

DetectA: Abrupt Concept Drift Detection in

Non-Stationary Environments

Tatiana Escovedo1, Adriano Koshiyama2*, Andre Abs da Cruz3, Marley Vellasco1

1Department of Electrical Engineering – PUC-Rio

R. Marquês de São Vicente, 225 - Gávea, 22430-060

Rio de Janeiro, Brazil

2Department of Computer Science – University College London

London, United Kingdom

3MDC Partners – Antwerp, Belgium

*corresponding author

tatiana@inf.puc-rio.br, a.koshiyama@cs.ucl.ac.uk, andrevpuc@gmail.com, marley@ele.puc-rio.br

Abstract. Almost all drift detection mechanisms designed for classification

problems work reactively: after receiving the complete data set (input patterns

and class labels) they apply a sequence of procedures to identify some change in

the class-conditional distribution – a concept drift. However, detecting changes

after its occurrence can be in some situations harmful to the process under

analysis. This paper proposes a proactive approach for abrupt drift detection,

called DetectA (Detect Abrupt Drift). Briefly, this method is composed of three

steps: (i) label the patterns from the test set (an unlabelled data block), using an

unsupervised method; (ii) compute some statistics from the train and test sets,

conditioned to the given class labels for train set; and (iii) compare the training

and testing statistics using a multivariate hypothesis test. Based on the results of

the hypothesis tests, we attempt to detect the drift on the test set, before the real

labels are obtained. A procedure for creating datasets with abrupt drift has been

proposed to perform a sensitivity analysis of the DetectA model. The result of the

sensitivity analysis suggests that the detector is efficient and suitable for datasets

of high-dimensionality, blocks with any proportion of drifts, and datasets with

class imbalance. The performance of the DetectA method, with different

configurations, was also evaluated on real and artificial datasets, using an MLP

as a classifier. The best results were obtained using one of the detection methods,

being the proactive manner a top contender regarding improving the underlying

base classifier accuracy.

Keywords. Concept Drift; Drift Detection; Proactive Approach.

1. Introduction

Most real-world problems experience a phenomenon known as concept drift [13].

This circumstance occurs in datasets where the joint probability distribution changes

arbitrarily over time [34], such as a switch in the conditional probability distribution on a

classification problem, or a modification of some moment (such as mean and variance) on

a time series forecasting problem [37; 15]. Formally speaking, considering the posterior

probability of a sample x belonging to a class y, according to [9] concept drift is any

scenario in which this probability changes over time, that is: (Pt + 1 (y | x) ≠ Pt (y | x)). We

can also define concept drift, in a supervised learning scenario, when the relationship

between the input data and the target variable changes over time [13]. An environment

from which this kind of data is obtained is considered a non-stationary environment. When

concepts often evolve, the system may be unable to adapt to the new information, hence

dramatically deteriorating its performance [17; 40].

 One of the most relevant non-stationary scenarios involves classification problems,

such as network intrusion detection. This issue is commonly composed by an opponent (a

human or a robot) that is seeking ways to deceive the protection method (classifier),

introducing a drift component in the test set (new ways to break into the network, for

example). Most classifiers are built directly from scratch and readily applied to data not yet

seen. If the data distribution varies over time, then the model should be refitted to prevent

harmful decisions. However, making constant adjustments to the model is ineffective, and

becomes unfeasible in high dimensional and scalable problems [41].

 Another practical example of concept drift mentioned in [19; 13] is detecting and

filtering out spam e-mails. The significance of the two classes “spam” and “ham” may vary

over time. They are user specific, and user preferences also vary over time. Moreover, the

variables used at time t to classify spam may be irrelevant at t+k. In this way, the classifier

must deal with the “spammers” who will keep creating new forms to trick the classifier

into labelling a spam as a legitimate e-mail. Other examples are consumption patterns that

can vary according to season or availability of alternative products, weather prediction,

inflation rate, traffic monitoring, and medical decision aiding [37; 13; 34; 17; 39].

 In general, concept drifts that can occur in the real world can be classified into

several types, according to [37; 42; 13; 35, 17, 29], being the two main types abrupt and

gradual. To differentiate both, assume the existence of two data sources, S1 and S2:

• Abrupt: occurs when a concept A is abruptly switched by another concept B, that is, at

time t the origin S1 is suddenly replaced by source S2. Some authors, like [17; 29] refers

this drift type as sudden drift.

• Gradual: occurs when a concept A is being exchanged for the other B gradually. In this

case, while there is no definitive change from concept A to concept B, more and more

occurrences of B and fewer occurrences of A are observed. Both sources S1 and S2 are

active, but as time passes, the sampling probability of the origin S1 decreases as the

sampling probability of the source S2 increases. At the beginning of this drift, before more

instances are observed, one case of the S2 source can be easily mistaken for random noise.

 Models for learning in non-stationary environments may or may not contain drift

detection mechanisms. Most of the models found in the literature assume that the changes

take place in a hidden context external to the model itself and, therefore, the drift cannot be

predicted. For this reason, these models use the passive or reactive approach, where the

model’s performance is firstly verified and, if a drift is detected, then the model reacts after

the error has occurred. Another method would be to do it proactively, that is, by detecting

the occurrence of drift in the input data before they are submitted for prediction (i.e.,

before receiving the true labels). The proactive approach can be more satisfactory since it

is possible to refit the model or tweak the data previously, and thereby hope to better cope

with the new scenario and avoid a miss-classification [13].

 Rooted in the proactive approach, the main objective of this work is to propose a

concept drift detection mechanism with the ability to anticipate eventual drifts. As this

method is specialised in detecting abrupt drifts, we called this mechanism as DetectA,

referring to the terms Detect an Abrupt Drift. In order to assess our contribution, we first

performed a sensitivity analysis on the number of attributes, patterns, imbalance rate, and

so forth, using artificial datasets with pre-defined abrupt drifts in certain classes and

instants. Then, we conducted experiments with artificial and real datasets to verify its

performance when coupling with a classifier in non-stationary environments,

comparing several different approaches of the proposed method.

 We should mention that this work is an extension of a previous contribution [43].

We unfolded this preceding work in multiple directions, but mainly in three aspects: (i)

proposing a reactive version of DetectA; (ii) describing two different training strategies

when the proactive version of DetectA is deployed jointly with a classifier; and (iii)

applying the reactive and proactive versions of DetectA on well-established benchmark

datasets from the concept drift detection literature. In (i) we describe a more conventional

version of DetectA, by applying only its statistical component to flag concept drifts after

having complete knowledge of the new batch labels. Item (ii) refers to different ways to

hedge the classifier when the proactive version has signalled a potential drift; hence, we

propose two learning strategies that can aid in this task. Finally, (iii) presents new results

on coupling a multi-layer perceptron classifier with variations of DetectA (reactive and

proactive) and the proposed training strategies (item ii), to provide evidence that when

DetectA is deployed jointly with a classifier, it can improve its performance on non-

stationary learning scenarios.

 We structured this paper in four additional sections. Section 2 presents the

fundamentals of concept drift, including definitions and summary of the main algorithms

of drift detection in the literature, in order to clarify their main contributions. Section 3

presents the proposed drift detection mechanism (DetectA), outlining the main distinctions

between a reactive and proactive detection method. Section 4 presents the sensitivity

analysis and discussions on the experiments performed with benchmark databases. Finally,

section 5 concludes this work and discusses future works.

2. Background and Literature Review

2.1. Existing Models for Concept Drift Detection

The term "Change Detection" or "Drift Detection" refers to techniques and

mechanisms for detecting drift/change by identifying change points or small intervals

during which variations occur, such that the existing models can no longer be effective to

predict the behaviour of the current data [13]. Concept drift detectors are methods that can

signal that data distributions are changing, based on information about classifier’s

performance or the incoming data. Such signals usually trigger the need to update, replace

or retrain the model [17].

Concept drift can occur in several learning problems, such as classification,

regression and time series forecasting. However, this work focuses specifically on

classification problems. Typically, concept drift detectors are used together with a

classification module, and they measure various properties of the data, such as standard

deviation [12], predictive error [5], instance distribution [33], or stability [38]. Any

changes observed in these properties are attributed to the potential presence of drift [29].

Method Reference Drift Type Metric

Drift Detection

Method (DDM)

[12] Abrupt Tracks online error and defines

tolerance zones

Early Drift Detection

Method (EDDM)

[3] Gradual Same as DDM, but working

with error variance

Statistical Test of

Equal Proportions

(STEPD)

[27] Abrupt/Gradual Compares the accuracy of the

same model using different data

history sizes

Paired Learners (PL) [2] Abrupt/Gradual Compares the accuracy between

two models with different time

windows

Exponentially

Weighted Moving

Average (EWMA)

[30] Abrupt/Gradual Monitors the mean of a

sequence of random variables

EWMA for Concept

Drift Detection

(ECDD)

[30] Abrupt/Gradual Same as EWMA, but

controlling the false positive

rate

Resampling [23] Abrupt/Gradual
Uses random permutations of

the samples, which produce

various training-testing splits

from the stream of data. The

results suggest that it is more

robust for noisy changes.

Hierarchical CDT (H-

CDT)

[1] Abrupt Uses the Hotelling test to check

if the present contents in stream

before and after the

modification differs

Error distance based

approach for drift

detection and

monitoring (EDIST)

[16] Gradual Same as EDDM, but takes two

data window and traces concept

drift by maintaining two

windows: one global sliding

window and another to store the

present example

Hoeffding’s Bounds

Drift Detection

Method (HDDM)

[11] Abrupt/Gradual Same as DDM and EDDM, but

applying non-parametric

methods based on Hoeffding’s

Bounds

Adaptive cumulative

windows model

(ACWM)

[31] Abrupt/Gradual The online monitoring of the

distance between data

distributions is evaluated using

a dissimilarity measure based on

the asymmetry of the Kullback–

Leibler divergence

GraphPool

Framework

[45] Recurrent It extracts a concept

representation from the current

batch considering the

correlation among features.

Then, compares the current

batch representation to the

concept representations in the

pool using a statistical

multivariate likelihood test

Multidimensional

Fourier Transform

(MFDT)

[46] Abrupt/Gradual Employ Shannon’s and Von

Neumann’s Entropies to

quantify variations in data

spaces. Also, MDFT allows

univariate streams to be

reconstructed in phase spaces so

their data dependencies can be

analyzed decide over concept

drifts

Table 1 – Summary of reactive detection methods.

Several reactive drift detection mechanisms have already been proposed in the

literature and can be used to execute the learning process in conjunction with a predictive

model. In the case of classification problems, the classifier typically provides the class

prediction for each input pattern and then compares its response with the correct class label

received to see if the classifier has hit or miss each prediction. Table 1 shows some of these

detection methods.

These drift detection methods, as well as most of the methods found in the

literature, work reactively, that is, they act after the occurrence of the drift and model error

since they depend on the actual class labels of the input patterns. In classification

problems, after receiving the complete dataset (patterns and class labels for the training and

test sets), the detector applies a sequence of procedures to identify some change in the

conditional class distribution - a concept drift.

Few papers use a proactive approach, like in [18] that applies principal component

analysis (PCA) for extracting characteristics before change detection. The authors discuss

and show evidence that components with lower variance should be stored as extracted

features since they are more likely to be affected by the change. The authors then choose a

change detection criterion, based on the semiparametric log-likelihood function, which is

sensitive to shifts in the mean and variance of multidimensional distributions. Other

contribution, described in [44], proposes a new recurrent drift detector which incorporates

historical drift rate information that is accurate for streams with reoccurring volatility

trends. They have used synthetic and real data to compare their method with three state-of-

art detection mechanism, being able to show that their technique is able to lower the rate of

false positives. However, authors point out a limitation of the technique, since it only uses

drift interval information for predicting future drift locations by matching the drift rate

patterns to the pattern network.

Compared to these few proactive methods, DetectA takes a different approach to

proactive detection: after grouping the data, the means and covariance matrices of the

previous and current blocks are compared using statistical tests, and if this difference

exceeds a certain threshold, drift is signalled. Through the information that comes from

these statistical tests, we can devise manners to alleviate the impact of such expected drift,

being a major difference when compared to current proactive approaches. The DetectA

model will be further detailed in section 3.

As we are going to focus on abrupt drift detection, next subsections present

definitions and statistical methods to detect eventual drifts of this kind.

2.2. Wide-sense Concept Drift Detection

 Assuming that 𝑿 conditioned to class k follows a Multivariate Normal Distribution

[14], i.e., 𝑿 | 𝐶𝑘 ~ 𝑁𝐽(𝝁𝑪𝒌
, Σ𝐶𝑘

), then its conditional joint probability density function is

given by:

𝑓𝑿(𝒙|𝐶𝑘) =
1

(2𝜋)𝐽/2|𝚺𝑪𝒌|𝐽/2 𝑒
−(𝒙−𝝁𝑪𝒌

)
𝑇
𝚺𝑪𝒌

−𝟏(𝒙−𝝁𝑪𝒌
)(

1

2
)
 (1)

where:

• 𝝁𝑪𝒌
= [𝜇𝑋1|𝐶𝑘

, 𝜇𝑋2|𝐶𝑘
, … , 𝜇𝑋𝐽|𝐶𝑘

]
𝑇
is the conditional mean vector, in which the j-th entry

is the conditional mean for the k-th class of the j-th random variable.

• ΣCk
=

[

σX1|Ck

2 σX1,X2|Ck
… σX1,XJ|Ck

σX2,X1|Ck
⋱ ⋮

⋮
σXJ,X1|Ck

… σXJ|Ck

2

]

 is the conditional covariance matrix,

composed of variance (σXj|Ck

2) and covariance (σXl,Xj|Ck
) terms related to the k-th class.

By definition, ΣCk
 is symmetric and positive, with |ΣCk

| representing the determinant of

the covariance matrix.

Based on these parameters – mean vector and covariance matrix – we explore a less

strict condition of abrupt concept drift when compared to the one provided in [13] – that is,

instead of looking to the harder to estimate joint distribution we rather focus our attention

on parameters that are easy to handle statistically.

In this sense, no abrupt drift is observed if both of the following equalities:

𝝁𝑪𝒌
(𝑡) = 𝝁𝑪𝒌

(𝑡 + 1) (2)

𝚺𝑪𝒌
(𝑡) = 𝚺𝑪𝒌

(𝑡 + 1) (3)

holds. However, the population parameters 𝝁𝑪𝒌
(𝑡) and 𝚺𝑪𝒌

(𝑡) are rarely known. In fact,

what is observed is a random sample of 𝑿1
(𝑡), … , 𝑿𝑛

(𝑡)
 from the population under analysis.

From this sample it is viable to estimate 𝝁𝑪𝒌
(𝑡) and 𝚺𝑪𝒌

(𝑡) using the maximum likelihood

estimators [14] 𝑿̅𝐶𝑘
(𝑡) and 𝑺𝐶𝑘

(𝑡) respectively, where 𝑿̅𝐶𝑘
(𝑡) is a vector composed of

arithmetical averages (𝑿̅𝑗|𝐶𝑘
(𝑡)) for each feature, while 𝑺𝐶𝑘

(𝑡) is a matrix, with the main

diagonal composed of variances related to the j-th feature (𝑠𝑗|𝐶𝑘

2 (𝑡)), and the off-diagonal

elements are the sample covariance between two different features (𝑠𝑗,𝑙|𝐶𝑘
(𝑡)). Clearly, all

of these values are measured at time t and conditioned to class k.

 Based on these topics, next topics present a better characterization of abrupt drift

and hypothesis tests to detect its occurrence.

2.2.1. Concept Drift and Hypothesis Test on Conditional Mean Vector

Definition 1. An abrupt concept drift in the conditional mean vector occurs when the
following equality does not hold:

𝝁𝑪𝒌
(𝑡) = 𝝁𝑪𝒌

(𝑡 + 1) (4)

then the mean vectors differ from time t to t+1.

Observation: the equality in eq. (4) keeps the same principle of a hypothesis test: first, it is

necessary to find an estimator for 𝝁𝑪𝒌
(𝑡), 𝝁𝑪𝒌

(𝑡 + 1) and for other quantities involved;

second, submit these to a hypothesis test that measures the probability of non-rejecting the

equality between 𝝁𝑪𝒌
(𝑡) and 𝝁𝑪𝒌

(𝑡 + 1). If this probability is less or equal to the

significance level (α), then an abrupt concept drift in the conditional mean vector has

occurred. Figure 1 exhibits an abrupt concept drift occurring in the conditional mean vector

of class 𝐶2. As can be noted, the decision boundary between the classes have changed,

making the problem more challenging; since the current classifier was trained based on the

previous boundary, it will tend to erroneous classify more elements as class 1 when they

have been generated from class 2.

 When eq. (4) needs to be evaluated from data, we apply the Hotelling's T2 [14].
Suppose two competing hypothesis:

𝐻0: 𝝁𝑪𝒌
(𝑡) = 𝝁𝑪𝒌

(𝑡 + 1)

𝐻1: 𝝁𝑪𝒌
(𝑡) ≠ 𝝁𝑪𝒌

(𝑡 + 1)

Figure 1. An example of an abrupt concept drift in the mean vector.

 If 𝐻0 is rejected, then we consider that an abrupt concept drift in the conditional

mean vector has occurred. Given two random samples 𝑿1
(𝑡), … , 𝑿𝑛1

(𝑡)
 and 𝑿1

(𝑡+1)
, … , 𝑿𝑛2

(𝑡+1)

of size 𝑛1 and 𝑛2 respectively, with 𝑿(𝑡)|𝐶𝑘
(𝑡)

 ~ 𝑁𝐽 (𝝁𝑪𝒌
(𝑡), 𝚺𝑪𝒌

(𝑡)) and

𝑿(𝑡+1)|𝐶𝑘
(𝑡+1)

 ~ 𝑁𝐽 (𝝁𝑪𝒌
(𝑡 + 1), 𝚺𝑪𝒌

(𝑡 + 1)). The appropriate test statistic is:

𝑇2 = (𝑿̅𝐶𝑘
(𝑡) − 𝑿̅𝐶𝑘

(𝑡 + 1))
𝑇
(
𝑺𝑪𝒌

(𝑡)

𝑛1
+

𝑺𝑪𝒌
(𝑡 + 1)

𝑛2
)

−1

(𝑿̅𝐶𝑘
(𝑡) − 𝑿̅𝐶𝑘

(𝑡 + 1)) (5)

which compares the sample mean vectors 𝑿̅𝐶𝑘
(𝑡) and 𝑿̅𝐶𝑘

(𝑡 + 1) (estimators for 𝝁𝑪𝒌
(𝒕)

and 𝝁𝑪𝒌
(𝑡 + 1)) in two different instants (blocks), in such manner that if 𝑇2 is “too high”,

then 𝐻0must be rejected. 𝑺𝑪𝒌
(𝑡) and 𝑺𝑪𝒌

(𝑡 + 1) represent the samples covariance matrices.

Given the assumptions behind the random samples, and under 𝐻0, the test statistic
(𝑛1+𝑛2)−𝐽−1

(𝑛1−𝑛2−2)𝐽
 𝑇2 follows a F distribution with J and (𝑛1 + 𝑛2) − 𝐽 − 1 degrees of freedom

(J being the number of features). With this knowledge, it is possible to set a rejection zone
for 𝐻0 to identify abrupt concept drifts in the mean. Below are the steps to apply
Hotteling’s T2 test:

1. Compute 𝑿̅Ck

(t), 𝑿̅Ck
(t + 1), 𝑺Ck

(t) and 𝑺Ck
(t + 1).

2. Calculate the test statistic 𝑇2 (equation 5).

3. Drift if
(n1+n2)−J−1

(n1−n2−2)J
 𝑇2 > FJ,(n1+n2)−J−1(α), where FJ,(n1+n2)−J−1(α) is the upper (1 - α)

percentile of the FJ,(n1+n2)−J−1 distribution.

2.2.2. Concept Drift and Hypothesis Test on Conditional Covariance Matrix

Definition 2. An abrupt concept drift in the conditional covariance matrix occurs when the
equality does not hold:

𝚺𝑪𝒌
(𝑡) = 𝚺𝑪𝒌

(𝑡 + 1) (6)

then the covariance matrix differs from time t to t+1.

Comment: similarly, this equality can be checked using a hypothesis test. Two possible
abrupt concept drifts in the conditional covariance matrix are exhibited in Figure 2. The
conditional variance of 𝑋2 in 𝐶2 has grown, dilating the contour curves in this direction; in
𝐶1, the conditional covariance between 𝑋1 and 𝑋2fades away, implying less association
between both variables, thereby rotating the contour curves.

Figure 2. Examples of an abrupt concept drift in the covariance matrix.

 Box-M test [14] is a hypothesis test used to identify significant differences between
covariance matrices of normally distributed random variables. This statistical test supposes
two competing hypothesis:

𝐻0: 𝚺𝑪𝒌
(𝑡) = 𝚺𝑪𝒌

(𝑡 + 1)

𝐻1: 𝚺𝑪𝒌
(𝑡) ≠ 𝚺𝑪𝒌

(𝑡 + 1)

 If 𝐻0 is rejected, then it is considered that an abrupt concept drift in the conditional

covariance matrix has occurred. Given two random samples 𝑿1
(𝑡), … , 𝑿𝑛1

(𝑡)
 and

𝑿1
(𝑡+1)

, … , 𝑿𝑛2

(𝑡+1)
, with 𝑿(𝑡)|𝐶𝑘

(𝑡)
 ~ 𝑁𝐽 (𝜇𝐶𝑘

(𝑡), Σ𝐶𝑘
(𝑡)) and

𝑿(𝑡+1)|𝐶𝑘
(𝑡+1)

 ~ 𝑁𝐽 (𝜇𝐶𝑘
(𝑡 + 1), Σ𝐶𝑘

(𝑡 + 1)), consider the likelihood ratio test as:

Λ = (
det (𝑺𝑪𝒌

(𝑡))

det(𝑺𝒑𝒐𝒐𝒍)
)

𝑛1−1
2

∗ (
det (𝑺𝑪𝒌

(𝑡 + 1))

det(𝑺𝒑𝒐𝒐𝒍)
)

𝑛2−1
2

 (7)

where 𝑺𝒑𝒐𝒐𝒍 =
(𝑛1−1)𝑺𝑪𝒌

(𝑡)+(𝑛2−1)𝑺𝑪𝒌
(𝑡+1)

(𝑛1−1)+(𝑛2−1)
 is the pooled covariance matrix. Again, 𝑺𝑪𝒌

(𝒕)

and 𝑺𝑪𝒌
(𝑡 + 1) represent the samples covariance matrices and n1 and n2 the number of

samples at t and t+1, respectively. Box-M test uses the statistic:

𝑀 = −2 ln Λ (8)

if the null hypothesis is true, the covariance matrices may not substantially differ and,
consequently, these will not differ so much from the pooled covariance matrix. Finally,
define the quantity u by:

𝑢 = [
1

(𝑛1 − 1)
+

1

(𝑛2 − 1)
−

1

(𝑛1 − 1) + (𝑛2 − 1)
] [

2𝐽2 + 3𝐽 − 1

6(𝐽 + 1)
] (9)

then, 𝐶 = (1 − 𝑢)𝑀 approximately follows a 𝜒2distribution with
1

2
𝐽(𝐽 + 1) degrees of

freedom. Therefore, it is possible to establish a rejection zone for 𝐻0 to identify abrupt
concept drifts in the covariance matrix. As stated in [14], the 𝜒2 approximation works well
when 𝑛1, 𝑛2 > 20 and the number of features is below 5. In some case studies, the datasets
have more than 5 features, so instead of using the 𝜒2distribution, we prefereed the
approximation via F distribution (following recommendations by [22]). The necessary
steps to execute Box-M test are presented below:

1.Calculate the 𝐒𝑪𝒌

(t), 𝐒𝐂𝐤
(t + 1) and 𝐒𝐩𝐨𝐨𝐥.

2.Compute 𝑀 (eq. 8) and u (eq. 9).

3.Drift if C > χ1

2
J(J+1)

2 (α), where χ1

2
J(J+1)

2 (α)is the upper (1-α) percentile of the

χ1

2
J(J+1)

2 distribution.

 Based on these two previous hypothesis tests next section describes the proposed

DetectA method, with some adaptions to move from reactive to proactive drift detection.

3. Abrupt Drift Detection Method: DetectA

 The proposed drift detection method, called DetectA (Detect Abrupt Drift) is

basically composed of three steps: (i) the test set patterns are labelled using an

unsupervised grouping method; (ii) a series of statistics are computed from the training and

test set, both conditioned to the labels settled in the previous stage; then (iii) the

conditional means and covariance matrices are compared to the training and test set using

the multivariate hypothesis tests outlined in the previous section. After getting the results

of such tests, a decision is taken concerning the occurrence or not of drift. In the case of

drift, some measures can be applied to adjust and improve the learning process.

 Some notation is necessary for the sake of comprehension: consider a collection of

n patterns at time t (𝒙𝟏(𝑡), … , 𝒙𝒏(𝑡)), where 𝒙𝒊(𝑡) = [𝑥𝑖1(𝑡), … , 𝑥𝑖𝐽(𝑡)] is the i-th pattern

made from observations of each J features (i=1,...,n and j=1,...,J). From this collection, 𝑛k

patterns belongs to class k (k=1,...,K). We assume that these n patterns are a realization

from the random sample 𝑿1
(𝑡), … , 𝑿𝑛

(𝑡)
 of a population that follows a Multivariate Normal

distribution. Although it is possible to execute the previous statistical tests without such

assumption, its relevance relies on the correct definition of the probability distribution

associated with those test statistics (T2 or M, for example). When such assumption is not

verified in practice, then the probability of wrong conclusion increases (rejecting a true

hypothesis, or not rejecting a false). The application of DetectA to real datasets (see

subsection 4.2) will provide more information about the impact over the performance when

the distribution of the random vector is not idealized.

 The following subsections present the two types of abrupt drift detection with

DetectA: reactive and proactive. Although the main contribution of this work is the

proactive drift detection, we begin with the reactive approach, which will ease the

proactive procedure description.

3.1. Reactive Detection

 The reactive detection implies the existence of patterns classes at instant 𝑡 + 1.

Consider n labelled patterns 𝒙𝟏(𝑡 + 1), … , 𝒙𝒏(𝑡 + 1) and α significance level. For the

reactive abrupt drift detection, the following steps must be performed:

• In the conditional mean vector:

 (1) Compute 𝑿̅𝐶𝑘
(𝑡) and 𝑿̅𝐶𝑘

(𝑡 + 1), as well as 𝑺𝐶𝑘
(𝑡) and 𝑺𝐶𝑘

(𝑡 + 1).

 (2) Calculate the test statistic 𝑇2 (eq. 5).

 (3) Define the occurrence of a drift if
(𝑛1+𝑛2)−𝐽−1

(𝑛1−𝑛2−2)𝐽
 𝑇2 > 𝐹𝐽,(𝑛1+𝑛2)−𝐽−1(𝛼)

• In the conditional covariance matrix:

 (1) Find 𝑺𝐶𝑘
(𝑡), 𝑺𝐶𝑘

(𝑡 + 1) and 𝑺𝒑𝒐𝒐𝒍.

 (2) Compute the test statistic 𝑀 (eq. 8), u (eq. 9), and finally 𝐶 = (1 − 𝑢)𝑀.

 (3) Drift in the covariance matrix if 𝐶 > 𝜒1

2
𝐽(𝐽+1)

2 (𝛼)

 After the drift detection, some measure might be taken, for example, retraining the

current classifier or changing some component in the process under analysis. However,

such adaptation may take longer than necessary, and the misclassification caused by the

late drift detection can reduce the reliability of the whole built framework. Next subsection

exhibits the proactive approach, aiming to predict an eventual abrupt drift and adjust the

classifier or process before the misclassification occurs.

3.2. Proactive Detection

 A proactive drift detection means that the detection must occur in the absence of
the label from patterns at time 𝑡 + 1. That is, the detection should be performed before the
classifier commits a mistake. Then, let 𝒙𝟏(𝑡 + 1), … , 𝒙𝒏(𝑡 + 1) the set of n unlabeled
patterns from instant 𝑡 + 1. Commonly, these patterns belong to the test set, thereby
waiting for some future moment to obtain its labels. As it is not possible to compute the
sample conditional mean vector 𝑿̅𝐶𝑘

(𝑡 + 1) or the conditional covariance matrix 𝑺𝐶𝑘
(𝑡 +

1), it is unfeasible to compare these quantities with those computed at time t (𝑿̅𝐶𝑘
(𝑡) and

𝑺𝐶𝑘
(𝑡)).

 Therefore, the proactive detection method must depend on the information
contained in 𝒙𝟏(𝑡 + 1),… , 𝒙𝒏(𝑡 + 1) and propose a set of labels to these patterns before
the actual classification is performed. Approaches that are independent from the class
labels but based on the pattern distribution are the clustering algorithms [10].

 The proactive approach is, therefore, based on the agglomerative clustering
methods for the following reasons: (i) the number of groups to be formed known a priori
(identical to the number of classes in the problem); (ii) the initial condition for the centroid
of each group is the conditional mean vector of each class, which helps the algorithm to
formulate the group and the subsequent identification of groups as classes; and (iii) tends
to be computationally more efficient than divisive clustering methods.

 There are several agglomerative clustering methods in the literature (such as C-
means, Gaussian Mixture Model) [6; 4], but as a first approach we used the simple k-
means method [6]. This classical method is easy to implement and computationally
efficient. Based on this approach, the next steps show (in pseudocode) how to implement
the proactive version of DetectA:

1. The initial dataset (t=1) has n(t) patterns that belong to K classes. This dataset is

commonly used to train the classifier.

2. Using the data from this first dataset, the sample conditional mean vectors
X̅C1

(t),… , X̅CK
(t), for each available class, are computed.

3. At time (t=t+1 a new set of n(t) unclassified patterns is received. Then do:

a. Group the n(t) patterns using the k-means, setting the number of groups as

the number of classes (groups = K) and the centroids of each group as the
vectors 𝑿̅𝐶1

(𝑡 − 1), … , 𝑿̅𝐶𝐾
(𝑡 − 1). We suggest the use of Mahalanobis

distance as the dissimilarity metric, aiming to form groups with spherical as
well as elliptical shapes [24].

b. After the convergence of the k-means algorithm, define n1(t) patterns
closest to the centre initiated in 𝑿̅𝐶1

(𝑡 − 1) as belonging to class 1, the n2(t)

patterns closest to 𝑿̅𝐶2
(𝑡 − 1) as belonging to class 2, and so on.

c. Then compute the new conditional mean vector and covariance matrix of
each class, which are not represented by 𝑿̅𝐶𝑘

(𝑡) and 𝑺𝐶𝑘
(𝑡) any more, but

by 𝑿̅𝐶̂𝑘
(𝑡) and 𝑺𝐶̂𝑘

(𝑡), estimated based on the predicted class by the k-

means algorithm.

4. Consider α as the predefined significance level. Given this level, a proactive abrupt
drift detection can be implemented at:

a. Conditional mean vector:
i. Compute 𝑿̅𝐶𝑘

(𝑡 − 1), 𝑿̅𝐶̂𝑘
(𝑡), 𝑺𝐶𝑘

(𝑡 − 1) and 𝑺𝐶̂𝑘
(𝑡).

ii. Calculate the test statistic 𝑇2 (eq. 5).

iii. Drift if
(𝑛1+𝑛2)−𝐽−1

(𝑛1−𝑛2−2)𝐽
 𝑇2 > 𝐹𝐽,(𝑛1+𝑛2)−𝐽−1(𝛼),

b. Conditional covariance matrix:

i. Calculate the 𝑺𝐶𝑘
(𝑡 − 1), 𝑺𝐶̂𝑘

(𝑡) and 𝑺𝒑𝒐𝒐𝒍.

ii. Compute 𝑀 (eq. 8) and u (eq. 9).

iii. Drift if 𝐶 > 𝜒1

2
𝐽(𝐽+1)

2 (𝛼).

5. Return to step 3 whenever is necessary.

 Note that in this method there is no need to store the previous data blocks, but only

the number of patterns of each class, the conditional mean vector and covariance matrix of

the previous instant. To illustrate the enunciated steps, Figures 4 and 5 show a toy example

with two classes (Masculine and Feminine) and two features (Height and Weight) problem.

Figure 3. (a) Clustering of the training set using the known class labels to identify the

centroids of each class; (b) The centroids found during the clustering process in (a) are

shown (circles) overlaid on the test set examples (squares).

 The first step (Figure 4a) is to cluster all labelled data, forming two groups using as

initial centroids the conditional means of each class. After the clustering has converged, it

is necessary to store the cluster centroids as well as the current observed conditional means

and covariance matrices. The clustering method needs to run again when the new

unlabelled data arrives (Figure 4b), but instead of starting the centroids from scratch, it

should use the centroids from the previous run.

 After the clustering method has halted (Figure 5a), we treat all the data closest

Mahalanobis distance from each centroid as belonging to a particular class. Obviously, this

is an estimation not used to classify the patterns, but to approximate four unknown

quantities: 𝑿̅𝑀𝑎𝑠̂(𝑡 + 1), 𝑺𝑀𝑎𝑠̂(𝑡 + 1), 𝑿̅𝐹𝑒𝑚̂(𝑡 + 1) and 𝑺𝐹𝑒𝑚̂(𝑡 + 1). After we have

computed these statistics, we apply Hotelling’s T2 and Box-M test to check if some abrupt

drift has happened (Figure 5b).

(a) (b)

Figure 4. Clustering the test set and comparing estimated averages and covariance matrices

between two iterations.

 If an abrupt drift is detected, one of two approaches might be performed to avoid
misclassification of the patterns that suffered the drift: the classifier must be retrained,
using the labels provided by the clustering algorithms; or the test patterns are used to adjust
the current classifier. This adjustment can be realised based on conditioning these new
patterns to have a similar distribution to those used during the classifier training. To
illustrate this idea, consider the following example:

1. Suppose a problem with two classes and two attributes, plus a set of n test patterns.

The proactive detection method was used and has identified the patterns that
possibly belong to class 1 and 2.

2. Then, based on the conditional mean vector and covariance matrix of the labelled data in
the previous instant, the detection method verifies the presence of an abrupt drift in
the conditional mean vector of class 1. It has detected a deviation of 10 units related
to the average of the first feature when compared to the previous instant.

3. To "correct the drift", that is, to make the drift unperceived by the classifier, just
subtract 10 units in the first feature from the test patterns that are credited to belong
to class 1 and use the old classifier with the corrected data.

 Therefore, the process of "correcting the drift" is perhaps one of the great novelties
of DetectA. This approach is called Pattern Mean Shift. However, if the detection is
wrong, the correction may be harmful and, in some cases, lead to a possible drift.
Therefore, a proactive approach should be conservative and fine-tuned to ensure that such
errors are in a situation of low impact to the classifier. Next section displays the
experiments performed with DetectA.

4. Results and Discussions

 This section details the experiments performed with the DetectA method. Two

main experiments have been performed: a sensitivity analysis of DetectA on artificially

generated datasets with different parameters and settings for the data generation process;

performance comparison of the various configurations of DetectA with well-established

benchmarks in the drift detection literature.

(a) (b)

4.1. Experiment 1: Sensitivity Analysis of DetectA

 In this experiment, a sensitivity analysis is performed based on the variation of

certain parameters related to the data generating process (number of attributes, the number

of patterns, imbalance rate between classes, etc.), to understand the influence of each

parameter on the overall performance of DetectA. In this sense, we generated artificial

datasets manipulating the instant and the type of drift. The procedures employed to

generate these datasets are detailed in [43].

 We measured the detection effectiveness by computing its false positives (false

alarms) and false negatives (faulty alarms) rates. These metrics can be summarized by a

matrix displayed in Table 2. Assuming the two possible situations in the data - drift (D)

and absence of drift (ND) - the detector can alert a drift (A) or do not alert (NA), resulting

in four possible results:

• #A&D: there is drift (D) and the detector has produced an alert (A)

• #NA D: there is drift (D) but the detector did not produce an alert (NA)

• #A&ND: there is no drift (ND) but the detector produced an alert (A)

• #NA&D: no drift (ND), and the detector did not produce an alert (NA)

Detector Drift (D) Absence of Drift (ND)

Alert (A) #A&D #A&ND

Idle (NA) #NA&D #NA&D

Table 2. Performance metrics for the drift detection process.

 The false alarm rate (i.e., false positive rate) is calculated by:

 𝐹𝑃𝑅 =
#𝐴&𝑁𝐷

#𝐴&𝑁𝐷 + #𝑁𝐴&𝑁𝐷
 (10)

measuring the ratio between the number of cases in which the alerts were performed out of

time and the total number of cases without drift. On the other hand, the faulty alarm rate

(i.e., false negative rate) is given by:

𝐹𝑁𝑅 =
#𝑁𝐴&𝐷

#𝑁𝐴&𝐷 + #𝐴&𝐷
 (11)

relating the number of mistakes made by being idle when a drift happened (#NA&D) and

the number of drift available in the data stream. In general terms, a good detector

minimises both false positives and false negatives. For simplicity, the experiment is

conducted considering binary datasets with the parameters as described in Table 3. For

each configuration we generated 100 datasets; therefore, the results presented in the

following sections are an average of 100 runs of the detection method.

 It is also possible to evaluate the delay time between the occurrence of a drift and

its detection, but since the number of blocks used in this experiment is small (only ten

blocks), we believe that such metric will not provide substantial information into our

analysis. The following subsections present the results of this experiment.

Description Values used

Number of attributes 5, 15, 25

Number of patterns per block (block size) 150, 350, 500

Proportion of the occurrence of class 1 in relation to class 2 0.2, 0.35. 0.5

Number of blocks where there is occurrence of drift in class 1 1, 3, 5, 7

Number of blocks where there is occurrence of drift in class 2 0, 1, 3, 5, 7

Proportion of attributes that will suffer drift within the block 0.2, 0.35, 0.5

Alpha: Level of significance, that is, minimum level that is accepted from the alternative

hypothesis H1 (occurrence of drift) is correct
0.01, 0.05, 0.1

Table 3. Parameters analysed during the sensitivity analysis.

4.1.1. Individual Parameters Analysis

 This experiment involved 4860 different configurations since the combinations of

all possible values of all parameters were evaluated. Table 4 presents the influence of each

parameter, based on the average of false and faulty alarm rates grouped by each parameter

value (average of all possible configurations with each parameter value). In all cases, the

observed standard deviation was less than 2%.

 Number of

attributes

Number of patterns Imbalance rate Alpha

 5 15 25 150 250 500 0.2 0.35 0.5 0.01 0.05 0.1

False Alarm - Class 1 0.48 0.09 0.08 0.19 0.22 0.24 0.25 0.21 0.19 0.15 0.2 0.31

Faulty Alarm - Class 1 0.21 0.44 0.39 0.38 0.34 0.32 0.34 0.35 0.35 0.75 0.21 0.08

False Alarm - Class 2 0.49 0.10 0.09 0.20 0.24 0.26 0.23 0.22 0.23 0.14 0.23 0.32

Faulty Alarm - Class 2 0.11 0.21 0.19 0.18 0.16 0.16 0.16 0.17 0.17 0.38 0.09 0.03

 Number of blocks with drift

in class 1

Number of blocks with drift in class

2

Proportion of

attributes with drift

 1 3 5 7 0 1 3 5 7 0.2 0.35 0.5

False Alarm - Class 1 0.25 0.24 0.22 0.17 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22

Faulty Alarm - Class 1 0.34 0.34 0.35 0.35 0.35 0.35 0.34 0.34 0.34 0.35 0.35 0.34

False Alarm - Class 2 0.26 0.24 0.22 0.2 0.27 0.21 0.20 0.18 0.15 0.23 0.23 0.23

Faulty Alarm - Class 2 0.17 0.17 0.17 0.17 0.00 0.33 0.34 0.34 0.34 0.17 0.17 0.16

Table 4. False and faulty alarm rates grouped for each parameter value.

 Based on Table 4 we verify that an increase in the number of attributes seems to

result in a reduction in the false alarm rate, something that is not verified with the faulty

alarm rate. We also found out that, as the number of patterns (block size) expands, the false

alarm rate modestly increases, whereas the faulty alarm rate tends to decrease.

 The false alarm rate for class 1 appears to be decreasing as the rate of imbalance

increases, although the variation is not very expressive, and no significant variation was

observed for the other indicators. We can also observe that although, in a non-expressive

way, the false alarm rate values tend to decrease as the number of blocks with drift in class

1 increases, while the values of the faulty alarm rates remain practically constant.

Considering the number of blocks with drift in class 2, the false alarm rate for class 2 is the

only one that presents significant variation, decreasing as the number of blocks with drift

in class 2 decreases.

 Figure 5 presents four boxplots, each one evaluating how the mismatching rate

varies according to the number of attributes. We can observe that the configurations with 5

attributes provides the highest false alarm rates for both classes, concentrating around 40-

60% region, while those with 15 and 25 features have their false alarm rates below 20%.

However, we can notice a reasonable number of outliers for both classes, mainly when the

number of features is equal to 25. Regarding faulty alarm rates, we can perceive that for

class 1 the best rates are obtained when the number of features is small, oscillating when

this number grows. For class 2, we were unable to spot a clear pattern, but we can point out

that overall the rates tend to be at reasonable low levels. In general, when we analyze the

median values, it is possible to assert that false alarm rates are negatively correlated with

the number of attributes for both classes. Also, the bulk of faulty alarm figures

concentrated close to zero.

Figure 5. Boxplots of false and faulty alarm rate break down by number of attributes.

al
se

la
rm

at
e

al
se

la
rm

at
e

au
lt
y

la
rm

at
e

au
lt
y

la
rm

at
e

Number of ttributes

Class

Class
(a) (b)

(c) (d)

 Figure 6 outlines four additional boxplots, in this case each depicting how the

number of patterns has affected the different false and faulty alarm rates for class 1 and 2.

We can verify that the interquartile range tends to increase (bigger dispersion) when the

respective block size faced by DetectA grows, contrasting with the falls in the median false

alarm rates in both classes – although such reduction seems to be inexpressive. In relation

to faulty alarms, the boxplot interquartile range decreases with the increase in the number

of patterns; in any scenario the median values settled down at very low levels – suggesting

the usual negative relationship between number of patterns and faulty alarm rates (false

negative rates).

 Figure 6. Boxplots of false and faulty alarm rate break down by number of patterns.

 Finally, it is noticed that the false alarms rates increase as alpha rises, which was

already expected, because higher alpha values make the model more reactive, with a higher

probability of false alarms. The faulty alarm rate, on the other hand, decreases as alpha

rises, also showing a higher model reactivity.Overall the results seem reasonably good,

especially for the false alarm rates: the mean is 22% for class 1 and 23% for class 2, and

the median is 14% for both classes, indicating that the proposed detection model has low

occurrences of false alarms. The faulty alarms are also considerably low, with a median of

19%. Table 5 presents the mean, median, and standard deviation for the four indicators.

Indicator Mean Median Std Deviation

False Alarm for Class 1 0.22 0.14 0.22

Faulty Alarm for Class 1 0.35 0.19 0.34

False Alarm for Class 2 0.23 0.14 0.22

Faulty Alarm for Class 2 0.17 0.00 0.30

Table 1. Statistics aggregated by indicators.

 This subsection presented the main results from an individual parameters

perspective, as well as a general view of the indicators. The next subsection presents a

quantification analysis considering eventual interactions between parameters (number of

attributes and patterns) via the Analysis of Variance method.

4.1.2. Quantifying each parameter relevance

 Analysis of Variance (ANOVA) [26] is a statistical procedure widely applied to

detect substantial differences in populations’ means across different factor levels. In our

context of sensitivity analysis, it allows the identification of the factor levels (number of

attributes = {5, 15, 25}, for example) that most influence the Detect ’s performance. As a

byproduct, this analysis makes it possible to determine which variables (number of

attributes, patterns, etc.) tend to affect the detection performance with higher intensity.

 Table 6 shows the main ANOVA results as a function of the false and faulty alarm

rates for each main factor, as well as certain interactions terms that we believe, are the

most useful in practice and that seems to have relevant relation: number of patterns with

number of attributes, number of patterns with imbalance rate between classes, and finally,

number of attributes with proportion of attributes with drift. The most important terms

(higher values of sum of squares - S) are highlighted in bold, with the statistically

significant terms (p-value <0.05) highlighted in italics.

 Considering the false alarm rates sum of squares, we can observe that:

• the number of attributes is the most influential parameter of the model.

• the alpha parameter is directly related to the detector reactiveness, thereby a direct

impact on the false alarm rates was expected.

• the variation in the number of blocks with drift tends to easier the detection.

 From the p-value perspective, the terms that shows higher influence on the false

alarm rates are: number of attributes, number of patterns, imbalance degree between

classes (influences only for class 1, because it is the minority class), number of blocks with

drift, alpha, 1st interaction (number of patterns with number of attributes) and 2nd

interaction (number of patterns with imbalance between classes).

FEA – Class 1 FEA – Class 2 FYA – Class 1 FYA – Class 2

S p S p S p S p

M
a

in

Number of atributes 209.37 * 202.65 * 37.70 * 7.50 *

Number of patterns per block

(block size)
2.91 * 4.93 * 4.00 * 0.90 *

Imbalance rate between classes 5.53 * 0.00 0.78 0.20 0.04 0.30 0.03

Number of blocks with drift in

class 1
0.01 0.35 0.00 0.86 0.10 0.05 0.10 0.25

Number of blocks with drift in

class 2
5.94 * 4.68 * 0.10 0.22 0.00 0.79

Proportion of attributes with drift

within the block
0.00 0,76 14.69 * 0.00 0.31 135.10 *

Alpha 36.84 * 40.22 * 557.00 * 156.00 *

In
te

ra
ct

io
n

s

1) Number of patterns x number

of attributes
17.55 * 11.44 * 7.40 * 1.10 *

2) Number of patterns x

imbalance rate between classes
0.60 * 0.11 0.01 0.10 0.25 0.00 0.64

3) Number of attributes x

proportion of attributes with drift
0.01 0.44 0.00 0.62 0.00 0.95 0.00 0.94

Table 6. Analysis of variance considering false (FEA) and faulty (FYA) alarm rate. The

symbol * denotes p-values less or equal 2.10-16.

 Based on the most relevant terms, we applied the so-called Tukey test [26], a test

commonly used to find differences between levels of certain terms. The results are detailed

in Appendix 1. In this case, we applied the Tukey test to number of attributes, number of

patterns, alpha, number of blocks with drift and 1st interaction. Given that, we could derive

the following trends:

• the lower the number of attributes, the higher the false alarm rates are;

• as we increase the number of patterns, we observe a larger amount of false

alarm rates;

• the higher the alpha, the higher the false alarm rates tend to be;

• as we enlarge the number of blocks with drift, the false alarm rate tends to

decrease;

• in the 1st interaction, the variations on the number of attributes are the

defining term for the whole interaction.

 About the rate of faulty alarms, the alpha parameter is by far the most influential in

the model (based on the value of the sum of the squares), followed by number of blocks

with drift in class 2, and number of attributes. The other model terms that are statistically

significant for the faulty alarm rates are number of patterns, imbalance rate between classes

and 1st interaction (number of patterns with attributes). We followed the analysis by

applying the Tukey test for the most significant and relevant terms: number of attributes,

alpha, number of patterns and 1st interaction. In summary, Tukey test captured the

following trends, for both classes:

• the faulty alarm rate does not seem to follow a clear linear relationship with

the increase/decrease of the number of attributes;

• when alpha is hiked up, the lower the faulty alarm rates are;

• more patterns tend to imply lower faulty alarm rates;

• about the 1st interaction, the number of attributes is the strongest parameter of

the interaction regarding the influence on faulty alarms.

 In contrast to the false alarm rates, the Tukey method tended to follow our

expectations regarding relationship across factors and faulty alarm rates.

 Based on the results obtained, this first experiment suggests that the detector is

more efficient for:

• high-dimensional datasets, since false alarm rates decays in the presence of

more attributes, as well as faulty alarms do not show a substantial increase;

• intermediate size blocks, as a trade-off between increase/decrease of false and

faulty alarm rates;

• datasets with any proportion of drift, since this parameter does not

demonstrate the significant influence on the false or faulty alarm rates;

• imbalanced binary classes datasets, since our results have not undergone

significant fluctuations with the change in this parameter.

 This section presented the results of the first experiment performed with DetectA.

The next section presents the comparison of DetectA results with other drift detection

methods in the literature.

4.2. Experiment 2: Drift Detection in Datasets

To verify the improvement that DetectA can offer during classification tasks

(accuracy and the computational performance), five different datasets were used and

several simulations were carried out in various scenarios. These datasets are quite known

in the literature and have already been used with different drift detection methods. Next

sub-sections briefly describe the five datasets, the simulations carried and the discussion

about the results obtained.

4.2.1. Datasets Description

 The datasets used in this experiment are the SEA Concepts, an artificial dataset

where a more controlled environment about the drifts is provided, and four real datasets

(Nebraska, Electricity, Cover Type and Poker Hand), where the exact moment that the drift

occurs is not known.

 The SEA Concepts dataset was artificially created by [32]. It is characterised by

extensive periods without major changes in the environment, but with occasional abrupt

drifts. The Nebraska dataset presents a compilation of climate measurements from the

Offutt Air Force Base substation in Bellevue, Nebraska. Its objective is to predict whether

a rainfall may appear, using data from the last 30 days. Both datasets are available in [28].

 The Electricity dataset is extracted from the Australian New South Wales

Electricity Market, and the class label defines the price change related to a moving average

of the last 24 hours. The purpose of the problem is to predict whether the price will go up

or down. The Cover Type dataset contains information cells corresponding to a forest

cover of 30x30 meters, extracted from the US Forest Service (USFS). Its goal is to predict

the type of forest cover among seven possible values (therefore, a multi-class problem).

The Poker Hand dataset has as output ten possible categoriesrepresenting the poker hand,

which contains 5 cards. The purpose is to identify the type of a Poker hand among the ten

possibilities. These datasets are available in [25].

4.2.2. Experiment Description

 In order to investigate the influence of the detector on the accuracy and

computational performance of a classifier, a simple multi-layer perceptron (MLP) neural

network was chosen as the base classifier. We applied it in four different configurations of

DetectA: two proactive approaches (Group Label and Pattern Mean Shift, detailed below)

and one reactive strategy, already described in section 3. The proactive approaches are:

• Group Label: At each new data block received, a clustering is performed, using

as a suggestion the centroids of the previous labelled data block, to determine the

predicted classes for each pattern of the new block. Using this clustering step as an

input, the detection mechanism checks if a drift occurred about the previous block

and, if so, a new MLP is created and trained with the new block, and the class

labels suggested in the clustering.

• Pattern Mean Shift: Similar to the Group Label approach, with the difference

that when a drift is detected, instead of creating a new MLP using the new data

block, the old data block is used to train the MLP and the drift is "removed" from

the new data block. While in the Group Label approach the new MLP is adjusted

to the new data, in Pattern Mean Shift approach the new information is adjusted to

the old MLP. This method has already been detailed in section 3.

 For the sake of comparison, experiments were also performed with an MLP without

any detector. We decided to use the block approach for the training and testing of the

models. The block size and number of blocks used for each dataset are presented in Table

7. We chose the same values already used in literature, such as in [9] and [8].

Dataset Block Size Number of Blocks

SEA Concepts 250 400

Nebraska 30 583

Electricity 48 944

Cover Type 500 1162

Poker Hand 500 1658

Table 7. Block size and number of blocks used in the experiments.

 Two different training approaches were performed for the classifiers with a

detection method:

• Forget the past after detection: retrains the classifier for every new data blocks

using all information available; however, in the case of drift detection, the training

is only performed from the detection point onwards.

• Only retrain after detection: only retrains the classifier when there is a drift,

using the block where the drift was detected.

For the classifier without detection, the traditional training approach was used: for

each new block, the classifier is retrained with all the past labelled blocks.

The simulations are then performed using seven variations, as summarised in Table

8. In each variation, 30 simulations were executed by building an MLP with 5 neurons in

the hidden layer, and 30 simulations with an MLP with 10 neurons in the hidden layer,

totalizing 420 runs for each dataset.

Model Training approach Acronym

1 No detection Traditional ND

2 Reactive Detection
Forget the past after

detection

RD-FPAF

3 Reactive Detection Only retrain after detection RD- ORAD

4 Proactive Detection – Group Label
Forget the past after

detection

PD-GL-FPAF

5 Proactive Detection – Group Label Only retrain after detection PD-GL- ORAD

6 Proactive Detection – Pattern Mean Shift
Forget the past after

detection

PD-PMS-FPAF

7 Proactive Detection – Pattern Mean Shift Only retrain after detection PD-PMS-ORAD

Table 8. Models and approaches used in the experiment.

For the reactive approach, the detection mechanism is executed when the real

labels of the new block (t) arrive, comparing it in relation to block t-1. On the other hand,

in all approaches with proactive detection, the new block (t) is used to make the clustering

and check the occurrence of drift in relation to the previous block. In Group Label

approaches, in the case of a drift occurrence, the network is retrained only with the block t

and the class labels provided in the clustering. In the Pattern Mean Shift approaches, in the

case of drift, the network is tested with the block "t adjusted" towards the detected drift.

When the real labels of this block arrive, the classifier is retrained only with the labelled

block t. It is worth to mention that in proactive detection approaches, whenever the labels

of a new block are available, the cluster centroids are adjusted to the next grouping

considering the new labelled block.

4.2.3. Results of the Experiment

 Tables 9 and 10 display the results on average accuracy and execution time in

seconds for each of the seven approaches used, respectively. We highlighted the best

results by dataset in bold and the worst in italics and underlined. We took care to consider

that the best setting provides highest values of accuracy and saving in execution time.

Table 9. Average Accuracy Results. In all cases, the observed standard deviation was

less than 2%.

Time in seconds SEA Neb. Elec. Pok. Cov.

Hidden Layer Size 5 10 5 10 5 10 5 10 5 10

ND 42 41 115 116 371 164 1423 1677 832 869

RD-FPAD 78 65 210 166 574 537 2007 2419 1242 1150

RD- ORAD 10 7 173 159 531 312 2061 2256 1184 1134

PD-GL-FPAD 205 192 503 388 651 534 2848 2631 2154 1743

PD-GL- ORAD 194 209 294 513 875 825 2923 2979 2217 1467

PD-PMS-FPAD 116 104 233 216 464 462 2193 2746 1501 1638

PD-PMS- ORAD
177 188 405 366 691 744 2177 2676 1440 1576

Table 10. Execution Time Results (in seconds). In all cases, the observed standard

deviation was less than 2%.

 We observe that the pattern is similar considering most of the datasets: the best

models are in this order: (i) with reactive detection approach (“forget the past after

detection”); (ii) with reactive detection (approach “only retrain after detection”); (iii)

proactive detection Pattern Mean Shift (approach “forget the past after detection”); and

finally, (iv) with proactive Pattern Mean Shift detection (approach “only retrain after

detection”).

 The main takeaways that can be harnessed from this experiment are:

• In general, the best results are obtained using some detection. As the datasets

used have some drift (not necessarily only abrupt), the detection procedure

helped to improve the base classifier performance;

• In the realm of proactive approaches, the Pattern Mean Shift approach has

shown better performance than Group Label. This outperformance can be

explained by the aggressiveness of Group Label approach about training the

classifiers, always discarding the old classifier, which seemed not to be the

best option for these datasets;

• Comparing "Forget after past detection" approach with "Only retrain after

detection", it is observed that the accuracy of the former is favourably higher,

Accuracy SEA Neb. Elec. Pok. Cov.

Hidden Layer Size 5 10 5 10 5 10 5 10 5 10

ND 0.64 0.63 0.66 0.66 0.42 0.42 0.61 0.67 0.76 0.82

RD-FPAD 0.87 0.86 0.67 0.68 0.76 0.77 0.67 0.68 0.80 0.84

RD- ORAD 0.81 0.84 0.68 0.68 0.76 0.76 0.66 0.69 0.80 0.83

PD-GL-FPAD 0.71 0.71 0.54 0.54 0.68 0.68 0.13 0.14 0.58 0.60

PD-GL- ORAD 0.71 0.71 0.54 0.54 0.70 0.70 0.13 0.13 0.58 0.60

PD-PMS-FPAD 0.84 0.83 0.65 0.65 0.73 0.74 0.66 0.69 0.80 0.83

PD-PMS- ORAD
0.83 0.83 0.64 0.65 0.73 0.73 0.66 0.69 0.81 0.83

while the computational performance of the latter is superior in most cases.

Obviously, the first approach produces better accuracy due to more

exhaustive training, with an increase in computational time.

 Considering computational time, the fastest approach, as expected, is the one that

does not use any detection. Coming in second, we have the reactive approaches, also as

expected, because they do not perform any data clustering. Comparing proactive

approaches, the Pattern Mean Shift is the one that presented the best computational

performance considering all the databases. Forget the Past After Detection approach was

even better than the reactive approaches to the Electricity database, indicating that this

method could be the more suitable for certain databases when a user are interested in

computational time.

 It is important to note that although the reactive approaches presented numerically

higher accuracy values than the Pattern Mean Shift approach, the difference is not

statistically significant (p-value > 0.05) for all databases, considering the standard

deviation found. This result indicates that the Pattern Mean Shift approach can anticipate

drifts, which is the main contribution of the proposed method, although this does not lead

to a significantly higher accuracy than the reactive approach.

 Finally, it is worth remembering that most existing reactive algorithms assume that

real labels are immediately and entirely available, and such assumption is often violated in

real-world applications [34]. In many of these situations, accuracy may not be the most

important metric, and, because of the unavailability of the real labels or by the urgency of

taking action, it is more interesting to detect a drift as soon as possible. For example, in

cases of detection of diseases or epidemics, actions must be taken after the occurrence of

the change, and it is essential to detect a drift as soon as possible, ideally immediately after

it occurs [31]. In these problems, proactive approaches are possibly the best choice since

they can detect some early drifts and avoid serious problems.

 This section presented the results of the experiments performed with the proposed

detection method, DetectA. The next section concludes this work.

5. Conclusions

 This work presented a concept drift detection mechanism designed for abrupt

concept drift detection, called DetectA. The main novelty of this approach is its proactive

feature: it is intended to detect a forthcoming concept drift, as opposed to most of the drift

detection procedures that only detects concept drifts after their occurrence. Also, it has

been proposed a procedure for creating datasets with pre-defined abrupt drifts. This

procedure was used in the sensibility analysis of DetectA, based on variations of the

number of attributes, patterns, imbalance rate between classes, among others, to understand

the influence degree of each parameter on its final performance. Our results on the

sensibility analysis suggested that the detector is efficient and suitable for datasets of high-

dimensionality, blocks with medium size, any proportion of drifts and class imbalance. It is

important to mention that these results are not exhaustive and further tests using other drift

types must be conducted, and we also intend to evaluate the effectiveness of other

clustering methods at DetectA mechanism.

 We also tested the DetectA algorithm combined with a classification method

(MLP) to verify the joint performance of these methods, and we conducted these

experiments with artificial and real datasets. The best results were obtained using some

detection, being the proactive manner a top contender regarding improving the underlying

base classifier accuracy. In future, we intend to test DetectA combined with a more

complex classification method, like ensembles of neural networks or neuro-evolutive

approaches.

 Finally, a way to prevent the ad-hoc selection of a clustering method is to verify its

efficiency in some previous experiments. For this purpose, one might use a set of

clustering methods and evaluate their quality, which could be measured using metrics that

do not need the pattern labels, such as Silhouette [10], or those that consider like cR [20].

The method with the best performance would be chosen for the proactive detection

process.

 Another interesting future work would be a hybrid approach combining proactive

and reactive methods. Upon receiving a new data block, the proactive method is executed

and, if no drift is detected, the classification is performed according to the current model.

When the real labels arrive for this data block, the reactive method is executed and if drift

is detected, the model is retrained. This hybrid approach is likely to be more accurate as a

double-check will be done.

References

[1] C. lippi, D. Liu, D. Zhao and L. Bu, “Detecting and eacting to Changes in Sensing
Units: The ctive Classifier Case”. IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 44(3), pp. 353-362, 2014.

[2] S. H. Bach and M. . Maloof, “Paired Learners for Concept Drift”. Proc. of the 8th
IEEE Int. Conf. on Data Mining (ICDM). IEEE, 23–32. Charts for Detecting Concept
Drift. Pattern Recogn. Lett. 33, 2, pp. 191–198, 2012.

[3] M. Baena-García, J. Del Campo-Ávila, R. Fidalgo and . Bifet, “Early drift detection
method”. Proc. of the 4th ECML PKDD International Workshop on Knowledge Discovery
 rom Data Streams (IWKDDS’06), Berlin, Germany, pp. 77–86, 2006.

[4] J. C. Bezdek, M. . Pal, J. Keller and . Krisnapuram. “ uzzy Models and lgorithms
for Pattern ecognition and Image Processing”. Kluwer cademic Publishers, Norwell,
MA, USA, 1999.

[5] A. Bifet, R. Gavaldà, “Learning from time-changing data with adaptive win- dowing”.
Proceedings of the Seventh SIAM International Conference on Data Mining, Minneapolis,
Minnesota, USA, pp. 443–448, 2007.

[6] C. M. Bishop, “Pattern recognition and machine learning”. New York: Springer, 2006.

[7] Z. I. Botev, J. F. Grotowski and D. P. Kroese, “Kernel density estimation via
diffusion”. The nnals of Statistics, v. 38, n. 5, pp. 2916-2957, 2010.

[8] D. Brzezinski and J. Stefanowski, "Reacting to different types of concept drift: The
accuracy updated ensemble algorithm." Neural Networks and Learning Systems, IEEE
Transactions on 25.1, pp. 81-94, 2014.

[9] R. Elwell and . Polikar, “Incremental Learning of Concept drift in Nonstationary
Environments”. IEEE Transactions on Neural Networks (0): pp. 5 7-1531, 2011.

[10] B. S. Everitt, S. Landau and M. Leese, “Cluster Analysis”, 4th Edition, Oxford
University Press, Inc., New York; Arnold, London, 2001.

[11] I. Frías-Blanco, J. del Campo-Avila, G. Ramos- Jimenez, R. Morales-Bueno, A. Ortiz-
Díaz, and Y. Caballero-Mota, “Online and Non-Parametric Drift Detection Methods Based
on Hoeffding’s Bounds”. IEEE Transaction On Knowledge Data Engineering., Vol. 27,
No. 3, pp. 810-823, 2015.

[12] J. Gama, P. Medas, G. Castillo, P.P. odrigues, “Learning with drift detection”.
Advances in Artificial Intelligence - SBIA 2004, 17th Brazilian Symposium on Artificial
Intelligence, São Luis, Maranhão, Brazil, 29 - October 1, 2004, Proceedings, pp. 286–295,
2004.

[13] J. Gama, I. Žliobaite, . Bifet, M. Pechenizkiy and A. Bouchachia. "A survey on
concept drift adaptation." ACM Computing Surveys (CSUR) 46, no. 4: 44, 2014.

[14] R. A. Johnson and D. W. Wichern, “ pplied Multivariate Statistical nalysis”.
Pearson Education Limited, 2014.

[15] M. T. Karnick, M. Ahiskali, M. Muhlbaier and . Polikar, “Learning concept drift in
nonstationary environments using an ensemble of classifiers based approach”, in IJCNN,
pp. 3455–3462, 2008.

[16] I. Khamassi and M. Sayed-Mouchaweh, “Drift detection and monitoring in non-
stationary environments”. Evolving and Adaptive Intelligent Systems (EAIS), 2014 IEEE
Conference on, pp. 1-6. IEEE, 2014.

[17] B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski and M. Woźniak, "Ensemble
learning for data stream analysis: A survey". Information Fusion 37, pp. 132-156, 2017.

[18] L. I. Kuncheva and W. J. Faithfull, "PCA Feature Extraction for Change Detection in
Multidimensional Unlabeled Data," Neural Networks and Learning Systems, IEEE
Transactions on , vol.25, no.1, pp.69,80, 2014.

[19] L. I. Kuncheva, “Classifier ensemble for changing environments,” in Multiple
Classifier Systems, vol. 3077. New York: Springer-Verlag, 2004.

[20] L. I. Kuncheva, “Combining Pattern Classifiers: Methods and lgorithms”, Wiley-
Interscience, 2004.

[21] K. V. Mardia, "Measures of multivariate skewness and kurtosis with applications".
Biometrika 57 (3), pp. 519–530, 1970.

[22] K. V. Mardia, “The effect of nonnormality on some multivariate tests and robustness
to nonnormality in the linear model”. Biometrika, v. 58, n. 1, pp. 105-121, 1971.

[23] H. Maayan, S. Mannor, R. El-Yaniv and K. Crammer. "Concept Drift Detection
Through Resampling." In ICML, pp. 1009-1017, 2014.

[24] I. Melnykov and V. Melnykov, “On k-means algorithm with the use of Mahalanobis
distances”, Statistics & Probability Letters, Volume 84, pp. 88-95, 2014.

[25] MO Datasets, “MO – Massive Online nalysis”. t:
http://moa.cms.waikato.ac.nz/datasets/. Last access January 2015.

[26] D. C. Montgomery, “ pplied Statistics and Probability for Engineers”, 6th edition.
Wiley, 2013.

[27] K. Nishida and K. Yamauchi, “ daptive classifiers-ensemble system for tracking
concept drift,” in Proceedings of the Sixth International Conference on Machine Learning
and Cybernetics (ICMLC’07), Honk Kong, pp. 3607–3612, 2007.

[28] R. Polikar and . Elwell. “Benchmark Datasets for Evaluating Concept drift/NSE
 lgorithms”. t: http://users.rowan.edu/~polikar/research/NSE. Last access December
2013.

[29] S. Ramírez-Gallego, B. Krawczyk, S. García, M. Woźniak and F. Herrera. "A survey
on data preprocessing for data stream mining: Current status and future directions".
Neurocomputing, 2017.

[30] G. J. Ross, N. M. Adams, D. K. Tasoulis and D. J. Hand. 0 . “ oss, Gordon J., et
al. "Exponentially weighted moving average charts for detecting concept drift”, Pattern
Recognition Letters 33.2, pp. 191-198, 2012.

[31] R. Sebastião, J. Gama, and T. Mendonça, "Fading histograms in detecting distribution
and concept changes". International Journal of Data Science and Analytics, pp. 1-30, 2017.

[32] W. N. Street and Y. S. Kim, “ streaming ensemble algorithm (SEA) for largescale
classification,” in Proceedings of the 7th CM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 377–382, 2001.

[33] P. Sobolewski, M. Won ́iak, “Concept drift detection and model selection with
simulated recurrence and ensembles of statistical detectors”. J. Univ. Comput. Sci. 9 (4),
pp. 462–483, 2013.

[34] Y. Sun, Z. Wang, H. Liu, C. Du and J. Yuan. "Online Ensemble Using Adaptive
Windowing for Data Streams with Concept Drift". International Journal of Distributed
Sensor Networks, 2016.

[35] A. Thakre and S. Dongre, “ eview on Concept Drift Detection Techniques”.
International Journal on Recent and Innovation Trends in Computing and Communication,
Vol. 4, Issue 3, pp. 404-407, 2016.

[36] P. K. Trivedi and D. M. Zimmer, “Copula modeling: an introduction for
practitioners”. Now Publishers Inc, 2007.

[37] . Tsymbal, “The problem of concept drift: Definitions and related work”, Tech.
Rep., 2004.

[38] R.M.M. Vallim, R.F. de Mello, “Proposal of a new stability concept to detect changes
in unsupervised data streams”. Expert Syst. Appl. 41 (16) pp. 7350–7360, 2014.

[39] G. Widmer and M. Kubat, "Learning in the presence of concept drift and hidden
contexts”. Machine learning 23, no. 1, pp. 69-101, 1996.

[40] B. Zhang, L. Xue, W. Wang, S. Qin and D. Wang, "Model updating mechanism of
concept drift detection in data stream based on classifier pool". EURASIP Journal on
Wireless Communications and Networking 2016, no. 1, 2016.

[41] I. Zliobaite, A. Bifet, M. Gaber, B. Gabrys, J. Gama, L. Minku, and K. Musial. "Next
challenges for adaptive learning systems." ACM SIGKDD Explorations Newsletter 14, no.
1, pp. 48-55, 2012.

[42] I. Zliobaite, “Learning under Concept Drift: An Overview”. Tech. rep. Vilnius
University, 2009.

[43] T. Escovedo, A. Koshiyama, M. Vellasco, R. Melo and A. A. da Cruz. “A2D2: A pre-

event abrupt drift detection”. 2015 International Joint Conference on Neural Networks

(IJCNN), Killarney, 2015, pp. 1-8.

[44] K. Chen, K. S. Yun, and P. Riddle. "Proactive drift detection: Predicting concept drifts

in data streams using probabilistic networks." In Neural Networks (IJCNN), 2016

International Joint Conference on, pp. 780-787. IEEE, 2016.

[45] Z. Ahmadi, and S. Kramer, “Modeling recurring concepts in data streams: a graph-

based framework”. Knowledge and Information Systems, 2017, pp.1-30.

[46] G. da C. Fausto, F.S.L.G. Duarte, R.M.M. Vallim, R.F. de Mello, “Multidimensional

surrogate stability to detect data stream concept drift”. Expert Systems with Applications,

v. 87, 2017, pp. 15-29.

Appendix 1 – Tukey Test Results

The following tables show the Tukey test for the parameters: number of attributes, number

of patterns, alpha, number of blocks with drift in class 1 and 2 and for interaction 1,

considering the false alarm rates.

False Alarm - Class 1 False Alarm - Class 2

of atributes Difference p-value # of atributes Difference p-value

15-5 -0.387 < 0.05 15-5 -0.385 < 0.05

25-5 -0.402 < 0.05 25-5 -0.395 < 0.05

25-15 -0.015 < 0.05 25-15 -0.011 < 0.05

Table 11. Tukey Test for number os attibutes and false alarms.

False Alarm - Class 1 False Alarm - Class 2

of patterns Difference p-value # of patterns Difference p-value

350-150 0.030 < 0.05 350-150 0.041 < 0.05

500-150 0.047 < 0.05 500-150 0.061 < 0.05

500-350 0.017 < 0.05 500-350 0.020 < 0.05

Table 12. Tukey Test for number of patterns and and false alarms.

False Alarm - Class 1 False Alarm - Class 2

Alpha Difference p-value Alpha Difference p-value

0.05-0.01 0.052 < 0.05 0.05-0.01 0.083 < 0.05

0.1-0.01 0.167 < 0.05 0.1-0.01 0.176 < 0.05

0.1-0.05 0.115 < 0.05 0.1-0.05 0.094 < 0.05

Table 13. Tukey Test for alpha and false alarms.

False Alarm - Class 1 False Alarm - Class 2

of blocks with drift in

class 1
Difference p-value

of blocks with drift in

class 1
Difference p-value

3-1 -0.010 < 0.05 1-0 -0.067 < 0.05

5-1 -0.029 < 0.05 3-0 -0.072 < 0.05

7-1 -0.076 < 0.05 5-0 -0.089 < 0.05

5-3 -0.019 < 0.05 7-0 -0.123 < 0.05

7-3 -0.066 < 0.05 3-1 -0.006 < 0.05

7-5 -0.047 < 0.05 5-1 -0.022 < 0.05

 7-1 -0.056 < 0.05

 5-3 -0.016 < 0.05

 7-3 -0.051 < 0.05

 7-5 -0.035 < 0.05

Table 14. Tukey Test for number of blocks with drift in class 1-2 and false alarms.

False Alarm - Class 1 False Alarm - Class 2

Number of attributes x

number of patterns
Difference p-value

Number of attributes x

number of patterns
Difference p-value

25:500-5:500 -0.518 < 0.05 25:500-5:500 -0.491 < 0.05

15:500-5:500 -0.472 < 0.05 15:500-5:500 -0.464 < 0.05

25:500-5:350 -0.462 < 0.05 25:500-5:350 -0.435 < 0.05

25:350-5:350 -0.449 < 0.05 25:350-5:350 -0.431 < 0.05

15:350-5:350 -0.424 < 0.05 15:350-5:350 -0.416 < 0.05

15:500-5:350 -0.416 < 0.05 15:500-5:350 -0.408 < 0.05

25:500-5:150 -0.308 < 0.05 25:500-5:150 -0.292 < 0.05

25:350-5:150 -0.296 < 0.05 25:350-5:150 -0.287 < 0.05

15:350-5:150 -0.271 < 0.05 15:150-5:150 -0.275 < 0.05

15:150-5:150 -0.264 < 0.05 15:350-5:150 -0.272 < 0.05

15:500-5:150 -0.263 < 0.05 25:150-5:150 -0.265 < 0.05

25:150-5:150 -0.239 < 0.05 15:500-5:150 -0.265 < 0.05

25:500-25:150 -0.070 < 0.05 25:500-15:500 -0.027 < 0.05

25:350-25:150 -0.057 < 0.05 25:500-25:150 -0.027 < 0.05

25:500-15:500 -0.045 < 0.05 25:350-25:150 -0.023 < 0.05

25:500-15:150 -0.044 < 0.05 25:500-15:350 -0.019 < 0.05

25:500-15:350 -0.037 < 0.05 25:500-15:150 -0.017 < 0.05

15:350-25:150 -0.032 < 0.05 25:350-15:350 -0.015 < 0.05

25:350-15:150 -0.032 < 0.05 25:350-15:150 -0.013 < 0.05

25:350-15:350 -0.025 < 0.05 15:350-25:150 -0.007 < 0.05

15:500-25:150 -0.024 < 0.05 25:500-25:350 -0.004 < 0.05

25:500-25:350 -0.012 < 0.05 15:500-25:150 0.000 < 0.05

15:350-15:150 -0.007 < 0.05 15:350-15:150 0.003 < 0.05

15:500-15:150 0.001 < 0.05 15:500-15:350 0.007 < 0.05

15:500-15:350 0.008 < 0.05 25:150-15:150 0.010 < 0.05

25:150-15:150 0.025 < 0.05 15:500-15:150 0.010 < 0.05

15:500-25:350 0.033 < 0.05 15:500-25:350 0.023 < 0.05

5:500-5:350 0.056 < 0.05 5:500-5:350 0.055 < 0.05

5:350-5:150 0.154 < 0.05 5:350-5:150 0.144 < 0.05

5:500-5:150 0.210 < 0.05 5:500-5:150 0.199 < 0.05

5:350-25:150 0.392 < 0.05 5:350-25:150 0.408 < 0.05

5:350-15:150 0.418 < 0.05 5:350-15:150 0.419 < 0.05

5:500-25:150 0.448 < 0.05 5:500-25:150 0.464 < 0.05

5:500-15:150 0.473 < 0.05 5:500-15:350 0.471 < 0.05

5:500-15:350 0.480 < 0.05 5:500-15:150 0.474 < 0.05

5:500-25:350 0.505 < 0.05 5:500-25:350 0.486 < 0.05

Table 15. Tukey Test for Interaction 1 (number of attributes x number of patterns) and

false alarms.

The following tables show the Tukey test for the number of attributes, alpha, number of

patterns, and for interaction 1, considering the rates of faulty alarms.

Faulty Alarm - Class 1 Faulty Alarm - Class 2

of atributes Difference p-value # of atributes Difference p-value

15-5 0.223195 < 0.05 15-5 0.09902535 < 0.05

25-5 0.17056 < 0.05 25-5 0.07630743 < 0.05

25-15 -0.05264 < 0.05 25-15 -0.02271792 < 0.05

Table 16. Tukey Test for number of atributes and faulty alarms.

Faulty Alarm - Class 1 Faulty Alarm - Class 2

Alpha Difference p-value Alpha Difference p-value

0.05-0.01 -0.54327 < 0.05 0.05-0.01 -0.2948452 < 0.05

0.1-0.01 -0.67227 < 0.05 0.1-0.01 -0.35625786 < 0.05

0.1-0.05 -0.129 < 0.05 0.1-0.05 -0.06141266 < 0.05

Table 17. Tukey Test for alpha and faulty alarms.

Faulty Alarm - Class 1 Faulty Alarm - Class 2

of patterns Difference p-value # of patterns Difference p-value

350-150 -0.03712 < 0.05 350-150 -0.018800632 < 0.05

500-150 -0.05492 < 0.05 500-150 -0.026536229 < 0.05

500-350 -0.0178 < 0.05 500-350 -0.007735597 < 0.05

Table 18. Tukey Test for number of patterns and faulty alarms.

Faulty Alarm - Class 1 Faulty Alarm - Class 2

Number of attributes x

number of patterns
Difference p-value

Number of attributes x

number of patterns
Difference p-value

5:500-15:150 -0.30187 < 0.05 5:500-15:150 -0.134824405 < 0.05

5:500-15:350 -0.29343 < 0.05 5:500-15:350 -0.126413139 < 0.05

5:350-15:150 -0.26015 < 0.05 5:350-15:150 -0.117690697 < 0.05

5:500-25:350 -0.24156 < 0.05 5:500-25:350 -0.104551477 < 0.05

5:500-25:150 -0.22565 < 0.05 5:500-25:150 -0.102978946 < 0.05

5:350-25:150 -0.18393 < 0.05 5:350-25:150 -0.085845238 < 0.05

5:500-5:150 -0.16056 < 0.05 5:500-5:150 -0.06669687 < 0.05

5:350-5:150 -0.11884 < 0.05 5:350-5:150 -0.049563161 < 0.05

25:150-15:150 -0.07622 < 0.05 25:150-15:150 -0.031845459 < 0.05

25:350-15:150 -0.06031 < 0.05 25:350-15:150 -0.030272928 < 0.05

25:500-15:150 -0.05512 < 0.05 25:500-15:150 -0.029601962 < 0.05

25:350-15:350 -0.05187 < 0.05 25:350-15:350 -0.021861662 < 0.05

25:500-15:350 -0.04668 < 0.05 25:500-15:350 -0.021190697 < 0.05

5:500-5:350 -0.04172 < 0.05 5:500-5:350 -0.017133708 < 0.05

25:500-15:500 -0.02982 < 0.05 15:500-15:150 -0.015155313 < 0.05

15:500-15:150 -0.0253 < 0.05 25:500-15:500 -0.014446649 < 0.05

15:500-15:350 -0.01686 < 0.05 15:350-15:150 -0.008411265 < 0.05

15:350-15:150 -0.00844 < 0.05 15:500-15:350 -0.006744048 < 0.05

25:500-25:350 0.005192 < 0.05 25:500-25:350 0.000670966 < 0.05

25:350-25:150 0.01591 < 0.05 25:350-25:150 0.001572531 < 0.05

25:500-25:150 0.021103 < 0.05 25:500-25:150 0.002243497 < 0.05

15:500-25:350 0.035009 < 0.05 15:500-25:350 0.015117615 < 0.05

15:500-25:150 0.05092 < 0.05 15:500-25:150 0.016690146 < 0.05

25:150-5:150 0.065087 < 0.05 15:350-25:150 0.023434193 < 0.05

15:350-25:150 0.06778 < 0.05 25:150-5:150 0.036282077 < 0.05

25:350-5:150 0.080998 < 0.05 25:350-5:150 0.037854608 < 0.05

25:500-5:150 0.08619 < 0.05 25:500-5:150 0.038525573 < 0.05

15:500-5:150 0.116007 < 0.05 15:500-5:150 0.052972222 < 0.05

15:350-5:150 0.132867 < 0.05 15:350-5:150 0.05971627 < 0.05

15:150-5:150 0.141307 < 0.05 15:150-5:150 0.068127535 < 0.05

25:350-5:350 0.19984 < 0.05 25:350-5:350 0.087417769 < 0.05

25:500-5:350 0.205033 < 0.05 25:500-5:350 0.088088735 < 0.05

15:500-5:350 0.23485 < 0.05 15:500-5:350 0.102535384 < 0.05

25:500-5:500 0.246753 < 0.05 25:500-5:500 0.105222443 < 0.05

15:350-5:350 0.25171 < 0.05 15:350-5:350 0.109279431 < 0.05

15:500-5:500 0.27657 < 0.05 15:500-5:500 0.119669092 < 0.05

Table 19. Tukey Test for Interaction 1 (number of attributes x number of patterns) and

false alarms.

Vitae

Tatiana Escovedo received the BSc and MSc degrees in Computer Science from the

Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Brazil, in 2005 and 2007,

respectively, and the PhD degree in Electrical Engineering from the Pontifical Catholic

University of Rio de Janeiro (PUC-Rio) in 2015. Dr. Escovedo is currently the coordinator

of predictive analysis of Petrobras' business risk department in Rio de Janeiro, Brazil, and

assistant professor at PUC-Rio. She is the author of several papers in the area of software

engineering and machine learning. Her research interests include Data Mining, Artificial

Intelligence, Software Engineering, Machine Learning and Business Intelligence.

Adriano Soares Koshiyama received his BSc degree in Economics from UFRRJ and MSc

degree in Electrical Engineering from PUC-Rio. Nowadays is a PhD Candidate in

Computer Science at University College London (UCL), with its main research subject

being in Financial Computing and Analytics. Its main research topics are related to:

Machine Learning, Statistical Methods, Optimization and Finance.

Andre Vargas Abs da Cruz received the BSc. in Computer Engineering at the Pontifical

Catholic University of Rio de Janeiro (1998), MSc. in Electric Engineering (Support

Decision Methods) at the Pontifical Catholic University of Rio de Janeiro (2003) and DSc.

in Electric Engineering (Support Decision Methods) at the Pontifical Catholic University

of Rio de Janeiro (2007). Did a post-doctoral research in bioinformatics. Has experience on

the following subjects: optimization, evolutionary algorithms, quantum computing,

bioinformatics and neural networks. He currently works as a Data Scientist for MDC

Partners in Antwerp, Belgium.

Marley Maria Bernardes Rebuzzi Vellasco received the BSc and MSc degrees in

Electrical Engineering from the Pontifical Catholic University of Rio de Janeiro (PUC-

Rio), Brazil, in 1984 and 1987, respectively,and the PhD degree in Computer Science from

the University College London (UCL) in 1992. Dr. Vellasco is currently Head of the

Electrical Engineering Department of PUC-Rio and of the Computational Intelligence and

Robotics Laboratory (LIRA) of PUC-Rio. She is the author of four books and more than 60

papers in professional journals, 340 papers in conference proceedings and 17 book

chapters in the area of soft computing and machine learning. Her research interests include

Neural Networks, Fuzzy Logic, Neuro-Fuzzy Systems, Neuro-Evolutionary models,

Robotics, and Intelligent Agents, applied to decision support systems, pattern

classification, time-series forecasting, control, optimization and Data Mining.

