statistic 
(𝑛1+𝑛2)−𝐽−1

(𝑛1−𝑛2−2)𝐽
 𝑇2 follows a F distribution with J and (𝑛1 + 𝑛2) − 𝐽 − 1 degrees of freedom 



  

(J being the number of features). With this knowledge, it is possible to set a rejection zone 
for 𝐻0 to identify abrupt concept drifts in the mean. Below are the steps to apply 
Hotteling’s T2 test: 

 
1. Compute �̅�Ck

(t), �̅�Ck
(t + 1), 𝑺Ck

(t) and 𝑺Ck
(t + 1). 

2. Calculate the test statistic 𝑇2 (equation 5). 

3. Drift if 
(n1+n2)−J−1

(n1−n2−2)J
 𝑇2 > FJ,(n1+n2)−J−1(α), where FJ,(n1+n2)−J−1(α) is the upper (1 - α) 

percentile of the FJ,(n1+n2)−J−1 distribution. 

2.2.2. Concept Drift and Hypothesis Test on Conditional Covariance Matrix 

 

Definition 2. An abrupt concept drift in the conditional covariance matrix occurs when the 
equality does not hold: 

𝚺𝑪𝒌
(𝑡) = 𝚺𝑪𝒌

(𝑡 + 1)                                                                                                                         (6) 

then the covariance matrix differs from time t to t+1. 

 

Comment: similarly, this equality can be checked using a hypothesis test. Two possible 
abrupt concept drifts in the conditional covariance matrix are exhibited in Figure 2. The 
conditional variance of 𝑋2 in 𝐶2 has grown, dilating the contour curves in this direction; in 
𝐶1,  the conditional covariance between 𝑋1 and 𝑋2fades away, implying less association 
between both variables, thereby rotating the contour curves. 

 

 

Figure 2. Examples of an abrupt concept drift in the covariance matrix. 

 

 Box-M test [14] is a hypothesis test used to identify significant differences between 
covariance matrices of normally distributed random variables. This statistical test supposes 
two competing hypothesis: 

𝐻0: 𝚺𝑪𝒌
(𝑡) = 𝚺𝑪𝒌

(𝑡 + 1) 

𝐻1: 𝚺𝑪𝒌
(𝑡) ≠ 𝚺𝑪𝒌

(𝑡 + 1) 

 



  

 If 𝐻0 is rejected, then it is considered that an abrupt concept drift in the conditional 

covariance matrix has occurred. Given two random samples 𝑿1
(𝑡), … , 𝑿𝑛1

(𝑡)
 and 

𝑿1
(𝑡+1)

, … , 𝑿𝑛2

(𝑡+1)
, with 𝑿(𝑡)|𝐶𝑘

(𝑡)
 ~ 𝑁𝐽 (𝜇𝐶𝑘

(𝑡), Σ𝐶𝑘
(𝑡)) and         

𝑿(𝑡+1)|𝐶𝑘
(𝑡+1)

 ~ 𝑁𝐽 (𝜇𝐶𝑘
(𝑡 + 1), Σ𝐶𝑘

(𝑡 + 1)), consider the likelihood ratio test as: 

Λ = (
det (𝑺𝑪𝒌

(𝑡))

det(𝑺𝒑𝒐𝒐𝒍)
)

𝑛1−1
2

∗ (
det (𝑺𝑪𝒌

(𝑡 + 1))

det(𝑺𝒑𝒐𝒐𝒍)
)

𝑛2−1
2

                                                              (7) 

 

where 𝑺𝒑𝒐𝒐𝒍 =
(𝑛1−1)𝑺𝑪𝒌

(𝑡)+(𝑛2−1)𝑺𝑪𝒌
(𝑡+1)

(𝑛1−1)+(𝑛2−1)
 is the pooled covariance matrix. Again, 𝑺𝑪𝒌

(𝒕) 

and 𝑺𝑪𝒌
(𝑡 + 1) represent the samples covariance matrices and n1 and n2 the number of 

samples at t and t+1, respectively. Box-M test uses the statistic:  

𝑀 = −2 ln Λ                                                                                                                                      (8)  

 

if the null hypothesis is true, the covariance matrices may not substantially differ and, 
consequently, these will not differ so much from the pooled covariance matrix. Finally, 
define the quantity u by: 

𝑢 = [
1

(𝑛1 − 1)
+

1

(𝑛2 − 1)
−

1

(𝑛1 − 1) + (𝑛2 − 1)
] [

2𝐽2 + 3𝐽 − 1

6(𝐽 + 1)
]                                     (9) 

 

then, 𝐶 = (1 − 𝑢)𝑀 approximately follows a 𝜒2distribution with 
1

2
𝐽(𝐽 + 1) degrees of 

freedom. Therefore, it is possible to establish a rejection zone for 𝐻0 to identify abrupt 
concept drifts in the covariance matrix. As stated in [14], the 𝜒2 approximation works well 
when 𝑛1, 𝑛2 > 20 and the number of features is below 5. In some case studies, the datasets 
have more than 5 features, so instead of using the 𝜒2distribution, we prefereed the 
approximation  via F distribution (following recommendations by [22]). The necessary 
steps to execute Box-M test are presented below: 

 
1.Calculate the 𝐒𝑪𝒌

(t), 𝐒𝐂𝐤
(t + 1) and 𝐒𝐩𝐨𝐨𝐥.  

2.Compute 𝑀 (eq. 8) and u (eq. 9). 

3.Drift if C > χ1

2
J(J+1)

2 (α), where χ1

2
J(J+1)

2 (α)is the upper (1-α) percentile of the 

χ1

2
J(J+1)

2  distribution. 

 Based on these two previous hypothesis tests next section describes the proposed 

DetectA method, with some adaptions to move from reactive to proactive drift detection. 

  

3. Abrupt Drift Detection Method: DetectA 

 The proposed drift detection method, called DetectA (Detect Abrupt Drift) is 

basically composed of three steps: (i) the test set patterns are labelled using an 

unsupervised grouping method; (ii) a series of statistics are computed from the training and 

test set, both conditioned to the labels settled in the previous stage; then (iii) the 

conditional means and covariance matrices are compared to the training and test set using 



  

the multivariate hypothesis tests outlined in the previous section. After getting the results 

of such tests, a decision is taken concerning the occurrence or not of drift. In the case of 

drift, some measures can be applied to adjust and improve the learning process. 

 Some notation is necessary for the sake of comprehension: consider a collection of 

n patterns at time t (𝒙𝟏(𝑡), … , 𝒙𝒏(𝑡)), where 𝒙𝒊(𝑡) = [𝑥𝑖1(𝑡), … , 𝑥𝑖𝐽(𝑡)] is the i-th pattern 

made from observations of each J features (i=1,...,n and j=1,...,J). From this collection, 𝑛k 

patterns belongs to class k (k=1,...,K). We assume that these n patterns are a realization 

from the random sample 𝑿1
(𝑡), … , 𝑿𝑛

(𝑡)
 of a population that follows a Multivariate Normal 

distribution. Although it is possible to execute the previous statistical tests without such 

assumption, its relevance relies on the correct definition of the probability distribution 

associated with those test statistics (T2 or M, for example). When such assumption is not 

verified in practice, then the probability of wrong conclusion increases (rejecting a true 

hypothesis, or not rejecting a false). The application of DetectA to real datasets (see 

subsection 4.2) will provide more information about the impact over the performance when 

the distribution of the random vector is not idealized. 

 The following subsections present the two types of abrupt drift detection with 

DetectA: reactive and proactive. Although the main contribution of this work is the 

proactive drift detection, we begin with the reactive approach, which will ease the 

proactive procedure description. 

 

3.1. Reactive Detection 

 The reactive detection implies the existence of patterns classes at instant 𝑡 + 1. 

Consider n labelled patterns  𝒙𝟏(𝑡 + 1), … , 𝒙𝒏(𝑡 + 1) and α significance level. For the 

reactive abrupt drift detection, the following steps must be performed: 

 

• In the conditional mean vector:  

 (1) Compute �̅�𝐶𝑘
(𝑡) and �̅�𝐶𝑘

(𝑡 + 1), as well as 𝑺𝐶𝑘
(𝑡) and 𝑺𝐶𝑘

(𝑡 + 1). 

 (2) Calculate the test statistic 𝑇2 (eq. 5). 

 (3) Define the occurrence of a drift if  
(𝑛1+𝑛2)−𝐽−1

(𝑛1−𝑛2−2)𝐽
 𝑇2 > 𝐹𝐽,(𝑛1+𝑛2)−𝐽−1(𝛼) 

 

• In the conditional covariance matrix:  

 (1) Find 𝑺𝐶𝑘
(𝑡), 𝑺𝐶𝑘

(𝑡 + 1) and 𝑺𝒑𝒐𝒐𝒍.  

 (2) Compute the test statistic 𝑀 (eq. 8), u (eq. 9), and finally 𝐶 = (1 − 𝑢)𝑀. 

 (3) Drift in the covariance matrix if  𝐶 > 𝜒1

2
𝐽(𝐽+1)

2 (𝛼) 

 After the drift detection, some measure might be taken, for example, retraining the 

current classifier or changing some component in the process under analysis. However, 

such adaptation may take longer than necessary, and the misclassification caused by the 

late drift detection can reduce the reliability of the whole built framework. Next subsection 

exhibits the proactive approach, aiming to predict an eventual abrupt drift and adjust the 

classifier or process before the misclassification occurs. 



  

 

3.2. Proactive Detection 

 A proactive drift detection means that the detection must occur in the absence of 
the label from patterns at time 𝑡 + 1. That is, the detection should be performed before the 
classifier commits a mistake. Then, let 𝒙𝟏(𝑡 + 1), … , 𝒙𝒏(𝑡 + 1) the set of n unlabeled 
patterns from instant 𝑡 + 1. Commonly, these patterns belong to the test set, thereby 
waiting for some future moment to obtain its labels. As it is not possible to compute the 
sample conditional mean vector �̅�𝐶𝑘

(𝑡 + 1) or the conditional covariance matrix 𝑺𝐶𝑘
(𝑡 +

1), it is unfeasible to compare these quantities with those computed at time t (�̅�𝐶𝑘
(𝑡) and 

𝑺𝐶𝑘
(𝑡)).  

 Therefore, the proactive detection method must depend on the information 
contained in 𝒙𝟏(𝑡 + 1),… , 𝒙𝒏(𝑡 + 1) and propose a set of labels to these patterns before 
the actual classification is performed. Approaches that are independent from the class 
labels but based on the pattern distribution are the clustering algorithms [10].  

 The proactive approach is, therefore, based on the agglomerative clustering 
methods for the following reasons: (i) the number of groups to be formed known a priori 
(identical to the number of classes in the problem); (ii) the initial condition for the centroid 
of each group is the conditional mean vector of each class, which helps the algorithm to 
formulate the group and the subsequent identification of groups as classes; and (iii) tends 
to be computationally more efficient than divisive clustering methods. 

 There are several agglomerative clustering methods in the literature (such as C-
means, Gaussian Mixture Model) [6; 4], but as a first approach we used the simple k-
means method [6]. This classical method is easy to implement and computationally 
efficient. Based on this approach, the next steps show (in pseudocode) how to implement 
the proactive version of DetectA: 

 
1. The initial dataset (t=1) has n(t) patterns that belong to K classes. This dataset is 

commonly used to train the classifier. 
 

2. Using the data from this first dataset, the sample conditional mean vectors 
X̅C1

(t),… , X̅CK
(t), for each available class, are computed. 

 
3. At time (t=t+1 a new set of n(t) unclassified patterns is received. Then do: 

 
a. Group the n(t) patterns using the k-means, setting the number of groups as 

the number of classes (groups = K) and the centroids of each group as the 
vectors �̅�𝐶1

(𝑡 − 1), … , �̅�𝐶𝐾
(𝑡 − 1). We suggest the use of Mahalanobis 

distance as the dissimilarity metric, aiming to form groups with spherical as 
well as elliptical shapes [24]. 

b. After the convergence of the k-means algorithm, define n1(t) patterns 
closest to the centre initiated in �̅�𝐶1

(𝑡 − 1) as belonging to class 1, the n2(t) 

patterns closest to �̅�𝐶2
(𝑡 − 1) as belonging to class 2, and so on.  

c. Then compute the new conditional mean vector and covariance matrix of 
each class, which are not represented by �̅�𝐶𝑘

(𝑡) and 𝑺𝐶𝑘
(𝑡) any more, but 

by �̅��̂�𝑘
(𝑡) and 𝑺�̂�𝑘

(𝑡), estimated based on the predicted class by the k-

means algorithm. 
 

4. Consider α as the predefined significance level. Given this level, a proactive abrupt 
drift detection can be implemented at: 

a. Conditional mean vector:  
i. Compute �̅�𝐶𝑘

(𝑡 − 1), �̅��̂�𝑘
(𝑡), 𝑺𝐶𝑘

(𝑡 − 1) and 𝑺�̂�𝑘
(𝑡). 



  

ii. Calculate the test statistic 𝑇2 (eq. 5). 

iii. Drift if 
(𝑛1+𝑛2)−𝐽−1

(𝑛1−𝑛2−2)𝐽
 𝑇2 > 𝐹𝐽,(𝑛1+𝑛2)−𝐽−1(𝛼), 

 
b.  Conditional covariance matrix:  

i. Calculate the 𝑺𝐶𝑘
(𝑡 − 1), 𝑺�̂�𝑘

(𝑡) and 𝑺𝒑𝒐𝒐𝒍.  

ii. Compute 𝑀 (eq. 8) and u (eq. 9). 

iii. Drift if 𝐶 > 𝜒1

2
𝐽(𝐽+1)

2 (𝛼).  

 
5. Return to step 3 whenever is necessary. 

 Note that in this method there is no need to store the previous data blocks, but only 

the number of patterns of each class, the conditional mean vector and covariance matrix of 

the previous instant. To illustrate the enunciated steps, Figures 4 and 5 show a toy example 

with two classes (Masculine and Feminine) and two features (Height and Weight) problem. 

 

 

Figure 3. (a) Clustering of the training set using the known class labels to identify the 

centroids of each class; (b)  The centroids found during the clustering process in (a) are 

shown (circles) overlaid on the test set examples (squares). 

 

 The first step (Figure 4a) is to cluster all labelled data, forming two groups using as 

initial centroids the conditional means of each class. After the clustering has converged, it 

is necessary to store the cluster centroids as well as the current observed conditional means 

and covariance matrices. The clustering method needs to run again when the new 

unlabelled data arrives (Figure 4b), but instead of starting the centroids from scratch, it 

should use the centroids from the previous run.  

 After the clustering method has halted (Figure 5a), we treat all the data closest 

Mahalanobis distance from each centroid as belonging to a particular class. Obviously, this 

is an estimation not used to classify the patterns, but to approximate four unknown 

quantities: �̅�𝑀𝑎�̂�(𝑡 + 1), 𝑺𝑀𝑎�̂�(𝑡 + 1), �̅�𝐹𝑒�̂�(𝑡 + 1) and 𝑺𝐹𝑒�̂�(𝑡 + 1). After we have 

computed these statistics, we apply Hotelling’s T2 and Box-M test to check if some abrupt 

drift has happened (Figure 5b).  

 

(a) (b) 



  

 

Figure 4. Clustering the test set and comparing estimated averages and covariance matrices 

between two iterations. 

  

 If an abrupt drift is detected, one of two approaches might be performed to avoid 
misclassification of the patterns that suffered the drift: the classifier must be retrained, 
using the labels provided by the clustering algorithms; or the test patterns are used to adjust 
the current classifier. This adjustment can be realised based on conditioning these new 
patterns to have a similar distribution to those used during the classifier training. To 
illustrate this idea, consider the following example: 

 
1. Suppose a problem with two classes and two attributes, plus a set of n test patterns. 

The proactive detection method was used and has identified the patterns that 
possibly belong to class 1 and 2. 

2. Then, based on the conditional mean vector and covariance matrix of the labelled data in 
the previous instant, the detection method verifies the presence of an abrupt drift in 
the conditional mean vector of class 1. It has detected a deviation of 10 units related 
to the average of the first feature when compared to the previous instant. 

3. To "correct the drift", that is, to make the drift unperceived by the classifier, just 
subtract 10 units in the first feature from the test patterns that are credited to belong 
to class 1 and use the old classifier with the corrected data. 

 

 Therefore, the process of "correcting the drift" is perhaps one of the great novelties 
of DetectA. This approach is called Pattern Mean Shift. However, if the detection is 
wrong, the correction may be harmful and, in some cases, lead to a possible drift. 
Therefore, a proactive approach should be conservative and fine-tuned to ensure that such 
errors are in a situation of low impact to the classifier. Next section displays the 
experiments performed with DetectA. 

 

4. Results and Discussions 

 This section details the experiments performed with the DetectA method. Two 

main experiments have been performed: a sensitivity analysis of DetectA on artificially 

generated datasets with different parameters and settings for the data generation process; 

performance comparison of the various configurations of DetectA with well-established 

benchmarks in the drift detection literature.  

 

(a) (b) 



  

4.1. Experiment 1: Sensitivity Analysis of DetectA 

 In this experiment, a sensitivity analysis is performed based on the variation of 

certain parameters related to the data generating process (number of attributes, the number 

of patterns, imbalance rate between classes, etc.), to understand the influence of each 

parameter on the overall performance of DetectA. In this sense, we generated artificial 

datasets manipulating the instant and the type of drift. The procedures employed to 

generate these datasets are detailed in [43]. 

  We measured the detection effectiveness by computing its false positives (false 

alarms) and false negatives (faulty alarms) rates. These metrics can be summarized by a 

matrix displayed in Table 2. Assuming the two possible situations in the data - drift (D) 

and absence of drift (ND) - the detector can alert a drift (A) or do not alert (NA), resulting 

in four possible results: 

• #A&D: there is drift (D) and the detector has produced an alert (A) 

• #NA D: there is drift (D) but the detector did not produce an alert (NA) 

• #A&ND: there is no drift (ND) but the detector produced an alert (A) 

• #NA&D: no drift (ND), and the detector did not produce an alert (NA) 

 

Detector Drift (D) Absence of Drift (ND) 

Alert (A) #A&D #A&ND 

Idle (NA) #NA&D #NA&D 

Table 2. Performance metrics for the drift detection process. 

 The false alarm rate (i.e., false positive rate) is calculated by: 

   𝐹𝑃𝑅 =
#𝐴&𝑁𝐷

#𝐴&𝑁𝐷 + #𝑁𝐴&𝑁𝐷
                                                                                                  (10) 

   

measuring the ratio between the number of cases in which the alerts were performed out of 

time and the total number of cases without drift. On the other hand, the faulty alarm rate 

(i.e., false negative rate) is given by: 

𝐹𝑁𝑅 =
#𝑁𝐴&𝐷

#𝑁𝐴&𝐷 + #𝐴&𝐷
                                                                                                           (11) 

  

relating the number of mistakes made by being idle when a drift happened (#NA&D) and 

the number of drift available in the data stream. In general terms, a good detector 

minimises both false positives and false negatives. For simplicity, the experiment is 

conducted considering binary datasets with the parameters as described in Table 3. For 

each configuration we generated 100 datasets; therefore, the results presented in the 

following sections are an average of 100 runs of the detection method.  

 It is also possible to evaluate the delay time between the occurrence of a drift and 

its detection, but since the number of blocks used in this experiment is small (only ten 

blocks), we believe that such metric will not provide substantial information into our 

analysis. The following subsections present the results of this experiment. 

 



  

 

Description Values used 

Number of attributes 5, 15, 25 

Number of patterns per block (block size) 150, 350, 500 

Proportion of the occurrence of class 1 in relation to class 2 0.2, 0.35. 0.5 

Number of blocks where there is occurrence of drift in class 1 1, 3, 5, 7 

Number of blocks where there is occurrence of drift in class 2 0, 1, 3, 5, 7 

Proportion of attributes that will suffer drift within the block 0.2, 0.35, 0.5 

Alpha: Level of significance, that is, minimum level that is accepted from the alternative 

hypothesis H1 (occurrence of drift) is correct 
0.01, 0.05, 0.1 

Table 3. Parameters analysed during the sensitivity analysis. 

 

4.1.1. Individual Parameters Analysis 

 This experiment involved 4860 different configurations since the combinations of 

all possible values of all parameters were evaluated. Table 4 presents the influence of each 

parameter, based on the average of false and faulty alarm rates grouped by each parameter 

value (average of all possible configurations with each parameter value). In all cases, the 

observed standard deviation was less than 2%. 

 

 Number of 

attributes 

Number of patterns Imbalance rate Alpha 

 5 15 25 150 250 500 0.2 0.35 0.5 0.01 0.05 0.1 

False Alarm - Class 1 0.48 0.09 0.08 0.19 0.22 0.24 0.25 0.21 0.19 0.15 0.2 0.31 

Faulty Alarm - Class 1 0.21 0.44 0.39 0.38 0.34 0.32 0.34 0.35 0.35 0.75 0.21 0.08 

False Alarm - Class 2 0.49 0.10 0.09 0.20 0.24 0.26 0.23 0.22 0.23 0.14 0.23 0.32 

Faulty Alarm - Class 2 0.11 0.21 0.19 0.18 0.16 0.16 0.16 0.17 0.17 0.38 0.09 0.03 

 Number of blocks with drift 

in class 1 

Number of blocks with drift in class 

2 

Proportion of 

attributes with drift 

 1 3 5 7 0 1 3 5 7 0.2 0.35 0.5 

False Alarm - Class 1 0.25 0.24 0.22 0.17 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 

Faulty Alarm - Class 1 0.34 0.34 0.35 0.35 0.35 0.35 0.34 0.34 0.34 0.35 0.35 0.34 

False Alarm - Class 2 0.26 0.24 0.22 0.2 0.27 0.21 0.20 0.18 0.15 0.23 0.23 0.23 

Faulty Alarm - Class 2 0.17 0.17 0.17 0.17 0.00 0.33 0.34 0.34 0.34 0.17 0.17 0.16 

Table 4. False and faulty alarm rates grouped for each parameter value. 

 Based on Table 4 we verify that an increase in the number of attributes seems to 

result in a reduction in the false alarm rate, something that is not verified with the faulty 

alarm rate. We also found out that, as the number of patterns (block size) expands, the false 

alarm rate modestly increases, whereas the faulty alarm rate tends to decrease.  



  

 The false alarm rate for class 1 appears to be decreasing as the rate of imbalance 

increases, although the variation is not very expressive, and no significant variation was 

observed for the other indicators. We can also observe that although, in a non-expressive 

way, the false alarm rate values tend to decrease as the number of blocks with drift in class 

1 increases, while the values of the faulty alarm rates remain practically constant. 

Considering the number of blocks with drift in class 2, the false alarm rate for class 2 is the 

only one that presents significant variation, decreasing as the number of blocks with drift 

in class 2 decreases. 

 Figure 5 presents four boxplots, each one evaluating how the mismatching rate 

varies according to the number of attributes. We can observe that the configurations with 5 

attributes provides the highest false alarm rates for both classes, concentrating around 40-

60% region, while those with 15 and 25 features have their false alarm rates below 20%. 

However, we can notice a reasonable number of outliers for both classes, mainly when the 

number of features is equal to 25. Regarding faulty alarm rates, we can perceive that for 

class 1 the best rates are obtained when the number of features is small, oscillating when 

this number grows. For class 2, we were unable to spot a clear pattern, but we can point out 

that overall the rates tend to be at reasonable low levels. In general, when we analyze the 

median values, it is possible to assert that false alarm rates are negatively correlated with 

the number of attributes for both classes. Also, the bulk of faulty alarm figures 

concentrated close to zero. 

 

 

Figure 5. Boxplots of false and faulty alarm rate break down by number of attributes. 
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 Figure 6 outlines four additional boxplots, in this case each depicting how the 

number of patterns has affected the different false and faulty alarm rates for class 1 and 2. 

We can verify that the interquartile range tends to increase (bigger dispersion) when the 

respective block size faced by DetectA grows, contrasting with the falls in the median false 

alarm rates in both classes – although such reduction seems to be inexpressive. In relation 

to faulty alarms, the boxplot interquartile range decreases with the increase in the number 

of patterns; in any scenario the median values settled down at very low levels – suggesting 

the usual negative relationship between number of patterns and faulty alarm rates (false 

negative rates). 

 

 Figure 6. Boxplots of false and faulty alarm rate break down by number of patterns. 

 

 Finally, it is noticed that the false alarms rates increase as alpha rises, which was 

already expected, because higher alpha values make the model more reactive, with a higher 

probability of false alarms. The faulty alarm rate, on the other hand, decreases as alpha 

rises, also showing a higher model reactivity.Overall the results seem reasonably good, 

especially for the false alarm rates: the mean is 22% for class 1 and 23% for class 2, and 

the median is 14% for both classes, indicating that the proposed detection model has low 

occurrences of false alarms. The faulty alarms are also considerably low, with a median of 

19%. Table 5 presents the mean, median, and standard deviation for the four indicators. 

 

 

 



  

Indicator Mean Median Std Deviation 

False Alarm for Class 1 0.22 0.14 0.22 

Faulty Alarm for Class 1 0.35 0.19 0.34 

False Alarm for Class 2 0.23 0.14 0.22 

Faulty Alarm for Class 2 0.17 0.00 0.30 

Table 1. Statistics aggregated by indicators. 

 This subsection presented the main results from an individual parameters 

perspective, as well as a general view of the indicators. The next subsection presents a 

quantification analysis considering eventual interactions between parameters (number of 

attributes and patterns) via the Analysis of Variance method. 

 

 

4.1.2. Quantifying each parameter relevance 

 Analysis of Variance (ANOVA) [26] is a statistical procedure widely applied to 

detect substantial differences in populations’ means across different factor levels. In our 

context of sensitivity analysis, it allows the identification of the factor levels (number of 

attributes = {5, 15, 25}, for example) that most influence the Detect ’s performance. As a 

byproduct, this analysis makes it possible to determine which variables (number of 

attributes, patterns, etc.) tend to affect the detection performance with higher intensity.  

 Table 6 shows the main ANOVA results as a function of the false and faulty alarm 

rates for each main factor, as well as certain interactions terms that we believe,  are the 

most useful in practice and that seems to have relevant relation: number of patterns with 

number of attributes, number of patterns with imbalance rate between classes, and finally, 

number of attributes with proportion of attributes with drift. The most important terms 

(higher values of sum of squares - S) are highlighted in bold, with the statistically 

significant terms (p-value <0.05) highlighted in italics. 

 Considering the false alarm rates sum of squares, we can observe that:  

 

• the number of attributes is the most influential parameter of the model.  

• the alpha parameter is directly related to the detector reactiveness, thereby a direct 

impact on the false alarm rates was expected.  

• the variation in the number of blocks with drift tends to easier the detection.  

 From the p-value perspective, the terms that shows higher influence on the false 

alarm rates are: number of attributes, number of patterns, imbalance degree between 

classes (influences only for class 1, because it is the minority class), number of blocks with 

drift, alpha, 1st interaction (number of patterns with number of attributes) and 2nd 

interaction (number of patterns with imbalance between classes). 

 

 

 

 



  

 

FEA – Class 1 FEA – Class 2 FYA – Class 1 FYA – Class 2 

S p S p S p S p 

M
a

in
 

Number of atributes 209.37 * 202.65 * 37.70 * 7.50 * 

Number of patterns per block 

(block size) 
2.91 * 4.93 * 4.00 * 0.90 * 

Imbalance rate between classes 5.53 * 0.00 0.78 0.20 0.04 0.30 0.03 

Number of blocks with drift in 

class 1 
0.01 0.35 0.00 0.86 0.10 0.05 0.10 0.25 

Number of blocks with drift in 

class 2 
5.94 * 4.68 * 0.10 0.22 0.00 0.79 

Proportion of attributes with drift 

within the block 
0.00 0,76 14.69 * 0.00 0.31 135.10 * 

Alpha 36.84 * 40.22 * 557.00 * 156.00 * 

In
te

ra
ct

io
n

s 

1) Number of patterns x number 

of attributes 
17.55 * 11.44 * 7.40 * 1.10 * 

2) Number of patterns x 

imbalance rate between classes 
0.60 * 0.11 0.01 0.10 0.25 0.00 0.64 

3) Number of attributes x 

proportion of attributes with drift 
0.01 0.44 0.00 0.62 0.00 0.95 0.00 0.94 

Table 6. Analysis of variance considering false (FEA) and faulty (FYA) alarm rate. The 

symbol * denotes p-values less or equal 2.10-16. 

 Based on the most relevant terms, we applied the so-called Tukey test [26], a test 

commonly used to find differences between levels of certain terms. The results are detailed 

in Appendix 1. In this case, we applied the Tukey test to number of attributes, number of 

patterns, alpha, number of blocks with drift and 1st interaction. Given that, we could derive 

the following trends: 

• the lower the number of attributes, the higher the false alarm rates are; 

• as we increase the number of patterns, we observe a larger amount of false 

alarm rates; 

• the higher the alpha, the higher the false alarm rates tend to be; 

• as we enlarge the number of blocks with drift, the false alarm rate tends to 

decrease; 

• in the 1st interaction, the variations on the number of attributes are the 

defining term for the whole interaction. 

 About the rate of faulty alarms, the alpha parameter is by far the most influential in 

the model (based on the value of the sum of the squares), followed by number of blocks 

with drift in class 2, and number of attributes. The other model terms that are statistically 

significant for the faulty alarm rates are number of patterns, imbalance rate between classes 

and 1st interaction (number of patterns with attributes). We followed the analysis by 

applying the Tukey test for the most significant and relevant terms: number of attributes, 



  

alpha, number of patterns and 1st interaction. In summary, Tukey test captured the 

following trends, for both classes: 

• the faulty alarm rate does not seem to follow a clear linear relationship with 

the increase/decrease of the number of attributes; 

• when alpha is hiked up, the lower the faulty alarm rates are; 

• more patterns tend to imply lower faulty alarm rates; 

• about the 1st interaction, the number of attributes is the strongest parameter of 

the interaction regarding the influence on faulty alarms. 

 In contrast to the false alarm rates, the Tukey method tended to follow our 

expectations regarding relationship across factors and faulty alarm rates.  

 Based on the results obtained, this first experiment suggests that the detector is 

more efficient for: 

• high-dimensional datasets, since false alarm rates decays in the presence of 

more attributes, as well as faulty alarms do not show a substantial increase; 

• intermediate size blocks, as a trade-off between increase/decrease of false and 

faulty alarm rates; 

• datasets with any proportion of drift, since this parameter does not 

demonstrate the significant influence on the false or faulty alarm rates; 

• imbalanced binary classes datasets, since our results have not undergone 

significant fluctuations with the change in this parameter. 

 This section presented the results of the first experiment performed with DetectA. 

The next section presents the comparison of DetectA results with other drift detection 

methods in the literature. 

 

4.2. Experiment 2: Drift Detection in Datasets 

To verify the improvement that DetectA can offer during classification tasks 

(accuracy and the computational performance), five different datasets were used and 

several simulations were carried out in various scenarios. These datasets are quite known 

in the literature and have already been used with different drift detection methods. Next 

sub-sections briefly describe the five datasets, the simulations carried and the discussion 

about the results obtained. 

4.2.1. Datasets Description 

 The datasets used in this experiment are the SEA Concepts, an artificial dataset 

where a more controlled environment about the drifts is provided, and four real datasets 

(Nebraska, Electricity, Cover Type and Poker Hand), where the exact moment that the drift 

occurs is not known. 

 The SEA Concepts dataset was artificially created by [32]. It is characterised by 

extensive periods without major changes in the environment, but with occasional abrupt 



  

drifts.  The Nebraska dataset presents a compilation of climate measurements from the 

Offutt Air Force Base substation in Bellevue, Nebraska. Its objective is to predict whether 

a rainfall may appear, using data from the last 30 days. Both datasets are available in [28]. 

 The Electricity dataset is extracted from the Australian New South Wales 

Electricity Market, and the class label defines the price change related to a moving average 

of the last 24 hours. The purpose of the problem is to predict whether the price will go up 

or down. The Cover Type dataset contains information cells corresponding to a forest 

cover of 30x30 meters, extracted from the US Forest Service (USFS). Its goal is to predict 

the type of forest cover among seven possible values (therefore, a multi-class problem). 

The Poker Hand dataset has as output ten possible categoriesrepresenting the poker hand, 

which contains 5 cards. The purpose is to identify the type of a Poker hand among the ten 

possibilities. These datasets are available in [25]. 

 

4.2.2. Experiment Description 

 In order to investigate the influence of the detector on the accuracy and 

computational performance of a classifier, a simple multi-layer perceptron (MLP) neural 

network was chosen as the base classifier. We applied it in four different configurations of 

DetectA: two proactive approaches (Group Label and Pattern Mean Shift, detailed below) 

and one reactive strategy, already described in section 3. The proactive approaches are: 

• Group Label: At each new data block received, a clustering is performed, using 

as a suggestion the centroids of the previous labelled data block, to determine the 

predicted classes for each pattern of the new block. Using this clustering step as an 

input, the detection mechanism checks if a drift occurred about the previous block 

and, if so, a new MLP is created and trained with the new block, and the class 

labels suggested in the clustering. 

• Pattern Mean Shift:  Similar to the Group Label approach, with the difference 

that when a drift is detected, instead of creating a new MLP using the new data 

block, the old data block is used to train the MLP and the drift is "removed" from 

the new data block. While in the Group Label approach the new MLP is adjusted 

to the new data, in Pattern Mean Shift approach the new information is adjusted to 

the old MLP. This method has already been detailed in section 3. 

 For the sake of comparison, experiments were also performed with an MLP without 

any detector. We decided to use the block approach for the training and testing of the 

models. The block size and number of blocks used for each dataset are presented in Table 

7. We chose the same values already used in literature, such as in [9] and [8]. 

 

Dataset Block Size Number of Blocks 

SEA Concepts 250 400 

Nebraska 30 583 

Electricity 48 944 

Cover Type 500 1162 

Poker Hand 500 1658 

Table 7. Block size and number of blocks used in the experiments. 



  

 Two different training approaches were performed for the classifiers with a 

detection method:  

• Forget the past after detection: retrains the classifier for every new data blocks 

using all information available; however, in the case of drift detection, the training 

is only performed from the detection point onwards. 

• Only retrain after detection: only retrains the classifier when there is a drift, 

using the block where the drift was detected. 

For the classifier without detection, the traditional training approach was used: for 

each new block, the classifier is retrained with all the past labelled blocks.  

The simulations are then performed using seven variations, as summarised in Table 

8. In each variation, 30 simulations were executed by building an MLP with 5 neurons in 

the hidden layer, and 30 simulations with an MLP with 10 neurons in the hidden layer, 

totalizing 420 runs for each dataset. 

 

# Model Training approach Acronym 

1 No detection Traditional ND 

2 Reactive Detection 
Forget the past after 

detection 

RD-FPAF 

3 Reactive Detection Only retrain after detection RD- ORAD 

4 Proactive Detection – Group Label 
Forget the past after 

detection 

PD-GL-FPAF 

5 Proactive Detection – Group Label Only retrain after detection PD-GL- ORAD 

6 Proactive Detection – Pattern Mean Shift 
Forget the past after 

detection 

PD-PMS-FPAF 

7 Proactive Detection – Pattern Mean Shift Only retrain after detection PD-PMS-ORAD 

Table 8. Models and approaches used in the experiment. 

For the reactive approach, the detection mechanism is executed when the real 

labels of the new block (t) arrive, comparing it in relation to block t-1. On the other hand, 

in all approaches with proactive detection, the new block (t) is used to make the clustering 

and check the occurrence of drift in relation to the previous block. In Group Label 

approaches, in the case of a drift occurrence, the network is retrained only with the block t 

and the class labels provided in the clustering. In the Pattern Mean Shift approaches, in the 

case of drift, the network is tested with the block "t adjusted" towards the detected drift. 

When the real labels of this block arrive, the classifier is retrained only with the labelled 

block t. It is worth to mention that in proactive detection approaches, whenever the labels 

of a new block are available, the cluster centroids are adjusted to the next grouping 

considering the new labelled block. 

  

4.2.3. Results of the Experiment 

 Tables 9 and 10 display the results on average accuracy and execution time in 

seconds for each of the seven approaches used, respectively. We highlighted the best 



  

results by dataset in bold and the worst in italics and underlined. We took care to consider 

that the best setting provides highest values of accuracy and saving in execution time.  

 

Table 9. Average Accuracy Results. In all cases, the observed standard deviation was 

less than 2%. 

Time in seconds SEA Neb. Elec. Pok. Cov. 

Hidden Layer Size 5 10 5 10 5 10 5 10 5 10 

ND 42 41 115 116 371 164 1423 1677 832 869 

RD-FPAD 78 65 210 166 574 537 2007 2419 1242 1150 

RD- ORAD 10 7 173 159 531 312 2061 2256 1184 1134 

PD-GL-FPAD 205 192 503 388 651 534 2848 2631 2154 1743 

PD-GL- ORAD 194 209 294 513 875 825 2923 2979 2217 1467 

PD-PMS-FPAD 116 104 233 216 464 462 2193 2746 1501 1638 

PD-PMS- ORAD 
177 188 405 366 691 744 2177 2676 1440 1576 

Table 10. Execution Time Results (in seconds). In all cases, the observed standard 

deviation was less than 2%. 

 We observe that the pattern is similar considering most of the datasets: the best 

models are in this order: (i) with reactive detection approach (“forget the past after 

detection”); (ii) with reactive detection (approach “only retrain after detection”); (iii) 

proactive detection Pattern Mean Shift (approach “forget the past after detection”); and 

finally, (iv) with proactive Pattern Mean Shift detection (approach “only retrain after 

detection”).  

 The main takeaways that can be harnessed from this experiment are: 

• In general, the best results are obtained using some detection. As the datasets 

used have some drift (not necessarily only abrupt), the detection procedure 

helped to improve the base classifier performance; 

• In the realm of proactive approaches, the Pattern Mean Shift approach has 

shown better performance than Group Label. This outperformance can be 

explained by the aggressiveness of Group Label approach about training the 

classifiers, always discarding the old classifier, which seemed not to be the 

best option for these datasets; 

• Comparing "Forget after past detection" approach with "Only retrain after 

detection", it is observed that the accuracy of the former is favourably higher, 

Accuracy SEA Neb. Elec. Pok. Cov. 

Hidden Layer Size 5 10 5 10 5 10 5 10 5 10 

ND 0.64 0.63 0.66 0.66 0.42 0.42 0.61 0.67 0.76 0.82 

RD-FPAD 0.87 0.86 0.67 0.68 0.76 0.77 0.67 0.68 0.80 0.84 

RD- ORAD 0.81 0.84 0.68 0.68 0.76 0.76 0.66 0.69 0.80 0.83 

PD-GL-FPAD 0.71 0.71 0.54 0.54 0.68 0.68 0.13 0.14 0.58 0.60 

PD-GL- ORAD 0.71 0.71 0.54 0.54 0.70 0.70 0.13 0.13 0.58 0.60 

PD-PMS-FPAD 0.84 0.83 0.65 0.65 0.73 0.74 0.66 0.69 0.80 0.83 

PD-PMS- ORAD 
0.83 0.83 0.64 0.65 0.73 0.73 0.66 0.69 0.81 0.83 



  

while the computational performance of the latter is superior in most cases. 

Obviously, the first approach produces better accuracy due to more 

exhaustive training, with an increase in computational time. 

 Considering computational time, the fastest approach, as expected, is the one that 

does not use any detection. Coming in second, we have the reactive approaches, also as 

expected, because they do not perform any data clustering. Comparing proactive 

approaches, the Pattern Mean Shift is the one that presented the best computational 

performance considering all the databases. Forget the Past After Detection approach was 

even better than the reactive approaches to the Electricity database, indicating that this 

method could be the more suitable for certain databases when a user are interested in 

computational time. 

 It is important to note that although the reactive approaches presented numerically 

higher accuracy values than the Pattern Mean Shift approach, the difference is not 

statistically significant (p-value > 0.05) for all databases, considering the standard 

deviation found. This result indicates that the Pattern Mean Shift approach can anticipate 

drifts, which is the main contribution of the proposed method, although this does not lead 

to a significantly higher accuracy than the reactive approach. 

 Finally, it is worth remembering that most existing reactive algorithms assume that 

real labels are immediately and entirely available, and such assumption is often violated in 

real-world applications [34]. In many of these situations, accuracy may not be the most 

important metric, and, because of the unavailability of the real labels or by the urgency of 

taking action, it is more interesting to detect a drift as soon as possible. For example, in 

cases of detection of diseases or epidemics, actions must be taken after the occurrence of 

the change, and it is essential to detect a drift as soon as possible, ideally immediately after 

it occurs [31]. In these problems, proactive approaches are possibly the best choice since 

they can detect some early drifts and avoid serious problems. 

 This section presented the results of the experiments performed with the proposed 

detection method, DetectA. The next section concludes this work. 

5. Conclusions 

 This work presented a concept drift detection mechanism designed for abrupt 

concept drift detection, called DetectA. The main novelty of this approach is its proactive 

feature: it is intended to detect a forthcoming concept drift, as opposed to most of the drift 

detection procedures that only detects concept drifts after their occurrence. Also, it has 

been proposed a procedure for creating datasets with pre-defined abrupt drifts. This 

procedure was used in the sensibility analysis of DetectA, based on variations of the 

number of attributes, patterns, imbalance rate between classes, among others, to understand 

the influence degree of each parameter on its final performance. Our results on the 

sensibility analysis suggested that the detector is efficient and suitable for datasets of high-

dimensionality, blocks with medium size, any proportion of drifts and class imbalance. It is 

important to mention that these results are not exhaustive and further tests using other drift 

types must be conducted, and we also intend to evaluate the effectiveness of other 

clustering methods at DetectA mechanism.  

 We also tested the DetectA algorithm combined with a classification method 

(MLP) to verify the joint performance of these methods, and we conducted these 

experiments with artificial and real datasets. The best results were obtained using some 

detection, being the proactive manner a top contender regarding improving the underlying 



  

base classifier accuracy. In future, we intend to test DetectA combined with a more 

complex classification method, like ensembles of neural networks or neuro-evolutive 

approaches.  

 Finally, a way to prevent the ad-hoc selection of a clustering method is to verify its 

efficiency in some previous experiments. For this purpose, one might use a set of 

clustering methods and evaluate their quality, which could be measured using metrics that 

do not need the pattern labels, such as Silhouette [10], or those that consider like cR [20]. 

The method with the best performance would be chosen for the proactive detection 

process.  

 Another interesting future work would be a hybrid approach combining proactive 

and reactive methods. Upon receiving a new data block, the proactive method is executed 

and, if no drift is detected, the classification is performed according to the current model. 

When the real labels arrive for this data block, the reactive method is executed and if drift 

is detected, the model is retrained. This hybrid approach is likely to be more accurate as a 

double-check will be done. 
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Appendix 1 – Tukey Test Results 

The following tables show the Tukey test for the parameters: number of attributes, number 

of patterns, alpha, number of blocks with drift in class 1 and 2 and for interaction 1, 

considering the false alarm rates. 

 

False Alarm - Class 1  False Alarm - Class 2 

# of atributes Difference p-value  # of atributes Difference p-value 

15-5 -0.387 < 0.05  15-5 -0.385 < 0.05 

25-5 -0.402 < 0.05  25-5 -0.395 < 0.05 

25-15 -0.015 < 0.05  25-15 -0.011 < 0.05 

Table 11. Tukey Test for number os attibutes and false alarms. 

False Alarm - Class 1  False Alarm - Class 2 

# of patterns Difference p-value  # of patterns Difference p-value 

350-150 0.030 < 0.05  350-150 0.041 < 0.05 

500-150 0.047 < 0.05  500-150 0.061 < 0.05 

500-350 0.017 < 0.05  500-350 0.020 < 0.05 

Table 12. Tukey Test for number of patterns and and false alarms. 

False Alarm - Class 1  False Alarm - Class 2 

Alpha Difference p-value  Alpha Difference p-value 

0.05-0.01 0.052 < 0.05  0.05-0.01 0.083 < 0.05 

0.1-0.01 0.167 < 0.05  0.1-0.01 0.176 < 0.05 

0.1-0.05 0.115 < 0.05  0.1-0.05 0.094 < 0.05 

Table 13. Tukey Test for alpha and false alarms. 

False Alarm - Class 1  False Alarm - Class 2 

# of blocks with drift in 

class 1 
Difference p-value 

 

# of blocks with drift in 

class 1 
Difference p-value 

3-1 -0.010 < 0.05  1-0 -0.067 < 0.05 

5-1 -0.029 < 0.05  3-0 -0.072 < 0.05 

7-1 -0.076 < 0.05  5-0 -0.089 < 0.05 

5-3 -0.019 < 0.05  7-0 -0.123 < 0.05 

7-3 -0.066 < 0.05  3-1 -0.006 < 0.05 

7-5 -0.047 < 0.05  5-1 -0.022 < 0.05 

    7-1 -0.056 < 0.05 

    5-3 -0.016 < 0.05 

    7-3 -0.051 < 0.05 

    7-5 -0.035 < 0.05 

Table 14. Tukey Test for number of blocks with drift in class 1-2 and false alarms. 

 



  

False Alarm - Class 1  False Alarm - Class 2 

Number of attributes x 

number of patterns 
Difference p-value 

 

Number of attributes x 

number of patterns 
Difference p-value 

25:500-5:500 -0.518 < 0.05  25:500-5:500 -0.491 < 0.05 

15:500-5:500 -0.472 < 0.05  15:500-5:500 -0.464 < 0.05 

25:500-5:350 -0.462 < 0.05  25:500-5:350 -0.435 < 0.05 

25:350-5:350 -0.449 < 0.05  25:350-5:350 -0.431 < 0.05 

15:350-5:350 -0.424 < 0.05  15:350-5:350 -0.416 < 0.05 

15:500-5:350 -0.416 < 0.05  15:500-5:350 -0.408 < 0.05 

25:500-5:150 -0.308 < 0.05  25:500-5:150 -0.292 < 0.05 

25:350-5:150 -0.296 < 0.05  25:350-5:150 -0.287 < 0.05 

15:350-5:150 -0.271 < 0.05  15:150-5:150 -0.275 < 0.05 

15:150-5:150 -0.264 < 0.05  15:350-5:150 -0.272 < 0.05 

15:500-5:150 -0.263 < 0.05  25:150-5:150 -0.265 < 0.05 

25:150-5:150 -0.239 < 0.05  15:500-5:150 -0.265 < 0.05 

25:500-25:150 -0.070 < 0.05  25:500-15:500 -0.027 < 0.05 

25:350-25:150 -0.057 < 0.05  25:500-25:150 -0.027 < 0.05 

25:500-15:500 -0.045 < 0.05  25:350-25:150 -0.023 < 0.05 

25:500-15:150 -0.044 < 0.05  25:500-15:350 -0.019 < 0.05 

25:500-15:350 -0.037 < 0.05  25:500-15:150 -0.017 < 0.05 

15:350-25:150 -0.032 < 0.05  25:350-15:350 -0.015 < 0.05 

25:350-15:150 -0.032 < 0.05  25:350-15:150 -0.013 < 0.05 

25:350-15:350 -0.025 < 0.05  15:350-25:150 -0.007 < 0.05 

15:500-25:150 -0.024 < 0.05  25:500-25:350 -0.004 < 0.05 

25:500-25:350 -0.012 < 0.05  15:500-25:150 0.000 < 0.05 

15:350-15:150 -0.007 < 0.05  15:350-15:150 0.003 < 0.05 

15:500-15:150 0.001 < 0.05  15:500-15:350 0.007 < 0.05 

15:500-15:350 0.008 < 0.05  25:150-15:150 0.010 < 0.05 

25:150-15:150 0.025 < 0.05  15:500-15:150 0.010 < 0.05 

15:500-25:350 0.033 < 0.05  15:500-25:350 0.023 < 0.05 

5:500-5:350 0.056 < 0.05  5:500-5:350 0.055 < 0.05 

5:350-5:150 0.154 < 0.05  5:350-5:150 0.144 < 0.05 

5:500-5:150 0.210 < 0.05  5:500-5:150 0.199 < 0.05 

5:350-25:150 0.392 < 0.05  5:350-25:150 0.408 < 0.05 

5:350-15:150 0.418 < 0.05  5:350-15:150 0.419 < 0.05 

5:500-25:150 0.448 < 0.05  5:500-25:150 0.464 < 0.05 

5:500-15:150 0.473 < 0.05  5:500-15:350 0.471 < 0.05 

5:500-15:350 0.480 < 0.05  5:500-15:150 0.474 < 0.05 

5:500-25:350 0.505 < 0.05  5:500-25:350 0.486 < 0.05 

Table 15. Tukey Test for Interaction 1 (number of attributes x number of patterns) and 

false alarms. 



  

The following tables show the Tukey test for the number of attributes, alpha, number of 

patterns, and for interaction 1, considering the rates of faulty alarms. 

 

Faulty Alarm - Class 1  Faulty Alarm - Class 2 

# of atributes Difference p-value  # of atributes Difference p-value 

15-5 0.223195 < 0.05  15-5 0.09902535 < 0.05 

25-5 0.17056 < 0.05  25-5 0.07630743 < 0.05 

25-15 -0.05264 < 0.05  25-15 -0.02271792 < 0.05 

Table 16. Tukey Test for number of atributes and faulty alarms. 

Faulty Alarm - Class 1  Faulty Alarm - Class 2 

Alpha Difference p-value  Alpha Difference p-value 

0.05-0.01 -0.54327 < 0.05  0.05-0.01 -0.2948452 < 0.05 

0.1-0.01 -0.67227 < 0.05  0.1-0.01 -0.35625786 < 0.05 

0.1-0.05 -0.129 < 0.05  0.1-0.05 -0.06141266 < 0.05 

Table 17. Tukey Test for alpha and faulty alarms. 

Faulty Alarm - Class 1  Faulty Alarm - Class 2 

# of patterns Difference p-value  # of patterns Difference p-value 

350-150 -0.03712 < 0.05  350-150 -0.018800632 < 0.05 

500-150 -0.05492 < 0.05  500-150 -0.026536229 < 0.05 

500-350 -0.0178 < 0.05  500-350 -0.007735597 < 0.05 

Table 18. Tukey Test for number of patterns and faulty alarms. 

Faulty Alarm - Class 1  Faulty Alarm - Class 2 

Number of attributes x 

number of patterns 
Difference p-value 

 

Number of attributes x 

number of patterns 
Difference p-value 

5:500-15:150 -0.30187 < 0.05  5:500-15:150 -0.134824405 < 0.05 

5:500-15:350 -0.29343 < 0.05  5:500-15:350 -0.126413139 < 0.05 

5:350-15:150 -0.26015 < 0.05  5:350-15:150 -0.117690697 < 0.05 

5:500-25:350 -0.24156 < 0.05  5:500-25:350 -0.104551477 < 0.05 

5:500-25:150 -0.22565 < 0.05  5:500-25:150 -0.102978946 < 0.05 

5:350-25:150 -0.18393 < 0.05  5:350-25:150 -0.085845238 < 0.05 

5:500-5:150 -0.16056 < 0.05  5:500-5:150 -0.06669687 < 0.05 

5:350-5:150 -0.11884 < 0.05  5:350-5:150 -0.049563161 < 0.05 

25:150-15:150 -0.07622 < 0.05  25:150-15:150 -0.031845459 < 0.05 

25:350-15:150 -0.06031 < 0.05  25:350-15:150 -0.030272928 < 0.05 

25:500-15:150 -0.05512 < 0.05  25:500-15:150 -0.029601962 < 0.05 

25:350-15:350 -0.05187 < 0.05  25:350-15:350 -0.021861662 < 0.05 

25:500-15:350 -0.04668 < 0.05  25:500-15:350 -0.021190697 < 0.05 

5:500-5:350 -0.04172 < 0.05  5:500-5:350 -0.017133708 < 0.05 

25:500-15:500 -0.02982 < 0.05  15:500-15:150 -0.015155313 < 0.05 



  

15:500-15:150 -0.0253 < 0.05  25:500-15:500 -0.014446649 < 0.05 

15:500-15:350 -0.01686 < 0.05  15:350-15:150 -0.008411265 < 0.05 

15:350-15:150 -0.00844 < 0.05  15:500-15:350 -0.006744048 < 0.05 

25:500-25:350 0.005192 < 0.05  25:500-25:350 0.000670966 < 0.05 

25:350-25:150 0.01591 < 0.05  25:350-25:150 0.001572531 < 0.05 

25:500-25:150 0.021103 < 0.05  25:500-25:150 0.002243497 < 0.05 

15:500-25:350 0.035009 < 0.05  15:500-25:350 0.015117615 < 0.05 

15:500-25:150 0.05092 < 0.05  15:500-25:150 0.016690146 < 0.05 

25:150-5:150 0.065087 < 0.05  15:350-25:150 0.023434193 < 0.05 

15:350-25:150 0.06778 < 0.05  25:150-5:150 0.036282077 < 0.05 

25:350-5:150 0.080998 < 0.05  25:350-5:150 0.037854608 < 0.05 

25:500-5:150 0.08619 < 0.05  25:500-5:150 0.038525573 < 0.05 

15:500-5:150 0.116007 < 0.05  15:500-5:150 0.052972222 < 0.05 

15:350-5:150 0.132867 < 0.05  15:350-5:150 0.05971627 < 0.05 

15:150-5:150 0.141307 < 0.05  15:150-5:150 0.068127535 < 0.05 

25:350-5:350 0.19984 < 0.05  25:350-5:350 0.087417769 < 0.05 

25:500-5:350 0.205033 < 0.05  25:500-5:350 0.088088735 < 0.05 

15:500-5:350 0.23485 < 0.05  15:500-5:350 0.102535384 < 0.05 

25:500-5:500 0.246753 < 0.05  25:500-5:500 0.105222443 < 0.05 

15:350-5:350 0.25171 < 0.05  15:350-5:350 0.109279431 < 0.05 

15:500-5:500 0.27657 < 0.05  15:500-5:500 0.119669092 < 0.05 

Table 19. Tukey Test for Interaction 1 (number of attributes x number of patterns) and 

false alarms. 
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