
Separation and Renaming in Nominal Sets
Joshua Moerman
RWTH Aachen University, Germany
joshua@cs.rwth-aachen.de

Jurriaan Rot
University College London, United Kingdom and Radboud University, The Netherlands
jrot@cs.ru.nl

Abstract
Nominal sets provide a foundation for reasoning about names. They are used primarily in syntax
with binders, but also, e.g., to model automata over infinite alphabets. In this paper, nominal sets
are related to nominal renaming sets, which involve arbitrary substitutions rather than permutations,
through a categorical adjunction. In particular, the left adjoint relates the separated product of
nominal sets to the Cartesian product of nominal renaming sets. Based on these results, we define
the new notion of separated nominal automata. We show that these automata can be exponentially
smaller than classical nominal automata, if the semantics is closed under substitutions.

2012 ACM Subject Classification Theory of computation→ Formal languages and automata theory

Keywords and phrases Nominal sets, Separated product, Adjunction, Automata, Coalgebra

Digital Object Identifier 10.4230/LIPIcs.CSL.2020.31

Related Version An extended version of the paper is available at [19], https://arxiv.org/abs/
1906.00763.

Funding This work was partially supported by the ERC AdG project 787914 FRAPPANT and a
Marie Curie Fellowship (grant code 795119).

Acknowledgements We would like to thank Jamie Gabbay, Gerco van Heerdt, Tom Hirschowitz,
Bart Jacobs, and the anonymous reviewers for their useful comments.

1 Introduction

Nominal sets are abstract sets which allow one to reason over sets with names, in terms of
permutations and symmetries. Since their introduction in computer science [11], they have
been widely used for implementing and reasoning over syntax with binders [22]. Further,
nominal techniques have been related to computability theory [4] and automata theory [3],
where they provide an elegant means of studying languages over infinite alphabets. This
embeds nominal techniques in a broader setting of symmetry aware computation [24].

Gabbay, one of the pioneers of nominal techniques described a variation on the theme:
nominal renaming sets [9, 10]. Nominal renaming sets are equipped with a monoid action of
arbitrary (possibly non-injective) substitution of names, in contrast to nominal sets, which
only involve a group action of permutations.

In this paper, we further investigate the relationship between nominal renaming sets and
nominal sets, and apply the results to nominal automata theory. We start by establishing a
categorical adjunction (Section 3):

Pm-Nom
F

,,
⊥ Sb-Nom
U

kk ,

where Pm-Nom is the usual category of nominal sets and Sb-Nom the category of nominal
renaming sets. The right adjoint U simply forgets the action of non-injective substitutions.

© Joshua Moerman and Jurriaan Rot;
licensed under Creative Commons License CC-BY

28th EACSL Annual Conference on Computer Science Logic (CSL 2020).
Editors: Maribel Fernández and Anca Muscholl; Article No. 31; pp. 31:1–31:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:joshua@cs.rwth-aachen.de
mailto:jrot@cs.ru.nl
https://doi.org/10.4230/LIPIcs.CSL.2020.31
https://arxiv.org/abs/1906.00763
https://arxiv.org/abs/1906.00763
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Separation and Renaming in Nominal Sets

The functor F was presented by Dowek and Gabbay [6]; it freely extends a nominal set
with elements representing the application of such substitutions. For instance, F maps the
nominal set A(∗) of all words consisting of distinct atoms to the nominal renaming set A∗
consisting of all words over the atoms.

In fact, the latter equivalence is a consequence of one of the main results of this paper:
the left adjoint F maps the separated product X ∗Y of nominal sets to the Cartesian product
of nominal renaming sets (Theorem 3.6 & 3.7). The separated product consists of those pairs
whose elements have disjoint supports. This is relevant for name abstraction [22], and has
also been studied in the setting of presheaf categories, aimed towards separation logic [21].
As a further consequence, under certain conditions, U maps the exponent to the magic wand
X −∗ Y , which is the right adjoint of the separated product.

We apply these connections between nominal sets and renaming sets in the context of
automata theory. In terms of expressivity, nominal automata and the more classical register
automata are equivalent, but nominal automata have appealing properties that register
automata lack, such as unique minimal automata [2]. Unfortunately, moving from register
automata to nominal automata can lead to an exponential blow-up in the number of states.1

As a motivating example, we consider a language modelling an n-bounded FIFO queue.
The input alphabet is given by Σ = {Put(a) | a ∈ A} ∪ {Pop}, and the output alphabet by
O = A ∪ {⊥} (here, ⊥ is a null value). The (generalised) language Ln : Σ∗ → O maps a
sequence of queue operations to the resulting top element when starting from the empty
queue, or to ⊥ if this is undefined. The language Ln can be recognised by a nominal
(Moore) automaton, but this requires an exponential number of states in n, as the automaton
distinguishes internally between all possible equalities among elements in the queue [20].

Based on the observation that Ln is closed under substitutions, we can come up with a
linear automata-theoretic representation. To this end, we define the new notion of separated
nominal automaton, where the transition function is only defined for pairs of states and
letters with a disjoint support (Section 4). Using the aforementioned categorical framework,
we can go back and forth between languages from separated automata and languages which
are closed under substitutions. In the FIFO example, the separated automaton obtained
from the original nominal automaton has only n+ 2 states, thus dramatically reducing the
number of states. We expect that such a reduction is useful in many applications, such as
active learning of register automata [20].

2 Monoid actions and nominal sets

In order to capture both the standard notion of nominal sets [22] and sets with more general
renaming actions [10], we start by defining monoid actions.

I Definition 2.1. Let (M, ·, 1) be a monoid. An M -set is a set X together with a function
· : M × X → X such that 1 · x = x and m · (n · x) = (m · n) · x for all m,n ∈ M and
x ∈ X. The function · is called an M -action and m · x is often written by juxtaposition mx.
A function f : X → Y between two M-sets is M -equivariant if m · f(x) = f(m · x) for all
m ∈ M and x ∈ X. The class of M-sets together with equivariant maps forms a category
M -Set.

1 Here, “number of states” refers to the number of orbits in the state space.

J. Moerman and J. Rot 31:3

Let A = {a, b, c, . . .} be a countable infinite set of atoms. The two main instances of M
considered in this paper are the monoid

Sb = {m : A→ A | m(a) 6= a for finitely many a}

of all (finite) substitutions (with composition as multiplication), and the monoid

Pm = {g ∈ Sb | g is a bijection}

of all (finite) permutations. Since Pm is a submonoid of Sb, any Sb-set is also a Pm-set; and
any Sb-equivariant map is also Pm-equivariant. This gives rise to a forgetful functor

U : Sb-Set→ Pm-Set. (1)

The set A is an Sb-set by defining m · a = m(a). Given an M -set X, the set P(X) of
subsets of X is an M -set, with the action defined by direct image.

For a Pm-set X, the orbit of an element x is the set orb(x) = {g · x | g ∈ Pm}. We say X
is orbit-finite if the set {orb(x) | x ∈ X} is finite.

For any monoid M , the category M -Set is symmetric monoidal closed. The product of
two M -sets is given by the Cartesian product, with the action defined pointwise: m · (x, y) =
(m · x,m · y). In M -Set, the exponent X →M Y is given by the set {f : M × X → Y |
f is equivariant}.2 The action on such an f : M × X → Y is defined by (m · f)(n, x) =
f(mn, x). A good introduction to the construction of the exponent is given by Simmons [28].
If M is a group, a simpler description of the exponent may be given, carried by the set of all
functions f : X → Y , with the action given by (g · f)(x) = g · f(g−1 · x).

2.1 Nominal M -sets
The notion of nominal set is usually defined w.r.t. a Pm-action. Here, we use the generalisation
to Sb-actions from [10]. Throughout this section, let M denote a submonoid of Sb.

I Definition 2.2. Let X be an M-set, and x ∈ X an element. A set C ⊂ A is an (M)-
support of x if for all m1,m2 ∈M s.t. m1|C = m2|C we have m1x = m2x. An M -set X is
called nominal if every element x has a finite M -support.

Nominal M -sets and equivariant maps form a full subcategory of M -Set, denoted by
M -Nom. The M -set A of atoms is nominal. The powerset P(X) of a nominal set is not
nominal in general; the restriction to finitely supported elements is.

If M is a group, then the notion of support can be simplified by using inverses. To see
this, first note that, given elements g1, g2 ∈M , g1|C = g2|C can equivalently be written as
g−1

2 g1|C = id |C . Second, the statement g1x = g2x can be expressed as g−1
2 g1x = x. Hence,

C is a support iff g|C = idC implies gx = x for all g, which is the standard definition for
nominal sets over a group [3, 22]. Surprisingly, a similar characterisation also holds for
Sb-sets [10]. Moreover, recall that every Sb-set is also a Pm-set; the associated notions of
support coincide on nominal Sb-sets, as shown by the following result. In particular, this
means that the forgetful functor (1) restricts to U : Sb-Nom→ Pm-Nom.

I Lemma 2.3. [9, Theorem 4.8] Let X be a nominal Sb-set, x ∈ X, and C ⊂ A. Then C is
an Sb-support of x iff it is a Pm-support of x.

2 If we write a regular arrow →, then we mean a map in the category. Exponent objects will always be
denoted by annotated arrows.

CSL 2020

31:4 Separation and Renaming in Nominal Sets

I Remark 2.4. It is not true that any Pm-support is an Sb-support. The condition that
X is nominal, in the above lemma, is crucial. Let X = A ∪ {∗} and define the following
Sb-action: m · a = m(a) if m is injective, m · a = ∗ if m is non-injective, and m · ∗ = ∗. This
is a well-defined Sb-set, but is not nominal. Now consider U(X); this is the Pm-set A ∪ {∗}
with the natural action, which is a nominal Pm-set! In particular, as a Pm-set each element
has a finite support, but as a Sb-set the supports are infinite.

This counterexample is similar to the “exploding nominal sets” in [9], but even worse
behaved. We like to call them nuclear sets, since an element will collapse when hit by a
non-injective map, no matter how far away the non-injectivity occurs.

For M ∈ {Sb,Pm}, any element x ∈ X of a nominal M -set X has a least finite support
(w.r.t. set inclusion). We denote the least finite support of an element x ∈ X by supp(x). Note
that by Lemma 2.3, the set supp(x) is independent of whether a nominal Sb-set X is viewed
as an Sb-set or a Pm-set. The dimension of X is given by dim(X) = max{|supp(x)| | x ∈ X},
where |supp(x)| is the cardinality of supp(x).

We list some basic properties of nominal M -sets, which have known counterparts for the
case that M is a group [3], and when M = Sb [10].

I Lemma 2.5. Let X be an M-nominal set. If C supports an element x ∈ X, then
m · C supports m · x for all m ∈ M . Moreover, any g ∈ Pm preserves least supports:
g · supp(x) = supp(gx).

The latter equality does not hold in general for a monoidM . For instance, the “exploding”
nominal renaming sets [10] give counterexamples for M = Sb.

I Lemma 2.6. Given M-nominal sets X,Y and a map f : X → Y , if f is M-equivariant
and C supports an element x ∈ X, then C supports f(x).

The category M -Nom is symmetric monoidal closed, with the product inherited from
M -Set, thus simply given by Cartesian product. The exponent is given by the restriction
of the exponent X →M Y in M -Set to the set of finitely supported functions, denoted by
X →M

fs Y . This is similar to the exponents of nominal sets with 01-substitutions from [23].
I Remark 2.7. In [10] a different presentation of the exponent in M -Nom is given, based
on a certain extension of partial functions. We prefer the previous characterisation, as it is
derived in a straightforward way from the exponent in M -Set.

2.2 Separated product
I Definition 2.8. Let X and Y be Pm-nominal sets. Two elements x ∈ X, y ∈ Y are called
separated, denoted by x# y, if there are disjoint sets C1, C2 ⊂ A such that C1 supports x
and C2 supports y. The separated product of Pm-nominal sets X and Y is defined as

X ∗Y = {(x, y) ∈ X × Y | x# y}.

We extend the separated product to the separated power, defined by X(0) = 1 and
X(n+1) = X(n) ∗X, and the set of separated words X(∗) =

⋃
iX

(i). The separated product
is an equivariant subset X ∗Y ⊆ X × Y . Consequently, we have equivariant projection maps
X ∗Y → X and X ∗Y → Y .

I Example 2.9. Two finite sets C,D ∈ P(A) are separated precisely when they are disjoint.
An important example is the set A(∗) of separated words over the atoms: it consists of those
words where all letters are distinct.

J. Moerman and J. Rot 31:5

The separated product gives rise to another symmetric closed monoidal structure on
Pm-Nom, with 1 as unit, and the exponential object given by magic wand X −∗ Y . An
explicit characterisation of X −∗ Y is not needed in the remainder of this paper, but for a
complete presentation we briefly recall the description from [26] (see also [22] and [5]). First,
define a Pm-action on the set of partial functions f : X ⇀ Y by (g · f)(x) = g · f(g−1 · x)
if f(g−1 · x) is defined. Now, such a partial function f : X ⇀ Y is called separating if f is
finitely supported, f(x) is defined iff f #x, and supp(f) =

⋃
x∈dom(f) supp(f(x)) \ supp(x).

Finally, X −∗ Y = {f : X ⇀ Y | f is separating}. See [26] for a proof and explanation.
I Remark 2.10. The special case A −∗ Y coincides with [A]Y , the set of name abstractions [22].
The latter is generalised to [X]Y in [8]. In [5] it is shown that the coincidence [X]Y ∼= (X −∗ Y)
only holds under strong assumptions (including that X is single-orbit).
I Remark 2.11. An analogue of the separated product does not seem to exist for nominal
Sb-sets. For instance, consider the set A× A. As a Pm-set, it has four equivariant subsets:
∅, {(a, a) | a ∈ A}, A ∗A, and A × A. However, the set A ∗A is not an equivariant subset
when considering A× A as an Sb-set.

3 A monoidal construction from Pm-sets to Sb-sets

In this section, we provide a free construction, extending nominal Pm-sets to nominal Sb-sets.
We use this as a basis to relate the separated product and exponent (in Pm-Nom) to the
product and exponent in Sb-Nom. The main results are:
1. Theorem 3.6: the forgetful functor U : Sb-Nom→ Pm-Nom has a left adjoint F ;
2. Theorem 3.7: this F is monoidal: it maps separated products to products;
3. Theorem 3.13 and Corollary 3.14: U maps the exponent object in Sb-Nom to the right

adjoint −∗ of the separated product, if the domain has dimension smaller or equal to 1.
Together, these results form the categorical infrastructure to relate nominal languages to
separated languages and automata in Section 4.

I Definition 3.1 (From [6]). Given a Pm-nominal set X, we define a nominal Sb-set F (X)
as follows. Define the set

F (X) = {(m,x) | m ∈ Sb, x ∈ X}/∼,

where ∼ is the least equivalence relation containing:

(m, gx) ∼ (mg, x), (2)
(m,x) ∼ (m′, x) if m|C = m′|C for a Pm-support C of x, (3)

for all x ∈ X, m,m′ ∈ Sb and g ∈ Pm. Note that mg = m ◦ g, i.e., simply the monoid
operation of Sb. The equivalence class of a pair (m,x) is denoted by [m,x]. We define an
Sb-action on F (X) as n · [m,x] = [nm, x].

Well-definedness is proved as part of Proposition 3.5 below. Informally, an equivalence class
[m,x] ∈ F (X) behaves “as if m acted on x.” The first equation (2) ensures compatibility
with the Pm-action on x, and the second equation (3) ensures that [m,x] only depends the
relevant part of m.

I Example 3.2. Here are a few examples of the application of F . We do not give direct proofs,
but the first two will be treated more systematically later in this section (see Corollary 3.12).
For the third, note that A× A consist of two orbits, A ∗A and the diagonal {(a, a) | a ∈ A}.

CSL 2020

31:6 Separation and Renaming in Nominal Sets

F (A) ∼= A.
F (A(∗)) ∼= A∗.
F (A× A) ∼= A2 + A.

The first example is also given in [6], where it is additionally shown that F does not
preserve products. As we will see in Section 3.1, F does preserve a different monoidal
structure, namely the separated product. The following characterisation of ∼ is useful in
proofs. This lemma is proven in [19].

I Lemma 3.3. We have (m1, x1) ∼ (m2, x2) iff there is a permutation g ∈ Pm such that
gx1 = x2 and m1|C = m2g|C , for C some Pm-support of x1.

I Remark 3.4. The first relation (2) in Definition 3.1 comes from the construction of “extension
of scalars” in commutative algebra [1]. In that context, one has a ring homomorphism
f : A→ B and an A-module M and wishes to obtain a B-module. This is constructed by
the tensor product B ⊗AM and it is here that the relation (b, am) ∼ (ba,m) is used (B is a
right A-module via f).

In [6] it is stated that F is a functor, and a proof outline for well-definedness on arrows is
given. Here we give a full proof, including well-definedness on objects.

I Proposition 3.5. The construction F in Definition 3.1 extends to a functor

F : Pm-Nom→ Sb-Nom ,

defined on an equivariant map f : X → Y by F (f)([m,x]) = [m, f(x)] ∈ F (Y).

Proof. We first prove well-definedness and then the functoriality.
F (X) is an Sb-set. To this end we check that the Sb-action is well-defined. Let

[m1, x1] = [m2, x2] ∈ F (X) and let m ∈ Sb. By Lemma 3.3, there is some permutation g such
that gx1 = x2 and m1|C = m2g|C for some support C of x1. By post-composition with m
we get mm1|C = mm2g|C , which means (again by the lemma) that [mm1, x1] = [mm2, x2].
Thus m[m1, x1] = m[m2, x2], which concludes well-definedness.

For associativity and unitality of the Sb-action, we note that it is directly defined by left
multiplication of Sb which is associative and unital. This concludes that F (X) is an Sb-set.

F (X) is a nominal Sb set. Given an element [m,x] ∈ F (X) and a Pm-support C of x,
we will prove that m ·C is an Sb-support for [m,x]. Suppose that we have m1,m2 ∈ Sb such
that m1|m·C = m2|m·C . By pre-composition with m we get m1m|C = m2m|C and this leads
us to conclude [m1m,x] = [m2m,x]. So m1[m,x] = m2[m,x] as required.

Functoriality. Let f : X → Y be a Pm-equivariant map. To see that F (f) is well-defined
consider [m1, x1] = [m2, x2]. By Lemma 3.3, there is a permutation g such that gx1 = x2
and m1|C = m2g|C for some support C of x1. Applying F (f) gives on one hand [m1, f(x1)]
and on the other hand [m2, f(x2)] = [m2, f(gx1)] = [m2, gf(x1)] = [m2g, f(x1)] (we used
equivariance in the second step). Since m1|C = m2g|C and f preserves supports we have
[m2g, f(x1)] = [m1, f(x1)].

For Sb-equivariance we consider both n · F (f)([m,x]) = n[m, f(x)] = [nm, f(x)] and
F (f)(n · [m,x]) = F (f)([nm, x]) = [nm, f(x)]. This shows nF (f)([m,x]) = F (f)(n[m,x])
and concludes that we have a map F (f) : F (X)→ F (Y).

Preservation of the identity function and composition follows from the definition. J

I Theorem 3.6. The functor F is left adjoint to U :

Pm-Nom
F

,,
⊥ Sb-Nom
U

kk

J. Moerman and J. Rot 31:7

Proof. We define, for every nominal set X, a map ηX : X → UF (X) with the necessary
universal property: for every Pm-equivariant f : X → U(Y) there is a unique Sb-equivariant
map f] : FX → Y such that U(f]) ◦ ηX = f . Define ηX(x) = [id, x]. This is equivariant:
g · ηX(x) = g[id, x] = [g, x] = [id, gx] = ηX(gx). Now, for f : X → U(Y), define f]([m,x]) =
m · f(x) for x ∈ X and m ∈ Sb. Then U(f]) ◦ ηX(x) = f]([id, x]) = id ·f(x) = f(x).

For well-definedness of f], consider [m1, x1] = [m2, x2] (we have to prove that m1 ·f(x1) =
m2 · f(x2)). By Lemma 3.3, there is a g ∈ Pm such that gx1 = x2 and m2g|C = m1|C for a
Pm-support C of x1. Now C is also a Pm-support for f(x) and hence it is an Sb-support
of f(x) (Lemma 2.3). Thus m2 · f(x2) = m2 · f(gx1) = m2g · f(x1) = m1 · f(x1) (we use
Pm-equivariance in the one but last step and Sb-support in the last step). For Sb-equivariance,
we compute n · f]([m,x]) = nm · f(x) = f]([nm, x]) = f](n[m,x]). For uniqueness, suppose
h : FX → Y is such that U(h)◦ηX = f , i.e., h([id, x]) = f(x). Then h([m,x]) = h(m[id, x]) =
m · h([id, x]) = m · f(x) = m · f]([id, x]) = f](m · [id, x]) = f]([m,x]). J

The counit ε : FU(Y) → Y is given by ε([m,x]) = m · x. For the inverse of −], let
g : F (X)→ Y be an Sb-equivariant map; then g[: X → U(Y) is given by g[(x) = g([id, x]).
Note that the unit η is a Pm-equivariant map, hence it preserves supports (i.e., any support
of x also supports [id, x]). This also means that if C is a support of x, then m ·C is a support
of [m,x] (by Lemma 2.5).

3.1 On (separated) products
The functor F not only preserves coproducts, being a left adjoint, but it also maps the
separated product to products:

I Theorem 3.7. The functor F is strong monoidal, from the monoidal category
(Pm-Nom, ∗, 1) to (Sb-Nom,×, 1). In particular, the map p given by

p = 〈F (π1), F (π2)〉 : F (X ∗Y)→ F (X)× F (Y)

is an isomorphism, natural in X and Y .

Proof. We prove that p is an isomorphism. It suffices to show that p is injective and surjective.
Note that p([m, (x, y)]) = ([m,x], [m, y]).

Surjectivity. Let ([m1, x], [m2, y]) be an element of F (X)× F (Y). We take an element
y′ ∈ Y such that y′#x and y′ = gy for some g ∈ Pm. Now we have an element (x, y′) ∈ X ∗Y .
By Lemma 2.5, we have supp(y′) = g supp(y). Define the map

m(a) =

m1(a) if a ∈ supp(x)
m2(g−1(a)) if a ∈ supp(y′)
a otherwise.

(Observe that supp(x) # supp(y′), so the cases are not overlapping.) The map m is an element
of Sb. Now consider the element z = [m, (x, y′)] ∈ F (X ∗Y). Applying p to z gives the
element ([m,x], [m, y′]). First, we note that [m,x] = [m1, x] by the definition of m. Second,
we show that [m, y′] = [m2, y]. Observe that mg|supp(y) = m2|supp(y) by definition of m. Since
supp(y) is a support of y, we have [mg, y] = [m2, y], and since [mg, y] = [m, gy] = [m, y′] we
are done. Hence p([m, (x, y′)]) = ([m,x], [m, y′]) = ([m1, x], [m2, y]), so p is surjective.

Injectivity. Let [m1, (x1, y1)] and [m2, (x2, y2)] be two elements. Suppose that they are
mapped to the same element, i.e., [m1, x1] = [m2, x2] and [m1, y1] = [m2, y2]. Then there
are permutations gx, gy such that x2 = gxx1 and y2 = gyy1. Moreover, let C = supp(x1) and

CSL 2020

31:8 Separation and Renaming in Nominal Sets

D = supp(y1); then we have m1|C = m2gx|C and m1|D = m2gy|D. In order to show the two
original elements are equal, we have to provide a single permutation g. Define for, z ∈ C ∪D,

g0(z) =
{
gx(z) if z ∈ C
gy(z) if z ∈ D.

(Again, C and D are disjoint.) The function g0 is injective since the least supports of x2
and y2 are disjoint. Hence g0 defines a local isomorphism from C ∪ D to g0(C ∪ D). By
homogeneity [22], the map g0 extends to a permutation g ∈ Pm with g(z) = gx(z) for z ∈ C
and g(z) = gy(z) for z ∈ D. In particular we get (x2, y2) = g(x1, y1). We also obtain
m1|C∪D = m2g|C∪D. Thus [m1, (x1, y1)] = [m2, (x2, y2)], and so the map p is injective.

Unit and coherence. To show that F preserves the unit, we note that [m, 1] = [m′, 1]
for every m,m′ ∈ Sb, as the empty set supports 1 and so m|∅ = m′|∅ vacuously holds. We
conclude F (1) is a singleton. J

Since F also preserves coproducts (being a left adjoint), we obtain that F maps the set
of separated words to the set of all words.

I Corollary 3.8. For any Pm-nominal set X, we have F (X(∗)) ∼= (FX)∗.

As we will show below, the functor F preserves the set A of atoms. This is an instance of
a more general result about preservation of one-dimensional objects.

I Proposition 3.9. The functors F and U are equivalences on ≤ 1-dimensional objects.
Concretely, for X ∈ Pm-Nom and Y ∈ Sb-Nom:
1. If dim(X) ≤ 1, then the unit η : X → UF (X) is an isomorphism.
2. If dim(Y) ≤ 1, then the co-unit ε : FU(Y)→ Y is an isomorphism.

In the proof, we will use the following property of Sb-sets with dimension ≤ 1.

I Lemma 3.10. Let Y be a nominal Sb-set. If an element y ∈ Y is supported by a singleton
set (or even the empty set), then

{my | m ∈ Sb} = {gy | g ∈ Pm} .

Proof. Let y ∈ Y be supported by {a} and let m ∈ Sb. Now consider b = m(a) and the
bijection g = (a b). Now m|{a} = g|{a}, meaning that my = gy. So the set {my | m ∈ Sb}
is contained in {gy | g ∈ Pm}. The inclusion the other way is trivial, which means
{my | m ∈ Sb} = {gy | g ∈ Pm}. J

Proof of Proposition 3.9. It is easy to see that η : x 7→ [id, x] is injective. Now to see that η
is surjective, let [m,x] ∈ UF (X) and consider a support {a} of x (this is a singleton or empty
since dim(X) ≤ 1). Let b = m(a) and consider the swap g = (a b). Now [m,x] = [mg−1, gx]
and note that {b} supports gx andmg−1|{b} = id |{b}. We conclude with [mg−1, gx] = [id, gx],
which implies that gx is the preimage of [m,x]. Hence η is an isomorphism.

To see that ε : [m, y] 7→ my is surjective, just consider m = id. To see that ε is injective,
let [m, y], [m′, y′] ∈ FU(Y) be two elements such that my = m′y′. Then by using Lemma 3.10
we find g, g′ ∈ Pm such that gy = my = m′y′ = g′y′. This means that y and y′ are in
the same orbit (of U(Y)) and have the same dimension. Case 1: supp(y) = supp(y′) = ∅,
then [m, y] = [id, y] = [id, y′] = [m′, y′]. Case 2: supp(y) = {a} and supp(y′) = {b}, then
supp(gy) = {g(a)} (Lemma 2.5). In particular we have that m and g map a to c = g(a),
likewise m′ and g′ map b to c. Now [m, y] = [m, g−1g′y′] = [mg−1g′, y′] = [m′, y′], where we
usedmg−1g(b) = c = m′(b) in the last step. Thus ε is injective and hence an isomorphism. J

J. Moerman and J. Rot 31:9

By Proposition 3.9, we may consider the set A as both Sb-set and Pm-set (abusing
notation). And we get an isomorphism F (A) ∼= A of nominal Sb-sets. To appreciate the
above results, we give a concrete characterisation of one-dimensional nominal sets:

I Lemma 3.11. Let X be a nominal M -set, for M ∈ {Sb,Pm}. Then dim(X) ≤ 1 iff there
exist discrete3 sets Y and I such that X ∼= Y +

∐
I A.

In particular, the one-dimensional objects include the alphabets used for data words,
consisting of a product S ×A of a discrete set S of action labels and the set of atoms. These
alphabets are very common in the study of register automata (see, e.g., [13]).

By the above and Theorem 3.7, F maps separated powers of A to powers, and the set of
separated words over A to the Sb-set of words over A.

I Corollary 3.12. We have F (A(n)) ∼= An and F (A(∗)) ∼= A∗.

3.2 On exponents
We have described how F and U interact with (separated) products. Next, we establish
a relationship between the magic wand (−∗) and the exponent of nominal Sb-sets (→Sb

fs).
These results on exponents will be useful in Section 4.1, where we discuss automata using
coalgebras.

I Theorem 3.13. The sets X −∗ U(Y) and U(F (X) →Sb
fs Y) are naturally isomorphic as

nominal Pm-sets.

Proof. We have the composite adjunctions

F ◦ (X ∗−) a (X −∗ −) ◦ U and (FX ×−) ◦ F a U ◦ (FX →Sb
fs −) .

Theorem 3.7 gives a natural isomorphism between the left adjoints. Hence, the right adjoints
are also isomorphic, which is the desired result. J

Note that this theorem gives an alternative characterisation of the magic wand in terms of
the exponent in Sb-Nom, if the codomain is U(Y). Moreover, for a 1-dimensional object X in
Sb-Nom, we obtain the following special case of the theorem (using the co-unit isomorphism
from Proposition 3.9):

I Corollary 3.14. Let X,Y be nominal Sb-sets. For 1-dimensional X, the nominal Pm-set
U(X) −∗ U(Y) is naturally isomorphic to U(X →Sb

fs Y).

I Remark 3.15. The set A −∗ U(X) coincides with the atom abstraction [A]UX (Remark 2.10).
Hence, as a special case of Corollary 3.14, we recover [10, Theorem 34], which states a bijective
correspondence between [A]UX and U(A→Sb

fs X).

4 Nominal and separated automata

In this section, we study nominal (Moore) automata, which recognise languages over infinite
alphabets. After recalling the basic definitions, we introduce a new variant of automata
based on the separating product, which we call separated nominal automata. These automata

3 Any set Z can be equipped with a trivial action m · x = x, which makes Z a nominal set. Such sets are
called discrete.

CSL 2020

31:10 Separation and Renaming in Nominal Sets

represent nominal languages which are Sb-equivariant, essentially meaning they are closed
under substitution. Our main result is that, if a “classical” nominal automaton (over Pm)
represents a language L which is Sb-equivariant, then L can also be represented by a separated
nominal automaton. The latter can be exponentially smaller (in number of orbits) than the
original automaton, as we show in a concrete example.
I Remark 4.1. We will work with a general output set O instead of just acceptance. The
reason for this is that Sb-equivariant functions L : A(∗) → 2 are not very interesting: they
are defined purely by the length of the input. By using more general output O, we may still
capture interesting behaviour, e.g., the language in Example 4.3.

I Definition 4.2. Let Σ, O be Pm-sets, called input/output alphabet respectively.
A (Pm)-nominal language is an equivariant map of the form L : Σ∗ → O.
A nominal (Moore) automaton A = (Q, δ, o, q0) consists of a nominal set of states Q, an
equivariant transition function δ : Q× Σ→ Q, an equivariant output function o : Q→ O,
and an initial state q0 ∈ Q with an empty support.
The language semantics is the map l : Q× Σ∗ → O, defined inductively by

l(x, ε) = o(x) , l(x, aw) = l(δ(x, a), w)

for all x ∈ Q, a ∈ Σ and w ∈ Σ∗.
For l[: Q→ (Σ∗ →Pm

fs O) the transpose of l, we have that l[(q0) : Σ∗ → O is equivariant;
this is called the language accepted by A.

Note that the language accepted by an automaton can equivalently be characterised by
considering paths through the automaton from the initial state.

If the state space Q and the alphabets Σ, O are orbit finite, this allows us to run algorithms
(reachability, minimisation, etc.) on such automata [3], but there is no need to assume this
for now. For an automaton A = (Q, δ, o, q0), we define the set of reachable states as the least
set R(A) ⊆ Q such that q0 ∈ R(A) and for all x ∈ R(A) and a ∈ Σ, δ(x, a) ∈ R(A).

I Example 4.3. We model a bounded FIFO queue of size n as a nominal Moore automaton,
explicitly handling the data in the automaton structure.4 The input alphabet Σ and output
alphabet O are as follows:

Σ = {Put(a) | a ∈ A} ∪ {Pop}, O = A ∪ {⊥}.

The input alphabet encodes two actions: putting a new value on the queue and popping
a value. The output is either a value (the front of the queue) or ⊥ if the queue is empty. A
queue of size n is modelled by the automaton (Q, δ, o, q0) defined as follows.

Q = A≤n ∪ {⊥} q0 = ε o(a1 . . . ak) =
{
a1 if k ≥ 1
⊥ otherwise

δ(a1 . . . ak,Put(b)) =
{
a1 . . . akb if k < n

⊥ otherwise
δ(⊥, x) =⊥

δ(a1 . . . ak,Pop) =
{
a2 . . . ak if k > 0
⊥ otherwise

4 We use a reactive version of the queue data structure, which slightly differs from the versions in [20, 13].

J. Moerman and J. Rot 31:11

ε

o = ⊥
a

o = a
ab

o = a
abc
o = a

⊥
o = ⊥

Put(a)
Pop

Pop

Put(b)

Pop
goes to b

Put(c)

Pop
goes to bc

Put(d)

Σ

Figure 1 The FIFO automaton from Example 4.3 with n = 3. The right-most state consists of
five orbits as we can take a, b, c distinct, all the same, or two of them equal in three different ways.
Consequently, the complete state space has ten orbits. The output of each state is denoted in the
lower part.

The automaton is depicted in Figure 1 for the case n = 3. The language accepted by this
automaton assigns to a word w the first element of the queue after executing the instructions
in w from left to right, and ⊥ if the input is ill-behaved, i.e., Pop is applied to an empty
queue or Put(a) to a full queue.

I Definition 4.4. Let Σ, O be Pm-sets. A separated language is an equivariant map of the
form Σ(∗) → O. A separated automaton A = (Q, δ, o, q0) consists of Q, o and q0 defined as
in a nominal automaton, and an equivariant transition function δ : Q ∗Σ→ Q.

The separated language semantics of such an automaton A is given by the function
s : Q ∗Σ(∗) → O, defined inductively by

s(x, ε) = o(x) , s(x, aw) = s(δ(x, a), w)

for all x ∈ Q, a ∈ Σ and w ∈ Σ(∗) such that x# aw and a#w.
Let s[: Q→ (Σ(∗) −∗ O) be the transpose of s. Then s[(q0) : Σ(∗) → O corresponds to a

separated language; this is called the separated language accepted by A.

By definition of the separated product, the transition function is only defined on a state
x and letter a ∈ Σ if x# a. In Example 4.10 below, we describe the bounded FIFO as a
separated automaton, and describe its accepted language.

First, we show how the language semantics of separated nominal automata extends to a
language over all words, provided that both the input alphabet Σ and the output alphabet
O are Sb-sets.

I Definition 4.5. Let Σ and O be nominal Sb-sets. An Sb-equivariant function L : Σ∗ → O

is called an Sb-language.

Notice the difference between an Sb-language L : Σ∗ → O and a Pm-language L′ : (UΣ)∗ →
U(O). They are both functions from Σ∗ to O, but the latter is only Pm-equivariant, while the
former satisfies the stronger property of Sb-equivariance. Languages over separated words,
and Sb-languages, are connected as follows.

CSL 2020

31:12 Separation and Renaming in Nominal Sets

I Proposition 4.6. Suppose Σ, O are both nominal Sb-sets, and suppose dim(Σ) ≤ 1. There
is a one-to-one correspondence

S : (UΣ)(∗) → UO Pm-equivariant
S : Σ∗ → O Sb-equivariant

between separated languages and Sb-nominal languages. From S to S, this is given by
application of the forgetful functor and restricting to the subset of separated words.

For the converse direction, given w = a1 . . . an ∈ Σ∗, let b1, . . . , bn ∈ Σ such that w# bi
for all i, and bi # bj for all i, j with i 6= j. Define m ∈ Sb by

m(a) =
{
ai if a = bi for some i
a otherwise

Then S(a1a2a3 · · · an) = m · S(b1b2b3 · · · bn).

Proof. There is the following chain of one-to-one correspondences, from the results of the
previous section:

(UΣ)(∗) → UO
by Theorem 3.6

F (UΣ)(∗) → O
by Corollary 3.8

(FUΣ)∗ → O
by Proposition 3.9Σ∗ → O

J

Thus, every separated automaton over U(Σ), U(O) gives rise to an Sb-language S, corres-
ponding to the language S accepted by the automaton.

Any nominal automaton A restricts to a separated automaton, formally described in
Definition 4.7. It turns out that if the (Pm)-language accepted by A is actually an Sb-
language, then the restricted automaton already represents this language, as the extension S
of the associated separated language S (Proposition 4.8). Hence, in such a case, the restricted
separated automaton suffices to describe the language of A.

I Definition 4.7. Let i : Q ∗U(Σ) ↪→ Q × U(Σ) be the natural inclusion map. A nominal
automaton A = (Q, δ, o, q0) induces a separated automaton A∗, by setting A∗ = (Q, δ◦i, o, q0).

I Proposition 4.8. Suppose Σ, O are both Sb-sets, and suppose dim(Σ) ≤ 1. Let L : (UΣ)∗ →
UO be the Pm-nominal language accepted by a nominal automaton A, and suppose L is
Sb-equivariant. Let S be the separated language accepted by A∗. Then L = U(S).

Proof. It follows from the one-to-one correspondence in Proposition 4.6: on the bottom
there are two languages (L and U(S)), while there is only the restriction of L on the top.
We conclude that L = U(S). J

As we will see in Example 4.10, separated automata allow us to represent Sb-languages in
a smaller way than nominal automata. Given a nominal automaton A, a smaller separated
automaton can be obtained by computing the reachable part of the restriction A∗. The
reachable part is defined similarly (but only where δ is defined) and also denoted by R(A∗).

I Lemma 4.9. For any nominal automaton A, we have R(A∗) ⊆ R(A).

The converse inclusion of the above proposition does certainly not hold, as shown by the
following example.

J. Moerman and J. Rot 31:13

I Example 4.10. Let A be the automaton modelling a bounded FIFO queue (for some n),
from Example 4.3. The Pm-nominal language L accepted by A is Sb-equivariant: it is closed
under application of arbitrary substitutions.

The separated automaton A∗ is given simply by restricting the transition function to
Q ∗Σ, i.e., a Put(a)-transition from a state w ∈ Q exists only if a does not occur in w. The
separated language S accepted by this new automaton is the restriction of the nominal
language of A to separated words. By Proposition 4.8, we have L = U(S). Hence, the
separated automaton A∗ represents L, essentially by closing the associated separated language
S under all substitutions.

The reachable part of A∗ is given by

RA∗ = A(≤n) ∪ {⊥} .

Clearly, restricting A∗ to the reachable part does not affect the accepted language. However,
while the original state space Q has exponentially many orbits in n, RA∗ has only n + 2
orbits! Thus, taking the reachable part of RA∗ yields a separated automaton which represents
the FIFO language L in a much smaller way than the original automaton.

4.1 Separated automata: coalgebraic perspective
Nominal automata and separated automata can be presented as coalgebras on the category
of Pm-nominal sets. In this section we revisit the above results from this perspective, and
generalise from (equivariant) languages to finitely supported languages. In particular, we
retrieve the extension from separated languages to Sb-languages, by establishing Sb-languages
as a final separated automaton. The latter result follows by instantiating a well-known
technique for lifting adjunctions to categories of coalgebras, using the results of Section 3.
We assume familiarity with the theory of coalgebras, see, e.g., [14, 25].

I Definition 4.11. Let M be a submonoid of Sb, and let Σ, O be nominal M -sets, referred to
as the input and output alphabet respectively. Define the functor BM : M -Nom→M -Nom
by BM (X) = O × (Σ→M

fs X). An (M)-nominal (Moore) automaton is a BM -coalgebra.

A BM -coalgebra can be presented as a nominal set Q together with the pairing

〈o, δ[〉 : Q→ O × (Σ→M
fs Q)

of an equivariant output function o : Q→ O, and (the transpose of) an equivariant transition
function δ : Q×Σ→ Q. In case M = Pm, this coincides with the automata of Definition 4.2,
omitting initial states. The language semantics is generalised accordingly, as follows. Given
such a BM -coalgebra (Q, 〈o, δ[〉), the language semantics l : Q× Σ∗ → O is given by

l(x, ε) = o(x) , l(x, aw) = l(δ(x, a), w) (4)

for all x ∈ S, a ∈ Σ and w ∈ Σ∗.

I Proposition 4.12. Let M be a submonoid of Sb, let Σ, O be nominal M -sets. The nominal
M-set Σ∗ →M

fs O extends to a final BM -coalgebra (Σ∗ →M
fs O, ζ), such that the unique

homomorphism from a given BM -coalgebra is the transpose l[of the language semantics (4).

A separated automaton (Definition 4.4, without initial states) corresponds to a coalgebra
for the functor B∗ : Pm-Nom→ Pm-Nom given by B∗(X) = O × (Σ −∗ X). The separated
language semantics arises by finality.

CSL 2020

31:14 Separation and Renaming in Nominal Sets

I Proposition 4.13. The set Σ(∗) −∗ O is the carrier of a final B∗-coalgebra, such that the
unique coalgebra homomorphism from a given B∗-coalgebra (Q, 〈o, δ〉) is the transpose s[of
the separated language semantics s : Q ∗Σ(∗) → O (Definition 4.4).

Next, we provide an alternative description of the final B∗-coalgebra which assigns Sb-
nominal languages to states of separated nominal automata. The essence is to obtain a final
B∗-coalgebra from the final BSb-coalgebra. In order to prove this, we use a technique to lift
adjunctions to categories of coalgebras. This technique occurs regularly in the coalgebraic
study of automata [15, 17, 16].

I Theorem 4.14. Let Σ be a Pm-set, and O an Sb-set. Define B∗ and BSb accordingly, as
B∗(X) = UO × (Σ −∗ X) and BSb(X) = O × (FΣ→Sb

fs X). There is an adjunction

CoAlg(B∗)
F

,,
⊥ CoAlg(BSb)

U

ll

where F and U coincide with F and U respectively on carriers.

Proof. There is a natural isomorphism λ : B∗U ⇒ UBSb given by

λ : UO × (Σ −∗ UX) id×φ−−−→ UO × U(FΣ→Sb
fs X)

∼=−→ U(O × (FΣ→Sb
fs X)) ,

where φ is the isomorphism from Theorem 3.13 and the isomorphism on the right comes from
U being a right adjoint. The result now follows from Theorem 2.14 in [12]. In particular,
U(X, γ) = (UX, λ−1 ◦ U(γ)). J

Since right adjoints preserve limits, and final objects in particular, we obtain the following,
giving semantics of separated automata through finality.

I Corollary 4.15. Let ((FΣ)∗ →Sb
fs O, ζ) be the final BSb-coalgebra (Proposition 4.12). Then

the B∗-coalgebra U(Σ∗ →Sb
fs O, ζ) is final and carried by the set (FΣ)∗ →Sb

fs O of Sb-nominal
languages.

5 Relation to (pre)sheaf categories

Fiore and Turi described a similar adjunction between certain presheaf categories [7]. However,
Staton describes in his thesis that the usage of presheaves allows for many degenerate models
and one should look at sheaves instead [29]. The category of sheaves is equivalent to the
category of nominal sets. We will describe these equivalences in this section.

Let us define the index categories I and F. Both categories have finite subsets C ⊂ A
as objects. The morphisms in I are all injective functions between those sets, and for F
we take all functions. The presheaves Fiore and Turi considered are SetI and SetF. The
interpretation of an object X ∈ SetI is that X(C) is the set of elements supported by C.
Although very similar to nominal sets, the categories are not equivalent. The inclusion I ⊆ F
induces a forgetful functor SetF → SetI. It has a left adjoint, which can be defined by a Kan
extension [7].

The subcategory of functors I→ Set which preserve pullbacks is a sheaf category Sh(I).5
(For the precise sheaf conditions, see Staton’s thesis [29].) The category Sh(I) is equivalent
to Nom. Similarly, there is a sheaf category Sh(F) ⊆ SetF and Staton has shown that the
adjunction SetI � SetF restricts to an adjunction Sh(I)� Sh(F).

5 We use the notation from [29], since we only deal with covariant functors here.

J. Moerman and J. Rot 31:15

How does this compare to the adjunction described in this paper? Staton defines a
category of nominal sets with a substitution operator, defined by certain axioms. This fits
in the theory of universal algebra on nominal sets, as described by Kurz and Petris,an [18].
This category NomSub is equivalent to Sh(F), and most likely equivalent to Sb-Nom as
defined here. These equivalences then give an abstract way of defining the adjunction from
Theorem 3.6. Together with the fact that the separated product is a Day convolution (this
fact is hinted at in [5] and [21]), one might obtain Theorem 3.7 from abstract reasoning alone
(using the fact that both the left adjoint and the separated product are left Kan extensions).
Nevertheless, we think that the explicit constructions and proofs given in this paper are
useful, as they provide a concrete interpretation of the abstract concepts.

6 Related and future work

An interesting line of research is the generalisation to other symmetries by Bojańczyk et al. [3].
In particular, the total order symmetry is relevant, since it allows one to compare elements
on their order, as often used in data words. In this case the symmetries are given by the
group of all monotone bijections. Many results of nominal sets generalise to this symmetry.
For monotone substitutions, however, the situation seems more subtle. For example, we note
that a substitution which maps two values to the same value actually maps all the values
in between to that value. Whether the adjunction from Theorem 3.6 generalises to other
symmetries is left as future work.

This research was motivated by learning register automata. If we know a register
automaton recognises an Sb-language, then we are better off learning a separated automaton
instead of a nominal automaton. From the Sb-semantics of separated automata, it follows
that we have a Myhill-Nerode theorem, which means that learning is feasible. We expect
that this can be useful, since we can achieve an exponential reduction this way.

Bojańczyk et al. prove that nominal automata are equivalent to register automata in
terms of expressiveness [3]. However, when translating from register automata with n states
to nominal automata, we may get exponentially many orbits. This happens for instance
in the FIFO automaton (Example 4.3). We have shown that the exponential blow-up is
avoidable by using separated automata, for this example and in general for Sb-equivariant
languages. Such languages come from register automata which manipulate data but where
do control flow does not depend on comparisons. This typically occurs in data structures.

An important open problem is whether the latter requirement can be relaxed, by adding
separated transitions only locally in a nominal automaton. A possible step in this direction is
to consider the monad T = UF on Pm-Nom and incorporate it in the automaton model. We
believe that this is the hypothesised “substitution monad” from [20]. The monad is monoidal
(sending separated products to Cartesian products) and if X is an orbit-finite nominal set,
then so is T (X). This means that we can consider nominal T -automata and we can perhaps
determinise them using coalgebraic methods [27].

References
1 Michael Francis Atiyah and Ian G. MacDonald. Introduction to commutative algebra. Addison-

Wesley-Longman, 1969.
2 Mikołaj Bojańczyk. Slightly Infinite Sets. Draft May 22, 2019. URL: https://www.mimuw.

edu.pl/~bojan/upload/main-9.pdf.
3 Mikołaj Bojańczyk, Bartek Klin, and Sławomir Lasota. Automata theory in nominal sets.

Logical Methods in Computer Science, 10(3), 2014. doi:10.2168/LMCS-10(3:4)2014.

CSL 2020

https://www.mimuw.edu.pl/~bojan/upload/main-9.pdf
https://www.mimuw.edu.pl/~bojan/upload/main-9.pdf
https://doi.org/10.2168/LMCS-10(3:4)2014

31:16 Separation and Renaming in Nominal Sets

4 Mikołaj Bojańczyk, Bartek Klin, Sławomir Lasota, and Szymon Toruńczyk. Turing Machines
with Atoms. In 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2013, New Orleans, LA, USA, June 25-28, 2013, pages 183–192. IEEE Computer Society,
2013. doi:10.1109/LICS.2013.24.

5 Ranald Clouston. Generalised Name Abstraction for Nominal Sets. In Frank Pfenning, editor,
Foundations of Software Science and Computation Structures - 16th International Conference,
FOSSACS 2013. Proceedings, volume 7794 of Lecture Notes in Computer Science, pages
434–449. Springer, 2013. doi:10.1007/978-3-642-37075-5_28.

6 Gilles Dowek and Murdoch James Gabbay. PNL to HOL: from the logic of nominal sets to
the logic of higher-order functions. Theor. Comput. Sci., 451:38–69, 2012. doi:10.1016/j.
tcs.2012.06.007.

7 Marcelo P. Fiore and Daniele Turi. Semantics of Name and Value Passing. In 16th Annual IEEE
Symposium on Logic in Computer Science, Boston, Massachusetts, USA, June 16-19, 2001,
Proceedings, pages 93–104. IEEE Computer Society, 2001. doi:10.1109/LICS.2001.932486.

8 Murdoch J. Gabbay. FM-HOL, a higher-order theory of names. Thirty Five years of Automath,
Heriot-Watt University, Edinburgh, 2002.

9 Murdoch J. Gabbay. Nominal Renaming Sets. Technical report, Heriot-Watt University, 2007.
URL: https://www.gabbay.org/paper.html#nomrs-tr.

10 Murdoch J. Gabbay and Martin Hofmann. Nominal Renaming Sets. In Iliano Cervesato,
Helmut Veith, and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence,
and Reasoning, 15th International Conference, LPAR 2008. Proceedings, volume 5330 of Lecture
Notes in Computer Science, pages 158–173. Springer, 2008. doi:10.1007/978-3-540-89439-1_
11.

11 Murdoch J. Gabbay and Andrew M. Pitts. A New Approach to Abstract Syntax Involving
Binders. In 14th Annual IEEE Symposium on Logic in Computer Science, Trento, Italy, July
2-5, 1999, pages 214–224. IEEE Computer Society, 1999. doi:10.1109/LICS.1999.782617.

12 Claudio Hermida and Bart Jacobs. Structural Induction and Coinduction in a Fibrational
Setting. Inf. Comput., 145(2):107–152, 1998. doi:10.1006/inco.1998.2725.

13 Malte Isberner, Falk Howar, and Bernhard Steffen. Learning register automata: from
languages to program structures. Machine Learning, 96(1-2):65–98, 2014. doi:10.1007/
s10994-013-5419-7.

14 Bart Jacobs. Introduction to Coalgebra: Towards Mathematics of States and Observation,
volume 59 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
2016. doi:10.1017/CBO9781316823187.

15 Bart Jacobs, Alexandra Silva, and Ana Sokolova. Trace semantics via determinization. J.
Comput. Syst. Sci., 81(5):859–879, 2015. doi:10.1016/j.jcss.2014.12.005.

16 Henning Kerstan, Barbara König, and Bram Westerbaan. Lifting Adjunctions to Coalgebras
to (Re)Discover Automata Constructions. In Marcello M. Bonsangue, editor, Coalgebraic
Methods in Computer Science - 12th IFIP WG 1.3 International Workshop, CMCS 2014,
Colocated with ETAPS 2014, Grenoble, France, April 5-6, 2014, Revised Selected Papers,
volume 8446 of Lecture Notes in Computer Science, pages 168–188. Springer, 2014. doi:
10.1007/978-3-662-44124-4_10.

17 Bartek Klin and Jurriaan Rot. Coalgebraic trace semantics via forgetful logics. Logical Methods
in Computer Science, 12(4), 2016. doi:10.2168/LMCS-12(4:10)2016.

18 Alexander Kurz and Daniela Petrisan. On universal algebra over nominal sets. Mathematical
Structures in Computer Science, 20(2):285–318, 2010. doi:10.1017/S0960129509990399.

19 Joshua Moerman and Jurriaan Rot. Separation and Renaming in Nominal Sets. CoRR,
abs/1906.00763, 2019.

20 Joshua Moerman, Matteo Sammartino, Alexandra Silva, Bartek Klin, and Michał Szynwelski.
Learning nominal automata. In Giuseppe Castagna and Andrew D. Gordon, editors, Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL

https://doi.org/10.1109/LICS.2013.24
https://doi.org/10.1007/978-3-642-37075-5_28
https://doi.org/10.1016/j.tcs.2012.06.007
https://doi.org/10.1016/j.tcs.2012.06.007
https://doi.org/10.1109/LICS.2001.932486
https://www.gabbay.org/paper.html#nomrs-tr
https://doi.org/10.1007/978-3-540-89439-1_11
https://doi.org/10.1007/978-3-540-89439-1_11
https://doi.org/10.1109/LICS.1999.782617
https://doi.org/10.1006/inco.1998.2725
https://doi.org/10.1007/s10994-013-5419-7
https://doi.org/10.1007/s10994-013-5419-7
https://doi.org/10.1017/CBO9781316823187
https://doi.org/10.1016/j.jcss.2014.12.005
https://doi.org/10.1007/978-3-662-44124-4_10
https://doi.org/10.1007/978-3-662-44124-4_10
https://doi.org/10.2168/LMCS-12(4:10)2016
https://doi.org/10.1017/S0960129509990399

J. Moerman and J. Rot 31:17

2017, Paris, France, January 18-20, 2017, pages 613–625. ACM, 2017. URL: http://dl.acm.
org/citation.cfm?id=3009879.

21 Peter W. O’Hearn. On bunched typing. J. Funct. Program., 13(4):747–796, 2003. doi:
10.1017/S0956796802004495.

22 Andrew M. Pitts. Nominal Sets: Names and Symmetry in Computer Science. Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 2013.

23 Andrew M. Pitts. Nominal Presentation of Cubical Sets Models of Type Theory. In Hugo
Herbelin, Pierre Letouzey, and Matthieu Sozeau, editors, 20th International Conference on
Types for Proofs and Programs, TYPES 2014, May 12-15, 2014, Paris, France, volume 39
of LIPIcs, pages 202–220. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2014. doi:
10.4230/LIPIcs.TYPES.2014.202.

24 Andrew M. Pitts. Nominal techniques. SIGLOG News, 3(1):57–72, 2016. doi:10.1145/
2893582.2893594.

25 Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theor. Comput. Sci.,
249(1):3–80, 2000. doi:10.1016/S0304-3975(00)00056-6.

26 Ulrich Schöpp. Names and binding in type theory. PhD thesis, University of Edinburgh, UK,
2006. URL: http://hdl.handle.net/1842/1203.

27 Alexandra Silva, Filippo Bonchi, Marcello M. Bonsangue, and Jan J. M. M. Rutten. Gener-
alizing determinization from automata to coalgebras. Logical Methods in Computer Science,
9(1), 2013. doi:10.2168/LMCS-9(1:9)2013.

28 Harold Simmons. The topos of actions on a monoid. Unpublished manuscript, number 12N.
URL: http://www.cs.man.ac.uk/~hsimmons/DOCUMENTS/PAPERSandNOTES/Rsets.pdf.

29 Sam Staton. Name-passing process calculi: operational models and structural operational
semantics. PhD thesis, University of Cambridge, Computer Laboratory, June 2007. URL:
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-688.pdf.

CSL 2020

http://dl.acm.org/citation.cfm?id=3009879
http://dl.acm.org/citation.cfm?id=3009879
https://doi.org/10.1017/S0956796802004495
https://doi.org/10.1017/S0956796802004495
https://doi.org/10.4230/LIPIcs.TYPES.2014.202
https://doi.org/10.4230/LIPIcs.TYPES.2014.202
https://doi.org/10.1145/2893582.2893594
https://doi.org/10.1145/2893582.2893594
https://doi.org/10.1016/S0304-3975(00)00056-6
http://hdl.handle.net/1842/1203
https://doi.org/10.2168/LMCS-9(1:9)2013
http://www.cs.man.ac.uk/~hsimmons/DOCUMENTS/PAPERSandNOTES/Rsets.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-688.pdf

	Introduction
	Monoid actions and nominal sets
	Nominal M-sets
	Separated product

	A monoidal construction from Pm-sets to Sb-sets
	On (separated) products
	On exponents

	Nominal and separated automata
	Separated automata: coalgebraic perspective

	Relation to (pre)sheaf categories
	Related and future work

