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Abstract

Sequence data that exhibits power-law behavior in its marginal and conditional

distributions arises frequently from natural processes, with natural language

text being a prominent example. We study probabilistic models for such se-

quences based on a hierarchical non-parametric Bayesian prior, develop infer-

ence and learning procedures for making these models useful in practice and

applicable to large, real-world data sets, and empirically demonstrate their ex-

cellent predictive performance. In particular, we consider models based on the

infinite-depth variant of the hierarchical Pitman-Yor process (HPYP) language

model [Teh, 2006b] known as the Sequence Memoizer, as well as Sequence

Memoizer-based cache language models and hybrid models combining the

HPYP with neural language models. We empirically demonstrate that these

models perform well on language modelling and data compression tasks.
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Impact Statement

Predicting the next word in a sentence, or, more broadly, the next observation

in a sequence, is a fundamental problem within statistics, computer science,

and engineering with countless practical applications. Consider for example

a mobile phone text entry system that assists the user by presenting options

for possible continuations, or a speech recognition system that only needs to

correctly understand a small part of a spoken utterance in order to complete

the full sentence. The models described in this thesis are of this form: from a

given data set of sequential observations they build a model of the statistical

regularities in the data which can subsequently be used to make probabilistic

predictions about the next symbol following some context of previous ob-

servations. Specifically, for text data and for data compression applications,

the described models provide improvements over similar models in terms of

accuracy and computational efficiency.

Outside of academia, the work presented in this thesis could, for example,

be deployed to improve the performance of adaptive predictive text entry

systems on mobile devices, or, more broadly, to improve assistive technology.

Other commercial applications are e.g. constructing specialized compression

algorithms for low-bandwidth settings, or using the models as a building block

to address higher-level tasks (e.g. machine translation or speech recognition),

by integration of the presented models and algorithms into the corresponding

devices and applications. Within academia, the presented models could lead

to the development of new models in the fields of machine learning, Bayesian

nonparametrics, and natural language processing, could be used as building

blocks to solve higher-level problems in these areas, or could be applied to

address problems in adjacent domains (e.g. computational biology).
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CHAPTER 1
Introduction

Predicting what comes next in a sequence of observations is a fundamental

problem in statistics and machine learning that comes in many forms and has

countless applications. It is thus not surprising that a large number of models,

algorithms, and heuristics to address various forms of this problem have been

developed over the last century.

1.1 Problem Setting

In this thesis the focus is on a particular class of probabilistic discrete time, dis-

crete space models, i.e. models that describe probability distributions over se-

quences x1:N , where the individual observations xi are associated with discrete

positions i = 1, . . . , N and each xi comes from a discrete (finite or countably

infinite) set of possible symbols xi ∈ Σ. One example of this setting and the

primary application that will be considered in this thesis is language modelling,

where the the alphabet Σ is the set of words in a language (e.g. English) and

the sequences x1:N are sentences or documents. Assigning probabilities to se-

quences of words is a fundamental building block of many modern approaches

to natural language processing (see Section 2.2). One special property of such

natural language sequences (and also several other types of sequences) is that

the empirical marginal and conditional distributions that are observed when

examining large corpora of text tend to be well-approximated by power-law

distributions. The models that are described and extended in this thesis in-

corporate this observation by utilizing a prior distribution in a hierarchical

non-parametric Bayesian model that reflects this property.

Bayesian nonparametrics has received increased interest from the machine

learning community over the last two decades as it provides an expressive

15



16 CHAPTER 1. INTRODUCTION

modelling framework that incorporates probability distributions over infinite-

dimensional objects such as functions or probability measures as basic building

blocks for model construction. This is especially well suited to the construc-

tion of hierarchical models, where these basic building blocks are arranged in

hierarchies that express the modelers’ beliefs about how information is shared

between different parts of the hierarchy. The models described in this thesis will

make use of such hierarchies to alleviate extreme data sparsity problems and

will exploit the hierarchical structure to infer millions of (related) probability

distributions, even if only a single observation is given for each of them.

The main advantage of the Bayesian approach over well-designed heuristics

that are commonly used in the language modelling setting is that it (a) provides

a principled way of incorporating prior information (such as the power-law

nature of the conditional distributions) and (b) provides a principled way of

handling uncertainty in model parameters when making predictions, namely

by averaging with respect to the posterior distribution. Even though the ulti-

mate goal of making predictions with a Bayesian model by marginalizing out

all unknown quantities is often very difficult to attain for large and complex

models, the Bayesian paradigm provides a framework for devising approxima-

tions, algorithms, and heuristics that trade off competing requirements such

as storage limits, computational complexity, and parallelizability. By using the

“optimal” solution as a guide, novel algorithms can be devised and existing

algorithms can be analyzed and potentially improved if they can be described

as approximations to Bayesian computations. This is the route taken in this

thesis: several approximate inference algorithms with different strengths and

weaknesses are developed and compared, and the resulting algorithms are

shown to be scalable and effective.

1.2 Research Context & Related Work

The work in this thesis sits at the intersection of statistical language modelling,

which is concerned with assigning probabilities to sequences of words, and

the sub-field of machine learning based on Bayesian nonparametrics, which

employs Bayesian models defined on infinite-dimensional parameter spaces to

solve learning problems. Closely related models and techniques have also been

developed in the field of lossless data compression, where probabilistic models

are combined with entropy encoding techniques to yield effective lossless

compression algorithms.

The foundation for work presented here lies in Yee Whye Teh’s work on
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using a hierarchical prior constructed from Pitman-Yor processes for language

modelling [Teh, 2006a,b; Goldwater et al., 2006a], in which he not only showed

that these models achieve state-of-the-art performance, but also pointed out a

connection to the successful and widely-used Kneser-Ney smoothing approach

to language modelling [Kneser and Ney, 1995], which was the de-facto standard

at the time. Due to this connection, the work presented here is also closely

related to classical language modelling techniques (see [Chen and Goodman,

1999] for an excellent review). In data compression, the PPM family of al-

gorithms is in turn closely related to Kneser-Ney smoothing, and thus to the

Pitman-Yor process-based language models. This connection has been pointed

out in [Cowans, 2006] and explored further in detail in [Steinruecken, 2014].

Steinruecken [2014] also pointed out further connections of our HPYP-based

compression algorithm (Chapter 6) to related compression techniques with

unbounded-depth context trees and compared their performance. More re-

cently, building on some of the work presented here, and also exploiting the

connection between Kneser-Ney smoothing and the HPYP, Shareghi [2017] ex-

plored different ways of efficiently storing and performing inference in similar

models.

In the field of machine learning there is large body of related work on

Bayesian nonparametric models that have been shown to perform well in

practice (see [Teh and Jordan, 2010] for an overview). These models make use of

nonparametric Bayesian constructions such as Dirichlet processes [Ferguson,

1973; Teh, 2010], hierarchical Dirichlet processes [Teh et al., 2006] and their

extension to Pitman-Yor processes, the Indian Buffet process [Griffiths and

Ghahramani, 2011], or Gaussian processes [Rasmussen and Williams, 2006].

Another set of machine learning techniques that have been applied with

tremendous success to both language modelling and data compression are

artificial neural networks. While neural network approaches to language mod-

elling are not a new idea [Miikkulainen and Dyer, 1991; Bengio et al., 2003],

interest in them has recently been rekindled by very good predictive perfor-

mance results [Mnih et al., 2009; Mikolov et al., 2011; Zaremba et al., 2014],

tremendous improvements in hardware performance and generally growing

interest in neural network models due to their success in other areas such as

computer vision [Krizhevsky et al., 2012] and reinforcement learning [Mnih

et al., 2013; Silver et al., 2018]. While the Sequence Memoizer language model

presented in Chapter 3 achieved state-of-the-art predictive performance when

it was first published, it has since been eclipsed by deep-learning-based ap-

proaches. As an example, the Cache Sequence Memoizer model discussed in
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Chapter 7 achieves a perplexity of 113.8 on the Penn Tree Bank corpus (outper-

forming e.g. a Kneser-Ney 5-gram + cache model reported at 125.7 in [Mikolov,

2012]). In his extensive empirical evaluation of recurrent neural network (RNN)

language models, Mikolov [2012] reported a perplexity of 124.7 for a single

RNN model, 101.0 for an ensemble of RNN models, and 89.4 for an ensemble

of RNN, n-gram, and cache models. Since then, “pure” deep learning models

have been making great progress: Zaremba et al. [2014] report a perplexity of

78.4, Gal and Ghahramani [2016] report 73.4, Merity et al. [2016] report 70.9,

and Zilly et al. [2017] report 66.0 for improved variants of RNN models (see e.g.

[Melis et al., 2017] for more details). Neural network language models have

seen even bigger improvements when larger training corpora are used (e.g.

[Chelba et al., 2013]), and recent attention-based transformer architectures

[Vaswani et al., 2017] not only perform exceedingly well as language models

[Radford et al., 2018, 2019], but can also be applied directly to higher-level NLP

tasks (e.g. machine translation, see [Popescu-Belis, 2019] for a recent review).

The “count-based”, “non-neural” language modelling techniques presented

in this thesis are mostly complementary to these approaches. The hybrid

neural/HPYP models presented in Chapter 8 describe one way of combining

a neural language model (albeit a simple one) with Bayesian nonparametric

language models. While the Bayesian nonparametric models presented here

certainly have applications on their own (e.g. resource-constrained settings

or when little training data is available), we see combinations of the ideas

underlying these models with the ideas underlying the neural models as a

fruitful area for future investigation.

1.3 Overview and Contributions

The work presented in this thesis grew out of an initial collaboration with

Frank Wood, Cédric Archambeau, Lancelot James, and Yee Whye Teh that re-

sulted in the development of the Sequence Memoizer model [Wood et al., 2009,

2011], an extension of the Hierarchical Pitman-Yor Process language model

[Teh, 2006a,b] to unbounded context lengths by making use of an efficient

context tree data structure and the previously not well known coagulation-

fragmentation properties of the Pitman-Yor process. The very promising initial

results led me to pursue this model further, addressing some of the short-

comings of the initial work, including the space and time complexity of the

proposed model construction and inference algorithm. In particular, it lead to

the development of an effective online inference and model construction algo-
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rithm presented in [Gasthaus et al., 2010], that makes it possible to construct

the model in a streaming fashion for large data sets and allows it to be used in

settings where predictions must be made on-line. We explored the applicability

of this online technique to lossless data compression in [Gasthaus et al., 2010],

where we demonstrated that the model yields state-of-the-art predictive per-

formance in this setting. Further, in [Gasthaus and Teh, 2010] we addressed the

space complexity issue by proposing a compact representation and associated

inference algorithms and evaluating the time/space trade-offs of different rep-

resentations. In [Gasthaus and Teh, 2010] we also extended the model to allow

a larger hyperparameter range, which lead to improved performance; we also

provided an elementary proof of the coagulation-fragmentation properties. For

these already published contributions this thesis contains additional details

and experiments.

The work presented in the final chapters goes beyond the Sequence Memo-

izer model: Chapter 7 presents a model addressing the phenomenon of “bursti-

ness” (locally increased likelihood of words and phrases re-occurring) by inte-

grating a cache-like model using the idea of “forgetting counts” [Bartlett et al.,

2010]. The model presented in Chapter 8 is an initial attempt to bridge the

gap between recently very successful neural language models and count-based

models (like the Sequence Memoizer) by using the graphical Pitman-Yor pro-

cess framework [Wood and Teh, 2009] to combine both types of models into a

hybrid model that goes beyond simple averaging, thus exploiting the strengths

of both approaches.

The remaining chapters of this thesis are organized in an attempt to present

the development of the models in a logical fashion, grouping related concepts

and developments together and proceeding from simpler to more complex

models. This necessitates that novel contributions and review material are

sometimes presented together, and that material is not presented chronologi-

cally in the order in which it was originally published.

1.4 Outline

The rest of this thesis is organized as follows:

Chapter 2 reviews necessary background material: power law sequences,

classical n-gram language modelling techniques, the Pitman-Yor process, and

its hierarchical extension the hierarchical Pitman-Yor process (HPYP), which is

the foundation for the models presented in subsequent chapters. This Chapter

is a review of prior art and no new results are presented.
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Chapter 3 covers the Sequence Memoizer model originally published in

[Wood et al., 2009, 2011].

Chapter 4 describes several representations of the Chinese restaurant fran-

chise [Teh et al., 2004, 2005, 2006] for the HPYP language model and the Se-

quence Memoizer. It describes the “compact representation” we proposed in

[Gasthaus and Teh, 2010], along with the associated Gibbs-sampling-based

inference procedure.

Chapter 5 discusses online inference in the HPYP and Sequence Memoizer

models. It describes and expands upon the model construction and inference

procedure originally published in [Gasthaus et al., 2010]. A novel, determin-

istic inference procedure based on “fractional customers”, an idea originally

proposed by Blunsom and Cohn [2011] in a different setting, is also described.

Chapter 6 describes (DE-)PLUMP, an application of the Sequence Mem-

oizer model to data compression, as originally proposed in [Gasthaus et al.,

2010].

Chapter 7 introduces a “cache” language model based on the Sequence

Memoizer for modelling non-stationarity and burstiness, making use of a time-

varying variant of the PYP based on the idea of forgetting, first introduced in

the HPYP setting by Bartlett et al. [2010].

Chapter 8 describes several variants of a novel hybrid language model

that combines a neural language model (the log-bilinear model introduced by

Mnih and Hinton [2007]), with a PYP-based hierarchical model similar to the

ones discussed in the previous chapters. Training of the model is performed

in an iterative fashion, interleaving sampling-based inference in the HPYP

component with optimization of the LBL cost function using noise-contrastive

estimation [Mnih and Teh, 2012].

Chapter 9 concludes this thesis with a summary and an outlook on future

work.



CHAPTER 2
Background

This chapter reviews background material and introduces the concepts neces-

sary for understanding the models developed in the later chapters. It consists

of four main parts: An overview of the power-law properties present in natural

language that we are attempting to model; a review of the language modelling

problem and some of the classical techniques that have been developed for

solving it; a review of the Pitman-Yor process and its properties; and a review

of the hierarchical Pitman-Yor process and its application to the language

modelling problem.

2.1 Power-law Sequences

The term power-law sequences in the title of this thesis refers to power-law

properties present in the marginal and conditional distributions of the mod-

elled sequences. In particular, the ranked probabilities in the marginal and

conditional distributions follow a power-law, as does the number of distinct

types that appear in each context as the observed sequence gets longer. Power

laws are present in many natural and artificial phenomena such natural lan-

guage (see below), city sizes, earth quake magnitudes, and book sales (see

e.g. [Newman, 2005] for more examples) and estimating and modelling these

properties has received significant attention. Explicitly incorporating these

power-law properties into probabilistic models is an active area of research

and has yielded improvements in the areas of graph modelling [Barabási and

Albert, 1999], matrix completion [Meka et al., 2009], and language modelling

[Goldwater et al., 2011; Teh, 2006b].

The term power law generally refers to a functional relationship of the form

f (x) = ax−g (2.1)

21
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which has the main characteristic that the output scales proportionally

when the input is scaled, i.e. f (cx) = a(cx)−g = c−g ax−g = c−g f (x). As

log f (x) = log a − g log x is a linear function of log x with slope −g , power law

relationships are often plotted on log-log plots, where they appear as straight

lines.

The term power-law probability distribution is used to refer to a distribution

whose probability mass (or density) function (asymptotically) is a power law,

i.e.

p(k) ∝ k−g (2.2)

for g ≥ 1. In the discrete case, the Zeta distribution, also referred to as Zipf’s

distribution, has exactly this form

p(k) = k−g

ζ(g )
k = 1,2,3, . . . (2.3)

where the normalizing constant ζ(g ) =∑∞
k=1 k−g is the Riemann zeta function.

2.1.1 Power Laws in Natural Language

One widely known power-law property of natural language is known as Zipf ’s

law: the ranked word frequencies in a sufficiently large corpus of text follow

a power law, i.e. cw(k) ∝ k−g , where cw(k) is the frequency of the k-th most

common word and g = 1 in the original form of Zipf’s law, but empirically

typically found to be 1 ≤ g ≤ 2 (see [Piantadosi, 2014] and references therein).

A related power-law property is that the probability of observing a word with a

particular frequency cw is proportional to c−g ′
w . As noted e.g. in [Adamic and

Huberman, 2002], these two power law properties are two sides of the same

coin: any power-law distribution produces power law ranked frequencies and

vice versa, where if the exponent on the power law is g ′, the exponent of the

ranked frequency distribution is g = 1/(g ′−1).

Plotting the frequency of types that occur exactly k times emphasizes rare

words, whereas plotting the relative frequency of a word according to its rank

emphasizes frequent words. Figure 2.1 illustrates these different ways of show-

ing the power law present in the word frequencies of natural language (English

in this case).

This power-law behavior can not only be observed in the marginal distri-

bution of words, but is also present in the distribution of n-tuples (also called

n-grams) of consecutive words, as well as the conditional distributions of words

following a given context (a sequence of other words). Figure 2.2 shows the

ranked (relative) frequency distributions of the marginal and several condi-

tional distributions, and a similar power-law pattern can be observed in all
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Figure 2.1: Power-law properties of the n-gram frequencies in a subset of the New
York Times corpus (10 million tokens). The top panel shows the absolute n-gram
frequencies (for n = 1,2,3) against rank (when sorted by frequency), while the bottom
panel shows the number of distinct n-grams that occur with a given frequency. These
two views of the n-gram frequencies emphasize different aspects: the plot according
to rank emphasizes frequent n-grams, while the right plot highlights the existence of a
large number of infrequent n-grams.
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Figure 2.2: The empirical conditional distributions following the 10i -th most frequent
context word for i = 0,1,2,3,4 in the AP news corpus. The ordering of the target words
on the x-axis is determined individually for each context word. For comparison, the
dashed line shows the marginal distribution over words in the entire corpus.

of them. Further, the number of unique types that occur as one examines a

sequence of more and more tokens also follows a power-law. This is shown

in Figure 2.3, which plots the number of unique types against the number of

tokens seen for three different corpora of English text. While we have demon-

strated these power-law patterns using corpora of English text here, the same

patterns can be observed for corpora of other languages, although in general

the exponents of the power-laws will be different.

2.2 Language Modelling

The term language model is used to describe a method that assigns probabilities

P(x1:N ) to sequences of tokens (usually words), x1:N .1 Equivalently, such a

model can compute the predictive probability distribution P(xi | x1:i−1) for the

next word xi given a context of previous words x1:i−1, as by the product law of

probability we have

P(x1:N ) =
N∏

i=1
P(xi |x1:i−1). (2.4)

The individual tokens xi come from a fixed vocabulary of symbols Σ (also

referred to as the alphabet) which is constructed ahead of time and usually

1In the most common language modelling setting the tokens are words, an we will use
“token” and “word” interchangeably in the remainder.
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Figure 2.3: Number of unique words observed as a function of the number of word
tokens observed for three different corpora. The levelling off of the growth for the AP
and WSJ corpora is due to their pre-processing, which truncated the vocabulary to the
most frequent ≈16K and 10K words respectively.

contains special tokens for symbols and numbers, as well as a special “out of

vocabulary” token assigned to words that do not occur in Σ. A typical way to

obtain Σ is to take all the tokens that occur more than k times in the training

set, with k ≥ 1.

Such probabilistic language models are the foundation (or a crucial compo-

nent) of many very successful probabilistic approaches to machine translation

[Brown et al., 1990], optical character recognition, handwriting recognition,

speech recognition, spelling correction, predictive text entry, and information

retrieval (see e.g. [Manning and Schütze, 1999] for an introduction).

Driven by initial success, language modelling has been an active area of

research for many decades, with early research on the subject dating back to

code breaking efforts during the second world war [Good, 1953]. Since then

tremendous progress has been made, though so-called n-gram models (see

Section 2.2.2), which were developed in the 1950s, are still at the heart of many

modern techniques. On the one hand, the exponential increase in compute

power and storage capacities combined with the availability of massive corpora

of written language obtained from the internet [Brants and Franz, 2006; Chelba

et al., 2013] have made building ever bigger models possible [Pauls and Klein,

2011; Heafield et al., 2013], yielding significant improvements in accuracy

even with comparatively simple models. On the other hand, methodological



26 CHAPTER 2. BACKGROUND

advances have made it possible to make better use of the available training data,

so that accurate models can be built when less data or memory is available and

have yielded novel ways for combining and adapting models to the specific

problem setting. Many techniques from other areas of machine learning and

statistics have been successfully applied to the language modelling problem,

such as neural networks [Bengio et al., 2003; Mikolov, 2012; Mnih and Teh,

2012], random forests [Xu and Jelinek, 2004], and maximum entropy models

[Rosenfeld, 1994]. See [Chen and Goodman, 1999] for an extensive review of n-

gram language modelling techniques, [Goodman, 2001a] for a review of various

extensions to these models such as clustering, mixture models, ensembles,

and caching, and [Mikolov, 2012] for a recent extensive empirical evaluation of

ensembles of various methods, including recent techniques using recurrent

neural networks.

Interest in language modelling research mainly stems from the fact that

improvements to language modelling techniques translate rather directly to

improvements in natural language processing applications that use language

models as a building block. Statistical machine translation is one such area

where improvements in the language model’s accuracy (usually measured in

terms of perplexity, see below) typically result in improved translation accuracy

(e.g. measured in terms of BLEU score).

Language modelling techniques have also been developed and applied in

another area of computer science: lossless data compression. With the de-

velopment of arithmetic coding [Pasco, 1976; Rissanen, 1976; Rissanen and

Langdon, 1979; Witten et al., 1987] it has become possible (and practical) to

convert any method for making one-symbol-ahead predictions P(xi |x1:i−1) into

a compression technique with only a negligible penalty incurred due to the cod-

ing. The performance of the resulting compressor thus relies on the predictive

performance of the underlying probabilistic model. While the computational

requirements for such models are somewhat different (fast online estimation

is essential), the techniques that have been developed independently in this

setting are similar to the techniques developed for natural language text, and

sometimes even identical (as in the case of Kneser-Ney smoothing and the

PPM-D compression algorithm, see below). This connection between lossless

compression and language modelling has been explored by Cowans [2006]

and Steinruecken [2014] (among others), an we will discuss it in more detail in

Chapter 6.
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2.2.1 Evaluating Language Models

The performance of a language model can be measured either in terms of

its predictive accuracy independent of other components in an NLP system

(intrinsic evaluation), or in terms of some performance measure for the overall

system, such as word error rate of a speech recognizer (extrinsic evaluation).

While the performance measure used in an extrinsic evaluation is problem-

dependent, the de-facto standard for the intrinsic evaluation of language mod-

els is in terms of perplexity (or equivalently in terms of cross-entropy or log-loss,

which is related via a monotonic transformation).

Logarithmic Loss & Perplexity

A standard technique for evaluating the predictive performance of a probabilis-

tic model is to compute the probability the model assigns to an unseen test set.

Taking the negative logarithm of this number and dividing by the length of the

test sequence one arrives at the per-symbol logarithmic loss of a model P on a

(test) sequence x1:N , which is computed as

`= 1

N

N∑
i=1

− log2 P(xi |x1:i−1). (2.5)

This quantity has an information-theoretic interpretation: it measures the

average number of bits needed to encode each symbol in the sequence us-

ing P (modulo coding overhead). It is thus equivalent to the bits per symbol

(bps) measure used in the data compression community if the sequence were

encoded using an optimal encoder based on P .2 A measure that is more com-

monly reported in the language modelling literature is perplexity, which is

simply exponentiated average log-loss

PPL = 2` = N

√√√√ N∏
i=1

1

P(xi |x1:i−1)
, (2.6)

where the final expression gives another interpretation of perplexity as the

geometric mean of the inverse probabilities. The main advantage of using

perplexity over average log-loss is that it brings typical performance numbers

into the more human-friendly range of tens and hundreds, though at the same

time it distorts relative improvements and makes small improvements appear

2A symbol in the data compression context is usually a byte. The bps measure also typically
includes all coding overhead and can be computed even for non-probabilistic coding schemes
simply by diving the compressed size by the input size and multiplying by 8. Also note that in
data compression there is usually no separate training set; the model is learned online as the
sequence is processed sequentially.
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bigger [Mikolov, 2012]. It also has the intuitive reference point that a uniform

distribution over K symbols has a perplexity of K (instead of a log-loss of

log2 K ). Historically, perplexities have been quoted more frequently in the

language modelling literature while log-loss is more common in other areas.

Both measures will be used throughout this thesis, and one can easily convert

between them by exponentiation or taking a base-2 logarithm.

In order to estimate the models predictive accuracy on unseen data (and

not just its ability to memorize the training data), all performance measures

have to be computed on a test set that hasn’t been used in the training or tuning

of the model. It is thus customary to split the available corpus data into a

training, a validation, and a test set, and for some corpora traditionally used

for comparing language models fixed standard splits have been established

to ease comparison of results (see Appendix B for an overview of the datasets

used here).

Evaluation of language models is typically performed offline, i.e. the model

is not updated while making predictions on the test sequence and we mostly

follow this tradition to keep our results comparable. For models which lo-

cally adapt to the context however, it makes sense to also perform an online

evaluation, where the model can adapt as it predicts the test sequence sym-

bol by symbol. We also follow previous work and evaluate the models on the

entire test sequence (an entire corpus) and don’t break it into smaller units

such as paragraphs or sentences, as would perhaps be more realistic for some

applications.

Caveats

While performing only an intrinsic evaluation of a language model in terms of

perplexity does provide a measure of predictive accuracy that is comparable

across studies as long as the exact same data sets are used, and is the de

facto standard way to compare different models in the literature, there are

some caveats that should be pointed out: Firstly, great care must be taken to

not accidentally “cheat” in such an evaluation i.e. by using probabilities that

are not properly normalized or by using information to make a prediction at

step n that is only available in hindsight. A more practical concern is that in

order for results to be comparable across studies, the data sets used must be

exactly identical; two data sets based on the same corpus but pre-processed

in different ways (e.g. by adding start/end-of-sentence tokens, converting

some sequences to special tokens, or truncating the vocabulary) can yield

vastly different perplexity results. The performance characteristics of different
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algorithms can also change drastically with different training set sizes: a simple

interpolated 5-gram model might perform very well when trained on a dataset

of a trillion words, but perform poorly when only trained on a million words,

while another model might not see a lot of improvement from adding more

training data. Relative prediction performance of different algorithms can also

vary with vocabulary size, which is problematic if vocabularies are artificially

truncated for reasons of computational efficiency. Finally, an evaluation in

terms of prediction performance does not assess other attributes that could be

important in evaluating whether a model or algorithm is suitable for a particular

task, such as scalability of training to large corpora, training speed (which can

be on the order of weeks for some neural network models), prediction speed

(especially important for settings where a large number of predictions are made

in an “inner loop” of larger system, such as translation or speech recognition),

memory requirements (e.g. for embedded applications like predictive text entry

on mobile phones), and so on.

Despite these shortcomings, only performance figures in terms of perplexity

on standard data sets (see Appendix B) will be reported in this thesis, and some

of the other mentioned attributes will also be discussed. However, extrinsic

evaluations in terms of application performance measures are beyond the

scope of this thesis.

Why is Language Modelling Hard?

The fact that language modelling is still an active field of study even after

several decades of research points to the fact that it is fundamentally a hard

problem. Language has rich syntactic and semantic structure, but modelling

and inferring this structure effectively and efficiently has proven to be a very

difficult task. While there have been some successes in exploiting syntactic

structure for language modelling [Chelba and Jelinek, 1998, 2000; Roark, 2001;

Emami and Jelinek, 2005; Dyer et al., 2016], these models tend to be complex

and not yet scalable to large corpora, limiting their applicability to small-scale

settings. Similarly, class-based language models which try to explicitly capture

semantic relationships between individual words have not yielded the hoped-

for improvements over simpler models.

Language models based on sequence models that do not attempt to ex-

plicitly model any further hierarchical syntactic structure or structure in the

vocabulary, such as n-gram models or the models described in this thesis,

face the difficulty of learning from data sets that are small compared to size of

the space of possible sequences, which grows exponentially in the sequence
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length. For example, even when restricting to a 10,000 word vocabulary, there

are (104)5 = 1020 possible sequences of length 5, while the largest available

language corpora (e.g. the Web 1T 5-gram corpus [Brants and Franz, 2006])

contain “only” 1 trillion (1012) tokens. While of course many of the possible se-

quences will never appear because they are not grammatical, the fundamental

difficulty of language modelling lies in accurately estimating the probability

of unseen sequences, while at the same time effectively exploiting the relative

frequency information for sequences that were observed before. Because of

this, many classical language modelling techniques center around estimating

how much probability mass to “reserve” for tokens that have not been observed

in a given context, and how to distribute this reserved mass among the remain-

ing tokens. Witten and Bell [1991] refer to this fundamental difficulty as the

“zero-frequency problem”.

2.2.2 n-gram Models

An n-gram model, also known as a Markov model of order n −1, is a collection

of conditional distributions over words {Pu(x)}u∈Σn−1 , one for each possible

context u ∈Σn−1 of n −1 words. The probability of a sequence x1:N under such

a model is given by

P(x1:N ) =
N∏

i=1
Pσn−1(x1:i−1)(xi ) (2.7)

where σk (x1:N ) = xN−k+1:N denotes the length-k suffix of x1:N .3 The core idea

underlying these models is that any context that appeared more than n −1

words before the word that is being predicted does not influence the prediction,

so that P(xi |x1:i−1) ≈ P(xi |σn−1(x1:i−1)). Such a model can be estimated from

n-tuples (or n-grams) or words, giving them their name.

A straightforward way to estimate these conditional distributions is to set

them equal to the empirical conditional distributions on the training set, which

can equivalently be phrased as the maximum likelihood estimate of the param-

eters of a categorical distribution, and amounts to simple ratios of counts (see

e.g. [Manning and Schütze, 1999]):

PMLE
u (x) = #(ux)

#(u)
(2.8)

where #(u) counts the number of times u appears in the training set.

Given an infinite training corpus and infinite computational resources one

could accurately estimate such a model for some large n and obtain an “op-

3The boundary case at the beginning of the sequence can be dealt with by either left-
padding the sequence with a special token, or by separately estimating sets of distributions for
all context lengths up to n −1.
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timal” model.4 However, in practice the simple estimator in (2.8) has several

problems related to data sparsity: As one increases n in order to capture depen-

dencies between words further apart, the number of possible contexts grows

exponentially and one quickly (already for n = 3) encounters the situation that

#(ux) or #(u) is zero for some u, i.e. the context or context-symbol pair does

not occur in the training set. In the AP news corpus data set (see Section B.3)

for example, more than half of the unique trigrams in the test set do not occur

in the training set. Having #(ux) = 0 yields PMLE
u (x) = 0 and thus P(x1:N ) = 0 for

any sequence that contains an unseen n-gram, which is at best undesirable

for most applications. Even more problematic is the case #(u) = 0, for which

the estimator is undefined. Addressing this “zero-frequency problem” [Witten

and Bell, 1991] of having to assign a non-zero probability to a context-symbol

pair that has not occurred in the training data is crucial for making language

modelling useful. Even if #(u) is non-zero and all symbols x were observed at

least once in the context, the resulting estimates might be very inaccurate if

the symbols were only observed infrequently.

Most of the research on n-gram models has thus been focussed on over-

coming these data sparsity problems by developing estimators that address

the zero-frequency problem and are more robust when little training data is

available in a given context. We will briefly review some of the classical tech-

niques in the next sections, but refer the reader to [Chen and Goodman, 1999]

for a detailed discussion and evaluation of many of these techniques. The

hierarchical non-parametric Bayesian models presented later can be viewed as

elaborate and well-motivated methods for combining these classic techniques.

Smoothing

A conceptually simple way to alleviate the “zero problem” for each conditional

distribution independently is by allocating some probability mass to the sym-

bols with zero count, thus “smoothing” the distribution. There are many ways

to do this, and a large amount of research has been devoted to devising and

evaluating different techniques [Chen and Goodman, 1999].

One of the simplest smoothing methods is known as additive smooth-

ing. The idea is to simply add some constant α to each count #(ux) (and

re-normalizing appropriately),

PADD
u (x) = #(ux)+α

#(u)+α|Σ| (2.9)

4In fact, the fact that corpora and computers have been getting bigger exponentially fast
has surely contributed to n-gram models remaining popular.
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where |Σ| is the size of the alphabet. This method can also be given a Bayesian

interpretation, as (2.9) is equal to the expected value of the probability of x un-

der the posterior distribution of a categorical-Dirichlet model with symmetric

Dirichlet prior with parameter α [MacKay and Bauman Peto, 1995]:

xi
iid.∼ Disc(p) (2.10)

p ∼ Dir(α). (2.11)

Intuitively, the larger α the more data is needed to overcome the prior (which

is uniform over all symbols). Note that the effect of this smoothing method

diminishes as more data is observed. This is desirable, but is not the case

for all smoothing methods: for example, interpolating (2.8) with a uniform

distribution over Σ also alleviates the zero problem, but introduces a bias that

does not diminish with more data.

Mixtures & Interpolation

Another powerful technique for improving the performance of language models

(and probabilistic models in general) is to combine multiple models into a

mixture model. Given a set of base models Pi (·), i ∈I (for some index set I )

and non-negative weights λi ,
∑

i∈I λi = 1, we can define a new model Pmix(·)
as a convex combination of the base models:

Pmix(·) = ∑
i∈I

λi Pi (·). (2.12)

This simple idea is fundamental to many advanced language modelling tech-

niques, though they are sometimes not explicitly cast in this form.

A natural starting point for applying this technique to n-gram language

models is to create a mixture (or in other words interpolate) between the condi-

tional distributions of an n-gram model and an (n −1)-gram model, i.e.

Pinterp
u (x) =λuPu(x)+ (1−λu)Pσ(u)(x) ∀u ∈Σn−1 (2.13)

where we denote by σ(su) = u the longest proper suffix of a sequence (i.e.

applying σ(·) removes the first symbol). The mixture weight λu ∈ [0,1] can

depend on the context u, but in practice these weights are usually tied together

in some way to reduce the total number of parameters that have to be estimated.

The component models Pu and Pσ(u) can be estimated by any technique, e.g.

by employing the MLE (2.8) or additive smoothing (2.9).

This process can be repeated recursively, so that the lower-order model

in such a mixture can itself be constructed as an interpolation with the next
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lower order model. The union of all conditional distributions involved in

such a construction {Pu(x)}u∈Σ<n can be arranged in a tree, where each node

corresponds to a context u, and the parent of each node is given by its longest

proper suffix σ(u), terminating with the empty context ε at the root of the

tree (see Figure 3.1 for an illustration). Such context trees also underlie the

hierarchical Bayesian models discussed later, and we will come back to them

in Section 3.2.

If the individual conditional distributions in such a hierarchy are estimated

independently using the maximum likelihood estimator (2.8), the resulting

technique is known as Jelinek-Mercer smoothing [Jelinek and Mercer, 1980].

Many techniques for improving n-gram models are variants of this basic tech-

nique and differ in how the base models are estimated (e.g. by applying addi-

tional smoothing), and how the mixture weightsλu are chosen. Mixture models

can not only be used for blending higher- and lower-order models, but also to

combine different classes of models, e.g. neural language models with n-gram

models, in order to hedge against each individual model’s weaknesses (while

exploiting each model’s strengths). We will discuss this idea in more detail

Chapter 8.

Back-Off

An alternative method for combining a higher order n-gram model with a

lower order one is known as back-off.5 Back-off differs from interpolation

(2.13) in that instead of affecting the distribution for all symbols, in a back-off

combination the lower-order model is only used if #(us) = 0:

PBO
u =

Pu(x) if #(us) > 0

Pu(?)Pσ(u)(x) if #(us) = 0.
(2.14)

In order for such a model to be properly normalized, some probability mass of

Pu(x) has to be reserved for the #(us) = 0 case, so that Pu(s) can’t be estimated

by (2.8) directly. One way of formalizing this requirement is to augment the

alphabet with a special escape symbol ? as we have done above. This symbol

absorbs the extra mass, so that
∑

s∈ΣPu(s)+Pu(?) = 1. Note that further Pσ(u)(x)

needs to satisfy
∑

s∈Σ I[#(us) = 0]·Pσ(u)(x) = 1, i.e. it needs to be normalized over

the set of symbols for which the higher-order model does not make predictions.

The various back-off techniques that have been proposed differ in how much

5The term back-off is also sometimes used in a less strict sense referring to some way of
combining a complex model with a simpler one, even if the mechanism used for combining
the models is different. In the data compression literature the same technique is sometimes
referred to as using an escape symbol.
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mass they assign to?, and how the MLE (2.8) is modified to make
∑

s∈ΣPu(s) < 1.

One approach (employed in the PPM-A [Cleary and Witten, 1984] compres-

sion algorithm) is to rescale the MLE and set Pu(x) = (1−Pu(?))PMLE
u (x) where

Pu(?) is set to Pu(?) = 1/
(
1+∑

s #(us)
)

(see [Cowans, 2006, Chapter 2]). Back-

off can be preferable over interpolation for computational reasons, especially

in settings where models must be constructed and scored on-line (such as

data compression): In (2.14) the lower-order model only has to be evaluated if

#(us) = 0, whereas in (2.13) it has to computed for every symbol. If the recur-

sively constructed back-off or interpolation hierarchies are deep, this can lead

to substantial computational savings. However, their predictive performance is

often worse than their interpolated counterparts (as discovered for Kneser-Ney

by Chen and Goodman [1999] and for PPM-D by Steinruecken [2014]), and

they are more difficult to analyze and implement as the distributions involved

need to be re-normalized appropriately.

2.2.3 Absolute Discounting & Kneser-Ney Smoothing

One particularly effective way of estimating interpolated n-gram models is

known as Kneser-Ney (KN) smoothing [Kneser and Ney, 1995].6 Kneser-Ney

smoothing is a variant of a technique known as absolutely discounting [Ney

et al., 1994], and is of particular relevance to the models discussed later in this

thesis as it can be given a Bayesian interpretation in terms of a hierarchical

Pitman-Yor process model [Teh, 2006a,b]. The idea of discounting is that in

order to “reserve” some probability mass for previously unseen symbols (i.e.

the mass assigned to ? in the escape symbol formulation), one has to take

away (discount) some probability mass from the observed symbols (relative

to the maximum likelihood estimate (2.8)). The mixture distribution (2.13)

or the PPM-A technique described above can be seen as a form of relative

discounting, where the probability of each symbol under the higher-order

model is decreased by a constant factor, thus making the amount of probability

mass taken away from each symbol proportional to its probability. The idea

of absolute discounting on the other hand is to deduct a constant amount of

probability mass that is independent of the symbol’s probability. This reserved

probability mass is then re-distributed according to a lower-order model. The

6Kneser and Ney [1995] originally introduced it as a back-off procedure, but Chen and
Goodman [1999] describe an interpolation variant of this technique that is easier to derive and
has better empirical performance. When we refer to Kneser-Ney smoothing in this thesis we
are referring to this variant (which Teh [2006a] refers to as “Interpolated Kneser-Ney”).
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resulting estimator has the form

Pdisc
u (x) = max(#(ux)−d ,0)

#(u)
+ d t̃u·

#(u)
P base
σ(u) (x) (2.15)

where the d ∈ [0,1] is the discount parameter. We have further defined t̃us =
I [#(us) > 0] and t̃u· = ∑

s∈Σ t̃us = ∑
s∈Σ I [#(us) > 0], i.e. t̃u· counts the number

of symbols appearing after context u in the training set. This factor ensures

that the distribution is properly normalized, as the discount d is subtracted

from the left term for each of the t̃u· symbols with #(us) > 0.7 The distribution

P base is the base distribution that is used for re-distributing the discounted

probability mass.

Kneser and Ney [1995] proposed that P base in this setting should be esti-

mated such that the marginal probabilities under the resulting model match

the marginal statistics of the training corpus, and they showed that this can

be achieved by estimating the lower-order model from modified counts. Arriv-

ing at the same result as Kneser and Ney [1995], Chen and Goodman [1999]

showed that in order to achieve this consistency with the empirical marginal

distribution for a bigram model estimated according to (2.15), P base
σ(u) (x) should

be estimated as

P KN
u (x) = t̃·ux

t̃·u·
(2.16)

where t̃·ux =∑
s t̃sux counts the number of contexts su with suffix u in which x

occurs, and t̃·u· = ∑
x t̃·ux . The estimate (2.16) can be interpreted as the MLE

(2.8) applied to modified counts, where #(us) is replaced with t̃·ux . For higher-

order n-gram models Kneser and Ney [1995] proposed applying (2.15) recur-

sively to these modified counts. In other words, the “observations” from which

the lower order distributions Pu(x) are estimated are not the number of times

a given symbol x was observed in the context u, but instead the number of

unique symbols that precede the string ux in the corpus. This form of modi-

fied counts is also referred to “update exclusion” or “shallow updates” in the

compression literature and in addition to improved predictive performance

has a computational advantage in the online setting, as after observing the

context-symbol pair us only a subset of the associated counts has to be updated

(see Chapter 6 and [Steinruecken, 2014, Chapter 6] for more details).

Ney et al. [1994] originally proposed setting the discount parameter to

d = n1/(n1 +2n2), where n1 and n2 are the number of n-grams that occur ex-

actly ones or twice respectively. Chen and Goodman [1999] showed that by

7The notation t̃u· used here alludes to the Bayesian interpretation described later, where
tu· =∑

s tus ≥ t̃u· is a random variable denoting the number of tables in a Chinese restaurant
process.
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making the discount parameter dependent on the count #(us) it is subtracted

from, accuracy could be improved. They proposed using three different dis-

counts parameters for counts one, two, and three or above (different for each

n), and showed that this algorithm (which they called “modified Kneser-Ney

smoothing”) with discount parameters optimized on a held-out set consistently

outperformed all other methods considered in their comparison. The predic-

tion model used in the PPM-D compression algorithm is virtually identical to

the back-off version of Kneser-Ney smoothing, except that PPM-D uses a fixed

discount d = 1/2, that is the same for all levels in the back-off hierarchy, i.e.

independent of n. Steinruecken [2014] discovered that using level-dependent

discount parameters is a crucial ingredient in making such models not degrade

in performance as n gets larger, and points to this as the main reason why our

variant of unbounded context length Kneser-Ney smoothing (UKN, see Section

5.2) outperforms other attempts to incorporate unbounded context into PPM.

Parameter Estimation

All of the techniques described above have free parameters (e.g. the additive

smoothing constant α in (2.9), the mixture weights λu in (2.13), or the discount

parameters d in (2.15)), that need to be set. For some of the classical language

modelling techniques heuristics for setting these parameters have been de-

vised (e.g. α= 1 or d = n1/(n1 +2n2) for the discount parameter in [Ney et al.,

1994]). However, when computationally feasible, the predictive performance

can typically be improved by optimizing these parameters based on data, e.g.

by minimizing the negative log-likelihood on a hold out set with respect to

these parameters (which we will collectively refer to as θ):

θ̂ = argmin
θ

−∑
i

logPθ(xi |x1:i−1) (2.17)

Note that for the techniques presented above, this optimization must be per-

formed on a validation data set that is disjoint from the training data set used

for obtaining the counts. If one were to optimize α in (2.9), λu in (2.13), or d in

(2.15) on the training set, one would obtainα= 0, λu = 1, and d = 1 respectively

as the optimal value, i.e. one would revert to the maximum likelihood estimate

(2.8).

An effective way to perform the optimization in (2.17) is to compute the

gradient of the objective function with respect to θ,

∂

∂θ
−∑

i
logPθ(xi |x1:i−1) =−∑

i

1

Pθ(xi |x1:i−1)

∂

∂θ
Pθ(xi |x1:i−1) (2.18)
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and to use a gradient-based optimization procedure such as (stochastic) gra-

dient descent, Newton’s method, or a quasi-Newton method such as L-BFGS

(see e.g. [Nocedal and Wright, 2006]). For constraint parameter values (e.g.

α≥ 0 and 0 ≤ d ≤ 1) it is convenient to perform the optimization with respect

to an unconstrained re-parametrization, e.g. by letting α= log(1+exp(α̃)) or

d = 1/(1+exp(−d̃)) and then performing an unconstrained optimization wrt.

α̃ or d̃ respectively.

One special case are the mixing weights λi of a mixture model which can al-

ternatively be optimized effectively using the well-known EM algorithm [Demp-

ster et al., 1977]. In the special case when the parameters of the base models

are fixed this reduces to the following simple updates:

rni ←λi Pi (xn |x1:n−1) i ∈I ,n = 1, . . . , N (2.19a)

rni ← rni∑
i ′∈I rni ′

i ∈I ,n = 1, . . . , N (2.19b)

λi ← 1

N

N∑
n′=1

rn′i i ∈I (2.19c)

where the first two steps correspond to the E-step (computing and normalizing

the posterior distribution of the latent variables to obtain the so-called responsi-

bilities rni ) and the third step constitutes the M-step where the only parameters

to maximize over are the mixture weights λi . These steps are repeated until

convergence.
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2.3 The Pitman-Yor Process

This section reviews the Pitman-Yor process (PYP) and its closely related

cousins: the two-parameter Poisson-Dirichlet (PD) distribution and the two-

parameter Chinese Restaurant Process (CRP). Results that are necessary for

the developments in subsequent chapters are compiled from various sources

(most notably the work of Pitman [Pitman, 1992, 1995, 1996; Pitman and Yor,

1997; Pitman, 2002]) and stated using the notation used in this thesis, but no

new results are presented. Overview articles highlighting different aspects are

available in [Carlton, 1999; Ishwaran and James, 2001; Buntine and Hutter,

2012].

We will discuss the basic properties in Sections 2.3.1–2.3.3, the power-law

properties of the PYP in Section 2.3.4, and discuss Monte Carlo inference in

basic PYP models, including the CRP-based add/remove Gibbs sampler that

forms the basis of many MCMC schemes for PYP-based models in Section 2.3.6.

2.3.1 Definition

The Pitman-Yor process, denoted PY(α,d , H), can be seen as a generalization

of the more widely known Dirichlet process (DP) DP(α, H) [Ferguson, 1973;

Teh, 2010]: Both are measures over probability measures centered around a

base measure H , and the DP arises as a special case from PY(α,d , H) when

d = 0. What is now commonly referred to as the Pitman-Yor process (PYP) was

originally introduced in [Pitman and Yor, 1997] under the name two-parameter

Poisson-Dirichlet distribution as an extension of the Poisson-Dirichlet distribu-

tion of Kingman [1975].8

A draw G from a Pitman-Yor process G ∼ PY(α,d , H) is a random discrete

probability measure, most directly characterized by the following stick-breaking

construction [Pitman, 1996; Ishwaran and James, 2001]:

G(·) =
∞∑

i=1
piδθi (·) (2.20)

8The name Pitman-Yor process was coined by Ishwaran and James [2001] to refer to the
distribution induced by a size-biased permutation of the weights of the two-parameter Poisson-
Dirichlet distribution introduced by Pitman and Yor [1997], i.e. the distribution given by
the stick-breaking construction, sometimes also referred to as the (two-parameter) GEM
(Griffiths, Engen, McCloskey) distribution. Here we will adopt common convention and call
the distribution over random measures (2.20) the Pitman-Yor Process, the distribution over
the weights p1, p2, . . . arising from the stick-breaking construction the GEM distribution, and
the associated distribution over random partitions the (two-parameter) Chinese Restaurant
Process (CRP). We reserve the name “two-parameter Poisson-Dirichlet distribution” for the
distribution of the ranked probabilities p(1) ≥ p(2),≥ . . . as originally defined in [Pitman and
Yor, 1997].
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where

pi =Vi

i−1∏
k=1

(1−Vk ) (2.21a)

Vi ∼ Beta(1−d ,α+di ) (2.21b)

and θi ∼ H . The parameter α ∈ (−d ,∞) is called the concentration parame-

ter, d ∈ [0,1) the discount parameter, and H the base measure.9 If the base

measure H is a probability measure over some probability space (Σ,F ), then

G ∼ PY(α,d , H) is a random measure over the same space. Furthermore, for all

A ∈F ,E [G(A)] = H(A), i.e. the base measure H can be thought of as the mean

of G . This property makes it easy to construct hierarchical models using the

PYP by making the base measure H itself a draw from a PYP.10

Equation (2.21) is called the stick-breaking construction and is denoted

p ∼ GEM(α,d). The weights pi in the sick-breaking construction are not in

decreasing order. When they are sorted in decreasing order, the sorted weights

p(1) ≥ p(2) ≥ p(3) ≥ . . . ∼ PD(α,d) follow a two-parameter Poisson-Dirichlet

distribution [Pitman and Yor, 1997, Proposition 2]. Conversely, a size-biased

sample from these sorted weights, where the weights are chosen sequentially

proportional to their size and then removed from the possible options, is

distributed according to (2.21) [Pitman and Yor, 1997, Proposition 2].

The Effect of α and d

It is instructive to gain some intuition for which aspects of the PYP are con-

trolled by the parameters α and d . As already noted, for any A ∈ F we have

E [G(A)] = H(A), i.e. the mean of the random measure G is given by the base

measure H . The variance of G(A) for G ∼ PY(α,d , H) is given by [Buntine and

Hutter, 2012, Lemma 35]:

Var[G(A)] = 1−d

α+1
G(A)(1−G(A)) (2.22)

so that—considering α and d separately—the variance grows as 1/α and 1−d

respectively. This behavior is illustrated in Figure 2.4. Further, we will see in

Section 2.3.4 how d controls some of the power law properties of the PYP.

9Unfortunately, the conventions used for naming these parameters differ between the
machine learning literature and the probability theory and statistics literature, where the
concentration parameter is commonly called θ and the discount parameter α (e.g. in the work
by Pitman). The name “discount parameter” for d was coined by Teh [2006a,b] and stems from
its connection to Kneser-Ney smoothing (Section 2.2.3), which will be discussed in Section
2.4.2.

10In all the models discussed in this thesis Σ will be a finite set. However, in general they
can also be applied if Σ is countably infinite as long as a probability measure H can be defined
and evaluated for each s ∈Σ.
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PYP(0,0.1,1/3) PYP(0,0.5,1/3) PYP(0,0.9,1/3)

PYP(0.1,0,1/3) PYP(3,0,1/3) PYP(50,0,1/3)

Figure 2.4: Samples from PY(α,d ,Disc( 1
3 , 1

3 , 1
3 )) for varying values of α and d . Each

black dot corresponds to one sample, which is a probability distribution over three
outcomes, i.e. a vector (p1, p2, p3) with non-negative entries satisfying

∑3
i=1 pi = 1,

which we plot on the unit triangle using barycentric coordinates. Top row: α= 0 and
d = 0.1, d = 0.5, d = 0.9 (left to right). Bottom row: d = 0 and α= 0.1, α= 1, α= 50.

2.3.2 Two Parameter Chinese Restaurant Process

The (two-parameter) Chinese Restaurant Process (CRP) is a sequential con-

struction for a distribution over the set of partitions the integers [n] = {1, . . . ,n}

that describes the partition structure that arises when sampling X j ∼ G , j =
1, . . . ,n where G is PYP-distributed and hence has the form (2.20).11 The possi-

ble values of X j are the values θi drawn from the base distribution H in (2.20),

and multiple X j can correspond to the same θi .12 The distribution over the set

of partitions of the integers [n] induced by grouping the X j according to the

draws θi from the base distribution H is precisely the one characterized by the

two-parameter CRP [Pitman, 1995].

Before describing the CRP let us first introduce some notation: A partition

A ∈A K
S of a set S is a decomposition of S into K non-empty disjoint subsets

ak (called blocks) such that
⋃K

k=1 ak = S. We denote the set of all partitions of

[n] by A[n], and the set of partitions of [n] with exactly K blocks by A K
[n], so that

A[n] =⋃n
k=1 A k

[n]. Note that the elements of a partition are unordered, but can

be given a canonical ordering by their least elements, and we will refer to the

individual blocks using this ordering (where ordering is relevant). A random

partition A of [n] is called exchangeable if its probability only depends on the

11Aldous [1985] first describes this metaphor, but attributes the idea of the “Chinese restau-
rant process” metaphor to Jim Pitman. The one-parameter version with d = 0 describes the
partition structure arising from the Dirichlet process. We will drop the qualification “two-
parameter” in the sequel.

12Note that if H has atoms it is possible for distinct θ j to have the same value, and in that
case we need to be careful to distinguish the concepts “X j arising from the same θi ” and “X j

having the same value”. The partition structure captured by the CRP corresponds to the former
concept.
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number of blocks k and the sizes the blocks, i.e.

P (A = {a1, . . . , ak }) = f (|a1|, . . . , |ak |) (2.23)

for some symmetric function f of integer compositions of n (sequences of posi-

tive integers with sum n), which is called the exchangeable partition probability

function (EPPF).13

The sequential generative process that gives rise to the two-parameter CRP

can be described figuratively as a story in which customers sequentially enter a

Chinese restaurant with an “infinite number of tables”, where the integers are

referred to as customers and the blocks as tables in the restaurant:

Customer 1 sits at a table; subsequently, the (c +1)-th customer

either joins a table which already has customers sitting at it or sits

by herself at a new table. The probabilities for these events are

α+|Ac |d
α+ c

for sitting at a new table (2.24a)

|a|−d

α+ c
for joining an occupied table a ∈ Ac (2.24b)

where Ac ∈A[c] is the seating arrangement (partition) of customers

around tables after c customers have entered the restaurant.

Multiplying the probabilities for every customer in the restaurant (or every

integer in the partition) together, we obtain a distribution over A[c] [Pitman,

1996, Theorem 25] which we denote by CRPc (A|α,d). For each A ∈A[c],

CRPc (A|α,d) = [α+d ]|A|−1
d

[α+1]c−1
1

∏
a∈A

[1−d ]|a|−1
1 (2.25)

where [y]n
δ
=∏n−1

i=0 (y + iδ) is Kramp’s symbol (a rising factorial with increment

δ, see Section A.1). The denominator is a normalization constant and does

not depend on A. Note that although the distribution only depends on the

sizes of the subsets of the partition and the number of subsets (and hence

corresponds to the EPPF for this construction), it is normalized over the set

A[c], i.e.
∑

A∈A[c]
P (A) = 1.

Fixing the number of tables (i.e. the number of blocks in the partition) to

be t ≤ c, the conditional distribution, denoted as CRPct (A|d), becomes:

CRPct (A|d) =
∏

a∈A[1−d ]|a|−1
1

Sd (c, t )
for each A ∈A t

[c], (2.26)

13Note that P (A) is normalized over the of partitions of [n], A[n], but f is not normalized
over the set of compositions of n.
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where the normalization constant

Sd (c, t ) = ∑
A∈A t

[c]

∏
a∈A

[1−d ]|a|−1
1 (2.27)

is a generalized Stirling number of type (−1,−d ,0) [Hsu and Shiue, 1998]. These

can be computed recursively [Teh, 2006a] in O(ct ) time (see Section A.2 in the

appendix for details). Note that conditioning on a fixed t the probability of a

seating arrangement does not depend on α, only on d .

The generalized Stirling numbers also appear in the distribution of the

number of blocks Kc = |A| in CRP partition A ∼ CRPc (α,d) [Pitman, 2002, Eq.

(3.11)]:

P(Kc = t ) = [α+d ]t−1
d

[α+1]c−1
1

Sd (c, t ) (2.28)

which can be obtained from (2.25) by summing over A ∈A t
[c] using (2.27).

As mentioned before, the connection between the PYP and two-parameter

CRP is that the CRP describes the clustering structure of draws from a PYP-

distributed random distribution. Consider the model

G ∼ PY(α,d , H) (2.29a)

Xi |G iid.∼ G i = 1, . . . ,n (2.29b)

The marginal distribution on X1:n can equivalently be described as [Pitman,

2002]:

A ∼ CRPn(α,d) (2.30a)

θk | A iid.∼ H k = 1, . . . , |A| (2.30b)

Xi =ϕA,θ1:|A| (i ) i = 1, . . . ,n (2.30c)

where ϕA,θ1:|A| (·) maps an index i = 1, . . . ,n to the θk that is associated with

the block ak that contains i .14 We refer to the combination of the partition

{ak }k=1,...,|A| and the associated draws θk ∼ H as a labeled partition. In the

Chinese restaurant metaphor θk is referred to as the dish that is served on table

k. In other words, drawing n observations from a PYP-distributed random

distribution G is equivalent to first drawing a random partition of [n] from a

CRP (with the same parameters α and d), labelling each of the blocks with an

14 Note that this can be viewed as a special case of a DP/PYP mixture model: G ∼
PY P (α,d , H),φi |G ∼ G , Xi |φi ∼ f (·|φi ), where the likelihood function f is a delta function
centered at the parameter value φi . MCMC and variational inference in such mixture models
has been well-studied (see e.g. [Neal, 1998; Blei and Jordan, 2006]), where the inferential chal-
lenges are mostly due to the latent variables φi which need to be inferred together with the
clustering structure A or marginalized out.
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iid. draw from H , and finally setting the i -th observation equal to the label of

the block that contains i .

The representation of the marginal distribution of X1:n in (2.29) in terms of

the CRP (2.30) is particularly useful if the goal is making predictions about a

new observation Xn+1. The predictive distribution over Xn+1 conditioned on

X1:n , A = a1:K , and θ1:K is given by [Pitman, 1996]:

P (Xn+1 = s) =
∑
k

|ak |−d

n +α δθk (s)+ α+|A|d
n +α H(s) . (2.31)

2.3.3 Customers, Tables, Dishes, and Sections

In what follows we are going to assume that H is discrete with support Σ, so

that multiple draws θk from H can have the same value. This is in contrast to

the more frequently studied case (e.g. [Pitman, 1996, 2002; Neal, 1998, 2000])

where H is assumed to be non-atomic, so that repeated draws are guaranteed

to be distinct. In fact, the main inferential problem in our setting is inferring the

posterior distribution over the number of blocks that have the same label s ∈Σ.

This setting where H is discrete has also been studied by Buntine and Hutter

[2012], and arises naturally in hierarchical models where H itself is random

and a draw from a PYP (and hence atomic, even if its base distribution is not).

Let us introduce some notation that will be used in description of most

inference algorithms that will be discussed in this thesis. Suppose we wish

to perform inference in the model (2.29) given observation x1:n of X1:n . In

the language of Chinese restaurants, this is equivalent to conditioning on

the dishes that each customer is served. Since a customer i can only be in

the same block with other customers that share the same observed value xi ,

the observations split the partition into sections (groups of blocks) based on

their values. There can be more than one block in each section since multiple

blocks can serve the same dish θk (due to the discreteness of H). For a given

labeled partition {(ak ,θk )}k=1,...,K where the ak form a partition of [c] and the

θk ∈ Σ are the labels, let us denote by cs the number of customers served

dish s, i.e. cs =∑
k:θk=s |ak | =

∑N
i=1 1[xi = s], by ts the number of tables serving

dish s, i.e. ts = ∑
k:θk=s 1, and let t = ∑

s ts = K denote the total number of

tables/blocks. Further, we denote by csl the number of customers on the l-th

table with that label (after labeling the tables in each section l = 1, . . . ,Lk in the

order of least elements), and As ∈Acs ts the seating arrangement of customers

around the tables serving dish s (we re-index the cs customers to be [cs]). The

number of tables ts serving a particular dish/type s have also been referred

to as the multiplicity of s by Buntine and Hutter [2012, Definition 32]. In the



44 CHAPTER 2. BACKGROUND

discrete setting considered here, these latent multiplicities are the main target

of inference, as the assignment of observations to sections is given and the

partitions As are relevant for making predictions using (2.31) only through the

size of the partition |As | = ts . Using these definitions, the joint distribution over

seating arrangements and observations can then be written as

P ({cs , ts , As}, x1:n) =
(∏

s∈Σ
G0(s)ts

)(
[α+d ]t·−1

d

[α+1]c·−1
1

∏
s∈Σ

∏
a∈As

[1−d ]|a|−1
1

)
, (2.32)

where t· = ∑
s∈Σ ts and c· = ∑

s∈Σ cs = n.15 We can marginalize out the seating

arrangement {As} from (2.32) using (2.27):

P ({cs , ts}, x1:n) =
(∏

s∈Σ
G0(s)ts

)(
[α+d ]t·−1

d

[α+1]c·−1
1

∏
s∈Σ

Sd (cs , ts)

)
. (2.33)

To simplify notation further on, it is convenient to define

f CT
α,d (c,t) = [α+d ]t·−1

d

[α+1]c·−1
1

∏
s∈Σ

Sd (cs , ts), (2.34)

where c and t are {cs} and {ts} stacked into vectors, so that P ({cs , ts}, x1:n) =
f CT
α,d (c,t)

∏
s∈ΣG0(s)ts . We can also re-write the predictive distribution (2.31)

(conditioned on the previous c observations with counts cs , and the multiplici-

ties ts derived from the seating arrangement) using this notation to obtain

P(Xc+1 = s|{cs , ts}) = cs − tsd

c +α + α+ td

c +α H(s). (2.35)

This expression already reveals part of the relationship between the hierarchical

PYP language model (Section 2.4) and Kneser-Ney smoothing (Section 2.2.3):

As Teh [2006a] pointed out, setting α= 0 and ts = I[cs > 0] in (2.35) yields the

absolute discounting formula (2.15).

2.3.4 Power-Law Properties of the Pitman-Yor Process

One of the main reasons for choosing the Pitman-Yor process over the in many

respects simpler Dirichlet process (or a finite Dirichlet distribution) as a prior

for discrete distributions is that it matches the power-law behavior found in

many physical processes and in natural language (see Figure 2.5 and Section

2.1).

There are in fact several types of power-law scaling present in the Pitman-

Yor process: The first is that the probability of observing a table of size k scales

15We have omitted the set subscript {·}s∈Σ. We will drop these subscripts when they are clear
from context. Note that this distribution is also over the observations x1:n , not just the counts
cs , and that there are c !∏

s cs ! possible observation sequences for a given set of counts {cs }.
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Figure 2.5: Illustration of the type/word frequency power law comparing samples
from the Dirichlet process and the Pitman-Yor process with the empirical word fre-
quencies in a large corpus of English text (a version of the Wikipedia corpus). For
the DP and PYP we plot the block sizes ak for the corresponding CRP partition of N
customers, where N is the size of the corpus and the parameters α and d (for the PYP)
were optimized to maximize the likelihood. The power law scaling of the PYP is a much
better fit to the empirical frequencies.

as k−(1+d) as the number of customers gets large. A directly related power law

property is that the relative size of the k-th largest table (or equivalently the

k-th largest stick-breaking weight) as n →∞,k →∞ follows a power-law with

index 1/d [Pitman, 2002, Lemma 3.11]. These two properties are shown in

figures 2.6 and 2.7.

Another power-law property is that under the two-parameter CRP prior,

the expected number of tables grows as a power-law with index 0 < d < 1 with

the number of customers, i.e. [Pitman, 2002, Section 3.3]:

Eα,d [Kn] ∼ Γ(α+1)

dΓ(α+d)
nd . (2.36)

This is illustrated in Figure 2.8.

As pointed out by Gnedin et al. [2007], these asymptotic power-law prop-

erties are equivalent, and are not unique to the Pitman-Yor process, but hold

more generally for the wider class of σ-stable processes. The article also de-

scribes further power law properties, e.g. that number of blocks of a particular

size scales as nd as n →∞.

An interesting avenue for further research is to analyze the power-law prop-

erties of wider classes of non-parametric priors and how they relate to each

other. Of particular interest is also the non-asymptotic behavior and the study

of more flexible priors which can more closely mimic the properties observed in

real data, e.g. the two different power law regimes for low- and high-frequency
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Figure 2.6: Samples from the two-parameter CRP with α= 1 and 10 million customers.
Shown are 5 samples (solid lines) of the resulting numbers of tables of a particular
size, i.e. |{k : |ak | = j }| as a function of the table size j . For comparison, the power law
∝ j−(1+d) is also shown (dashed line).
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number of customers c increases from 1 to 1 million. Shown are 5 samples (solid lines)
for different d (top) and α (bottom). For comparison, the limiting the power laws ∝ cd

are also shown (dashed lines). Note that in the bottom plot, α does not influence the
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Figure 2.9: Illustration of the relationship between the restaurants A1, A2, C and Fa in
Theorem 2 for c = 6 and |A2| = 3. Tables in A2 correspond to customers in A1, and C is
obtained by merging the tables in A2 that correspond to customers sitting at the same
table in A1.

words seen in Figure 2.5. Such “double power-law” behavior has recently been

considered by Ayed et al. [2019].

2.3.5 Coagulation and Fragmentation

One property of the Pitman-Yor process that has been essential to the develop-

ment of the Sequence Memoizer model that will be described in Chapter 4 is

that, under certain conditions, a draw from a Pitman-Yor process with a Pitman-

Yor-distributed base measure is itself marginally Pitman-Yor distributed. This

property allows “chains” of Pitman-Yor distributed random measures to be

marginalized out analytically. More precisely, that main result in this regard is:

Theorem 1 (adapted from [Pitman, 1999; Ho et al., 2006]). If G1 ∼
PY(α/d2,d1, H ) and G2 |G1 ∼ PY(α,d2,G1), then marginally G2 ∼ PY(α,d1d2, H )

for 0 < d1 < 1, 0 < d2 < 1, −d1 <α/d2.

This result was first obtained by Pitman [1999] and can be understood both

in terms of the CRP (i.e. via the partition structure, as in [Pitman, 1999]) and in

terms of the Poisson-Dirichlet distribution (as in [Ho et al., 2006]).

Viewed in terms of partitions distributed according to a CRP, the coagulation

and fragmentation operations can be understood as follows (see Figure 2.9 for

an illustration): Let c ≥ 1 and suppose A2 ∈Ac and A1 ∈A|A2| are two seating

arrangements where the number of customers in A1 is the same as that of

tables in A2. Each customer in A1 can be put in one-to-one correspondence

to a table in A2 and sits at a table in A1. Now consider re-representing A1 and

A2. Let C ∈Ac be the seating arrangement obtained by coagulating (merging)

tables of A2 corresponding to customers in A1 sitting at the same table. Further,

split A2 into sections, one for each table a ∈ C , where each section Fa ∈ A|a|
contains the |a| customers and tables merged to make up a. The converse of

coagulating tables of A2 into C is of course to fragment each table a ∈C into the

smaller tables in Fa . Note that there is a one-to-one correspondence between
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tables in C and in A1, and the number of customers in each table of A1 is that

of tables in the corresponding Fa . Thus A1 and A2 can be reconstructed from

C and {Fa}a∈C .

Theorem 2 (Pitman [1999]; Ho et al. [2006]). Suppose A2 ∈ Ac , A1 ∈ A|A2|,

C ∈ Ac and Fa ∈ A|a| for each a ∈ C are related as above. Then the following

describe equivalent distributions:

(I) A2 ∼ CRPc (αd2,d2) and A1|A2 ∼ CRP|A2|(α,d1).

(II) C ∼ CRPc (αd2,d1d2) and Fa |C ∼ CRP|a|(−d1d2,d2) for each a ∈C .

Proof. We simply show that the joint distributions are the same. Starting with

(I) and using (2.25),

P (A1, A2) =
 [α+d1]|A1|−1

d1

[α+1]|A2|−1
1

∏
a∈A1

[1−d1]|a|−1
1

 [αd2 +d2]|A2|−1
d2

[αd2 +1]c−1
1

∏
b∈A2

[1−d2]|b|−1
1


=

[αd2 +d1d2]|A1|−1
d1d2

[αd2 +1]c−1
1

( ∏
a∈A1

[d2 −d1d2]|a|−1
d2

)( ∏
b∈A2

[1−d2]|b|−1
1

)
.

We used the identity [βδ+δ]n−1
δ

= δn−1[β+1]n−1
1 for all β,δ,n. Re-grouping the

products and expressing the same quantities in terms of C and {Fa},

=
[αd2 +d1d2]|C |−1

d1d2

[αd2 +1]c−1
1

∏
a∈C

(
[d2 −d1d2]|Fa |−1

d2

∏
b∈Fa

[1−d2]|b|−1
1

)
= P (C , {Fa}a∈C ).

We see that conditioning on C each Fa ∼ CRP|a|(−d1d2,d2). Marginalizing {Fa}

out using (2.25),

P (C ) =
[αd2 +d1d2]|C |−1

d1d2

[αd2 +1]c−1
1

∏
a∈C

[1−d1d2]|a|−1
1 .

So C ∼ CRPc (αd2,d1d2) and (I)⇒(II). Reversing the same argument shows that

(II)⇒(I).

Statement (I) of the theorem is exactly the Chinese restaurant franchise

([Teh et al., 2006]; see also Sec. 2.4 below) of the hierarchical model G1|G0 ∼
PY(α,d1,G0), G2|G1 ∼ PY(αd2,d2,G1) with c iid draws from G2. The theorem

shows that the clustering structure of the c customers in the franchise is

equivalent to the seating arrangement in a CRP with parameters αd2,d1d2,

i.e. G2|G0 ∼ PY(αd2,d1d2,G0) with G1 marginalized out. Conversely, the frag-

mentation operation (II) regains Chinese restaurant representations for both

G2|G1 and G1|G0 from one for G2|G0.
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2.3.6 Inference in Basic PYP Models

Given observations X1:n = x1:n from the single PYP model given by Equation

(2.29) one may be interested in either making predictions by computing the

predictive probability of a new observation, or in computing the posterior

distribution over the latent variables. The latter is typically used as a means

to achieve the former, as the predictive distribution is computed as an ex-

pectation of (2.31) (or (2.35)) under the posterior distribution of the latent

variables. In the CRP representation (2.30), i.e. when the random measure G is

integrated out, posterior inference amounts to computing or approximating

the posterior distribution over seating arrangements A or the multiplicities

ts given the observations x1:n , or equivalently, given the symbol occurrence

counts {cs}s∈Σ.16 Inferring only the multiplicities ts is sufficient if one is only

interested in making predictions by averaging the predictive distribution (2.35),

which does not depend on the exact seating arrangement.17 Computing the

posterior distribution over seating arrangements by explicit enumeration and

re-normalization of (2.32) is prohibitively expensive, as the number of parti-

tions (given by the Bell number) grows super-exponentially. Computing the

posterior distribution over ts by enumerating ts = 1, . . . ,cs and computing and

normalizing (2.33) is feasible for small problems, but the number of possible

{ts}, given by
∏

s∈Σ:cs>1 cs , also grows quickly.18 The posterior distribution over

{ts} for various hyperparameter settings is illustrated in Appendix A.3.

Basic Gibbs Sampler For A Single PYP

Deriving a basic Gibbs sampler for the simple model (2.29) where observations

are directly drawn from a PYP-distributed random measure which is integrated

out, yielding model (2.30), is straight-forward and can be seen as a special case

of the collapsed Gibbs sampler proposed for DP mixture models in [Neal, 1992]

(Algorithm 3 in the classification of [Neal, 1998]) for the case where the likeli-

16 Note that the necessity for inference in this simple model stems solely from the fact that
we are considering a base distribution H that is discrete: If H has no atoms, the predictive
distribution is directly given by (2.31) with all quantities fixed by the observations. In this case,
the posterior PYP G | x1:n can also be given an explicit characterization as a mixture of point
masses at the observed values and a PYP with modified parameters [Pitman, 1996] (see also
[Teh and Jordan, 2010]).

17Additionally, one could place priors on the parameters α and d and infer (or average
over) their posterior distribution. We will focus on the case with fixed α and d here, but in the
hierarchical models described in later chapters these parameters will either be inferred using
MCMC or optimized via other means. See e.g. [Carlton, 1999, Chapter 5] for a description of
several strategies for estimating the parameters in the single PYP case.

18 The Stirling numbers Sd (c, t ) that appear in (2.33) can be computed recursively in O(c∗ t )
for all c ′ ≤ c, t ′ ≤ t (see Section A.2), so in practice it often makes sense to pre-tabulate these
numbers.
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hood is a delta function at the parameter value. The target of the sampler is the

posterior distribution of the partition A. It proceeds by in turn removing each

i = 1, . . . ,n from the block ak∗ , which currently contains i and then re-assigning

it to one of the blocks according to their conditional posterior probability. As

the indices i = 1, . . . ,n are exchangeable under the CPR prior, we can easily

compute the posterior probability of customer i either joining an existing block

ak or creating a new block aK+1 (where K is the current number of blocks) by

treating it as the last customer, so that P
(
customer i joining block k | A¬i

)

∝

ck −d if k = 1, . . . ,K ∧∀ j ∈ ak : x j = xi

(α+dK )H(xi ) if k = K +1
(2.37)

where A¬i denotes the the current partition with customer i removed and

ck denotes the number of (remaining) customers in block k. In other words,

the removed customer i joins an already existing block with the same label

(i.e. where all the other x j = xi ) with probability proportional to the number

of customers sitting there discounted by d (i.e. ∝ ck −d), and starts a new

block with probability proportional to (α+dK ) times the probability of xi

under the base distribution H(xi ).19 This simple remove-add Gibbs sampler

(summarized in Algorithm 1), which sequentially removes customers from

the current seating arrangement and then re-inserts them according to their

conditional posterior probability forms the basis for the Gibbs samplers used

for performing inference in the hierarchical PYP models discussed next, where

the remove and add steps are applied recursively throughout the hierarchy.

19Note that this procedure does not depend on the labeling of the blocks (or the customers),
only on the sizes of the resulting blocks, so that implementations need not re-label blocks or
customers.
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Algorithm 1 Basic remove/add Gibbs sampler for the posterior distribution
over partitions for the model in (2.30). The utility function DRAWPROPOR-
TIONAL samples an index from the discrete distribution proportional to the
provided weights (e.g. using the inverse CDF method).

function REMOVECUSTOMER(a1:K , i )
Remove Customer i from seating arrangement
return {a1, . . . , ak∗\i , . . . , aK } . k∗ denotes block containing i

end function

function ADDCUSTOMER(a1:K , x1:n , i )
Add i to seating arrangement a1:K according to posterior distribution
for k = 1, . . . ,K do

pk ← (|ak |−d)×1[∀ j ∈ ak : xi = x j ]
end for
pK+1 ← (α+dK )H(xi )
k̃ ← DRAWPROPORTIONAL(p1, . . . , pK+1)
if k̃ ≤ K then

ãk̃ ← ak ∪ {i } . Join existing block
else

ãK+1 = {i } . Create new block
end if
return {a1, . . . , ãk̃ , . . . , aK }

end function

function REMOVEADDSAMPLER(a(0)
1:K (0) )

Obtain samples A( j ) = (a( j )
1 , . . . , a( j )

K ( j ) ), j = 1, . . . ,#samples
for j = 1, . . . , # samples do

for i = 1, . . . , N do
a( j )\i

1:K ( j−1) ← REMOVECUSTOMER(a( j−1)

1:K ( j−1) , i )

a( j )

1:K ( j ) ← ADDCUSTOMER(a( j )\i

1:K ( j−1) , i )
end for

end for
return

(
A0, . . . , A#samples

)
end function

2.4 The Hierarchical Pitman-Yor Process

Bayesian hierarchical modelling is a powerful framework for expressing de-

pendencies between (latent) random variables, where the dependencies are

induced by (recursively) placing a shared prior distribution on the parameters

of the distributions of the dependent random variables (see e.g. [Gelman et al.,

2004, Chapter 5] for a general introduction and [Teh and Jordan, 2010] for an

introduction to the nonparametric Bayesian setting).

A hierarchical Pitman-Yor process (HPYP) is such a hierarchical Bayesian

model, where the latent random variables in the hierarchy are random distribu-

tions which are given a Pitman-Yor process prior with a shared base distribution.



2.4. THE HIERARCHICAL PITMAN-YOR PROCESS 53

As an illustration, let us first consider a simple example of such a hierarchical

Pitman-Yor process model:

G0 ∼ PY(a0,d0,UΣ) (2.38a)

G1 ∼ PY(a1,d1,G0) (2.38b)

G2 ∼ PY(a2,d2,G0) (2.38c)

x(1)
i

iid.∼ G1 i = 1, . . . ,n1 (2.38d)

x(2)
i

iid.∼ G2 i = 1, . . . ,n2 (2.38e)

where UΣ is the uniform distribution on the set Σ with PMF p(s) = 1/|Σ| for

all s ∈Σ. The model has a hierarchical structure, in that the two distributions

G1 and G2 from which observations are drawn share a common latent base

distribution G0, which is itself PYP distributed with a fixed, uniform base distri-

bution. Intuitively, G0 models common behavior of both G1 and G2, allowing

for sharing of statistical strength between the two, so that they can be estimated

more accurately from less data.

Another way to view this model is through a hierarchical generalization

of the Chinese restaurant process known as the Chinese restaurant franchise

(CRF) introduced by Teh et al. [2006]. In the CRF representation of a model

like (2.38), all random distributions G0,G1,G2 are integrated out and replaced

by a Chinese restaurant in which customers are seated according to a CRP. As

dishes served on the tables in the G1 and G2 restaurants correspond to draws

from their base distribution G0, these correspond to customers entering the

restaurant associated with G0. In other words, whenever a customer entering

the G1 or G2 restaurant sits at a new table, a customer enters the G0 restaurant

(and may or may not sit at a new table there). By using this idea that each

dish/table at a lower level corresponds to a customer at the next higher level,

this process can straightforwardly be extended to deeper and wider hierarchies.

2.4.1 The Hierarchical Pitman-Yor Process Language Model

A language model can be viewed as collection of distributions {Gu(s)}u over the

next word s given a context of previous words u. The probability of a sequence

of words x1:T can then be computed as

T∏
t=1

P(xt |x1:t−1) =
T∏

t=1
Gc(x1:t−1)(s) (2.39)

where c(·) maps the history to a context in the set of possible contexts, e.g. a

truncation to the K preceding symbols in the case of a Markov model of order

K +1.
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This collection of distributions can then be given a hierarchical prior similar

to the one in (2.38), thus allowing statistical strength to be shared between

different contexts, allowing the Gu to be estimated accurately in the presence

of data sparsity.

One of the first applications hierarchical Bayesian modelling to the lan-

guage modelling problem is the Hierarchical Dirichlet Language Model (HDLM)

of MacKay and Bauman Peto [1995], which is an ancestor of the (substantially

more complex) models described here. The HDLM is a bigram language model,

where the conditional distributions Gs(·) def.= P(xt |xt−1 = s) of a word following

a context word s are given Dirichlet prior distributions Gs ∼ Dir(αm), whose

shared parameters αm are given a shared prior, thus resulting in a hierarchical

model with two levels.20

MacKay and Bauman Peto [1995] developed this model to provide a

Bayesian alternative to the traditional ad-hoc smoothing and interpolation

techniques described in Section 2.2.2. The resulting predictive distribution can

be seen as a context-adaptive interpolation between the relative frequency of

the bigram and a context-dependent smoothing vector. The main advantages

of this model compared to the ad-hoc techniques are that it is based on a well-

specified model which makes prior assumptions explicit, and that by inferring

all parameters using Bayesian inference no model selection techniques like

cross-validation are required.

At a high level, the hierarchical Pitman-Yor process language model (HPY-

PLM) introduced by Teh [2006a,b] can be seen as an extension to this model

in two directions: the Dirichlet distribution is replaced with a Pitman-Yor pro-

cess and the two-level hierarchy of the HDLM bigram model is extended to a

general n-gram hierarchy of some fixed depth K . The former extension allows

for more accurate smoothing, as the Pitman-Yor process is a better fit to the

power-law properties observed in natural language (as discussed in Sections

2.1.1 and 2.3.4), while the latter extension allows the model to make use of

longer contexts to make predictions. On the downside, inference in this class

of models is more involved and requires approximate inference techniques.

As before, let Σ be the discrete set of symbols making up the sequences

to be modeled, and let ΣK be the set of length K sequences of symbols from

Σ. The HPYP models a sequence x1:T = x1, x2, . . . , xT using a set of conditional

20In the HDLM paper the prior on αm is not given an explicit form but instead αm is
assumed to be a parameter that is determined by maximizing the evidence. While it would be
straightforward to use and explicit prior, e.g. a Dirichlet prior on m and a Gamma prior on α,
MacKay and Bauman Peto [1995] choose not to do so to simplify the inference and estimation.
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distributions:

P (x1:T ) =
T∏

t=1
P (xt |x1:t−1) =

T∏
t=1

Gxt−K :t−1 (xt ), (2.40)

where Gu(s) is the conditional probability of the symbol s ∈Σ occurring after a

context u ∈ΣK (the sequence of symbols occurring before s). The parameters

of the model consist of all the conditional distributions {Gu}u∈ΣK , and are given

the following hierarchical Pitman-Yor process (HPYP) prior:

Gε ∼ PY(αε,dε, H)

Gu|Gσ(u) ∼ PY(αu,du,Gσ(u)) for u ∈Σ≤K \{ε}, (2.41)

where ε is the empty sequence, σ(u) is the sequence obtained by dropping the

first symbol in u (i.e.σ(u) denotes the longest proper suffix of u), Σ≤K =⋃K
k=1Σ

k

is the set of all strings over Σ with length less than or equal to K, and H is a

fixed, non-random base distribution over Σ (which is taken to be uniform over

a finite Σ in [Teh, 2006a,b] and in this thesis, but could be more complex in

general). In order to reduce the number of parameters, the context-dependent

discount and concentration parameters du and αu are assumed to be shared

between contexts of the same length, i.e. du = d|u| and αu =α|u|.

Teh [2006a] proposed performing inference in the HPYP language model

by marginalizing out the distributions {Gu} and representing the hierarchy

over the resulting CRPs using a Chinese restaurant franchise [Teh et al., 2006].

In this representation, each Gu has a corresponding restaurant indexed by

u.21 Customers in the restaurant are draws from Gu, tables are draws from

its base distribution Gσ(u), and dishes are the drawn values from Σ. For each

s ∈ Σ and u ∈ Σ≤K , let cus and tus be the numbers of customers and tables in

restaurant u served dish s, and let Au ∈ Acus tus be their seating arrangement.

Each observation of xt in context u = xt−K :t−1 corresponds to a customer in

restaurant u who is served dish xt , and each table in a restaurant u—being

a draw from the base distribution Gσ(u)—corresponds to a customer in the

parent restaurant σ(u). Thus, the numbers of customers and tables in the CRF

representation of the hierarchy have to satisfy the constraints

cus = cx
us +

∑
v:σ(v)=u

tvs , (2.42)

where cx
us denotes the number of customers corresponding to the observations,

which enter only in the leafs of the hierarchy, i.e. cx
us = #(us) if |u| = K and

cx
us = 0 otherwise. In other words, every customer in each restaurant in the

21In the sequel, we will simply refer to this representation of Gu in the CRF as the “restaurant
u”.
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hierarchy either corresponds to an observation xt or to a table in a lower-level

restaurant.

Let U denote the set of all contexts and let π(u) denote the parent of con-

text u in the hierarchy, so that for the HPYP model we have U = Σ≤K and

π(u) =σ(u).22 The goal of inference is to compute the posterior over the states

{cus , tus , Au}s∈Σ,u∈U of the restaurants (and possibly the concentration and dis-

count parameters) given the observations x1:T , which can then be used to

compute the predictive distribution for a new context-symbol pair as an ex-

pectation over this posterior. The joint distribution over latent variables and

observations can be obtained by multiplying the probabilities of all seating

arrangements (2.32) in all restaurants:

P ({cus , tus , Au}, x1:T ) =
(∏

s∈Σ
H(s)tεs

) ∏
u∈U

[αu +du]tu·−1
du

[αu +1]cu·−1
1

∏
s∈Σ

∏
a∈Au

[1−du]|a|−1
1

 .

(2.43)

The first parentheses contain the probability of draws from the overall base

distribution H , and the second parentheses contain the probability of the

seating arrangement in restaurant u.

Starting from the joint distribution over the Chinese restaurant franchise

(2.43) we can integrate out the seating arrangements {Au} using (2.33), resulting

in the joint distribution over {cus , tus}:

P ({cus , tus}, x1:T ) =
(∏

s∈Σ
H(s)tεs

) ∏
u∈U

[αu +du]tu·−1
du

[αu +1]cu·−1
1

∏
s∈Σ

Sdu (cus , tus)

 . (2.44)

Note that each cus is in fact determined by (2.42) so that the only unobserved

variables in (2.44) are {tus}.

Given a state of the restaurants drawn from the posterior, the conditional

predictive probability of symbol s in context v can then be computed by using

(2.31) recursively (with P∗
π(ε)(s) defined to be H(s)):

P∗
u (s|{cus , tus}) = cus − tusdu

αu + cu·
+ αu + tu·du

αu + cu·
P∗
π(u)(s). (2.45)

Note again that this predictive distribution only depends on the state of the

restaurants only through the counts cus and tus , but not directly on the par-

titions Au. In order to make predictions with an HPYP model, the predictive

distribution (2.45) is averaged with respect to the distribution over counts /

seating arrangements (2.44),

P∗
u (s) = E{cus ,tus }

[
P∗

u (s|{cus , tus})
]

, (2.46)
22This more general notation is introduced here in anticipation of the discussion of the

Sequence Memoizer model in the next chapter, where the underlying hierarchical model is
essentially identical, but the base set of contexts and their parent-child relationship is different.
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typically using a Monte Carlo approximation to the expectation and averaging

the predictive distribution with respect to samples drawn from the posterior

distribution.

2.4.2 Relation to Interpolated Kneser-Ney Smoothing

Both Teh [2006a] and Goldwater et al. [2006a] (independently) noted that the

HPYP language model can be related to interpolated Kneser-Ney smoothing,

in that a particular setting of the counts {cus , tus} yields the same predictive

distribution as the one obtained by Kneser-Ney.

As we noted in Section 2.2.3, interpolated KN smoothing combines two

ingredients: an interpolation mechanism based on absolute discounting, and

an estimator based on modified counts for the lower-order predictors. We have

already seen in Section 2.3.3 that the PYP predictive distribution (2.31) is the

same as the absolute discounting formula (2.15) for the special case whenα= 0

and ts = 1[cs > 0]. Interpolated Kneser-Ney’s modified counts t̃·ux that appear

in (2.16) arise from CRF representation of the HPYP by propagating the second

constraint, tus = 1[cus > 0] up through the hierarchy using (2.42). Starting at

the leaves of the tree we have cus = cx
us ; for each subsequent higher level, we set

tvs = 1[cvs] (where v is a child node of u and thus has already been computed),

and compute cus according to (2.42). The cus computed in this way are exactly

the modified counts t·ux of Kneser-Ney, i.e. they count the number of contexts

su with suffix u in which the symbol x appears.

As performing inference in the CRF representation of the HPYP amounts

to computing the posterior distribution over the variables {tus}, interpolated

Kneser-Ney smoothing can be interpreted as an approximate inference scheme

for this model which simply deterministically sets the values of tus as described

above. This approximation often already yields good performance and thus

can serve as a good starting point for other inference schemes.

2.4.3 Gibbs Sampling in the Chinese Restaurant Franchise

The basic building block for performing MCMC inference in HPYP-like models

is a Gibbs sampler for the Chinese restaurant franchise. It can be seen as

the hierarchical adaptation of the remove-add Gibbs sampler described in

Algorithm 1 and has first been described in [Teh et al., 2006], adapted to the

discrete language modelling case by [Teh, 2006a] and subsequently been used

in almost all work on this type of model, including the Sequence Memoizer

[Wood et al., 2009].
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The main idea is to extend the CRP remove-add Gibbs sampler to the CRF

in the same way the CRF is a hierarchical extension of the CRP: Customers are

sequentially removed and then re-inserted into each restaurant; whenever a

table becomes empty while removing a customer, the corresponding customer

in the parent restaurant is removed. Conversely, whenever a customer sits at

a new table, a corresponding customer is inserted into the parent restaurant

(again potentially sitting at a new table, and leading to a customer being added

to its parent restaurant, and so on recursively). As the conditional probabili-

ties (2.3.6) for re-seating a customer of type s in restaurant u depend on the

probability of s under the base distribution (given by (2.45)), which in turn

depends on the seating arrangements in all restaurants from π(u) to the root

of the tree, these probabilities need to be re-computed whenever any of the

parent restaurants’ seating arrangements change during sampling.

One sweep of the Gibbs sampler consists of cycling through all restaurants

u and performing a remove-add step for all customers in that restaurant. By

visiting the restaurants in depth-first search order one can cache the proba-

bilities under the base distribution along the path to the root, and thus avoid

expensive unnecessary re-computations if the seating arrangements in the

parent restaurants do not change.

As has been noted in [Teh, 2006a] storing the complete seating arrange-

ments Au (and implicitly a mapping of tables to customers in the parent restau-

rant) for each restaurant u requires an unnecessarily large amount of memory.

One can dramatically reduce the amount of storage required for the seating

arrangements by not storing the complete partition of the customers, but only

the sufficient statistics, namely the number of customers sitting around each

table. The state space of the sampler remains the state of partitions, but only

the counts cusk , tus , k = 1, . . . , tus are represented. The main idea behind the

Gibbs sampler for this representation proposed in [Teh, 2006a] is that given the

sizes of the tables, all seating arrangements that satisfy these constraints are

equiprobable (as (2.43) depends only on these sizes). We can thus imagine a

sampler that interleaves the previously described remove/add sampler with a

step that re-samples the seating arrangement conditioned on the sizes of the

tables, i.e. which permutes the indices of customers sitting around tables. The

resulting hypothetical sampler is equivalent the one summarized in Algorithm

2, which achieves the same effect without explicitly storing the seating arrange-

ment, by re-instantiating just enough information required for the subsequent

remove/add step, namely the table that the chosen customer sat at. The proba-

bility of a customer chosen uniformly at random (or, equivalently, a particular
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customer after uniformly permuting their identities) sitting at a particular table

k is proportional to the number of customers cusk siting at that table, so that

the corresponding count cusk is decremented with probability

P(decrement cusk ) = cusk

cus
(2.47)

and tus is decremented whenever a table becomes empty (i.e. cusk = 0). Note

that this is merely a conceptual description of the algorithm. An actual imple-

mentation can be made significantly faster by traversing the contexts u that

occur in the training sequence in depth-first search order and avoiding unnec-

essary re-computations of Gπ(u), as well as interleaving DRAWPROPORTIONAL

with the computation of the probabilities pk .

MCMC for Hyperparameters

In addition to the latent variable of the CRF representation, the HPYP model

has the sets of discount and concentration hyperparameters {du} and {αu}

that need to be set or inferred alongside the latent variables. In the original

work on the HPYP, Teh [2006a] compared two schemes: a Bayesian treatment

placing priors on the hyperparameters and inferring their posterior distribution

using an auxiliary variable MCMC sampler, and an optimization-based scheme

which optimized log-loss with respect to the hyperparameters on a validation

set given a fixed set of latent variables. We will discuss both options in the

context of the Sequence Memoizer model in Section 5.7.2.

An alternative, simple and generally applicable strategy used in some sub-

sequent work on HPYP-based models (e.g. [Wood and Teh, 2009]) is to use the

Metropolis algorithm [Metropolis et al., 1953] (see e.g. [Gelman et al., 2004, Sec.

11.4] for an introduction) with a Gaussian proposal distribution and apply it

to transformed, unconstrained parameters. In the HPYP model, the discount

parameters are constrained to lie between zero and one, and the concentration

parameters are constrained to be positive. We can parameterize the model in

terms of unconstrained parameters d̃u and α̃u e.g. by using a logistic sigmoid

transformation for the discount parameters and an exponential transformation

for the concentration parameters: du = (1+ e−d̃u )−1 and αu = exp(α̃u). New

parameter values θ? = ({α̃?u , d̃?
u }) are then proposed by adding zero-mean Gaus-

sian noise to the old parameters values θold, and accepted or rejected using the

standard Metropolis acceptance ratio:

P(accept θ?) = min

(
1,

L(θ?)

L(θold)

)
(2.48)

where L(θ) is the likelihood function (for fixed latent variables) and the proposal

distribution does not appear due to its symmetry. If the proposed new value is

not accepted, the old value θold is kept.
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Algorithm 2 HPYP Table Sizes Gibbs Sampler [Teh, 2006a, Table 2]
procedure REMOVECUSTOMER(u, s)

k?← DRAWPROPORTIONAL((cusk )k=1,...,tus )
cusk? ← cusk? −1 . Remove customer
if cusk? = 0 then

REMOVECUSTOMER(π(u), s)
end if

end procedure

procedure ADDCUSTOMER(u, s)
Add customer of type s to the u restaurant
for k = 1, . . . , tus do

pk ← (cusk −d)
end for
k+ ← tus +1
pk+ ← (α+d tu·)Gπ(u)(s)
k?← DRAWPROPORTIONAL(p1, . . . , ptus , pk+)
if k? 6= k+ then

cusk ← cusk +1 . Sit at an existing table
else

cusk+ = 1 . Create a new table
ADDCUSTOMER(π(u), s)

end if
end procedure

procedure REMOVEADDSAMPLER({u,cusk , tus})
for j = 1, . . . , # sampling iterations do

for u ∈U do
for s ∈Σ, i = 1, . . . ,cus do

REMOVECUSTOMER(u, s)
ADDCUSTOMER(u, s)

end for
end for
After burn-in, save current counts as sample

end for
end procedure



CHAPTER 3
Sequence Memoizer

The name Sequence Memoizer (SM) [Wood et al., 2011] has been coined for the

model we originally proposed in [Wood et al., 2009], where it was referred to as

A stochastic memoizer for sequence data. It can most easily be described at a

high level as an extension of the HPYP language model described in Section 2.4

to unbounded context lengths. Longer context lengths are generally desirable

as they allow long-range dependencies to be exploited, as long as the resulting

data sparsity problem and computational burden can be managed. While it is

conceptually unproblematic to make L large in the original HPYP model (e.g.

by setting L to the length of the training data N , so that the context length is

effectively unbounded), this approach is computationally problematic, as the

number of nodes in the context tree and thus the number of random variables

that need to be inferred grows as O(N 2). Our main contribution in [Wood

et al., 2009] is the insight that the number of nodes can be reduced to O(N ),

thus making models with unbounded maximal context length computationally

feasible.1

Based on the promising results in [Wood et al., 2009], we developed further

extensions to make the model more scalable both in terms of space complexity

(by using the compact representation described in Section 4.3) and in terms of

time complexity (by using an online inference procedure described in Chapter

5), and improved the performance of the model by enlarging the range of al-

lowed hyperparameters (Wood et al. [2009] had to fix α= 0) and using different

1 Note that while the original paper not only claimed to reduce the model size to a linear
number of nodes, but also that the model “can be represented in time and space linear in the
length of the training sequence” [Wood et al., 2009, Abstract], this was not strictly true in the
original formulation for two reasons: The compact representation (see Section 4.3) had not
been developed yet, meaning that for inference the quantities cusk needed to be represented
in each node, requiring space growing linearly with N for each node in the worst case. Further,
inference using the add/remove Gibbs sampler (Algorithm 2) scales as the number of customers
in each node, which in the worst case is O(N ) for each node.
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ways of fitting these (see Section 5.7.2). Other authors have also presented

further developments of the Sequence Memoizer model in different directions,

most notably the work by Bartlett et al. [2010] who present a way of turning

the SM into a true streaming method, requiring only a fixed, pre-determined

amount of space.

We will describe the model underlying the SM and the two main ingredients

for making inference in the model practical: the compact context tree of distri-

butions (Section 3.2) and the coagulation and fragmentation properties of the

Pitman-Yor process (Section 3.3). We will then present the improvements that

make the model practical and more accurate: the extended hyperparameter

range (Section 5.7.1), the compact representation (Chapter 4), online model

construction, as well as more efficient online and offline inference and hy-

perparameter learning. In Chapter 6 we describe how these advances can be

combined to obtain a state-of-the-art lossless data compression algorithm.

3.1 Model

The generative model underlying the Sequence Memoizer is essentially the

same as for the Hierarchical Pitman-Yor process language model (2.41): A

sequence x1:T = x1, x2, . . . , xT ∈Σ∗ is modelled using a set of conditional distri-

butions,

P (x1:T ) =
T∏

i=1
P (xi |x1:i−1) =

T∏
i=1

Gx1:i−1 (xi ), (3.1)

where Gu(s) is the conditional probability of the symbol s ∈Σ occurring after a

context u ∈Σ∗ (the sequence of symbols occurring before s). The parameters

of the model consist of all the conditional distributions {Gu}u∈Σ∗ , and are given

a hierarchical Pitman-Yor process (HPYP) prior,

Gε ∼ PY(αε,d0, H)

Gu|Gσ(u) ∼ PY(αu,d|u|,Gσ(u)) for u ∈Σ∗\{ε}, (3.2)

where ε is the empty sequence, σ(u) is the sequence obtained by dropping

the first symbol in u, du ∈ [0,1] is a depth-dependent discount parameter,

αε =αu = 0 are the PYP concentration parameters, and H is the overall base

distribution over Σ (H is taken to be uniform over a finite Σ, as in the HPYP

model). Comparing to the HPYP language model in (2.41), the main difference

is the removal of K -th order Markov assumption in the likelihood and the corre-

sponding finite-depth assumption on the hierarchical PYP prior on Gu. Further,

the concentration parameters αu are fixed to zero (in the original formulation
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described in [Wood et al., 2009]; we will weaken this assumption in Section

5.7.1), in order to be able to analytically marginalize out some distributions

using the coagulation-fragmentation property (Section 2.3.5).

As specified, the model has an unbounded number of hyperparameters

d|u| for |u| = 0,1,2, . . .. Wood et al. [2009] get around this by only using dis-

tinct discount parameters d|u| for the first L levels, and using the same dis-

count d|u| = d∞ for all |u| ≥ L. Wood et al. [2009] used L = 4 and initialized

the discounts at d[0,1,2,3,∞] = (.62, .69, .74, .80, .95). In later work [Gasthaus

et al., 2010], and unless otherwise noted in this thesis, we set L = 10 and

d[0:9] = (0.05,0.7,0.8,0.82,0.84,0.88,0.91,0.92,0.93,0.94), d∞ = 0.95.2 An alter-

native to fixing the the discount parameters for depth greater than L to some

constant value is to use a function that depends on |u|, as done in [Bartlett and

Wood, 2011], who for |u| ≥ L choose d|u| = dβ|u|+1−L

∞ for β ∈ (0,1), so that d|u| → 1

as |u|→∞.

Equation (3.2) defines a prior over an infinitely deep tree-structured hi-

erarchy of random distributions. The first step in making inference in this

model tractable is to notice that given a finite training sequence x1:T of length

T , only the distributions that are indexed by a context that is a prefix of x1:T will

be associated with a likelihood term, and these distributions only depend on

their ancestors in the hierarchy (for each context u, the ancestors correspond

to the nodes indexed by contexts that are suffixes of u). The resulting set of

distributions that we need to infer is finite, but consists of all the distributions

indexed by all substrings of x1:T which contains O(T 2) contexts (we will denote

this set by C̃ (x1:T )). The main insight in [Wood et al., 2009] was that a further

reduction in the number of “interesting” distributions to a set of size O(T ) is

possible: By making use of a coagulation-fragmentation property of the PYP

we can analytically marginalize out all distributions that only have one child in

C̃ (x1:T ) and are not a prefix of x1:T . Wood et al. [2009] noted that the resulting

tree of distributions has the form of a suffix tree, which can easily be seen to

contain at most 2T nodes and which can be built from the input sequence in

linear time.

2These values were originally chosen through manual tuning on the Brown corpus vali-
dation set, i.e. without extensive hyperparameter sweeps. However, they turn out to perform
surprisingly well on many types of data, and often perform on par with or not much worse
than the optimal values found either by optimization on a validation set or MCMC inference
(see Section 5.7.2).
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3.2 Context Trees

As can be seen from (3.1), given a finite observation sequence x1:T only

a finite subset of all possible contexts u ∈ Σ∗ are associated with a likeli-

hood term. This set of “active” contexts corresponds to the set of prefixes

Pre(x1:T ) = {x1:i | i = 0, . . . ,T } of x1:T−1. According to the HPYP prior (3.2) each

such context u ∈ Pre(x1:T−1) is given a PYP prior whose base distribution Gσ(u)

is associated with the longest proper suffix σ(u) of u, which in turn has a base

distribution associated with σ(σ(u))) and so on. The entire set contexts (and

associated distributions) involved in the generation of the data is thus the

union of all suffix sets for all prefixes of x1:T−1 (equal to the set of all substrings

of x1:T−1), C̃ (x1:T−1) =⋃
u∈Pre(x1:T−1) Suf(u), where Suf(x) = {v | uv = x;u,v ∈ Σ∗}

denotes the suffix set. When this set of all substrings is arranged in the same

tree structure as the HPYP prior, i.e. with the parent of a string u = sv given by

its longest proper suffix σ(u) = v, we refer to this structure as a context trie.

The “trick” underlying the Sequence Memoizer is that it is possible to ana-

lytically marginalize out all distributions corresponding to contexts that only

have one child in the context trie and don’t have any likelihood terms associ-

ated with them (i.e. are not a prefix of x1:T−1). The resulting context tree3 only

contains O(T ) nodes, T nodes corresponding to the prefixes and at most T

other inner nodes. Figure 3.1 illustrates this relationship between the context

trie and the context tree. More formally, the node set of a context trie T̃ (x1:T )

for the string x1:T ∈Σ∗ is the set C̃ (x1:T ) of all substrings of x1:T (including the

empty string ε, which is the root), the edges are labeled with symbols s ∈Σ, and

there exists an edge u
s−→ v between nodes u and v iff v = su. The leaf nodes

correspond to the prefixes of x1:T . Note that there is a one-to-one correspon-

dence between the edge labels along the path from the root to any node u and

the node label u. The node set of a context tree T (x1:T ) consists of all prefixes

Pre(x1:T ) of x1:T , as well as all nodes that have more than one child in T̃ (x1:T ),

i.e. {u | ∃s, t ∈Σ : s 6= t ∧ su ∈ C̃ (x1:T )∧ tu ∈ C̃ (x1:T )}. The edges in T (x1:T ) are

labeled with strings w ∈Σ+, and there exists an edge u
w−→ v between nodes u

and v in T (x1:T ), iff there exists a path u
s1−→ u1

s2−→ u2
s3−→ . . .

sh−→ v in the context

trie with w = s1s2s3 · · · sh and no other node u1,u2, . . . along the path is in the

node set of T (x1:T ). In other words, the nodes missing from the context tree

3This terminology, which follows the terminology used in the literature on suffix trees is
somewhat unfortunate, as of course the context trie is also a tree. A different terminology that
is sometimes used with suffix trees is to add the qualifier “compact” or “compressed” when
referring to the context tree and the qualifier “atomic” when referring to the full trie [Giegerich
and Kurtz, 1997], but this can lead to further confusion when used in conjunction with the
(unrelated) compact representation (Section 4.3) or applications to data compression (Chapter
6).



3.2. CONTEXT TREES 65

G[ ]

G[c]

c
G[a]

a
G[o]

o

G[ac]

a
G[oa]

o
G[ca]

c

G[cac]

c
G[oac]

o
G[aca]

a

G[acac]

a
G[oaca]

o

G[oacac]

o

o

a

c

a

c

c
G[ ]

G[a]

a
G[o]

o

G[ac]

ac

G[oa]

o

G[oac]

o

G[oaca]

oac

G[oacac]

oa
c

o

a

c

a

c

c

Figure 3.1: Context trie (top) and context tree (bottom) for the string oacacc. The
nodes in trie correspond to all substrings of oacac. Shown in green are the nodes
associated with likelihood terms, which correspond to the prefixes of oacac, namely
ε, o, oa, oac, oaca, and oacac. Shown in red and blue are the parents of these nodes
in the HPYP prior, where red nodes have the special property that they only have
one child. In the context tree the red nodes are removed and replaced with edges
containing multiple symbols. The trie has O(T 2) nodes (e.g. consider the string aT bT ),
whereas the tree has O(T ) nodes (T nodes corresponding to prefixes and ≤ T other
internal nodes).



66 CHAPTER 3. SEQUENCE MEMOIZER

(relative to the context trie) are precisely those that have exactly one child in

the context trie (and are not a prefix of x1:T ), and the edge labels are simply

the concatenation of the symbols along the corresponding path in the context

trie. The context tree implicitly represents the substrings u that are nodes in

the context trie but not in the context tree using edges labeled with strings. We

will denote the (unique) parent of a context u in the context tree by π(u) (i.e.

there exists a w ∈Σ+ such that π(u)
w−→ u is an edge in the context tree), and the

sequence of “implicit” contexts along the path from π(u) to u (i.e. the nodes

along the corresponding path in the context trie) by (π(u) u) (excluding both

π(u) and u).4

The main questions that remain to be addressed are how to construct the

context tree (without constructing the trie first) and how to perform the analytic

marginalization, and these will be answered in the following sections. An

additional, more subtle issue that arises when making predictions on previously

unseen data is how to make predictions with contexts that are not explicitly

represented in the context tree. This will be elaborated on in Section 5.6.

3.2.1 Context Tree Construction

The problem of constructing the context tree is most readily addressed by

reducing it to the well-studied problem of constructing suffix trees. Tree struc-

tures for storing all substrings of a string are a well-studied object in the area of

string algorithms [Gusfield, 1997]. In particular, the well-known suffix tree data

structure [Weiner, 1973; Ukkonen, 1995; Giegerich and Kurtz, 1997; Apostolico

et al., 2016] is a building block for many fast exact and inexact string matching

algorithms, as it allows substring search in time linear in the length of the

substring and can be built in O(T ) for a length T string [Giegerich and Kurtz,

1997; Gusfield, 1997].5 A suffix tree is a compact way of representing a suffix

trie, a tree that has all substrings as nodes, all suffixes of the string as leaves,

and where the parent of any node u = vs is given by the longest proper prefix v.

Analogous to the context tree, a suffix tree retains only those nodes of the suffix

trie that have more than one child (or are leaves). Like the context tree, it thus

stores a subset of all substrings explicitly as nodes in the tree and all remaining

substrings implicitly “in between” nodes. The main differences are that in a

4Note that the definition of π(u) depends on the string x for which the context tree was
constructed. We leave this dependence implicit as we are usually only considering a particular,
fixed input string which will be clear from context.

5We will not describe the algorithms for linear time suffix tree construction here as they are
fairly involved, but refer the reader to the detailed descriptions by Giegerich and Kurtz [1997]
and Gusfield [1997]. Software libraries implementing these algorithms (in particular Ukkonen’s
algorithm [Ukkonen, 1995]) are also readily available.
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suffix tree (a) the leaves correspond to suffixes of the string (as opposed to

prefixes) and (b) the child-parent relationship of the underlying suffix trie is

given by the longest proper prefix (as opposed to the longest proper suffix).

Perhaps unsurprisingly given this description, it can be seen that the context

tree for a string corresponds exactly to the suffix tree for the reverse of the string

if the node labels are read backwards. The suffix tree for the reverse of the

string is also known as the reverse prefix tree, and plays a role in many suffix

tree construction algorithms (see [Giegerich and Kurtz, 1997] for more details).

This is the connection exploited in [Wood et al., 2009]: The context tree can

be constructed in linear time by applying Ukkonen’s suffix tree construction

algorithm [Ukkonen, 1995] to the reverse of the input string. While this allows

the context tree to be built in linear time, there are drawbacks to this approach,

namely that (a) the entire input sequence needs to be known ahead of time,

making this approach unsuitable for applications where the model needs to be

constructed incrementally, and (b) the algorithm is fairly complex and needs

to be implemented carefully. It turns out that both of these issues can be

addressed by a simple, “naïve” context tree construction algorithm which while

having quadratic worst case time complexity is very fast in practice and is in

fact (in a sense that we will make clear) optimal for the Sequence Memoizer

use case.6 This algorithm will be described in Section 5.1.

3.3 Marginalization

In order to reap the benefits of compactly representing the context tree, the

inference procedure employed needs to be based on only those contexts which

are explicitly represented. This is made possible by analytic marginalization

of the non-represented distributions using the coagulation properties of the

Pitman- Yor process (see Section 2.3.5). The original description of the SM in

[Wood et al., 2009] relied on a special case of this result obtained by setting all

concentration parameters α|u| to zero:

Theorem 3 (Simplified PYP Coagulation; adapted from [Pitman, 1999]). If G1 ∼
PY(0,d1, H) and G2 |G1 ∼ PY(0,d2,G1), then marginally G2 ∼ PY(0,d1d2, H) for

0 < d1 < 1, 0 < d2 < 1.

6We note in passing that O(n) online algorithms for reverse prefix tree construction do exist
(e.g. Weiner’s “repetition finder” [Weiner, 1973; Giegerich and Kurtz, 1997] which constructs
the suffix tree starting from the end of the string), but are not necessarily more efficient for
the task at hand for typical inputs as the constant factors involved are larger, and usually do
require additional memory for storing additional pointers.
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Recursively applying this marginalization to all distributions corresponding

to the non-branching internal nodes of the context trie yields a description

of the marginal distributions corresponding to the nodes in the context tree,

where the discount parameters for the remaining distributions are simply the

product of the discount parameters associated with all “implicit” distributions

along the path to the parent node in the context tree. More precisely, for each

context u ∈T we have the marginal prior:

Gu|Gπ(u) ∼ PY(0, d̃u,Gπ(u)) (3.3)

where we have defined the modified discount parameter

d̃u = du
∏

v∈(π(u) u)
dv. (3.4)

3.4 Inference & Re-Instantiation

Inference in the Sequence Memoizer model is essentially identical to inference

in the HPYP language model (2.4.3), but applied only to the distributions Gu

corresponding to nodes in context tree and using the modified discounts (3.4).

Any inference procedure developed for the HPYP model can thus be used for

the SM (and vice versa), and Wood et al. [2009] employed the same Add/Remove

Gibbs sampler as Teh [2006a] (Algorithm 2). Making predictions using the SM is

also analogous to the HPYP model: the predictive probability (2.45) is averaged

wrt. to the samples obtained from the sampler.

One complication arises when predictions are to be made for contexts

v ∈ T̃ that are not explicitly represented in the context tree (v ∉T ), and thus

their associated distributions Gv and restaurants are not represented in the

Chinese restaurant franchise. Wood et al. [2009] address this by proposing

to “re-instantiate” the CRP representation of Gv from the representation of

Gw, where v ∈ (π(w) w) and w is a node in the context tree. Using the

coagulation/fragmentation duality, a sample from the CRP representation of

Gv and Gw |Gv can be obtained from the representation of Gw using Theorem 2:

Each table in the Gw restaurant is independently split according to a CRP with

concentration parameter −d̃w and discount parameter dw
∏

u∈(v w) du. The

union of the resulting tables forms the sampled representation of Gw |Gv, and

each resulting table contributes a customer to the representation of Gv |Gπ(w)

which are grouped in tables according to which table in the representation of

Gw |Gπ(w) they originated from. This is illustrated in Figure 3.2 (cf. also Figure

2.9). Note that the resulting seating arrangement satisfies the constraints (2.42)

by construction.
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Figure 3.2: Illustration of the re-instantiation of the CRP representation of G2 | G1

that had been marginalized out. The circles represent tables in their label the num-
ber of customers sitting at them; the colors represent different sections. In order to
re-instantiate G2 |G1, the customers at every table in the G3 |G2 restaurant are parti-
tioned using a CRP, and the resulting tables form the customers in the re-instantiated
G2 |G1 restaurant. They are grouped into tables according to the tables in G3 |G1 they
originated from, so that G2 |G1 and G3 |G1 have the same number of tables, and are
both consistent with G1.

3.5 Sequence Memoizer vs. HPYP

The Sequence Memoizer model is an extension of the HPYP model to un-

bounded context lengths. One of the key properties of this model demon-

strated in the original paper [Wood et al., 2009] is that it compares favorably to

HPYP models with fixed context length in terms of predictive performance and

computational complexity as the context lengths become larger. By using the

context tree instead of the context trie data structure, the number of nodes/-

contexts that are represented explicitly (determining the computational and

memory complexity) in the SM model can be less than the number of nodes

represented in the HPYP model with fixed context length. This is illustrated

in Figure 3.3, which shows how the test set perplexity of the HPYP model de-

creases with increasing context length, approaching the performance of the

SM, while the number of nodes in the context trie exceeds the number of nodes

in the context tree for context lengths ≥ 4.

Figure 3.4 shows how the number of nodes grows as a function of input
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Figure 3.3: Shown in blue is the predictive performance of the SM model (dashed
line) versus HPYP models with fixed context length n (solid line) as n varies (perplexity
on the test set, lower is better). Shown in red is the number of nodes/contexts in
the context tree of the SM model (dashed line) or the trie with depth n of the HPYP
model (solid line). These results were obtained on the four million word NYT corpus,
but are illustrative of the general behavior of these models on text data. This figure
illustrates the general appeal of the SM model: In this case, for context lengths ≥ 4, the
computational and memory complexity (which are both proportional to the number
of nodes) of the trie-based HPYP model exceeds that of the SM model, while the SM
model has better modelling performance. This suggests that the SM model is generally
to be preferred over the HPYP for large enough context lengths.
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Figure 3.4: Number of tree nodes as a function of input size for the Brown corpus (left)
and the AP News corpus (right). The number of nodes in the context tree used by the
SM model is shown in black, and the number of nodes in tries are shown in red, with
different lines showing different context lengths. For some data-dependent context
size (4 for the Brown corpus, 5 for AP News) the number of nodes in the trie exceeds
the number of nodes in the tree. Note that in practice the number of nodes in the tree
significantly smaller than the 2N worst case.
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Model Perplexity

[Mnih and Hinton, 2009] 112.1
[Bengio et al., 2003] 109.0
4-gram Modified Kneser-Ney [Teh, 2006b] 102.4
4-gram HPYP [Teh, 2006b] 101.9
Sequence Memoizer [Wood et al., 2009] 96.9

Table 3.1: Perplexity of the AP news test set under the SM model compared against
the HPYP, Modified Kneser-Ney, and two neural language models (as reported in
[Wood et al., 2009]).

size for the context tree, and context tries with different maximum context

lengths. For the Brown corpus data set, the number of nodes in the context tree

is similar to that of a trie with depth 3, and a trie with depth 4 is significantly

larger for all input sizes. On the AP news data set, the number of nodes in

the context tree is slightly larger than that of a depth-4 trie, but smaller than

that of trie with depth 5. Hence in both cases there exists a context length

beyond which the context tree used by the SM model contains less nodes than

a fixed-depth context trie.

Table 3.1 (taken from [Wood et al., 2009]) shows the predictive performance

of the SM model in terms of test set perplexity compared against the fixed-

depth HPYP model, a variant of Kneser-Ney smoothing, as well as two neural

language models.





CHAPTER 4
Sequence Memoizer:

Representations

In order to perform inference in the Chinese Restaurant Franchise (CRF) repre-

sentation of HPYP models, the main object that needs to be represented are the

seating arrangements of customers around tables, as well as the relationships

between tables in the child restaurant and the corresponding customers in the

parent restaurant. The representation chosen crucially affects both the amount

of memory required to represent the state of the sampler (and samples from

the posterior) and the complexity and speed of the associated Monte Carlo

inference procedures.

In the following we will describe four representations for the CRF (illustrated

in Figure 4.1): the original CRF representation using partitions of [Teh et al.,

2006], the counts/table-sizes representation developed in [Teh, 2006a] and used

a

1
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a
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b

4

6
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Name Representation Size

PARTITIONS [Teh et al., 2006] {{1,3}, {2}, {5}, {4,6}, {7}} O(c)
COUNTS [Teh, 2006a] [2,1,1] [2,1] O(t )
COMPACT [Gasthaus and Teh, 2010] (4,3) (3,2) O(1)
HISTOGRAM [Blunsom et al., 2009] [1 : 2,2 : 1] [1 : 1,2 : 1] O(t )

Figure 4.1: Illustration of the different representations in a restaurant with two differ-
ent types (represented by colour).

73
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in [Wood et al., 2009], the histogram representation developed by [Blunsom

et al., 2009], and the compact representation developed in [Gasthaus and Teh,

2010] and used in [Gasthaus et al., 2010; Bartlett et al., 2010; Bartlett and Wood,

2011]. For completeness we also describe the level indicator representation of

Chen et al. [2011] in Section 4.4, though we will not consider it in the sequel.

Each representation has different memory/speed trade-offs when com-

bined with an appropriate inference method. The basic add/remove Gibbs

sampler (Algorithm 2) operates by removing and re-adding customers accord-

ing to the conditional posterior probabilities under a CRP partition (Eqns.

(2.24a) and (2.47)), so that computing these probabilities and adding/removing

customers and tables should be fast, while the direct sampler (Section 4.5)

needs to evaluate (4.4) and set the counts tus directly.

4.1 Partition & Table Sizes Representation

As the Chinese restaurant franchise (2.43) describes a joint distributions over

the partitions {Au}, the natural starting point is a representation where these

partitions are represented explicitly, by associating each table with the cus-

tomers sitting around it (or, equivalently, associating each customer with the

table she sits at). This representation is equivalent to the one proposed for the

two-level hierarchy in the original HDP paper [Teh et al., 2006], where (using

the notation used in that paper) the variables t j i represent the bottom level

partition by storing the associated table index for each customer i in restaurant

j and the variables k j t represent the top level partition by storing the parent

table index for each table t in restaurant j (i.e. the mapping from customers to

tables in the parent restaurant).

As the table indices in the child restaurant correspond the customer indices

in the parent restaurant, this representation explicitly maintains “pointers”

from each table to its parent table, and so the dishes served at each table can

be reconstructed deterministically by propagating them downwards from the

top of the hierarchy. Gibbs sampling in this representation is simple, as the

customers at each level are exchangeable and a simple remove-add sampler

can be employed (see Section 2.4.3). In order to apply this representation

to the case of multiple child restaurants, one additionally requires a way of

associating customers coming from lower-level restaurants to the restaurant

they came from, either by maintaining an explicit mapping or by ordering the

child restaurants and ordering the customers accordingly.

Teh [2006a] noted that the full CRF representation described above is rather
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wasteful and unnecessary in some cases: For language modelling, where the

likelihood is a delta function, there is (a) no uncertainty about the identity of

the dish served at each table and (b) no relevance to discovering the partition

structure. Relevant for the likelihood of the data and for predictions made

using the model is only the number of tables of each word type.1 Based on

this observation Teh [2006a] devised a sampler (reviewed in Section 2.4.3)

that only requires storing the number of customers cusk sitting around each

table k = 1, . . . , tus . We refer to this representation as the COUNTS or table-

sizes representation.2 As, in the worst case, there are as many tables as there

customers (with each customer sitting by himself), the storage complexity of

this representation grows as the number of customers. In addition to the bad

worst-case complexity, this representation also performs poorly in practice.

This is on the hand due to the fact that the representation needs to change size

dynamically during inference, and on the other hand due to the high posterior

probability for larger numbers of tables when the discount parameter is large

(see Figures A.4 and A.5).

4.2 Histogram Representation

Blunsom et al. [2009] proposed an improvement to the table sizes represen-

tation that – while having the same worst-case space complexity – is much

more efficient (in terms of both space and speed) in practice: Instead of storing

the sizes cusk of all tables, the idea is to store a histogram of table sizes for

each type. More formally, instead of storing per-table counts cusk , one stores

the counts musl =
∑

k 1[cusk = l ], l = 1, . . . ,cus using a sparse representation

(i.e. only the values musl > 0).3 The main advantage of this representation is

that it is very well matched to the to power-law behavior of the PYP, in that

it allows a large number of small tables to be represented efficiently. Further,

it allows the conditional probabilities required for the add/remove sampler

(Algorithm 2) to be computed efficiently: as the probability for a customer

1Given the number of tables for each word type in each restaurant in the hierarchy as well
as the observed data, one can deterministically reconstruct the number of customers of each
type in each restaurant. However, for computational efficiency, is is advisable to also store the
number of customers of each type explicitly.

2 For computational reasons it is advisable to additionally store the number of customers
cus of each type as well as the total number customers cu· and tables tu· (all of which are
needed to evaluate (2.24a) and (2.31)), even though these quantities can be deterministically
reconstructed given the table sizes cusk .

3In practice, this can be implemented e.g. using a hash map or a tree-based map. We found
an implementation based on two dynamically resized arrays, one of which contains the sorted
non-zero keys l very efficient, as it allows keys to be incremented very efficiently, which is one
of the operations required by the add/remove sampler.
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Figure 4.2: Number of context/symbol pairs and total number of tables (counted
after particle filter initialization and 10 sampling iterations using the compact orig-
inal sampler) as a function of input size. The left panel shows the counts obtained
from a byte-level model of the news file in the Calgary corpus, whereas the right panel
shows the counts for a word-level model of the Brown corpus (training set). The space
required for the compact representation is proportional to the number of context/sym-
bol pairs, whereas for the full representation it is proportional to the number of tables.
In practice, the difference in amount of memory required is even more pronounced,
as the constant-sized compact representation can be stored more efficiently with less
overhead and memory fragmentation. For example, our implementation libPlump
(Section 6.6) has a peak memory consumption of ≈ 650 MB using the compact repre-
sentation and ≈ 950 MB when using the COUNTS representation, when performing
particle filter inference on news. Note also that sampling tends to increase the number
of tables over the particle filter initialization in this setting.

joining a particular table only depends on the size of the table, all tables of the

same size can be considered together, so that the conditional probability of

joining any of the musl tables of size l is simply proportional to (l −d)×musl .

Similarly, during removal we need to uniformly pick a customer to remove, so

that the probability of removing a customer from a table of size l is ∝ l ×musl .

Traversal of the histogram, computation of the probabilities and sampling can

be interleaved to further improve efficiency (see Algorithms 1/2 in [Blunsom

et al., 2009] which can trivially be extended to the PYP case).

4.3 Compact Representation

Recall that the predictive distribution (2.31) only depends on the total num-

ber of customers cus and tables tus for each symbol, as well as their sums cu·
and tu·. The idea behind what we call the compact representation introduced

in [Gasthaus and Teh, 2010] is to only store these minimally necessary statis-

tics, but no information about the sizes of the individual tables nor about

the seating arrangements. The storage complexity of this representation is
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constant wrt. the number of observations and in implementations does not

require any overhead due to dynamically resizing data structures. As for the

histogram representation, the ADDCUSTOMER operation in the add/remove

sampler (Algorithm 2) can be performed efficiently, as we only need to compute

the probability of a customer either sitting at any one of the existing tables,

or starting a new table (in which case tus is incremented). The probability of

joining any of the existing tables or a new table are:

P(join existing table) ∝ cus − tusdu (4.1a)

P(start new table) ∝αu +dutu·Gπ(u)(s) (4.1b)

In order to perform the REMOVECUSTOMER operation, we need to compute the

probability that a randomly chosen customer sits at a table by himself, so that

after removing him from the restaurant, tus would need to be decremented.

This turns out to be slightly more complicated: The probability that a randomly

chosen customer sits by himself is equal to the total probability mass of Acus ,tus

partitions where cus −1 customers sit around tus −1 tables. Using (2.26) and

summing over all partitions where cus −1 customers sit around tus −1 tables

using (2.27) we obtain

P(decrement tus) = Sd (cus −1, tus −1)

Sd (cus , tus)
. (4.2)

Due to Stirling numbers involved in this expression its computation requires

O(c2
us) operations.4 When using the add/remove sampler this representation

thus trades off storage complexity for computational complexity. However,

when combined with sequential Monte Carlo inference (Chapter 5), this repre-

sentation is computationally more efficient, as only a single probability (4.1b)

needs to be evaluated for each restaurant visited on the path. The compact

representation can also be combined with the direct Gibbs sampler (Section

4.5) and “fractional counts” approximate inference scheme (Section 5.4). The

space savings that are possible using the compact representation are shown for

the Brown corpus and the news file of the Calgary corpus in Figure 4.2.

4.4 Level Indicator Representation

For completeness, we also describe the table indicator representation devel-

oped in [Chen et al., 2011; Buntine and Hutter, 2012], even though we will not

make use of it. In this representation of the CRP, each customer is associated

4When there are only a few distinct discount parameters (e.g. in the HPYP case), the Stirling
numbers can be pre-tabulated and re-used, making this sampler computationally competitive.
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with a binary indicator variable that determines whether that customer is “re-

sponsible” for creating a new table. If we denote the indicator associated with

xi by ri , we can compute the multiplicities ts by summing ri over all i such that

xi = s. As there are
(cs

ts

)
ways of setting the indicators to obtain a count ts , the

joint probability of the observations and the indicators ri is given by [Buntine

and Hutter, 2012, Eq. (11)]

P(x1:N ,r1:N ) = f CT
a,d (c,t)

∏
s∈Σ

H(s)ts(cs
ts

) . (4.3)

where the counts c,t are obtained from x1:N ,r1:N and f CT is defined in (2.34).

Building on this, [Chen et al., 2011] further develop a representation for the

hierarchical setting, which associates each observation at the leaf nodes with an

indicator variable that denotes up to which level in the hierarchy this data item

has created a new table. The main difficulty for performing Gibbs sampling

in this representation is that the settings of the indicators for other data items

constrain the allowed values for the indicator being sampled: if another data

item is sharing a table created by the data item under consideration at some

level in the hierarchy, then the level indicator cannot be changed beyond that

point. Further, as in the compact representation, the conditional distribution

for the level indicators involves a ratio of Stirling numbers and thus has the

same computational drawbacks in hierarchies with many distinct discount

parameters where the Stirling numbers cannot be pre-tabulated.

4.5 Gibbs Sampling in the Compact Representation

While the add/remove Gibbs sampler has been used in almost all work on

the HDP/HPYP/SM, it is of course not the only possible MCMC scheme for

this model.5 In particular, in the delta function likelihood setting where the

partitions Au are not meaningful and not required for making predictions,

samplers operating directly in other representations such as the compact or

histogram representation described above can be designed.

In [Gasthaus and Teh, 2010] we described a Gibbs sampler for the compact

representation which samples the number of tables tus of a particular type s

directly from its conditional distribution given the settings of all other variables

(we call this the DIRECT sampler). Like the add/remove sampler, it cycles

through all contexts u and symbols s, sampling a new value for tus for each

5In the following we will not distinguish further between the HPYP and SM model, as in
terms of inference they are identical. We will generically refer to the parent context as π(u),
and the parameters associated with a context u as αu and du.
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Figure 4.3: Comparison of the DIRECT sampler and the ADDREMOVE sampler on a
simple two-level hierarchical model. Twenty customers of the same type are inserted
into the bottom restaurant using the particle filter initialization. Each sampler then
alternates between the bottom and the top restaurant. The ADDREMOVE sampler
removes and re-inserts all customers in one iteration, whereas the DIRECT sampler
directly draws one sample from the conditional distribution of tus . Shown are the
mean and standard deviation (resulting from 100 repeated runs of the sampler) of
the resulting expected number of tables in the top restaurant (left) and the posterior
predictive probability of observing the same type again (right). As expected, the
initialization has a bias to overestimate the number of tables, and the DIRECT sampler
mixes more quickly and is thus able to converge on the correct value (dashed line)
faster.

context-symbol pair us in turn. Since each cus is determined by cx
us and the tvs

at child restaurants v through (2.42), it is sufficient to update each tus , which for

tus in the range {1, . . . ,cus} has conditional distribution (obtained by dropping

all terms from the joint distribution (2.44) that do not involve tus):

P (tus |rest) ∝
[αu +du]tu·−1

du

[απ(u) +1]
cπ(u)·−1
1

Sdu (cus , tus)Sdπ(u) (cπ(u)s , tπ(u)s), (4.4)

where tu·, cπ(u)· and cπ(u)s all depend on tus through the constraints (2.42).6

We compared the DIRECT and the re-instantiating ADDREMOVE samplers

both on a simple two-level model with synthetic data, as well as on the Se-

quence Memoizer model using the Brown corpus data. The results are shown

in figures 4.3 and 4.4. On the synthetic data set, the DIRECT sampler mixes

6 One caveat with this sampler is that we need to compute Sdu (c, t ) for all 1 ≤ c, t ≤ cus . If du

is fixed these can be precomputed and stored, trading off memory for computational efficiency.
However, if many restaurants have distinct discount parameters (as in the SM setting) storing
these pre-tabulated Stirling numbers might be infeasible. If du is updated during sampling,
the Stirling numbers will need to be re-computed each time as well, at a cost of O(c2

us ) per
iteration. Further, Sd (c, t) typically has very high dynamic range, so care has to be taken to
avoid numerical under-/overflow (e.g. by performing the computations in the log domain,
involving many expensive log and exp computations). Devising a way to efficiently compute
or approximate these Stirling numbers is an interesting avenue for further research (see also
Section 8.4 in [Buntine and Hutter, 2012].
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Figure 4.4: Comparison of the DIRECT sampler and the ADDREMOVE sampler for the
Sequence Memoizer model on the Brown corpus. The top figure show the log-joint
probability of the current sample while the bottom figure shows the average (negative)
log predictive probability on the test set. Starting from the particle filter initialization,
both samplers converge after only a few iterations, with the direct sampler being
slightly faster as expected. The predictive probability improves only slightly (≈ 0.01 bits)
through sampling. Averaging predictions from multiple samples after burn-in (shown
in blue in the bottom figure) yields another improvement of approximately the same
size, and only very few samples (≈ 10) are needed to achieve most of the improvement.
Time per iteration was 43s for the direct sampler and 26s for the add/remove sampler
in the compact representation. For comparison, the re-instantiating add/remove
sampler takes 4s per iteration, and the resulting average log-loss is 8.44 bits for all
samplers.
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more quickly and is more efficient in estimating the correct expected number of

tables and predictive probability. In the SM model (Figure 4.4) the differences

are not as pronounced.

A viable alternative to this Gibbs sampling approach that we did not explore

further could be a Metropolis-Hastings sampler, where a new setting of tus

(either for each context-symbol pair us separately or jointly for all {{tus}s∈Σ)

is proposed using some proposal distribution (e.g. uniform on {1, . . . ,cus}, by

incrementing/decrementing the current value, or by using a particle filter)

and accepted or rejected using the standard MH accept/reject probability

(2.48) with (2.44) as target. As computing the Stirling numbers Sd (cus , tus)

does involve computing them for all smaller values of cus and tus (see Section

A.2), evaluating (2.44) in (2.48) is however not necessarily much cheaper than

computing (4.4) for all possible values of tus .

Another strategy for sampling in the compact representation that avoids

computing the Stirling numbers is to re-instantiate the seating arrangement by

sampling Au ∼ CRPcus tus (du) from its conditional distribution given cus , tus (see

below), then performing normal add/remove Gibbs sampling. This produces a

new number of tables tus and the seating arrangement can be discarded. Note

however that when tus changes this sampler will introduce changes to ancestor

restaurants (by adding or removing customers), so these will need to have

their seating arrangements instantiated as well. To implement this sampler

efficiently, we visit restaurants in depth-first order, keeping in memory only

the seating arrangements of all restaurants on the path to the current one. The

computational cost is O(cus tus), but with a potentially smaller hidden constant

(no log/exp computations are required). In our implementation, using this

re-instantiation strategy proved to be much more efficient for the SM model

than either of the samplers that required explicit computation of the Stirling

numbers, even when those were cached locally during sampling. A comparison

in terms of time per iteration is shown in Figure 4.5.

4.6 Sampling from CRPct

For the re-instantiating Gibbs sampler and the fragmentation operation in the

compact representation we need to be able to sample a partition A ∼ CRPct (d)

of [c] with a fixed number of blocks t according to (2.26), repeated here for

convenience:

CRPct (A|d) =
∏

a∈A[1−d ]|a|−1
1

Sd (c, t )
for each A ∈A t

[c]. (4.5)
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Figure 4.5: Comparison of the ADDREMOVE sampler in the compact representation
using either the “original” Gibbs sampler (eqs. (4.1b) & (4.2)) or the Gibbs sampler in
the non-compact representation combined with re-instantiating the required seating
arrangement using the technique described in Section 4.6) for the Sequence Memoizer
model on the Brown corpus. While asymptotically both algorithms have the same
complexity, the re-instantiating sampler is significantly faster in practice.

First we re-express A using two sets of variables z1, . . . , zc and y1, . . . , yc . Label a

table a ∈ A using the index of the first customer at the table, i.e. the smallest

element of a. Let zi be the number of tables occupied by the first i customers,

and yi the label of the table that customer i sits at. The variables satisfy the fol-

lowing constraints: z1 = 1, zc = t , and either zi = zi−1 in which case yi ∈ [i −1]

or zi = zi−1+1 in which case yi = i . This gives a one-to-one correspondence be-

tween seating arrangements in A t
[c] and settings of the variables satisfying the

above constraints. Consider the following distribution over the variables sat-

isfying the constraints: z1, . . . , zc is distributed according to a Markov network

with z1 = 1, zc = t , and edge potentials:

fi (zi , zi−1) =


i −1− zi d if zi = zi−1,

1 if zi = zi−1 +1,

0 otherwise.

(4.6)

The joint distribution of z1:c is

P (z1:c ) =
∏

i :zi=zi−1
(i −1− zi d)

Zd (c, t )
. (4.7)

It can be seen via an inductive argument similar to the one in Appendix 5

of [Teh, 2006a] (see also Section A.2 in the appendix) that the normalizing

constant is

Zd (c, t ) = ∑
z1:c

∏
i :zi=zi−1

(i −1− zi d) = Sd (c, t ). (4.8)
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As a base case we have Zd (1,1) = Sd (1,1) = 1, and we further extend the domain

of Zd (c, t) to include Zd (0, t) = Z (c,0) = 0 (for c > 0, t > 0), Zd (0,0) = 1, and

Z (c, t ) = 0 (for t > c), exactly like the base cases for Sd (c, t ) in (A.8).

Now, we can split the summation over z1:c into the cases where (a) zc =
zc−1 or (b) zc = zc−1 + 1. In case (b) there is no contribution from the last

customer/table to the product, so that that the total contribution for that part

is Zd (c −1, t −1). In case (a) the last customer contributes a factor of c −1− td

to all assignments of c − 1 customers to t tables, for a total contribution of

(c −1− td)Zd (c −1, t ), so that

Zd (c, t ) = Zd (c −1, t −1)+ (c −1− td)Zd (c −1, t ) (4.9)

which, using the induction hypothesis Zd (c − 1, t − 1) = Sd (c − 1, t − 1) and

Zd (c −1, t ) = Sd (c −1, t ), exactly matches the recursion for Sd (c, t ) given in A.5.

Given z1:c , we give each yi the following distribution conditioned on y1:i−1:

P (yi |z1:c , y1:i−1) =

1 if yi = i and zi = zi−1 +1,∑i−1
j=1 1(y j=yi )−d

i−1−zi d if zi = zi−1 and yi ∈ [i −1].
(4.10)

Multiplying all the probabilities together, we see that P (z1:c , y1:c ) is exactly

equal to CRPct (A|d) in (4.5): the numerators in the conditional probabilities

of the yi ’s become the numerator, and the denominators cancel the numer-

ator in P (z1:c ), while the normalization constant Sd (c, t) is the denominator

of CRPct (A|d). Thus we can sample A by first sampling z1:c from (4.7), then

sequentially sampling each yi conditioned on the previous ones using (4.10),

and finally converting this representation into the equivalent partition A. We

use a variant of the forward-filtering-backward-sampling (FFBS) algorithm

(see e.g. [Rao and Teh, 2013, Appendix A]) to sample z1:c : We reverse the pro-

cedure, so that instead of filtering forward (i.e. from i = 1. . . ,c) and sampling

backward (from c to 1), we filter backward i = c,c −1, . . .1, and then sample

forward. This avoids numerical underflow problems that can arise when using

forward-filtering; filtering backwards avoids these problems by incorporating

the constraint that zc has to equal t into the messages from the beginning. The

backward filtering recursion is given by

βzi ( j ) =
t∑

k=1
βzi+1(k) fi+1(k, j ) for i = c −1, . . . ,1, j = 1, . . . , t (4.11)

initialized at βzc (t) = 1 and the forward sampling sweep then sets zi = k with

probability proportional to

fi (k, zi−1)βzi (k) k ∈ {zi−1, zi−1 +1} (4.12)

initialized at z1 = 1.7

7Some computation can be saved by ignoring impossible values of zi in the computation
of βzi , i.e. using the fact that zi needs to satisfy 1 ≤ zi ≤ i and t − j ≤ zc− j ≤ t .





CHAPTER 5
Sequence Memoizer:

Online Inference

The model construction and inference procedure for the Sequence Memoizer

that was presented in the original paper [Wood et al., 2009] is a batch method,

i.e. the entire input must be known before the model can be built and inference

can start. In [Gasthaus et al., 2010] we presented an incremental model con-

struction and approximate inference procedure that does not require the entire

input to be known in advance. The predictive distribution can be approximated

at any point in the input, making it suitable for online prediction applications

such as data compression (see Chapter 6). Two steps are necessary for this: an

incremental algorithm for constructing the context tree, and an incremental

inference method.

Inference in the HPYP/SM model amounts to estimating the posterior

distribution P ({cus , tus}|x1:i ), usually by approximating it using samples from

this distribution (in the form of settings of the counts {cus , tus} for all observed

contexts u). In the batch setting discussed above, these samples were obtained

using MCMC sampling after observing the entire input sequence x1:N . In the

online setting, we require a method that can efficiently infer the sequence of

posterior distributions P ({cus , tus}|x1:i ), as i sequentially increases from 1 to N .

In principle, one could simply apply the discussed Gibbs sampling techniques

to each element in this sequence separately, but this would be prohibitively

expensive for most applications.

Here we propose three approximate inference schemes which sequentially

update an approximation to P ({cus , tus}|x1:i−1) such that it becomes an ap-

proximation to P ({cus , tus}|x1:i ). The first is simply a sequential version of the

“Kneser-Ney approximation” (Section 2.4.2), the second is a sequential Monte

85
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Carlo (SMC) approach, and the third is based on the idea of “fractional cus-

tomers”.

5.1 Online Context Tree Construction

In [Wood et al., 2009] the context tree was constructed by exploiting the fact

that the suffix tree of a string corresponds to the prefix tree of its reverse and

applying Ukkonen’s algorithm [Ukkonen, 1995] to the reverse of the input. As

Ukkonen’s algorithm processes the string from left to right, the entire string

needs to be known ahead of time. Here we argue that using a complex O(N )

context/suffix tree construction algorithm such as Ukkonen’s algorithm is nei-

ther necessary nor beneficial in the setting of sequential prediction in the SM:

This is because the computational complexity of the prediction algorithm will

be dominated by the cost of computing the predictive probability and updating

the posterior distribution over states. Computing the predictive probability

(2.45) requires recursively computing (2.45) at each node on the path from the

root to the u-node, and there are |u| such nodes in the worst case (which occurs

of x1:i = si for some s ∈Σ). As we need to traverse such a path of length O(N ) for

each symbol in the sequence, the worst case complexity of sequential predic-

tion of a sequence of N symbols using the SM is O(N 2). Further, any sequential

inference procedure needs to maintain and update some representation of the

distributions Gu,Gπ(u),Gπ(π(u)), . . . along path from u to the root.1

The main “trick” used by O(N ) suffix tree construction algorithms is that

they maintain additional pointers (the so called suffix links), which allow the

node where the next modification in the tree needs to occur during online

construction to be found in constant time. However, for online inference in the

SM this is not helpful, as we need access to not only that node but to the entire

path from the root to that node.

Therefore, we propose using a “naïve” prefix tree construction algorithm

with a worst-case time complexity of O(N 2), which for each insertion traverses

exactly the nodes at which computation must be performed to evaluate (2.45),

and thus does not increase the asymptotic complexity of the overall algorithm,

but only adds a small constant factor.

In practice, the performance is much better than the worst case analysis

suggests, as for typical inputs in the language modelling setting the paths in

the context tree are very short and the path lengths grow only slowly with the

1Note that even in the batch, offline setting the time spent constructing the context tree is
typically negligible compared to the time spent performing inference.
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Figure 5.1: Context tree construction node insertion depth statistics on the Brown
corpus. The insertion depth of a context is the length of the path from the root to the
inserted context, and thus the number of nodes that need to be traversed to make
a prediction from that context. Left: Average node insertion depth (i.e. for the i -th
context, inserted at depth di , we plot

∑i
j=1 d j /i ). Right: Histogram of context insertion

depths during tree construction (i.e. histogram of the number of nodes traversed
during each context insertion). The histogram is truncated on the right: there are in
total 248 insertions at depths ≥ 8, and the maximum depth is 22.

input size (shown in Figure 5.1). Because of this, the use of an O(N ) context

tree construction algorithm is almost never computationally advantageous,

even in the batch setting.
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Figure 5.2: Illustration of the tree construction algorithm for the input string abba.
Each step shows the state of the tree after inserting the current context and updating
the counts for the observed symbol. Panel (1) shows the tree before the insertion of the
context a. Because the insertion point for a (the node which has the longest common
suffix with a) is the root node, and the empty context ε at the root is a suffix of a, the
a-node is inserted directly as a child of the root as shown in panel (2). The same is
true for the context ab in (3). When inserting abb to obtain (4) from (3) the algorithm
traverses the tree down to the insertion point ab by following the child pointer b. As
ab is not a suffix of abb, the ab-node is split into b and ab. The nodes ab and abb are
then inserted as children of b with the appropriate child pointers a and b respectively.
Shown below the context at each node are the counts cua· (left) and cub· (right) as
produced by the UKN and 1PF update schemes (they coincide for this particular short
string).

The naïve algorithm for constructing the context tree proceeds one symbol

at a time by inserting the context x1:i into the tree at each step i = 1, . . . , N . To
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insert the context x1:i into the tree it proceeds in two stages, which are both

depicted in Figure 5.2: First, the tree is traversed by following child pointers

from the root to find the insertion point for the context x1:i (i.e. the node in

the tree that shares the longest suffix with it), say x j :k . Second, depending on

whether x j :k is a suffix of x1:i , it either inserts the x1:i node directly (if it is a

suffix) as a child of x j :k , or splits the x j :k node into xl :k and x j :k such that xl :k

is the longest suffix of both x j :k and x1:i which in turn become children of xl :k .

Figure 5.2 illustrates the steps taken by this procedure for constructing the

context tree for abb. Based on this procedure it is easy to see that the context

tree for any string has at most 2N nodes, as at most 2 new nodes are created

during an insertion operation.

5.2 Sequential Kneser-Ney Approximation

Recall from Section 2.4.2 that the Kneser-Ney approximation to inference in

the HPYP model sets the counts {cus , tus} such that they correspond to the

modified counts in Kneser-Ney smoothing (Section 2.2.3), which amounts to

all customers of type s sitting around the same table. In other words, tus = 1 if

cus > 0 and tus = 0 otherwise. The counts {cus , tus} for all contexts in the context

tree are thus completely determined by the observations (using (2.42)):

cus = cx
us +

∑
v:π(v)=u

1[cvs > 0], (5.1)

where cx
us denote the counts directly resulting from the observations. As tus is

a deterministic function of cus , the only data statistics that need to be stored

are the counts cus . Given the counts after processing the prefix x1:i−1, one can

easily update them to account for the observation xi in the context u = x1:i−1:

First cuxi is incremented; if cuxi was zero before, the parent count cπ(u)xi is

incremented; if cπ(u)xi was zero before, its parent count cπ(π(u))xi is incremented,

and so on, until a context with nonzero count for symbol xi or the root is

reached.

When this technique is applied to the Sequence Memoizer model (with

modified discounts (3.4)), we refer to it as “Unbounded depth Kneser-Ney”

(UKN). The sequential update rule for the counts above is the same as the one

used in some variants of the PPM compression algorithm, where this form of

update is known as the “shallow update”, as it does not require the counts to

be updated all the way along the tree (see [Steinruecken, 2014, Section 6.3.3]).

The advantage of UKN over the other inference schemes is that it is faster, as

no sampling is required, and more memory efficient, as only one count needs
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to be stored per context-symbol pair. As we will see in the evaluation, this

approximation typically yields competitive predictive performance.

5.3 Sequential Monte Carlo

Another way of performing inference for the posterior distribution over seating

arrangements in HPYP/SM models is via sequential Monte Carlo (SMC) meth-

ods (variants of which are also known as particle filtering). We refrain from

giving an introduction to general SMC methods here and refer the reader to

[Doucet et al., 2001] and [Cappé et al., 2007] for background. Fearnhead [2004]

noted that the sequential nature of the Chinese restaurant process lends itself

to sequential inference using such methods and developed an SMC scheme

for the Dirichlet process mixture model. Here we show how this idea can

be extended to the PYP case with delta function likelihood, as well as to the

hierarchical HPYP/SM model.

5.3.1 Sequential Imputation

The underlying SMC algorithm used here and in [Fearnhead, 2004] is the se-

quential imputation algorithm of Kong et al. [1994]. This is a general algorithm

which is applicable to any probabilistic model with observations x1:N and

associated latent variables z1:N as long as it is possible to sample from the

conditional distribution P(zi |xi , x1:i−1, z1:i−1) and the predictive distribution

P(xi |x1:i−1, z1:i−1) can be evaluated. The basic idea is to approximate the poste-

rior distribution over the latent variables z1:i after seeing i observations as a

weighted set of M particles (w ( j )
i , z( j )

1:i ), j = 1, . . . , M ,

P(z1:i |x1:i ) ≈
M∑

j=1
w ( j )

i δ
z

( j )
1:i

(z1:i ) (5.2)

and to update this approximation sequentially by sampling values for zi (and

keeping z1:i−1 fixed) as the observations xi , i = 1, . . . , N come in. In particular,

each particle z( j )
1:i−1 is extended by sampling

z( j )
i ∼ P

(
zi

∣∣∣xi , x1:i−1, z( j )
1:i−1

)
j = 1, . . . , M (5.3)

and the weight updated according to

w̃ ( j )
i = w̃ ( j )

i−1P
(
xi

∣∣∣x1:i−1, z( j )
1:i−1

)
(5.4a)

w ( j )
i =

(∑
k

w̃ (k)
i

)−1

w̃ ( j )
i (5.4b)
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with initial weight w̃ ( j )
1 = P(x1). It can be shown that these updates are a form

of importance sampling, where the proposal distribution Q(·) is the sequence

of conditional distributions (5.3) and the weights are the standard importance

sampling weights w ( j )
i = P(z( j )

1:i |x1:i )/Q(z( j )
1:i |x1:i ) [Kong et al., 1994]. Given such

a weighted particle approximation, the predictive distribution for a new obser-

vation can be approximated as

P(xi+1|x1:i ) = ∑
z1:i

P(xi+1|x1:i , z1:i )P(z1:i |x1:i ) ≈
M∑

j=1
w ( j )

i P(xi+1|x1:i , z( j )
1:i ). (5.5)

However, it is well known that the weights in the sequential importance sam-

pling scheme above quickly become skewed, ultimately collapsing on a state

where all weight is placed on a single particle [Cappé et al., 2007]. In order to

alleviate this “weight degeneracy” problem, one typically includes a “rejuvena-

tion” step after computing the weights, in which a new set of particles is chosen

from the old ones by duplicating particles with high weight and removing par-

ticles with low weight. Various strategies for performing this step have been

proposed [Douc et al., 2005], the simplest (and most widely used) of which is

known as multinomial resampling, where M equally weighted new particles

are independently drawn from (5.2).

5.3.2 Particle Filter For A Single PYP

Before turning to the hierarchical PYP models, let us consider a simple single

PYP model

G ∼ PY(α,d , H) (5.6a)

xi ∼G i = 1, . . . , N (5.6b)

whereα and d are fixed and H (·) is some fixed distribution overΣ. We know that

this model has an equivalent construction (2.30) in terms of the CRP, where the

latent variables are the partition structure A1:K . As the prior for this structure—

the CRP—is sequential in nature, we can write it in terms of a set of sequential

latent variables z1:N , one for each observation. One suitable set of variables

z1:N to describe A1:K would e.g. be to order the blocks k = 1, . . . ,K by least

elements, and let zi = k denote the block containing i , satisfying the constraint

zi+1 ≤ 1+max z1:i=1. Using this representation, the conditional distribution of

the latent variable zi used in (5.3) is proportional to prior probability P(zi =
k|z1:i−1) under the CRP, multiplied by P(x1:i |z1:i ), which is 0 if the assignment

z1:i is inconsistent with x1:i , i.e. ∃i , j : xi 6= x j ∧zi = z j (customers with different
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labels sitting at the same table), and ∝ H(s)ts otherwise. It is thus given by

P(zi |z1:i−1, x1:i−1, xi = s) ∝


csκ−d if zi = k(s,κ),κ= 1, . . . , ts

(α+ td)H(s) if zi = k(s, ts +1)

0 otherwise

(5.7)

where k(s,κ) denotes the global table corresponding to the κ-th table in section

s, and the counts csκ,cs , ts , t (defined as before) are obtained from x1:i−1 and

z1:i−1. Note that this is the same conditional distribution as used in add/re-

move Gibbs sampler (Algorithm 1). The predictive distribution P(xi+1|x1:i , z1:i )

required for computing (5.4) is given by (2.31), which using the notation intro-

duced above becomes

P(xi = s|z1:i−1.x1:i−1) = cs − tsd + (α+ td)H(s)

α+ c
. (5.8)

Instead of applying this algorithm to the posterior distribution over seating

arrangements, we can also apply it directly to the posterior distribution over

table counts ts (i.e. the COMPACT representation), marginalizing out the seating

arrangement, resulting in the joint distribution over {cs , ts} given by (2.33). The

state of the particle filter in this case is just the number of tables of each type

t ( j )
i ,s (for the j -th particle after observing the first i symbols). At each step, each

particle j is extended by sampling t ( j )
i ,s from

P
(
ti ,s |t ( j )

i−1,·, x1:i−1, xi = s
)
∝

(α+d t ( j )
i−1,·)H(s) if ti ,s = t ( j )

i−1,s +1

ci−1,s −d t ( j )
i−1,s if ti ,s = t ( j )

i−1,s

(5.9)

In other words, the number of tables of type s in particle j is incremented

by one with probability proportional to the posterior probability of creating

a new table, and is kept the same with probability proportional to the sum

of probabilities for joining any table of type s, obtained by summing the first

case in (5.7) over k = 1, . . . , ts . As before, each particle is then weighted by (5.8),

which does not depend on the seating arrangement.

As noted by Fearnhead [2004], proposing new particles by sampling from

(5.7) or (5.9) is rather wasteful, as the state space can be enumerated and there

is no advantage to having the same state represented by multiple particles (in-

stead of just one particle with a larger weight). As the number of possible cases

in (5.7) and (5.9) is typically small, it usually possible to enumerate all possible

extensions for each current particle, resulting in a larger set of putative parti-

cles. The weight for each such putative particle is proportional to the weight of

its parent, multiplied by the probability of the chosen extension according to
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(5.7) or (5.9) and further multiplied by the likelihood of the current observation

under the parent particle (5.8). Once this set of putative particles grows beyond

some specified maximum size, a resampling step can be employed to select a

subset of these particles, e.g. using simple multinomial resampling from the

weights or by using the technique proposed in [Fearnhead, 2004], which has the

advantage that each putative particle is included at most once in the resulting

particle set.2 Figure 5.3 shows a simulation comparing these algorithms, and

it can be seen that enumerating putative particles rather than sampling them

leads to significantly smaller variance of the estimates.

As this particle filtering algorithm can yield accurate results even with a

small number of particles, it can be useful as a building block within other

inference schemes, e.g. as proposal distribution within a Metropolis-Hastings

sampler for a hierarchical model. A different approach is taken by the “one-

particle particle filter” inference for the Sequence Memoizer that will be dis-

cussion in Section 5.3.4, where the sequential imputation technique is used

directly on the hierarchical model (and only a single particle is used).

5.3.3 Particle Filter for the HPYP / SM

The sequential Monte Carlo algorithms just described can be extended to the

HPYP/SM setting in the same way the add/remove Gibbs sampler (Algorithm 1)

for the PYP was extended to the HPYP/SM setting (Algorithm 2): in the hierar-

chical setting, each particle z( j )
1:i consists of all counts ({cusk , tus} (or {cus , tus} in

the COMPACT representation) for all nodes u in the context tree after processing

the first i symbols. As before, each iteration starts by extending all particles by

sampling from (or enumerating) (5.3), where zi now denotes all latent variables

associated with the i -th observation, throughout the hierarchy. In particular, zi

describes the contribution of xi to all seating arrangements along the path from

u = x1:i−1 to the root in the context tree. In order to sample from this distribu-

tion of extended seating arrangements, we can use the ADDCUSTOMER routine

from Algorithm 2, which performs the same function in the Gibbs sampler

(for the COMPACT version the probabilities (4.1) are used). In summary, each

particle z( j )
i−1 is extended by first seating the customer corresponding to xi in

the u = x1:i−1 restaurant according to (2.24a) (which is (5.7) with H (s) replaced

by Gπ(u)(s)), and, if this created a new table, recursively repeating the process

2When the state space is {ts }, particles with exactly the same state can still be created even
when the putative particles are generated by enumeration and resampling never duplicates
particles: if the previous generation of particles contains both ts = k and ts = k +1, then the
putative particles will contain ts = k+1 twice. These particles can be merged before resampling
to improve efficiency further.
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Figure 5.3: Accuracy of the presented SMC algorithms for a single PYP on a synthetic
data set: the observations are the same symbol repeated 100 times (i.e. cs = 100 for
one symbols s cs′ = 0 for all other symbols s′). The parameters in this simulation
are H(s) = 0.8,α = 1,d = 0.5. While the actual results vary with H(s),α, and d , the
results are qualitatively similar across the parameter range. Error bars show 1 standard
deviation and were obtained by repeating the simulation 500 times. Top: Estimate of
E [ts] as a function of cs . In red is the sampling SMC algorithm on ts (100 particles), in
green the version that enumerates the extensions (20 particles). In cyan is deterministic
“beam search” where the 20 particles with the highest weights were kept. In blue is the
“one particle” particle filter, the dashed blue line is the “fractional tables” approximation.
Bottom: Estimate of E [ts] at cs = 100 as function of the number of particles. Blue is the
sampling version, red the enumerating version. Not shown on here is the particle filter
in the full CRP representation: in this particular example, its performance is virtually
indistinguishable from the one using the compact representation.
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in the parent restaurant corresponding to Gπ(u). The weights (5.4) are given by

the hierarchical version of (5.8), given by (2.45). The improvements mentioned

in the non-hierarchical setting, i.e. better resampling strategies, enumeration

instead of sampling from (5.3), and using the COMPACT representation can also

be applied in the hierarchical setting.

5.3.4 One Particle Particle Filter

Based on the observation that the predictive performance of the SM is fairly sta-

ble under different settings of the latent variables {tus} and does not drastically

improve by averaging multiple samples (for example in Figure 4.4, the total

improvement from the 1PF initialization to the sample average obtained by

Gibbs sampling after burn-in is only ≈ 0.02 bits/symbol), an extreme case of the

above SMC algorithm using only a single particle M = 1 might be an efficient

yet effective way of performing inference in the HPYP/SM model. We explored

this idea (which we dubbed the “one particle particle filter” (1PF) in Gasthaus

et al. [2010]), where we showed that this strategy outperforms the Kneser-Ney

approximation and performs not much worse than “proper” inference using

Gibbs sampling.

When only a single particle is used, the weighting step (5.4) as well as

resampling are unnecessary, so that the resulting algorithm simply consists of

repeated calls to ADDCUSTOMER, one for each observation xi . For concreteness

and to show the simplicity of the resulting algorithm, it is given in Algorithm 3.

If we were interested in the posterior distribution over {tus}, this algorithm

is obviously not a good idea, as it produces biased samples {tus}, that are

not samples drawn from the true posterior distribution, but instead from the

sequential proposal distribution (5.3) (see Figure 5.3). However, we are not

directly interested in the posterior, but in making predictions for new symbols,

and empirically the samples from the 1PF procedure result in predictions that

are close to the ones obtained via Gibbs sampling. The results are included in

Tables 5.1, 5.2, and 6.1.

Intuitively, this can be understood in the following way: Every time a new

observation is added to the model, the counts are incremented for some ran-

dom distance up the tree. This sharing of counts is the way observations in

related context reinforce each other. One of the reasons why single sample/-

particle predictive inference works in this model is that much of the predictive

ability of the SM comes from this hierarchical sharing of counts. The shared

counts result in hierarchical smoothing of the predictive distributions. Av-

eraging over multiple samples simply smooths the predictive distributions
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Algorithm 3 HPYP/SM One Particle Particle Filter (1PF)
This algorithm effectively consists of calling ADDCUSTOMER from Algorithm 2 (modi-
fied for the COMPACT representation) for each context-symbol pair in the input. Note
that if t+ = 0 is sampled in line 6, t? will become and stay zero for the remainder of
the inner loop in line 8, so that no further changes to cvs/tvs will occur and the loop
can be exited early. The role of the table-increment variable t+ as well as the reason
for writing the algorithm in this somewhat curious way using a for-loop and the t?

variable will become apparent in Section 5.4, where a different approximation scheme
is devised by replacing the sampling step in line 6 with its expectation.

1: for i = 1, . . . , N do
2: Let u ← x1:i−1 and s ← xi

3: Insert u into the context tree
4: Set cus ← 1, tus ← 1 . The first customer sits at the first table
5: Initialize t?← 1 . # of tables created in the parent restaurant
6: for v =π(u),π(π(u)), . . . ,ε do . Contexts along the path to the root
7: Sample t+ ∈ {0,1} using (4.1), i.e. with probability proportional to{

cvs − tvsdv t+ = 0

αv +dvtv·Gπ(v)(s) t+ = 1
(5.10)

8: cvs ← cvs + t? . Increment customers
9: t?← t?× t+

10: tvs ← tvs + t? . Increment tables
11: end for
12: end for

more.

As an aside, another way of interpreting the HPYP/SM particle filtering

algorithm (with M > 1) is as an exponentially weighted average online learn-

ing strategy optimizing the log loss (see e.g. [Cesa-Bianchi and Lugosi, 2006,

Chapter 2]). If no resampling of particles is performed, the described particle

filtering algorithm with M particles is equivalent to running M independent

copies of the 1PF algorithm and then combining the predictions for the i -th

item according to the weights

w ( j )
i ∝ exp

(
i∑

k=1
logP(xk |x1:k−1, z( j )

1:k−1)

)
j = 1, . . . , M . (5.11)

We can thus view the particle filter as an online regret minimization algorithm

where the base predictors are obtained using the 1PF algorithm.

5.4 Inference Using Fractional Counts

Given that the different methods for inferring the latent table counts tus yield

very similar results, and the fact that even a single sample provides good per-

formance, it seems appealing to either use some form of deterministic point
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estimate for the tus (e.g. E [tus] or the MAP assignment) or to derive some

other closed-form approximation of the posterior expectation of the predictive

distribution.3

The Kneser-Ney approximation is one way of obtaining such a point es-

timate, but it is not derived from the HPYP model, and we have seen that is

outperformed by the stochastic 1PF approximation. Another idea for a deter-

ministic point estimate was put forth by Huang and Renals [2007]: Asymptoti-

cally, the prior expected number of tables grows as a power law in the number

of customers (see Section 2.3.4). Based on this observation, they proposed

to deterministically set tus = cβus , where β in their work is chosen according

to the fixed rule β = n1/(n1 +2n2) where n1 and n2 are the total number of

n-grams with counts exactly one and two respectively (as originally proposed

for Kneser-Ney smoothing in [Ney et al., 1994]). They show that this choice

performs favorably compared to variants to Kneser-Ney, but does not achieve

the performance of the HPYP model where the tus are inferred using Gibbs

sampling. One simple but unexplored extension to this would be to let each

depth have its own parameter β|u|, which are optimized on a validation set.

Instead of using the asymptotic growth of t , the prior expectation for the

number of tables in a two parameter CRP can be computed in closed form and

is given by [Pitman, 2002, Equation 161]:

Eα,d [t ] =
c∑

i=1

[α+d ]i−1
1

[α+1]i−1
1

(5.12)

which for d > 0 can be written as

[α+d ]n
1

d [α+1]n−1
1

− α

d
(5.13)

and in the special case of the Dirichlet process with d = 0 reduces to

Eα[t ] =
c∑

i=1

α

α+ i −1
(5.14)

which is simply the sum of the probabilities for the (independent) events that

the i -th customer creates a new table [Antoniak, 1974]. If each block in the CRP

partition is labeled independently with a draw s ∼ H , then the prior expected

value of the number of blocks labeled s is simply Eα,d [ts] = Eα,d [t ]H(s).

For the Dirichlet process case, one can also compute the posterior expected

table counts, given by [Antoniak, 1974; Blunsom et al., 2009]:

Eα[ts |cs] =αH(s)
cs∑

i=1

1

αH(s)+ i −1
. (5.15)

3Note that in a hierarchical PYP model the predictive distribution (2.45) is not linear in tus ,
so that in order to compute the expectation of the predictive distribution under the posterior, it
is not sufficient to compute E [tus ] (even jointly for all u), as the tus contribute to the customers
cπ(u)s in the parent restaurant, and these terms are multiplied.
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Blunsom et al. [2009] analyzed using this approximation in the context of

HDP models for NLP applications. They provided an expression for this exact

expectation that can be computed in O(1) time, removing the need for further

approximation.4 They cautioned that this expectation is assuming a fixed base

distribution H (s) and showed empirically that when H (s) is not fixed (e.g. in the

hierarchical setting), it is not necessarily an accurate approximation. However,

Blunsom and Cohn [2011] explored the idea of approximating the posterior

expectation of tus further (to generate proposals in an MCMC scheme for a PYP-

based HMM model), and showed that it performed well in that setting. Here we

explore the same idea, based on using “fractional” counts (i.e. cus , tus ∈R+), in

the setting of the HPYP/SM model and show that it is (unreasonably) effective.

Unfortunately, even for the setting with fixed base distribution H(s), no

closed-form expression for the posterior number of tables has been derived yet

for the general two-parameter case (with d 6= 0). This endeavour is complicated

by the fact that posterior distribution over the {ts}s does not factorize over the

different types s as it does in the one-parameter case. However, Blunsom and

Cohn [2011] have suggested an iterative approximation based on the sequential,

one-step probability of creating a new table. Recall that the one particle filter

(Algorithm 3) extends its state in each iteration by visiting the restaurants

along the path from the current context to the root, sampling the binary “table

creation” variables t+ according to (5.10) and then adding t+ to the number of

tables in the current restaurant and the number of customers in the parent.

The sequential approximation suggested by Blunsom and Cohn [2011] is to

replace the sampling of t+ in line 8 of Algorithm 3 with the computation of its

expectation E [t+] (and setting t+ ← E [t+]). In particular, from (5.10) we have

E [t+] = αv +dvtv·Gπ(v)(s)

cvs − tvsdv +αv +dvtv·Gπ(v)(s)
(5.16)

where the variables on the right and side are updated as in Algorithm 3. While

in the particle filter the creation of a new table in a restaurant leads to the

insertion of a new customer into the parent restaurant (which in turn can

sit at a new table, leading to another customer being inserted into its parent

restaurant, and so on), with the approximation (5.16) the “fractional” table

contribution t+ gets send to its parent restaurant as a “fractional customer”,

where it contributes to another fractional table according to (5.16), scaled by

the “size” of the customer being inserted t+. The variable t? in Algorithm 3
4Goldwater et al. [2006b] had previously used an approximation to this expectation (due

to Antoniak [1974]) in the HDP setting. However, as pointed out by Blunsom et al. [2009],
this approximation can be inaccurate in the regime typically encountered in these models.
Additionally, the original paper Goldwater et al. [2006b] contained an error (now corrected),
dropping an H(s) term from the approximation.
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denotes this scaled fractional table contribution coming from the child restau-

rant. This way the counts along the path are set to their expected values under

the one-step posterior distribution, i.e. the resulting counts tus are exactly the

average counts obtained by running the 1PF algorithm multiple times (see

Figure 5.4). We refer to this approximation as the “fractional” tables/customers

approximation (FRAC). This idea of using real-valued expectations of binary

random variables instead of sampling their values has previously been success-

fully applied for approximate inference in stochastic neural network models,

e.g. in the Helmholtz machine [Dayan et al., 1995].
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Posterior Expected Number of Tables, α=1.0, d=0.5, H(s) =0.5

Figure 5.4: Number of tables for multiple runs of the 1PF algorithm and the fractional
tables approximation on a two level hierarchy G1 ∼ PY(α,d , H)),G2 ∼ PY(α,d ,G1), xi ∼
G2 with α = 1 and d = H(s) = 0.5 as 100 customers of the same type s are inserted.
The solid lines show the true expectation, dashed lines the fractional approximation,
and the crosses and shaded area show the mean and 2 standard deviations of the 1PF
algorithm (using 5000 runs), respectively. In red are the number of tables in the G2

restaurant, in black the ones in the G1 restaurant. Note that the mean under the 1PF
algorithm and the fractional tables approximation coincide.

In terms of the simpler single PYP model (5.6), the approximation we are

making is to turn the exact one-step-ahead formula

E
[

t [1:i ]
s

∣∣∣{c [1:i−1]
s , t [1:i−1]

s

}
s

]
= t [1:i−1]

s +E
[

t+
∣∣∣{c [1:i−1]

s , t [1:i−1]
s

}
s

]
1[xi = s] ,

(5.17)

where the superscript [1 : i ] means conditioning on the first i observations x1:i ,

and the binary random variable t+ is defined as

P(t+ = k|{cs , ts}s) =


cs−ts d

(cs−ts d)+(α+d t·H(s)) k = 0

α+d t·H(s)
(cs−ts d)+(α+d t·H(s)) k = 1,

(5.18)
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Figure 5.5: One-step expectation “fractional tables” approximation to the posterior
expected number of tables in a two parameter CRP. The approximation is shown as
dashed lines and the true expectations are shown as solid lines. On the x-axis are the
number of customers cs of type s with probability H(s) under the base distribution.
The discount parameters are chosen as d = 0.3 for the left panel and d = 0.9 for the
right panel. The different colours show the effect of different base probabilities H(s).
For these experiments, all observations are of the same type, such that c· = cs and
t· = ts . The quality of the approximation deteriorates for intermediate values of H(s)
as d gets closer to 1.

into an approximation by iteratively replacing t [1:i ]
s in the RHS of (5.17) by its

expectation, starting with t [1:0]
s = 0 and setting t+ = 1 for the first i such that

xi = s (for all s, i.e. the first customer of a given type s always sits at the first

table).

The accuracy of this approximation depends on the mismatch between the

base distribution H (s) and the empirical distribution of the observations, the or-

der in which the observations are incorporated into the approximation, and the

discount parameter. Figure 5.5 compares the accuracy of this approximation

for different discount parameters and different base distributions. In Figure

5.6 we demonstrate the effect of this approximation in a simple three-level PYP

hierarchy. When d is large, the approximation can significantly overestimate

the true expectation.

The approximation can either be used as a starting point for a proposal

distribution in a batch MCMC inference scheme (as originally proposed in

[Blunsom and Cohn, 2011]), or it can be used directly in the online setting. We

demonstrate the effectiveness of this approximation when applied to online

prediction in the context of data compression (Chapter 6) where it is shown

to outperform the other approximate inference schemes with comparable

computational complexity (cf. Table 6.1).
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Figure 5.6: Hierarchical “fractional tables” approximation to the posterior marginal
expected number of tables in hierarchy of three PYPs. The hierarchy is G1 ∼ PY(α,d , H ),
G2 ∼ PY(α,d ,G1), G3 ∼ PY(α,d ,G2), xi ∼ G3 with α = 1 and d = 0.3 (left) or d = 0.9
(right). Dashed lines show the approximation, true values are shown as solid lines.
On the x-axis are the number of customers cs in the bottom restaurant. The different
colours show the different levels or the hierarchy. For small to intermediate values of
d the quality of the approximation is very good, but as in the non-hierarchical case it
deteriorates for intermediate values of H(s) as d gets closer to 1.

5.5 Local Optimization

Inspired by the good empirical performance of the approximation to the

marginal expectations of tus , we considered sequentially and locally optimizing

tus wrt. its conditional posterior distribution (2.33), keeping all other values,

including the probability under the base distribution, fixed. After a new cus-

tomer of type s is inserted into context u, the number of tables tus is optimized,

followed by an optimization of tπ(u)s and so on. However, this approach turned

out to be not very successful. On the one hand, this local optimization provides

a poor approximation to the global MAP assignment in the hierarchical setting.

On the other hand, while the predictive performance is on par with the KN

approximation, it is computationally much more expensive as it scales quadrat-

ically with cus due to the computation of the Stirling numbers. An improvement

to this local optimization is to optimize the joint posterior distribution (2.43)

of ts along a path, e.g. (tus , tπ(u)s , tπ(π(u))s , . . . , tπK (u)s)), where the accuracy (and

complexity) of the approximation can be increased by increasing the path

length K . However, experiments with K = 1 (pairs of nodes) did not lead to

promising results and showed that this approach is computationally too expen-

sive in practice. Figure 5.7 illustrates the behavior of these approximations for

a simple three-level hierarchy.
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Figure 5.7: Local optimization approximation to the posterior conditional number of
tables in hierarchy of three PYPs. The hierarchy is G1 ∼ PY(α,d , H), G2 ∼ PY(α,d ,G1),
G3 ∼ PY(α,d ,G2), xi ∼G3 with α= 1 and d = 0.3 (left) or d = 0.9 (right). On the x-axis
are the number of customers cs in the bottom restaurant. The different line types show
the different levels or the hierarchy (solid: bottom; dashed: middle; dash-dotted: top),
while the different colors show the different approximations (global: global optimum;
pairwise: bottom up optimization using pairs of nodes; local: single node conditional
posterior optimization).

5.6 Re-Instantiation

One complication that we have ignored thus far arises when combining these

online inference schemes with the online context tree construction for the

Sequence Memoizer model: during tree construction, context splits can occur,

creating a new node for a context v whose seating arrangement Av or counts

{tvs}s associated with the CRP representation of Gv need to be determined. This

re-instantiation of the CRP representation of a distribution that had previously

been marginalized out (i.e. where the context is not explicitly represented in

the context tree) is also necessary when making predictions for contexts whose

longest shared suffix with the training sequence is not explicitly represented in

the context tree, and the technique for handling that case discussed in Section

3.4 can also be applied here. When a split occurs as position i , there are four

nodes involved: the new, longer context being inserted u = x1:i−1, the node

being split u′, the new, shorter context resulting from the split v which becomes

the new parent of u and u′, as well as the parent π(v) of v (which was the parent

of u′ before the split). In the example in Figure 5.2 these correspond to the

contexts abb, ab, b, and ε, respectively.

As xi = s is the first symbol observed in context u, it will correspond to the

first customer sitting alone at the first table, i.e. we initialize cus = 1, tus = 1 for

s = xi and cus = 0, tus = 0 otherwise.
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Let us consider the state after splitting while inserting the context u = x1:i−1,

but before the symbol xi = s is inserted (i.e. just before line 4 in Algorithm 3).

In the simplest case, the Kneser-Ney approximation, all customers of a type s

sit at the same table, so that after the split, using (2.42) we have

cvs = tu′s = 1[cu′s > 0] tvs = 1[cvs > 0] = 1[tu′s > 0] (5.19)

and all other counts remain unchanged.

When using the particle filter (or the special case with a single particle),

we can re-instantiate the counts / seating arrangement for the v restaurant as

described in Section 3.4, by sampling a fragmentation of the tables in the Gu′

restaurant from the CRP. If the COMPACT representation is used, this requires

sampling the seating arrangement using (4.5) first.

When using “fractional counts” (Section 5.4), it is not clear how to perform

the required approximate fragmentation operation on the non-integer counts

resulting from this approximation. To get around this we make another ap-

proximation and assume that all fractional customers coming from the Gu′

restaurant sit at their own fractional tables in Gv, i.e. we set

cvs = tu′s tvs = tu′s (5.20)

and leave all other counts unchanged. This setting satisfies the constraints

(2.42) along the path Gπ(v) →Gv →Gu′ and leads to good performance empiri-

cally.

When making predictions in a new, unseen context u that is not explicitly

represented in the context tree, one can either proceed as above and first re-

instantiate the restaurant for its parent context v and then make predictions

using Gv, which would be the correct thing to do. However, we found that

in practice making the additional computational effort of re-instantiating Gv

might not be necessary, as making predictions using the parent context π(u)

yields similar predictive performance and does not require the (relatively expen-

sive) operation of sampling and fragmenting a seating arrangement. Predictive

performance using both strategies is shown in Table 5.1.

5.7 Hyperparametersαu and du

In this section we will turn to the hyperparametersαu and du, by first discussing

an extended hyperparameter range that we proposed in [Gasthaus and Teh,

2010], and then outlining several strategies for setting them.
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5.7.1 Extended Hyperparameter Range

In the original paper on the Sequence Memoizer [Wood et al., 2009], we pro-

posed setting all the concentration parameters αu to zero. Though limiting

the flexibility of the model somewhat, this allowed us to take advantage of a

simplified version of the coagulation and fragmentation properties of PYPs

(Section 2.3.5) to marginalize out all but a linear number (in N ) of restaurants

from the hierarchy, as described in Section 3.3.

However, αu = 0 is not the only possible setting that allows the coagu-

lation/fragmentation result to be applied. In [Gasthaus and Teh, 2010] we

proposed the following enlarged family of hyperparameter settings: In the

hierarchical prior underlying the Sequence Memoizer (3.2), let αε =α> 0 be

free to vary at the root of the hierarchy, and set each αu = ασ(u)du for each

u ∈Σ∗\{ε}. The discounts du can vary freely.

In addition to more flexible modelling, this also partially mitigates the

overconfidence problem that occurs when the same symbol is repeated many

times in the input (as observed in the data compression setting in [Gasthaus

et al., 2010]). To see why, notice from (2.45) that the predictive probability is a

weighted average of predictive probabilities given contexts of various lengths.

Since αv > 0, the model gives higher weights to the predictive probabilities of

shorter contexts (compared to αv = 0). These typically give less extreme values

since they include influences not just from the sequence of identical symbols,

but also from other observations of other symbols in other contexts.

Hyperparameter settings of this form also retain the coagulation and frag-

mentation properties, which allow us to carry out the marginalization that

makes efficient inference in the Sequence Memoizer possible. To see this,

consider the three level chain

G0 ∼ PY(α,d0, H) G1 |G0 ∼ PY(αd1,d1,G0) G2 |G1 ∼ PY(αd1d2,d2,G1),

(5.21)

which uses hyperparameters of the form described. Then using Theorem

1 from Section 2.3.5, we can first marginalize out G1 to obtain G2 | G0 ∼
PY(αd1d2,d1d2,G0) and then apply it again to marginalize out G0 to obtain

G2 | H ∼ PY(αd1d2,d0d1d2, H). Of course we could alternatively first marginal-

ize out G0 to obtain G1 ∼ PY(αd1,d0d1, H) and then marginalize out G1 to

obtain the same marginal distribution for G2. So by marginalizing out nodes

recursively we can obtain the same context tree representation as in the original

SM paper. Note that the concentration parameter for a given distribution does

not change through this marginalization, and that the discount parameters

change in exactly the same way as in the αu = 0 case described in Section 3.4,
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Particle Filter only Gibbs (1 sample) Gibbs (50 sample avg.) Online
α Fragment Parent Fragment Parent Fragment Parent PF Gibbs

0 8.45 8.41 8.44 8.41 8.43 8.39 8.04 8.04
1 8.41 8.39 8.40 8.39 8.39 8.38 8.01 8.01
3 8.37 8.37 8.37 8.37 8.35 8.35 7.98 7.98
10 8.33 8.34 8.33 8.33 8.32 8.32 7.95 7.94
20 8.32 8.33 8.32 8.32 8.31 8.31 7.94 7.94
50 8.32 8.33 8.31 8.32 8.31 8.31 7.95 7.95

Table 5.1: Average log-loss on the Brown corpus (test set) for different values of α, different
inference strategies, and different modes of prediction. Inference is performed by either just
using the particle filter or using the particle filter followed by 50 burn-in iterations of Gibbs
sampling. Subsequently either 1 or 50 samples are collected for prediction. Prediction is
performed either using fragmentation or by predicting from the parent node. The final two
columns labelled Online show the results obtained by using the particle filter on the test set
as well, after training with either just the particle filter or particle filter followed by 50 Gibbs
iterations. Non-zero values of α can be seen to provide a significant increase in performance,
while the gains due to averaging samples or proper fragmentation during prediction are small.

i.e. the resulting discounts are the product of all discount parameters along the

marginalized path.

We performed a set of experiments using the re-instantiating sampler to

evaluate the effect of the non-zero concentration parameter. The results are

shown in Table 5.1. Predictions with the SM can be made in several different

ways. After obtaining one or more samples from the posterior distribution

over customers and tables (either using particle filtering or Gibbs sampling

on the training set) one has a choice of either using particle filtering on the

test set as well (online setting), or making predictions while keeping the model

fixed. One also has a choice when making predictions involving contexts that

were marginalized out from the model: one can either re-instantiate these

contexts by fragmentation or simply predict from the parent (or even the child)

of the required node (a further approximation to increase computational effi-

ciency). While one ultimately wants to average predictions over the posterior

distribution, one may consider using just a single sample for computational

reasons.

5.7.2 Hyperparameter Optimization

Experience with HPYP models and the Sequence Memoizer has shown that get-

ting the hyperparameters in the correct range is crucial for good performance,

and fine-tuning them to the data at hand leads to additional improvements. In

fact, Steinruecken [2014] suggests that the particular choice of discount param-

eters d|u| that increase towards one with greater context length |u| is responsible
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for the SM model’s performance not deteriorating when long contexts are used,

an effect that has been observed e.g. when extending PPM to unbounded con-

text lengths in PPM* [Cleary and Teahan, 1997]. In the following we will outline

some strategies for optimizing or inferring the SM hyperparameters in the

offline as well as in the online setting.

Sampling Hyperparameters

In the original work on the HPYP language model, Teh [2006b] suggested sam-

pling the hyperparameters using an auxiliary variable MCMC scheme, inter-

leaved with sampling the seating arrangements. By placing Beta priors on

the discount parameters du and Gamma priors on the αu, conjugate auxiliary

variables can be introduced that when sampled lead to simple conditional

distributions for d|u| and α|u| that can easily be sampled from (see [Teh, 2006b,

Appendix C] for details).

For the Sequence Memoizer, where the discounts du are products of the

underlying discount parameters d|u|, this auxiliary variable scheme is no longer

viable, which is why in [Wood et al., 2009] Metropolis-Hastings updates with

Gaussian proposals centered at the current value were used, with a uniform

prior placed on the discount parameters d|u|.

The main advantage of sampling the hyperparameters (as opposed to op-

timizing them) is that no separate validation set is required, so that the full

train and validation sets can be used for both estimating the counts as well

as inferring the posterior distribution over the hyperparameters. However,

sampling is difficult in the online setting and can be slow in the offline setting,

and optimizing the hyperparameters, either on a validation set or online, is a

viable alternative.

Optimizing Parameters on a Validation Set

For traditional smoothing methods such as interpolated Kneser-Ney smooth-

ing, it is standard practice to optimize the hyperparameters by minimizing

cross-entropy on a validation set using standard numerical optimization tech-

niques [Chen and Goodman, 1999]. The same technique was also applied to

the HPYP setting by Teh [2006a], who found that optimizing the hyperparame-

ters for the counts obtained by the Kneser-Ney approximation and then using

those parameters for the HPYP model outperformed sampling the hyperpa-

rameters (for a reduction in perplexity from 103.8 to 101.9 on the AP news

corpus), despite effectively optimizing the parameters of the “wrong” model.

Note that it is necessary to set aside part of the available data as validation set
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for this approach – batch optimization of the hyperparameters on the training

set leads to undesirable results. This means that in practice there is a trade-off

between using more data to obtain the counts and using data to optimize the

hyperparameters.

For the Sequence Memoizer, the same approach can be applied. We exper-

imented with several variants, differing in how inference of the table counts

and the parameter optimization are interleaved and whether the Kneser-Ney

approximation is used to determine the counts or not. When the KN approxi-

mation is used, the setting of the hyperparameters does not influence the latent

variables in the model – these are set deterministically independently of the

discount and concentration parameters. Because of this, it is not necessary to

re-infer the latent variables when the parameters are changed, so that they can

be computed once and then remain fixed. The cross-entropy objective function

is then just a function of the discount and concentration parameters and can

be optimized e.g. using (quasi) Newton methods such as L-BFGS [Nocedal and

Wright, 2006].

Similarly, instead of obtaining the latent counts using the Kneser-Ney ap-

proximation, they can be obtained using the 1PF algorithm or the fractional

tables approximation, fixed, and the resulting function of the hyperparameters

optimized. More interestingly, one can interleave the optimization of the hyper-

parameters with Gibbs sampling. In such a scheme, the latent counts are first

initialized using the KN or 1PF approximations, and each subsequent iteration

first optimizes the loss on the validation set for some number of steps, holding

the counts fixed, followed by some number of rounds of Gibbs sampling, hold-

ing the hyperparameters fixed. Following a number of such iterations one can

either collect samples directly, or fold the validation set into the training set, fix

the optimal hyperparameters, and run the Gibbs sampler again. Teh [2006a]

also mentioned such a scheme, but deemed it too costly. In our experiments,

one iteration consists of five steps of L-BFGS updates to the hyperparameters,

followed by a single sweep of Gibbs sampling, takes ≈ one minute per iteration

and converges after less than 100 iterations.

Table 5.2 compares two fixed hyperparameter settings (uniform and “stan-

dard”) against optimizing hyperparameters for fixed counts (obtained us-

ing the KN approximation) and interleaving hyperparameter optimization

on the validation set with Gibbs sampling of the counts obtained from the

training on the Brown corpus. The uniform hyperparameter setting is α= 0

and d|u| = 0.5, while the “standard” hyperparameter setting is the one used

in [Gasthaus et al., 2010; Gasthaus and Teh, 2010] and amounts to α = 0,
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Inference Uniform Standard Opt. Uniform Opt. Standard

KN 8.92/8.86 8.57/8.52 8.40/8.34 8.40/8.34
1PF 8.85/8.79 8.52/8.46 8.34/8.29 8.37/8.31
1PF + Gibbs 8.33/8.77 8.52/8.46 8.32/8.25 8.32/8.25
1PF + Gibbs (avg) 8.77 8.45 8.24 8.24

Table 5.2: Effect of hyperparameter optimization on prediction performance on the
Brown corpus. Shown is the average log-loss on the validation set / test set (test set
only for the last row). The first two columns correspond to the initial, non-optimized
hyperparameter settings (see text). The last two columns correspond to the optimized
hyperparameters, after initializing the optimization with either setting. The first two
rows correspond to fixing the latent counts using either the KN or the 1PF approxi-
mation, the last two rows correspond to the alternating optimization/Gibbs sampling
scheme. The last row shows the loss obtained by averaging the predictions for all
samples obtained using this procedure.

d[0:9] = (0.05,0.7,0.8,0.82,0.84,0.88,0.91,0.92,0.93,0.94), d∞ = 0.95. We refrain

from folding the validation set into the training set after optimization here in

order to not conflate the effects and to make the results comparable to previous

work. Three effects can be observed: Firstly, optimizing the hyperparameters

yields significant performance improvements (the best loss obtained for fixed

hyperparameters in Table 5.1 is 8.31 bits/word). Secondly, the interleaved pro-

cedure yields similar results for both initializations. Thirdly and somewhat sur-

prisingly, when the 1PF approximation is used, the latent counts obtained using

the uniform hyperparameter initialization lead to better final performance after

optimization than the “standard” parameters. In all cases, the resulting pa-

rameter values are similar. In particular, the ones leading to the best result are

α = 6.33, d[0:9] = (0.998,0.76,0.92,0.96,0.99,0.99,0.999,0.999,0.999,0.91) and

d∞ = 0.997] (the value 0.999 was used as an upper bound during the optimiza-

tion). Fixing these parameters and folding the validation set into the training

set one obtains a loss of 7.94 bits/word on the test set (averaging 100 samples).

To test the transferability of these optimal values we used these settings and

computed the log-loss for the AP news corpus (again folding in the validation

set and averaging 100 samples). Using the optimal values obtained on the

Brown corpus yields a log-loss of 6.66 bits/symbol, whereas optimizing the

hyperparameters using the same interleaved procedure directly on the AP

corpus yields a slightly better 6.62 bits/symbol.

Online Parameter Learning using SGD

In the online setting, in addition to building the context tree incrementally and

online inference for the counts cus and tus we may also want to simultaneously
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optimize the concentration and discount parameters of the model in an online

fashion. One way of doing this is to interleave updates for the counts (KN, 1PF,

or the fractional approximation) with a stochastic gradient descent update to

the hyperparameters: After receiving a new input (but before updating the

counts), we compute the gradient of the logarithm of the predictive probability

(2.45) with respect to the parameters. The required gradients can be computed

recursively in a single pass along the path from the root to the node where the

prediction is made and thus the computational overhead for this computation

is small (it scales as the product of the number of parameters and the path

length). We then update the counts using either of the described methods,

and finally update the parameters by taking a small step in the direction of

the gradient, thus increasing the probability of observing the same symbol in

the same context. If the counts were fixed, this update corresponds exactly

to standard stochastic gradient descent in the online learning setting. For

example, the PAQ8 family of compression algorithms update their parameters

in this way after observing a new symbol [Knoll, 2011]. However, as the counts

are not fixed in our case, the resulting algorithm is not straightforward to

analyze, and this should be seen as a heuristic requiring further study. One

way of interpreting this procedure is as an online EM algorithm [Cappé and

Moulines, 2009; Del Moral et al., 2010], where the expectations with respect

to the posterior distribution of the latent variables are approximated rather

crudely using a single (approximate) sample.

We found empirically that optimizing the parameters in this way using a

small (fixed) learning rate did only marginally improve performance when

initialized from hand-tuned parameter values, but did achieve comparable

results when all discount parameters where uniformly initialized to 0.5 (see

Table 6.1 for results predictive performance in the compression setting using

this technique).



CHAPTER 6
The Sequence Memoizer

for Data Compression

One of the fundamental results in information theory is that the minimal num-

ber of bits required to code a sequence of symbols x1:T ∼ P(x1:T ) is− log2 P(x1:T ),

and the Kullback-Leibler divergence KL[P‖ Q] measures the number of extra

bits required on average if Q is used for coding instead of the true distribu-

tion P. It is hence not surprising that many statistical techniques for lossless

data compression are based on finding good approximations to the underlying

data-generating distribution.

Clever adaptive entropy coding techniques such as arithmetic coding [Wit-

ten et al., 1987] have made it possible to directly turn any sequential prob-

abilistic prediction algorithm that at any time point t outputs a predictive

distribution over the next symbol Pt (xt ) into a practical lossless compression

algorithm that is asymptotically optimal (see e.g. [MacKay, 2003, Chap. 6]). Any

improvement in a predictive model thus directly translates into better com-

pression performance. The symbols in this case (i.e. the underlying alphabet

Σ) are typically either the bytes (Σ= {0,1, . . . ,255} or bits (Σ= {0,1}).

While some of the currently commonly used lossless compression programs

such as gzip or bzip2 are not (directly) based on this idea, other mainstream

compression programs are, for example those in the RAR family, which is based

on a variant of PPM (see below). However, many of the best currently known

general-purpose compressors (in terms of compression ratio) are based on this

principle.1

1 See for example the leaderboard of compression algorithms on a text compression bench-
mark maintained by Matt Mahoney at http://mattmahoney.net/dc/text.html. Almost all
of the top contenders are based on adaptive entropy coding, using either adaptive ensembles
of predictors (know as “context mixing” in the compression community) or variants of PPM as
the underlying predictive model.
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Given that the Sequence Memoizer performs well as a sequence model in

the language model setting, it is natural to assess its performance as a predictive

model for lossless data compression. The main ingredients that make this

possible, namely online context tree construction and online inference, were

developed in the last sections so that we focus on a more pragmatic description

of the resulting algorithm here. This work was first published in [Gasthaus et al.,

2010].

6.1 Related Work

A large amount of work has been done on predictive models for data com-

pression (see e.g. [Mahoney, 2013] and references therein). Conceptually very

similar to the SM is the PPM family of algorithms [Cleary and Witten, 1984; Mof-

fat, 1990; Bunton, 1997] (see [Cowans, 2006; Steinruecken, 2014] for a review

from a probabilistic modelling perspective), which are based on incrementally

estimating a byte-level n-gram model based on a back-off scheme. There are

several variants of PPM that differ in the way the symbol and back-off proba-

bilities are estimated. The PPM-B and PPM-D variants make use of absolute

discounting and are thus similar to non-interpolated Kneser-Ney smoothing

(see Section 2.2.3) and the prediction rules resulting from the HPYP/SM model

[Cowans, 2006, Sec. 2.3.7]. The PPM? [Cleary and Teahan, 1997] variant uses a

similar (though not identical) compressed trie data structure to efficiently han-

dle unbounded context lengths. However, based on the experiments presented

in that paper, it appears that PPM is unable to make use of the information

contained in longer contexts, though some improvements have been made in

the PPM-Z variant by modifying the probability estimation rule [Bloom, 1998].

Steinruecken [2014] explored the curious discrepancy between the predictive

performance of PPM? and the SM, and found that depth-dependent discount

parameters used in the SM are likely the reason for its superior performance.

The context tree weighting (CTW) algorithm [Willems et al., 1995] was

originally introduced for data compression, where it is used to make bit-level

predictions. While the original CTW algorithm required an upper bound on

the maximum context length, it has also been extended to remove that bound

[Willems, 1998], again using similar though not identical compressed trie data

structure. Context Tree Switching (CTS) [Veness et al., 2012] and its recent

extension Skip-CTS [Bellemare et al., 2014], perform CTW’s “double mixture”

(over trees and node parameters) over a larger class of models and have been

shown to outperform CTW on data compression benchmarks, and have also
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successfully been applied to other prediction tasks.

The PAQ family of compression algorithms are based on the idea of context

mixing, which makes predictions using an adaptively weighted ensemble of

base predictors [Mahoney, 2005], where the mixing weights are chosen based

on context and optimized sequentially. PAQ8, a modern variant, employs a

neural network trained using online stochastic gradient descent on the predic-

tion error to perform the weighting. Numerous variants exist, which differ in

the base predictors used, the exact weighting architecture and the various pre-

and postprocessing techniques employed. Most variants are only documented

in the software itself, though attempts have been made to document, study,

and improve these methods [Knoll, 2011; Knoll and de Freitas, 2012]. Given the

recent success of ensemble methods for many prediction tasks, it is not surpris-

ing that PAQ-based compressors are currently among the best know general

purpose compression techniques. They typically employ a large number of

base predictors, some of which are specialized for certain types of data. In prin-

ciple, predictive models like the SM could be integrated into context mixing

compressors as one of the base predictors (some of them currently employ a

variant of PPM). However, compression ratios of PAQ-based compressors are

already very good and computational and memory requirements are currently

the main reasons preventing their widespread adoption.

Since the original proposal [Gasthaus et al., 2010] of using the SM as a pre-

dictive model in the data compression setting, and based on the improvement

presented in [Gasthaus and Teh, 2010], further refinements to this approach

have been proposed [Bartlett et al., 2010; Bartlett and Wood, 2011]. These

papers propose a method for turning the SM into a streaming predictor with

finite, fixed memory footprint and linear computational complexity by dynam-

ically pruning unused contexts from the context tree. This allows the resulting

compressor to be applied to large files without the need to split the file into

independent blocks, as is commonly done with other compressors. The au-

thors experimentally demonstrate that by using a simple pruning strategy it

is possible to significantly reduce the amount of memory required without

deteriorating compression performance relative to the unconstrained method,

while significantly outperforming the naïve block-wise approach.
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6.2 (DE-)PLUMP

Our compression algorithm, dubbed “DEPLUMP”2, draws on the improve-

ments presented in the previous sections to meet the requirements of an online

prediction algorithm that can be coupled to an adaptive entropy coder in order

to yield a compression algorithm. In particular, we combine the online con-

text tree construction algorithm (Section 5.1) and the compact representation

(Section 4.3) with one of the sequential approximate inference schemes UKN

(Section 5.2), 1PF (Section 5.3.4), or FRAC (Section 5.4) and stochastic gradient

descent-based hyperparameter optimization (Section 5.7.2).

In order for a predictive model to be usable with arithmetic or range coding,

it needs to able to deterministically make a prediction (in form of a CDF)

for the next symbol and then update its state based on the observed symbol.

The encoder and decoder need to use exactly the same probabilistic model,

which is updated on the decoder side with the symbols that have already been

decoded. In order for the encoder and decoder to use exactly the same model

when Monte Carlo-based inference methods are used, the seeds of the pseudo

random number generators used during sampling must either be fixed in

advance or be included in the header of the compressed file.

As the details of the model and the online inference procedure have already

been discussed in detail in previous sections, we will only give a pragmatic

description of the resulting algorithm here, serving as a guide to implementors.

Further, as implementing an adaptive entropy coder comes with its own algo-

rithmic challenges but suitable library implementations are readily available,

we will not discuss this part of the final (de-)compressor further.3 At a high level,

the overall (de-)compression algorithm proceeds as follows for each position

t = 1, . . . ,T :

1. insert the current context u = x1:t−1 into the context tree (see Section 5.1);

this may involve splitting an existing node and updating the representa-

tions of the resulting nodes using fragmentation (Section 5.6)

2. compute the predictive distribution Pt (s | u) for all s ∈Σ using (2.45)

3. use the entropy coder to encode/decode xt using Pt

2PLUMP is an acronym for Power-Law Unbounded Markov Predictor.
3The main difficulty in connecting the predictive model to the coder lies in the fact that

arithmetic coding implementations (such as the ones described in [Witten et al., 1987; Nelson,
2014]) typically offer an interface where the predictive CDF has to be specified in terms of
integer ranges, not in terms of floating point numbers (as typically output by probabilistic
models), and a bit of care has to be taken to perform this quantization accurately without
generating empty ranges. This is less of an issue when a 64-bit implementation of arithmetic
coding is used.
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4. Optionally: update the concentration and discount parameters using a

gradient step to optimize logPt (xt | u))

5. update the representation of the posterior distribution in light of the

observation xt using either one of the sequential approximate inference

strategies described in Chapter 5; this involves updating the representa-

tions for some distance along the path from u to the root of the context

tree

6. append xt to the input buffer

In practice, all of the above steps can be interleaved into a single down-up

traversal from the root of the tree to the insertion point of the context u and

back up to the root. The computational complexity of a single insert-predict-

update step is O(δ|Σ|) where δ = |(ε u)| is the length of the path from the

root to u in the context tree. In the worst case the tree grows as a linear chain,

so that the overall complexity is quadratic in T . In practice on typical inputs

however, the path lengths are on the order of logT for an overall complexity

of |Σ|T logT . As has been pointed out (and addressed) by Bartlett and Wood

[2011], depending on how the fragmentation operation is implemented, its

computational complexity can also grow linearly with T . In practice however,

the growth is typically sub-linear in T and the predictive performance of an

approximate, constant time fragmentation (see Section 5.6) is typically almost

indistinguishable.

6.3 Experiments

In order to evaluate DEPLUMP in terms of compression performance on

various types of input sequences we use it to make incremental next sym-

bol predictions on the Calgary corpus – a well known compression bench-

mark corpus consisting of 14 files of different types and varying lengths. The

measure used for comparing the different algorithms is the average log-loss

`(x1:T ) =− 1
T

∑T
t=1 log2 p(xt |x1:t−1) which corresponds to the average number

of bits per symbol required to encode the sequence using an optimal code.

As entropy coding can achieve this limit up to a small additive constant, it is

virtually equivalent to the average number of bits per symbol required by the

compressed file. For all our experiments we treat the input files as sequences
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DEPLUMP PPM CTW / CTS
File Size 1PF UKN FRAC PPM* PPMZ CTW? S-CTS

bib 111261 1.73 1.72 1.71 1.91 1.74 1.83 1.75
book1 768771 2.17 2.20 2.14 2.40 2.21 2.18 2.20
book2 610856 1.83 1.84 1.80 2.02 1.87 1.89 1.89
geo 102400 4.40 4.40 4.42 4.83 4.64 4.53 3.60
news 377109 2.20 2.20 2.17 2.42 2.24 2.35 2.34
obj1 21504 3.64 3.65 3.67 4.00 3.66 3.72 3.40
obj2 246814 2.21 2.19 2.20 2.43 2.23 2.40 2.19
paper1 53161 2.21 2.20 2.19 2.37 2.22 2.29 2.26
paper2 82199 2.18 2.18 2.16 2.36 2.21 2.23 2.22
pic 513216 0.72 0.72 0.71 0.85 0.76 0.80 0.76
progc 39611 2.23 2.21 2.21 2.40 2.25 2.33 2.30
progl 71646 1.44 1.43 1.42 1.67 1.46 1.65 1.59
progp 49379 1.44 1.42 1.43 1.62 1.47 1.68 1.61
trans 93695 1.21 1.20 1.21 1.45 1.23 1.44 1.35

avg. 2.12 2.12 2.10 2.34 2.16 2.24 2.10
w. avg. 1.89 1.91 1.87 2.09 1.93 1.99 1.87

Table 6.1: Compression performance in terms of average log-loss (average bits per
character under optimal entropy encoding) for the Calgary corpus. Boldface type indi-
cates best performance. Ties are resolved in favour of lowest computational complexity.
The results for PPM* (PPM with unbounded-length contexts) are copied from [Cleary
and Teahan, 1997] and are actual compression rates, while the results for PPMZ are
average log-losses obtained using a modified version of PPMZ 9.1 under Linux [Peltola
and Tarhio, 2002] (which differ slightly from the published compression rates). The
results for CTW were taken from [Willems, 2009] and the results for Skip Context Tree
Switching from [Bellemare et al., 2014].

of bytes, i.e. |Σ| = 256.4

The results are shown in Table 6.1. For comparison, we also show the results

of two PPM variants, CTW* [Willems, 1998], and S-CTS [Bellemare et al., 2014]

in the final four columns. PPM* [Cleary and Teahan, 1997] was the first PPM

variant to use unbounded-length context, and the results for PPM-Z [Peltola

and Tarhio, 2002] are (to our knowledge) among the best published results for

a PPM variant on the Calgary corpus.

There are several observations that can be made here: first, the compression

4 In all experiments the per-level discount parameters were initialized to the values
d0:10 = (0.05,0.7,0.8,0.82,0.84,0.88,0.91,0.92,0.93,0.94,0.95) and d∞ = 0.95 and the concen-
tration parameter was fixed at α= 0, i.e. the same hyperparameters also used in the language
modelling setting (Section 5.7.2). The hyperparameters were optimized by online gradient
ascent in the log-predictive probability with a learning rate of 10−4, interleaved with the count
updates. The initial hyperparameter values were chosen through manual experimentation on
the Brown corpus validation set. The news file from the Calgary corpus was used for parameter
selection in the compression setting (e.g. for choosing the learning rate), but no extensive
hyperparameter tuning was performed.
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results for UKN, 1PF, and FRAC are comparable, with no consistent advantage

for any single approach on all files, though FRAC appears to perform slightly

better on text files. FRAC thus provides a good trade-off between computa-

tional complexity and compression performance, while UKN can be chosen

when memory usage and floating point operations are to be minimized. The

comparison to S-CTS is interesting in that both achieve the same average com-

pression ratio, but have very different strengths: while DEPLUMP performs

particularly well on text data (book*, news, paper*), S-CTS achieves very good

performance on binary (obj*) and structured data geo).

In addition to these experiments, we performed experiments with sev-

eral variants of the basic algorithm: with and without gradient updates to

the discounts, and with a model variant where the discount parameters are

independent (i.e. not shared) for each context. We also tested the algorithm

with more than one particle, in which case the predictions were averaged over

particles. Three main observations could be made from these experiments:

1) neither using independent discount parameters nor using more particles

improves performance consistently; 2) using 100 particles yields ≈ 0.02 bps

improvement on the large text files (book, and paper), but no improvement

on the other files; 3) online gradient updates to the discount parameters con-

sistently improve performance by ≈ 0.02 bps. Further, choosing a non-zero

concentration parameter does not provide a significant performance improve-

ment (even when also updated online), though it does help to alleviate the

“runs problem” (see below).

In addition to the experiments on the Calgary corpus, compression perfor-

mance was also evaluated on two other benchmark corpora: the Canterbury

corpus [Arnold and Bell, 1997] and the 100 MB excerpt of an XML text dump of

the English version of Wikipedia used in the Large Text Compression Bench-

mark [Mahoney, 2009] and the Hutter Prize compression challenge [Hutter,

2006]. On the Canterbury corpus, the SM-based compressor consistently out-

performed the methods compared here, with the exception of two binary files.

On the Wikipedia excerpt, the UKN algorithm achieved a log-loss of 1.66

bits/symbol amounting to a compressed file size of 20.80 MB. While this is

significantly worse than 16.23 MB achieved by the currently best PAQ-based

compressors (but on par with non-PAQ approaches), it demonstrates that the

described approach can scale to sequences of this length.

Finally, we explored the performance of the algorithm when using a larger

alphabet. In particular, we used an alphabet of 16-bit characters to compress

Big-5 encoded Chinese text. On a representative text file, the Chinese Union
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version the bible, we achieved a log-loss of 4.35 bits per Chinese character,

which is significantly better than the results reported by Wu and Teahan [2007]

(5.44 bits).

6.4 Practical Details And Improvements

One complication that arises when the SM is used for compression is that

binary data files sometimes contain sequences that have very low probability

under the HPYP model, leading to large losses when they occur. In particular,

long runs of the same symbol are problematic in two ways: On the one hand

they lead to worst-case computational complexity, on the other hand the prob-

ability of any other symbol occurring after a run goes to 0 quickly. In [Gasthaus

et al., 2010] we proposed to deal with the second aspect of the problem by

predicting the next symbol using a mixture of simple unigram model and the

SM, where the unigram component has a very small weight. This mitigates

the problem by ensuring that numerically the predictive probabilities never

become exactly 0, but causes a slight degradation in performance for data that

does not suffer from this problem.

An alternative solution is to apply run-length encoding (RLE) to the input

before feeding it to the compressor, which is common practice for many other

compression algorithms. This has the added benefit of removing the patho-

logical cases that lead to worst case computational complexity. However, in

order not to unnecessarily deteriorate the performance on files that do not

contain many long runs, RLE should either be used adaptively (and its use

signalled by a flag in the header), or should only be applied to runs exceeding

some minimal length (e.g. 10). While performing RLE as a pre/post processing

step is simple and effective in practice, performance can likely be improved

even further by using a separate model to encode the run length information,

instead of treating them as normal symbols in the SM model.

6.5 Discussion / Future Work

We presented a new compression algorithm based on the predictive proba-

bilities of a hierarchical Bayesian nonparametric model called the sequence

memoizer (SM). We showed that the resulting compressor, DEPLUMP, com-

presses a variety of signals as well or better than PPM*, PPMZ and CTW/S-CTS.

The reasons for this include both the fact that DEPLUMP uses unbounded

context lengths and the fact that DEPLUMP employs an underlying probabilis-
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tic model, SM, that explicitly encodes power law assumptions. SM enables

DEPLUMP to use the information available in the unbounded length contexts

effectively, whereas for PPM* the extension to unbounded depth did not yield

consistent improvement [Bunton, 1997].

The fact the DEPLUMP is based on a well-defined probabilistic model opens

interesting avenues for further improvements to the compression performance.

First, we note that pre-training of the predictive model can be desireable to do,

particularly as compression of the first part of any file suffers as a result of the

initially inaccurate model. Doing this kind of pre-training is known to help PPM

compression (at the cost of having to transmit either the pre-trained model

parameters or the files which were used for pre-training in addition to the file

itself). In DEPLUMP, we could build on the domain adaptation work of Wood

and Teh [2009] to introduce pre-training and model sharing in a principled

way.

Additionally, both PPM and DEPLUMP assume (implicitly in the case of

PPM, explicitly in the case of DEPLUMP) that the underlying symbol generation

distribution is stationary.5 Extensions to nonparametric Bayesian models that

account for non-stationarity such as those described in the dependent Dirichlet

process literature [Caron et al., 2007; MacEachern, 2000] can also be applied

here. Intuitively, doing this will allow the compressor’s prediction model to

adapt to the statistics local to a particular region of a file.

While we show that DEPLUMP surpasses the compression performance

of PPM’s best variants, it should should be noted that PPM has also recently

been surpassed by the context-mixing PAQ family of compressors [Mahoney,

2005], and PAQ compression performance currently exceeds (in general) that

of DEPLUMP as well. PAQ utilizes a diverse set of models, each of which

uses a different definition of context and generalization relationships between

contexts. Integrating such ideas into the nonparametric Bayesian framework

presented here remains an exciting opportunity for future research.

The use of a predictive model for compression has a long tradition, with

PPM, CTW and PAQ being stellar examples. Latent variables that capture regu-

larities in the data, as applied in this paper, have previously been used in the

compression setting [Hinton and Zemel, 1994], but have seen less application

due to the computational demand of approximating often intractable posterior

distributions.

For CTW/CTS where the marginalization over latent variables can efficiently

5Strictly speaking, this is only true for DEPLUMP if the concentration and discount param-
eters are kept fixed and not updated online.
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be performed analytically, it has been possible to establish theoretical guar-

antees of performance in the form of regret bounds and proofs of asymptotic

optimality wrt. the type of source considered [Willems et al., 1995; Veness et al.,

2012; Bellemare et al., 2014]. Deriving similar guarantees for the SM and DE-

PLUMP, an endeavour that is complicated by the use of approximate inference,

is an interesting avenue for future work.

As a final thought, it is interesting to note that hierarchical PYP models

were originally intended for modelling sequences of words coming from a large

(even infinite) vocabulary [Teh, 2006a,b]. Here we have used essentially the

same model under very different circumstances: the symbol set is small (256

instead of À 10000), but typical repeated context lengths are much longer (10-

15 instead of 3-5). It is surprising that the same model can handle both extremes

well and points to a sense that it is a natural model for discrete sequential data.

It also points to an interesting further application of DEPLUMP, namely to large

alphabet texts, e.g. of Chinese and Japanese.

6.6 Sequence Memoizer Software: libplump

The Sequence Memoizer model, including all described CRP representations,

as well as all presented online and offline inference algorithms, is implemented

in the freely available libPLUMP software package.6

libPLUMP is mostly written in C++ for efficiency and to allow for tight con-

trol of memory usage, allowing it to handle models for tens to hundreds of

millions of tokens on typical hardware. In the online setting it an make pre-

dictions and update the model at speeds exceeding 50000 symbols/second,

depending on the data set and parameter settings. As libPLUMP is primarily a

research tool, it is designed to make it easy to extend, e.g. with different CRP

representations, online and offline inference algorithms, as well as hyperpa-

rameter optimization schemes. The modular C++ structure is exposed via

Python bindings, to allow for easy scripting and interactive exploration. The

majority of experiments described in this thesis were performed using this

library (or earlier versions of it).

The following is a simple illustration how the Python interface can be used

to build a Sequence Memoizer model and make predictions.

6https://github.com/jgasthaus/libPLUMP

https://github.com/jgasthaus/libPLUMP
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import libplump

restaurant = libplump.HistogramRestaurant()

node_manager = libplump.SimpleNodeManager(restaurant.getFactory())

parameters = libplump.SimpleParameters()

seq = libplump.VectorInt([0,1,2,1,2,1,1])

N = len(seq) - 2 # training length

num_types = 3

model = libplump.HPYPModel(seq, node_manager, restaurant,

parameters, num_types)

# online inference / prediction

training_losses = model.computeLosses(0, N)

# sampling

for iter in range(10):

model.runGibbsSampler()

# prediction

for i in range(N, N + 2):

dist = model.predictiveDistribution(N, i)

print dist, sum(dist)

# save model to file

serializer = libplump.Serializer("model.dump")

serializer.saveNodesAndPayloads(nodeManager, restaurant.getFactory())





CHAPTER 7
Sequence Memoizer Cache

Language Models

7.1 Introduction

The models described previously assume that the underlying generative pro-

cess is stationary, i.e. doesn’t change with “time” (positions in the input). For

language modelling, where the input is usually a concatenation of different

documents, and documents consist of multiple sections and paragraphs, this

assumption does generally not hold [Johansson, 1985]. The vocabulary used

in different documents or different sections within a document can change

considerably (consider e.g. a sports news article vs. an article on politics), as

can the frequency with which particular syntactic constructions are used. The

term burstiness is typically used to refer to a particular instance of this phe-

nomenon, namely the observation that if a term appears in a document at all,

the probability that it appears again is drastically increased (over the relative

frequency of the term in the entire corpus) [Katz, 1996; Church and Gale, 1995].

This phenomenon is mainly observed for content words (e.g. nouns, verbs,

adjectives), and less so for function words, leading some authors to include

part-of-speech information into their models [Kuhn and De Mori, 1990]. Con-

tent words exhibit both document-level as well as within-document burstiness,

where, according to the definitions of Katz [1996], the former refers to the fact

that most content words appear only in few documents, and the latter to the

observation that even within documents occurrences of the same content word

tend to cluster together.

A similar phenomenon can also be observed in data compression, where

binary files often consist of different sections (e.g. headers and different types

121



122 CHAPTER 7. SEQUENCE MEMOIZER CACHE LANGUAGE MODELS

of content blocks) that have different marginal and conditional symbol dis-

tributions. Many compression techniques therefore employ techniques for

adapting to non-stationary input (e.g. by breaking up the input into fixed-size

blocks, or by using other techniques, such as the count-halving employed by

variants of PAQ) [Mahoney, 2013].

Not surprisingly, there have been numerous attempts to integrate models

of burstiness into probabilistic language models, ranging from complex models

incorporating rich domain knowledge, e.g. in the form of topic or dialog models

[Iyer and Ostendorf, 1996; Clarkson and Robinson, 1997; Lucas-Cuesta et al.,

2013], to simple (yet effective) cache language models, which we will consider

here.

More broadly, adapting a model to the local context can be seen as an

instance of domain adaptation, i.e. using training data that is similar to the

one in the target domain to improve model performance in the target domain,

which has also been explored in the context of statistical language models. In

particular, the possibility of adapting a statistical language model trained on

a (large) corpus of text to a new domain with different characteristics (where

less data is available) has been extensively studied [Kneser and Steinbiss, 1993;

Bacchiani and Roark, 2003; Bellegarda, 2004; Wood and Teh, 2009; Alumäe and

Kurimo, 2010; Grave et al., 2016].

Here, we will consider how non-stationarity in general and burstiness in

particular can be modeled in the context of PYP-based language models. We

will use the idea of a local “cache” model, i.e. a model trained on only a small

part of the training corpus preceding the prediction location. To construct

such a cache model in the HPYP setting, we make use of ideas from work on

time-varying Dirichlet/Pitman-Yor processes by Caron et al. [2007] and Bartlett

et al. [2010].

We will first describe related work on non-stationary language models and

time-varying HPYP models, then describe our approach, empirically evaluate

the models’ predictive performance, and conclude with an outlook on future

work.

7.2 Background

7.2.1 Cache Language Models

A simple yet effective approach to modelling non-stationarity are so-called

cache language models [Kuhn, 1988; Kuhn and De Mori, 1990; Jelinek et al.,
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1991; Clarkson and Robinson, 1997; Goodman, 2001b]. These models esti-

mate a “local” model (typically an n-gram model) from the current context

(e.g. the current paragraph, the current document, or a sliding window pre-

ceding the current position), which is then blended (typically linearly) with

another, stationary base language model. The blending itself can be dynamic,

i.e. dependent on the local context [Kneser and Steinbiss, 1993]. The result of

using such a cache model in combination with a stationary language model

is typically a significant reduction in perplexity, leading Goodman [2001b] to

the conclusion that “[...] caching is potentially one of the most powerful tech-

niques we can apply [...]”.1 Jelinek et al. [1991] report a 8% to 23% reduction

in perplexity when linearly combining a stationary trigram model with a tri-

gram cache using the most recent 1000 words, and Goodman [2001b] reports

significant improvements (up to 0.6 bits/symbol) for combining a smoothed

trigram baseline model with a unigram, bigram, or trigram cache (with a sig-

nificant performance improvement between unigram and bigram cache, and

a small improvement when going from bigram to trigram cache). More re-

cently, Mikolov et al. [2011] report a ≈ 10% drop in perplexity when combining

a unigram cache with a 5-gram model on the PTB corpus.

Part of these improvements is due to the fact that the cache is updated

on-line while making predictions (on the test set), thereby increasing the total

amount of training data used, whereas non-cache stationary models are usu-

ally kept fixed after training. Thus, part of the improvement can be achieved

without the cache component simply by updating the “stationary” model with

new training data as it is observed, e.g. using the online inference procedure de-

scribed in Chapter 5 (cf. the “online” column in Table 5.1). This idea of “dynamic

evaluation” has also been explored in the context of neural language models

[Mikolov, 2012; Krause et al., 2017, 2019]. However, depending on the model

and the application, updating the base model online may be computationally

infeasible (e.g. in mobile text entry applications).

More broadly, a cache language model is a language model that incorporates

information about the local data statistics by estimating a separate model based

on a buffer (cache) of the most recently observed symbols, and then combining

this model with a globally-estimated base model. In the usual setup, the base

model is trained and optimized on a training sequence xtrain, and predictions

need to be made incrementally symbol-by-symbol for a new sequence xtest.

1However, Goodman [2001b] also cautions that when caching is used in applications such
as speech recognition, where the input to the cache model is not the ground truth but the
output of a system that makes errors, achieving good performance in practice might be much
harder.
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In the most commonly-used variant, the combined model is simply a mix-

ture model with two components: the base model component P base(·) esti-

mated from the training sequence and then fixed, and a local (cache) model

component P cache
i (·, xi−L:i−1) estimated from the L most recent symbols of the

(test) input x, i.e.:

Pi (s) =λP base(s)+ (1−λ)P cache(s, xi−L:i−1), (7.1)

where the forms of both P base and P cache can be chosen arbitrarily. In practice,

the model chosen for the cache component is typically simple, as it needs to

be incrementally updated (or re-estimated) for each symbol, making n-gram

models estimated using the MLE (2.8) a common choice. Cache models where

the probability of a word under the cache component decays exponentially with

the distance of previous occurrences of the word have also been considered

[Clarkson and Robinson, 1997; Tiedemann, 2010].

More recently, the effectiveness of cache models has also been considered

in the context of neural language models. Mikolov [2012] demonstrated that

including a simple unigram cache can significantly improve performance of

ensembles of RNN language models and n-gram models. Grave et al. [2016]

propose a “Neural Cache Model” where the cache is integrated into the neural

language model directly and acts not on the observed sequence but on the

hidden model activations. This architecture achieves significant reductions in

perplexity relative to the non-cache baseline mode, from 82.3 to 72.1 on the

Penn Tree Bank data set. This work has further been extended in [Grave et al.,

2017] to incorporate larger context.

7.2.2 Time-Varying HPYP Models

The work most closely related to the model we are proposing here is the work by

Bartlett et al. [2010], who develop a time-varying HPYP model and associated

approximate inference procedure to enable “constant-space” inference in the

Sequence Memoizer model. However, the goal of [Bartlett et al., 2010; Bartlett

and Wood, 2011] is not adaptation to a non-stationary data stream, but to limit

the overall size of a Sequence Memoizer model by removing customers and

entire restaurants from the context tree and associated Chinese restaurant

franchise representation as data is processed in streaming fashion.

The key idea in their approach is that instead of assuming a single context-

tree-structured set of distributions {Gu} from which all observations x1:T are

drawn, the set of distributions is taken to be time-varying, i.e. there is a set of

distributions {G t
u} for each t = 1, . . . ,T . These distributions are assumed to be
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dependent through time, i.e. each G t
u depends on G t−1

u , allowing estimation

even when only a single observation is made per time step.

The underlying idea of constructing dependent distributions based on the

Dirichlet or Pitman-Yor process has been extensively explored in the litera-

ture and has been successfully brought to bear on applications using time-

varying mixture and admixture models [MacEachern, 1999, 2000; Srebro and

Roweis, 2005; Griffin and Steel, 2006; Griffin, 2007; Caron et al., 2007; Gasthaus

et al., 2009; Sudderth and Jordan, 2009; Rao and Teh, 2009]. While many such

constructions are based on inducing dependence in the stick-breaking rep-

resentation, the particular construction used in [Bartlett et al., 2010], which

is the one we will also make use of here, induces a dependence between two

PYP-distributed random variables in the CRP representation.

This construction, originally proposed for Dirichlet process mixture models

in [Caron et al., 2007], exploits a fundamental consistency property of the CRP

that ensures that restricting a given CRP partition A ∼ CRPc (α,d) to any subset

B ⊂ [c] chosen independently of A (and relabeling the customers) yields an-

other CRP-distributed partition [Pitman, 2002]. In particular, the construction

employed by Caron et al. [2007] and Bartlett et al. [2010] relies on deleting (i.e.

removing) customers from a CRP partition for G t−1
u to construct a CRP partition

for G t
u.

In particular, sampling A1 ∼ CRPn1 (α,d), constructing a partition B by re-

moving l ≤ n1 customers uniformly at random and relabeling the remaining

customers 1, . . . ,n1 − l , yields a partition B ∼ CRPn1−l (α,d) that is marginally

also distributed according to the CRP [Pitman, 2002; Caron et al., 2007; Bartlett

et al., 2010]. The resulting partition B can then be extended by seating an

additional n2 customers through the sequential CRP (2.24) to a partition

C ∼ CRPn1−l+n2 . Finally, this partition C can then be restricted to a par-

tition A2 containing only the final n2 customers, yielding, after relabeling,

A2 ∼ CRPn2 (α,d). This construction yields partitions A1 and A2 that are

marginally distributed according to the CRP, but that exhibit a dependence

through the non-deleted customers. The induced dependence structure is

complex, but the degree of dependence depends on the number of customers

l that are deleted, with stronger dependence the fewer customers are deleted.

Caron et al. [2007] uses this construction to induce dependence in a Dirich-

let process mixture model, while Bartlett et al. [2010] use a variant of the same

mechanism to restrict the size of a Sequence Memoizer language model. In

particular, the algorithm proposed in Bartlett et al. [2010] uses an extreme

form of this deletion procedure, where all customers in a given leaf context u
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are removed when the model exceeds a pre-specified size threshold, thereby

keeping the overall size of the model bounded. They compare two procedures

for choosing the context u to remove: either uniformly at random from all leaf

nodes, or using a greedy procedure that selects the context with the smallest im-

pact on the data likelihood, with the greedy procedure performing marginally

better in practice.

7.3 Model: Sequence Memoizer with Deletion (SM-del)

In order to model non-stationarity and burstiness in the HPYP/SM framework,

we propose to combine an stationary Sequence Memoizer base model with a

time-varying SM model that acts as a cache.

In the simple cache language model, the cache component is an n-gram

model that models the statistics of the most recent L characters. One key

feature of n-gram models that enables them to be used in this setting is that

they can quickly be updated to account for the shifting data window by simply

decrementing the counts associated with the token moving out of the window

on the left and incrementing the count for the newly observed token.

Here, instead of using an n-gram cache, we propose to combine a Sequence

Memoizer base model with a cache component that is itself a Sequence Mem-

oizer model. In principle one could achieve this by re-estimating the cache

SM model at every position t based on the preceding L tokens. However, re-

estimating the model for every token is computationally infeasible in practice.

To make using a Sequence Memoizer model as cache practical, we need to

not just be able to update the model incrementally for each new symbol (e.g.

using the techniques described in Chapter 5), but also to update the model

by removing the effect of observations that fall out of the local length-L cache

window. We will refer to such a model that “deletes” the effect of observations

as SM-del.

Recall from (2.46) that in order to evaluate the predictive distribution under

the SM model one needs to compute an expectation under the posterior distri-

bution over the sufficient statistics {cus , tus} of the Chinese restaurant franchise.

This expectation can be evaluated either using a deterministic approximation,

e.g. the “unbounded Kneser-Ney” (UKN) approximation discussed in Section

5.2 or the “fractional counts” approximation (Section 5.4), or using a Monte

Carlo approximation based on samples drawn from the posterior distribution,

e.g. using Gibbs sampling (Section 4.5) or Sequential Monte Carlo (Section 5.3).

In order to make caching practical, we thus need to be able to update either
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representation (deterministic or sample-based) of the posterior distribution

given the previous L symbols, P ({cus , tus}|xi−L:i−1), to a representation of the

posterior distribution given the previous L−1 symbols, P ({cus , tus}|xi−(L−1):i−1)

(i.e. removing the effect of the first symbol) in the cache window. For the UKN

approximation this can easily be accomplished: Recall that under the UKN

approximation, tus = 1 if cus ≥ 1, i.e. all customers of a given type s sit at the

same table. In order to remove the customer corresponding to the observation

xi−L , we locate the context for this observation, i.e. u = x1:i−L−1, in the context

tree. We can then decrement the count cus , and, if this results in cus = 0,

we decrement tus as well. If we decremented tus , we also decrement cπ(u)s ,

and potentially adjust tπ(u)s , and so on, recursively, thus exactly reversing the

process of inserting the customer. However, in the (Sequential) Monte Carlo

setting, it is not obvious how to remove the effect of an observation xi−L from a

sample from the posterior given xi−L:i−1.

Instead of trying to perform approximate inference inference in an SM

model given only last L − 1 symbol, we can achieve the desired effect of a

locally adapting model by making use of the “forgetting counts” scheme for

time-varying PYP models described above [Bartlett et al., 2010]. In order to

remove the effect of the symbol xi−L we perform a stochastic recursive deletion

procedure like the one used for the SM Gibbs sampler. In particular, given a

CRP representation of the data up to symbol i obtained by the SMC inference

procedure, we can remove a customer of type xi−L from the restaurant cor-

responding to context x1:i−L−1 (by calling REMOVECUSTOMER(x1:i−L−1, xi−l )

from 2) before updating the representation to include the new observation xi .2

Concretely, we propose interleaving the online SMC inference procedure

described in Chapter 5 (Algorithm 3) with the stochastic REMOVECUSTOMER

operation, performed before a new customer is inserted into the particle. If

multiple particles are used, the deletion is performed for each particle indepen-

dently. In the experiments we will refer only to the one-particle variant (1PF)

unless otherwise noted.

We can either interpret applying this deletion step as a stochastic approxi-

mation for removing the effect of the symbol falling out of the cache window,

or as an instance of the aforementioned “forgetting counts” time-varying HPYP

2Note that while based on the same underlying idea, this is different from the deletion
procedure proposed in Bartlett et al. [2010]: In their work, the goal is to reduce the model size
and they achieve this by deleting entire restaurants/contexts which are chosen either randomly
or based on a greedy heuristic. By doing so they are able to achieve predictive performance
similar to the original model, but with a model that does not grow without bound. Here, we
want to achieve the opposite: we want the model to adapt to the local statistics of the data,
reflecting our assumption that the underlying generative process is not stationary.
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model. characters. The resulting SM-del model can then be combined in a

mixture model (cf. Section 2.2.2) with an SM model trained on the full data

(which can optionally be updated online as well).

7.4 Experiments

In order to evaluate the effectiveness of the proposed SM-del model, we con-

sider multiple ways of combining the SM-del model with Sequence Memoizer

base models and other n-gram cache models.

7.4.1 Cache Size & Mixture Weight

In a first set of experiments, we explore the effect of adding a lag-L SM-del

cache component to an SM base model (either fixed or updated online), both of

which are inferred independently and their predictions combined in a convex

combination with fixed mixture weight λ. The results for this experiment on

the Brown corpus are summarized in Figure 7.1.

Several observations can be made here: Without any cache, the gap be-

tween an offline Sequence Memoizer model that is not updated while making

predictions on the test set, and a model that is updated online, is about 0.3

bits/symbol (8.07 vs. 7.77 bits per symbol). As expected, the offline model ben-

efits more from the inclusion of the cache component, so that even for small

mixing weights the gap between the online and offline model drops to about

0.1 bits/symbol, but doesn’t disappear completely, suggesting that the SM-del

cache component captures local effects that the base model cannot adapt to.

Further, the optimal mixture weight of the cache component is slightly larger

for the offline model.

The optimal cache window size L is around 1500 symbols for both models,

but the offline model benefits more from being combined with a longer-lag

cache. The effect of the interaction of mixture weight and window size is shown

in Figure 7.2 for the offline model. As expected, the optimal cache window

size increases slightly with the mixture weight. The optimal mixture weight

dominates over a wide range of cache sizes.

7.4.2 Predictive Performance

We evaluated the predictive performance of linear combinations of three Se-

quence Memoizer base models (offline, online, and online with deletion) with

SM-del cache components and n-gram cache components on the Brown cor-
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Figure 7.1: Predictive performance of a mixture model consisting of an SM base
model combined with an SM-del cache components on the Brown corpus test set.
The top left shows the test set log-loss as a function of the cache window size L. The
best performance is obtained for a window size of L = 1500. The top right also shows
test set log-loss, but as a function of mixture weight λ of the cache component (with
L = 1500). The left and right boundaries show the performance of the base model and
the cache models in isolation, respectively, with the optimum lying at 0.3. The bottom
left shows the performance of the cache component in isolation, as a function of the
window size. The bottom right shows the performance of the mixture as a function of
the concentration parameter α used for the base model (with L = 1500 and λ= 0.3).
The optimum is at α= 100, which is used for the other plots. The discount parameters
for all models are the “standard” values described in Section 5.7.2, and the models are
constructed using the 1PF algorithm.
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Figure 7.2: Predictive performance (test set log-loss) of an SM base model with an
SM-del cache as a function of cache window size L for several mixture weights λ.
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Model Brown Penn Treebank

Sequence Memoizer (offline) 8.07 7.13
+ 1-gram cache L = 1500 7.79 7.04
+ 3-gram cache L = 1500 7.93 7.09
+ 1,2,3-gram cache L = 1500 7.67 6.97
+ 1-gram cache L = 102,103,104 7.75 6.97
+ 3-gram cache L = 102,103,104 7.90 7.08
+ 1,2,3-gram cache L = 102,103,104 7.61 6.90
+ SM-del L = 1500 7.63 6.96
+ SM-del L = 102,103,104 7.57 6.91
+ SM-del + 1,2,3-gram cache L = 102,103,104 7.57 6.89

Sequence Memoizer (online) 7.77 7.01
+ 1-gram cache L = 1500 7.62 6.94
+ 3-gram cache L = 1500 7.74 7.00
+ 1,2,3-gram cache L = 1500 7.56 6.91
+ 1-gram cache L = 102,103,104 7.59 6.88
+ 3-gram cache L = 102,103,104 7.73 7.00
+ 1,2,3-gram cache L = 102,103,104 7.52 6.84
+ SM-del L = 1500 7.53 6.90
+ SM-del L = 102,103,104 7.49 6.85
+ SM-del + 1,2,3-gram cache L = 102,103,104 7.48 6.83

Sequence Memoizer (online/w del. L = 1500) 7.89 7.03
+ 1-gram cache L = 1500 7.73 6.96
+ 3-gram cache L = 1500 7.85 7.03
+ 1,2,3-gram cache L = 1500 7.65 6.93
+ 1-gram cache L = 102,103,104 7.69 6.90
+ 3-gram cache L = 102,103,104 7.84 7.02
+ 1,2,3-gram cache L = 102,103,104 7.59 6.86
+ SM-del L = 1500 7.62 6.92
+ SM-del L = 102,103,104 7.56 6.88
+ SM-del + 1,2,3-gram cache L = 102,103,104 7.55 6.86

Table 7.1: Predictive performance comparison of a Sequence Memoizer model when
compared with different forms of cache models: a unigram and a trigram cache, and
the proposed SM cache model. The top set of rows uses a base SM model that is
estimated on the training set and then fixed, while the bottom set of rows updates the
model online on the test set. For this comparison the hyperparameters were set at
λ= 0.3, L = 1500, and α= 100, as well as the “standard“’ discount parameters.
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pus and the Penn Treebank dataset (see Appendix B). The predictive perfor-

mance of the various model combinations in terms of log-loss on the test set

are summarized in Table 7.1. The underlying base Sequence Memoizer model

discount parameters were kept fixed to the “standard” setting (cf. Sec. 5.7.2),

d0:9 = (0.05,0.7,0.8,0.82,0.84,0.88,0.91,0.92,0.93,0.94), d∞ = 0.95. The concen-

tration parameter α= 100 and the window size L = 1500 were chosen based

on the experiments shown in Figure 7.1, where the effect of these parameters

was individually evaluated on the Brown corpus test set. To validate the per-

formance of the resulting model on completely unseen test data, the second

column in Table 7.1 shows the performance using the same hyperparameters

on the Penn Treebank dataset (i.e. no hyperparameter tuning was performed

on that dataset). For all experiments, the offline base model was estimated on

the train+validation set and then fixed; the online variant was incrementally

updated while making predictions; the “online with deletion” variant was esti-

mated without deletion on the train+validation set, and then updated while

making predictions on the test set while also performing deletion at a lag of

L = 1500. For each combination, the mixing weights were optimized on the

respective validation set by first training the base model on the training set and

making predictions on the validation set. The mixing weights were then fixed,

the validation set folded into the training set, and the base model re-estimated

on the combined train+validation set.

Overall, it can be seen that including the proposed SM-del cache compo-

nent leads to improved performance over including simpler uni- or trigram

cache models, both in the setting where the base model is kept fixed and when it

is updated online. For both datasets, the same pattern in terms of performance

emerges:

• The SM model that is updated online outperforms the fixed model inde-

pendently from the cache component that is added;

• Adding any form of caching improves the model’s predictive perfor-

mance;

• When only a single lag (L = 1500) is considered, adding an SM-del compo-

nent outperforms a unigram, trigram, and a combined uni-/bi-/trigram

(denoted 1,2,3-gram) cache component;

• Combining multiple lags, as e.g. proposed by Mikolov [2012] as a form of

cache decay, further improves performance of both n-gram caches and

the SM-del model.
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• Combining multiple n-gram and SM-del models at different three dif-

ferent lags with an SM base model that is updated online (for a total

ensemble with 13 models) yields the best performance.

Interestingly, combining the three different SM base models (offline, online,

online with deletion) does not yield additional improvements over just the

online model that performs best.

For comparison, on the Penn Tree Bank data set, Mikolov [2012] reports

a perplexity of 141.2 (7.14 bps) for a modified Kneser-Ney smoothed 5-gram

model, which is reduced to a perplexity of 125.7 (= 6.97 bps) when the same

model is interpolated with a collection unigram cache models with different

lags (the exact number and values of the lags used a not further specified).

Goodman [2001a] reports that using an interpolated trigram cache model

(interpolated with uni- and bi-grams) leads to almost twice the percentage

improvement then using a unigram cache. We observe a similar improvement,

yet somewhat less pronounced effect: comparing the difference between the

“1-gram cache”, the “1,2,3-gram cache”, and the SM-del rows (in our notation

“3-gram” refers to an un-interpolated trigram model, whereas the “1,2,3-gram”

is the interpolated version as used by Goodman [2001a]).

7.5 Discussion

We have proposed a cache language model variant of the Sequence Memo-

izer, SM-del, based on incorporating “deletion” into the online SM inference

procedure. The straight-forward modification of the approximate inference

procedure, which makes use of the REMOVECUSTOMER sub-routine also used

in the Gibbs sampling schemes, can alternatively be interpreted as a time-

varying variant of the hierarchical PYP model, proposed in similar form in

previous work [Bartlett et al., 2010; Caron et al., 2007]. While the modification

is simple, it proves to be quite effective in boosting the predictive accuracy

when linearly combined in an ensemble with a base SM model that is updated

online. As we have demonstrated empirically, the proposed SM-del cache

component compares favorably in terms of predictive performance to n-gram

cache models.

For future work, there are two direct extensions of the work presented here

that can be explored: In the experiments presented above, we have only evalu-

ated the model performance using the (modified) one-particle particle filter

inference scheme, which is a somewhat crude (albeit effective) heuristic. One

open question is thus how the SM-del model performance varies when dif-
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ferent inference procedures are used. An MCMC sampling approach in the

time-varying model could be considered, though it may come with a compu-

tational cost that is prohibitive for practical applications. Initial experiments

with using larger number of particles did not yield significant improvements.

Deletion schemes for the FRAC approximations could also be considered.

Another direction for future work is exploring alternative ways for com-

bining the cache model with the base model. Here, we have only considered

simple linear combinations. However, more sophisticated variants, e.g. using

the Graphical Pitman-Yor framework (see Section 8.1.1) could be considered.

Initial experiments in this direction have been promising and some model

variants are implemented in our ScaNPB library (Sec. 8.7)). However, these

models are considerably more complex than the proposed simple scheme,

which may already achieve a large fraction of the possible gains.





CHAPTER 8
Hybrid PYP-based and Neural

Language Models

This chapter describes initial work on several hybrid models that combine

count-based PYP language models with a simple neural language model, the

log-bilinear model. While the resulting models and the associated inference

procedure are more complex, the predictive performance does not (yet) exceed

that of simpler techniques, and further in-depth study of models of this type is

needed, we include this work here as a starting point in a promising direction

of future research.

8.1 Introduction

Neural language models [Miikkulainen and Dyer, 1991; Bengio et al., 2003;

Mnih et al., 2009; Mikolov, 2012; Zaremba et al., 2014; Józefowicz et al., 2016;

Dai et al., 2019; Radford et al., 2019], i.e. language models based on artificial

neural networks, are an alternative class of models that rely on a different

mechanism for overcoming the data sparsity problem. While count-based

models, including the ones described in previous chapters, work by combining

distributions from related contexts to produce smoothed estimates, neural

language models induce real-valued representations of words, allowing them to

base their probability estimates on learned semantic and syntactic similarities

between the context word(s) and the predicted word.

Neural language models, in particular recent approaches based on re-

current neural networks (RNNs) [Mikolov, 2012; Zaremba et al., 2014] and

attention-based transformer models [Vaswani et al., 2017; Radford et al., 2018,

2019; Dai et al., 2019], are among the best-performing language models known

135
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to date. For some of these models (e.g. [Mnih et al., 2009; Mikolov, 2012]) their

predictive performance can be significantly increased further by combining

them with an n-gram language model after training, suggesting that these

model classes have complementary strengths. The combination is typically

performed using simple linear interpolation of the conditional probabilities

using fixed weights, i.e.

P(xt |x1:t−1) =λPn−gram(xt |x1:t−1)+ (1−λ)Pneural(xt |x1:t−1) , (8.1)

where the optimal mixing weight 0 ≤ λ≤ 1 is determined on a validation set

[Mikolov, 2012].

This chapter explores “hybrid” models that combine a (simple) neural

language model and a count-based model at a different, more fine-grained

level. In particular, we explore several models that use the log-bilinear model

(LBL) introduced by Mnih and Hinton [2007] as part of the base distribution in

a hierarchical Pitman-Yor process language model. We choose the LBL here

for its simplicity, as our focus is not on achieving state-of-the-art predictive

performance, but rather to investigate the properties of such hybrid models

qualitatively. In terms of pure predictive performance, state-of-the-art neural

language models (e.g. [Zaremba et al., 2014; Józefowicz et al., 2016; Merity

et al., 2017; Dai et al., 2019; Radford et al., 2019] can drastically outperform the

models presented here.

Goldwater et al. [2011] argued that explicitly incorporating power-law prop-

erties into generative models (e.g. by using PYP priors) allows other parts of

the models to work and discover structure more effectively, as they are not

“burdened” with generating the power-law aspects of the data. In the previous

chapters we have seen that this approach is effective for models of power-law

sequences, and others [Blunsom and Cohn, 2011; Goldwater et al., 2011] have

shown that it is helpful for discovering linguistic structure using latent variable

models. The idea underlying the models presented here is that by using a PYP

“adaptor” (to borrow the terminology of Goldwater et al. [2006b]) allows the

neural language model to operate more effectively as it does not have to use its

flexibility to model the power-law behavior of the token distributions.

We will first review the graphical Pitman-Yor process [Wood and Teh, 2009],

which we will make use of as part of one of the explored hybrid models, and

which by itself is an interesting extension to HPYP modelling framework. Sub-

sequently we will describe the log-bilinear neural language model [Mnih and

Hinton, 2007; Mnih and Teh, 2012], which is the neural language used in our

models. We will then describe the hybrid models, the inference and learning

procedure, followed by experimental results, analysis, and discussion.



8.1. INTRODUCTION 137

Conceptually, our work is close to the work of Goldwater et al. [2006b] in

using the PYP to model the power-law aspects of natural language text that

might otherwise interfere with other aspects of the model when not modelled

explicitly. In terms of models, we build upon the work of Wood and Teh [2009],

who introduced the Graphical Pitman-Yor Process, and on the work of Mnih

and Teh [2012] who introduced the log-bilinear language model. Our models

are also related to the adaptive mixture model of Kneser and Steinbiss [1993],

who propose to learn mixing weights for a fixed set of language models in an

adaptive fashion, not unlike the way context mixing compressors like PAQ

[Knoll, 2011] operate. More recently, Neubig and Dyer [2016] explored an

alternative way of integrating count-based and neural language models more

deeply by using the n-gram probabilities as additional features in a neural

model, and obtained state-of-the-art performance.

8.1.1 The Graphical Pitman-Yor Process

In the hierarchical Pitman-Yor process models described in the earlier chapters,

the base measure for a PYP-distributed random measure Gu that is part of a

hierarchical prior, was either another PYP-distributed random measure Gπ(u)

or a fixed, non-random measure (e.g. the uniform distribution at the top of

the HPYP hierarchy). The graphical Pitman-Yor process (GPYP), originally

proposed by Wood and Teh [2009] in the setting of language model domain

adaption, extends this construction by allowing the base distribution to be a

mixture of two (or more) random or non-random distributions, thus allowing

the structure of the underlying hierarchy to be a directed acyclic graph (DAG),

rather than a tree.

More formally, given some DAG G = (V ,E) with vertex set V and edge

set E ⊂ V ×V which defines the hierarchical model structure, we associate

a distribution Gv with each vertex v ∈ V , some subset Ṽ ⊂ V of which are

PYP-distributed random distributions,

Gu ∼ PY

(
αu ,du ,

∑
v∈π(u)

λv→uGv

)
∀u ∈ Ṽ (8.2)

where Ṽ ⊂V , u, v ∈V are vertices, π(u) denotes the set of parents of u, π(u) =
{v |(v,u) ∈ E }, and λv→u is a positive weight attached to the edge (v,u), with the

constraint that the weights on all incoming edges into a node u sum to 1,

∑
v∈π(u)

λv→u = 1. (8.3)
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In other words, the base distribution for each PYP-distributed random variable

v ∈ Ṽ is a mixture whose components are the parents π(v) of v in the graph

and the mixing weights are given by weights on the incoming edges.

8.1.2 CRP Representation of the GPYP

The GPYP can also be described in terms of a hierarchical CRP-based construc-

tion, dubbed the “multi-floor Chinese restaurant process” (m-CRP) by Wood

and Teh [2009]. The main idea is that, just as in a simple finite mixture model,

the mixture base distribution can equivalently be described as the marginal

distribution of a process that associates an indicator latent variable to each

draw from the base distribution, which selects one of the mixture components.

For a simple finite mixture model P (x) = ∑J
j=1λ j P j (x) we can introduce an

indicator variable z with distribution P (z = j ) =λ j , and write

P (x) =
J∑

j=1
P (x, z = j ) =

J∑
j=1

P (z = j )P (x|z = j ) =
J∑

j=1
λ j P j (x).

Recall that in the CRP construction of a PYP model, G ∼ PY(α,d , H),

x1:N
iid.∼ G , we have (a1, . . . , aK ) ∼C RPN (α,d),φ1:K

iid.∼ H , xi =ϕ(A,φ1:K , i ) with

quantities defined as in Section 2.3.2. Now consider the basic GPYP model

G ∼ PY

(
α,d ,

J∑
j=1

λ j H j

)
x1:N

iid.∼ G . (8.4)

The only difference between this model and the basic PYP model is that

the base distribution is a mixture, so the “dishes” φ1:K in the CRP construction

are iid. draws from the mixture
∑J

j=1λ j H j . These iid. draws can be described

in terms of the indicator variable construction mentioned above as follows:

by introducing “floor” indicator variables1 z1:K with range {1, . . . , J }, one for

each block in the partition, which are distributed according to the discrete

distributionλ= (λ1, . . . ,λJ ), i.e. p(zk = j ) =λ j , each table/dish φk is associated

with the mixture component H j it originated from. Given zk = j , the dish φk is

drawn from H j , so that marginallyφ1:K ∼∑J
j=1λ j H j as required. The complete

sequential generative process can be described as follows:

1. Each customer i = 1,2,3, . . . either joins an existing table or sits at a new ta-

ble according to the two-parameter CRP (2.24). Let Ai−1 = (ai−1
1 , . . . , ai−1

k−1)

1The metaphor behind this is the following: Assume that the Chinese restaurant consists
of multiple floors, each serving dishes from a different base distribution mixture component.
Whenever a customer chooses to sit at a new table, she first chooses a floor before choosing
a dish from the associated base mixture component. Which floor a table is located on is
described using its floor indicator variable.
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be the partition generated by the first i−1 customers. If a new table/block

ak is created when customer i enters,

(a) Sample the floor indicator zk ∼ Disc(λ)

(b) Sample φk ∼ Hzk from the corresponding base mixture component

2. Set xi to the dish served at the table that customer i sat at, xi =
ϕ(Ai ,φ1:|Ai |, i ).

This construction can be extended to the hierarchical case by noting that,

as in the extension of the CRP to the CRF, draws from the base distribution

can be thought of as customers entering the restaurant associated with the

base distribution. In the multi-floor setting, whenever a draw is made from

one of the base distribution mixture components Hzk in step 1b above, a new

customer enters the restaurant associated with Hzk .

8.1.3 Gibbs Sampling Inference in the GPYP

The Gibbs sampler proposed by Wood and Teh [2009] for the multi-floor CRF

is a slightly modified version of the remove-add sampler (Algorithm 2) for

the CRF: each customer is first removed from its restaurant (and recursively

from the appropriate parent restaurants if tables become empty), and then re-

inserted according to the multi-floor CRP described above. The main difference

to the plain CRF case arises when a customer chooses to sit at a new table:

in this case, the new customer also has to sample the corresponding floor

indicator variable. Wood and Teh [2009] combine these two steps into one

by sampling the table for the new customer jointly with the floor indicator

variable. In other words, instead of a customer of type s first deciding whether

to join and existing table with probability proportional to csk −d or to sit at a

new one with probability proportional to (α+ tsd)
∑

j λ j H j (s), and then, if the

second option is chosen, sampling the floor indicator from P (zk = j |rest) ∝
λ j H j (s), the customer directly chooses either an existing table (with probability

proportional to csk −d as before), or a new table and the floor zk = j with

probability proportional to (α+ tsd)λ j H j (s).

While this Gibbs sampler for the m-CRF is straight-forward and only re-

quires us to keep track of the additional floor indicator variables, it assumes

that the mixture weights λ j are fixed. However, inferring these mixture weights

from data by giving them a (hierarchical) prior makes this model much more

powerful. Wood and Teh [2009] propose to do so by instead of sampling the

“switch” variables z for vertex v from a fixed discrete distribution z ∼ Disc(λv ),
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to instead sample them from a PYP random distribution Sv ∼ PY(αS
v ,d S

v , Hv ),

which itself is part of a hierarchical PYP prior. In this setup, each vertex v is

associated with two PYP random variables: Gv , a distribution over the domain

of interest (i.e. words or characters in our case), and switch distribution Sv , a

distribution over the set π(v) of parents of v (or equivalently over the integers

1,2, . . . , |π(v)|). The switch distributions can themselves form a HPYP (or even

GPYP) hierarchy, but in [Wood and Teh, 2009] are simply given a shared prior

per context length.

Though Wood and Teh [2009] don’t discuss this extension in detail, the

remove-add Gibbs sampler readily also extends to this setting, by maintaining

a separate Chinese restaurant franchise representation for the distributions

Sv . In the basic reseating step for the Gv hierarchy described above, λ j now

becomes Sv ( j ). Whenever a new table on floor z = j is created (with probability

proportional to (α+ tsd)Sv ( j )H j (s)), a customer of type j enters the restau-

rant associated with Sv , where it is handled according to the same basic CRF

procedure (i.e. sitting at either an already occupied or a new table, and recur-

sively sending customers to the parent restaurant whenever new tables are

created in the process). Similarly, whenever a table on floor j becomes empty

in the process of updating the restaurant associated with Gv , a customer of

type j is removed from the restaurant associated with Sv , recursively removing

customers up the hierarchy of base distributions if necessary.

8.2 Neural Language Models

Neural language models is the name given to class of language models pio-

neered by the work of [Bengio et al., 2003], that have gained popularity recently

due to their state-of-the art performance, often outperforming classical n-gram

models by a large margin (see e.g. [Mikolov, 2012; Zaremba et al., 2014; Józefow-

icz et al., 2016; Dai et al., 2019; Radford et al., 2019]). The distinguishing feature

of these models is that they embed the underlying discrete observations into a

real-valued feature space, and that this mapping is learned from the data with

the remaining parameters (unlike other feature-based language models such

as maximum-entropy models [Rosenfeld, 1994], that embed the data using a

hand-designed, fixed mapping). Challenges regarding the computationally

expensive training of these types of models have been (partially) overcome

with the development of alternative training methods [Mnih and Teh, 2012]

and the widespread availability of GPUs, which are very well suited to the linear

algebra computations involved.
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Various types of neural network architectures that have been successfully

applied in computer vision and other domains have also been applied to lan-

guage modelling, including models with stochastic latent variables [Mnih and

Hinton, 2007] and recurrent neural networks (RNNs) [Mikolov, 2012]. While

RNNs tend to outperform purely feed-forward models, we will focus on the

latter here, as these are conceptually simpler (and easier to train), and our

focus here is on exploring the combination of these models with count-based

models, not necessarily on achieving state-of-the-art performance.

The paper that introduced the particular class of neural language models

we consider here [Bengio et al., 2003] (as well as many follow-up papers) used

a fairly simple general architecture. As in n-gram models, the data consist of

context-observation pairs (u, s), where u ∈ΣM and s ∈Σ are elements in some

fixed vocabularyΣ and the goal is to model the conditional probability Pu(s) for

word s ∈Σ in context u ∈ΣM . Instead of modelling this dependence directly, the

context and observation are mapped into representations in RD first, through a

mapping that is learned from the data (and that could be different depending

on whether the word appears in the context or is the target word). Usually

the context words are individually mapped first and then combined. The log-

probability is then modelled as a function that measures the compatibility of

the combined context representation and the target representation, e.g. the

dot product. Let φ : Σ→ RD denote the embedding for the context words,

ψ :Σ→RD ′
denote the embedding for the target word, g :RD×M →RD ′′

denote

the function for combining context representations, and h :RD ′′ ×RD ′ →R the

function for measuring compatibility, then the probability of a word s in a

context u = u1 ·u2 · · ·uM is given by:

E(u, s) = h
(
g

(
φ(u1), . . . ,φ(uM )

)
,ψ(s)

)
(8.5)

Pu(s) = exp(E(u, s))∑
s′∈Σexp(E(u, s′))

. (8.6)

In the model by Bengio et al. [2003] φ and ψ are simple look-up tables, g is a

one-layer neural network with additional direct connections from inputs to

outputs taking the form

g (φ) =


1

φ

tanh(d +Hφ)

 , (8.7)

where φ = [φ(u1), . . . ,φ(uM )]T , and h(x, y) = 〈x, y〉 is the dot product. The

parameters in this model are the context representations, the target represen-

tations, as well as the weights H and biases d of the hidden layer. If the context
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representations are D-dimensional and the hidden layer has h units, the total

number of parameters is |Σ|((m +1)D +h +1)+h(mD +1). The best reported

test perplexities in [Bengio et al., 2003] are 276 for the Brown Corpus. Results for

a model that is a mixture with an n-gram model are better: 252 for the Brown

Corpus and 109 for the AP News Corpus (see Appendix B for a description of

the data sets).

Learning the parameters in these models is traditionally accomplished via

some variant of stochastic gradient ascent on a maximum likelihood objective

function. In particular, the log-likelihood for a data set (ui , si ), i = 1, . . . , N is

given by ` = ∑
i
[
E(ui , si )− log

∑
s′∈Σexp(E(ui , s′))

]
and the contribution of a

single data point i to the gradient with respect to the model parameters θ is

given by
∂

∂θ
E(ui , si )−∑

s
Pui (s)

∂

∂θ
E(ui , s). (8.8)

The second term, the expected value of the gradient of the energy, is com-

putationally problematic as its computation requires evaluation of E and its

derivative for every word in the vocabulary, which can be expensive even for

small vocabularies. Several approaches for overcoming this problem have been

proposed, including parallelizing this computation [Bengio et al., 2003], struc-

turing the vocabulary to avoid this expensive computation [Mnih and Hinton,

2009], and, more recently, optimizing a different objective function [Mnih and

Teh, 2012] (see below).

8.2.1 Log-bilinear Model

The log-bilinear language model introduced by Mnih and Hinton [2007] is

one of the simplest models in the class of feed-forward neural language mod-

els. It does not involve stochastic hidden units and simply parametrizes the

log-probabilities in each context using a bilinear function in the context repre-

sentations and the target word representations. The context representations

are linearly transformed and then combined via addition and the compatibil-

ity of this combined context representation is then measured using the dot

product. Using the notation from above, it can be specified as

g (φ) =∑
m

Amφ(um) (8.9)

where the Am are weight matrices for each context position m = 1, . . . , M . As in

the model described above, the compatibility function h is the dot product and

φ and ψ are look-up tables (the original version in [Mnih and Hinton, 2007]

used the same look-up tables for context and target words, but in [Mnih and
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Teh, 2012] the authors suggested using distinct representations). Additionally,

the model contains per-word biases, so that in summary

E(u, s) =
〈∑

m
Amφ(um),ψ(s)

〉
+bs (8.10)

The context and target representations are typically chosen to be of the same

dimensionality D = D ′ = D ′′, resulting in square context-weight matrices Am .2

Noise-Contrastive Estimation

Training neural language models—even the simple LBL model—by maximiz-

ing log-likelihood with stochastic gradient descent can be computationally

challenging. While GPUs can be used to speed up many of the computations

involved in training neural language models, the reported training times are

still often orders of magnitude larger than for count-based language models.

As an extreme example, [Bengio et al., 2003] report a training time of 3 weeks

for their model on the AP news corpus, using a parallel implementation and 40

CPUs, while a Sequence Memoizer model on the same corpus can be estimated

in a under a minute on a single core.

As mentioned above, one particular bottleneck during gradient descent

training using the maximum likelihood objective function is the computation of

the expectation in (8.8), as it requires an amount of computation proportional

to the vocabulary size [Mnih and Teh, 2012]. Mnih and Teh [2012] propose an

alternative training procedure based on noise-contrastive estimation (NCE)

[Gutmann and Hyvärinen, 2010], which avoids the costly computation in the

gradient of the log-likelihood objective by replacing it with a different objective

function. At a high level, the NCE objective function is based on the idea of

training the model to optimally distinguish samples from the data from samples

from a (known) noise distribution. For a given noise distribution P n(s), the

resulting objective function is

EPu

[
Pu(s)

Pu(s)+kP n(s)

]
+kEP n

[
kP n(s)

Pu(s)+kP n(s)

]
(8.11)

where k, the number of noise samples, is a parameter of the method. We refer

the reader to [Mnih and Teh, 2012] for more details. Using this optimization

technique, Mnih and Teh [2012] report training times that are more than an

order of magnitude faster than maximum likelihood training (from 21 hours to

2A further simplification that has been suggested by Mnih and Teh [2012] is to use only
diagonal context weights Am , which in combination with the noise-contrastive estimation
method (described in Section 8.2.1) speeds up learning. However, we use full context weight
matrices in our experiments and employ an optimized, multi-threaded BLAS implementation
to speed up the costly matrix-matrix multiplications.
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1.5 hours on the PTB corpus), while producing predictive performance that is

on par or better than the models trained with the maximum likelihood objective.

In our experiments we make use of this noise-contrastive estimation procedure

for training the LBL models and model components to speed up training. We

follow [Mnih and Teh, 2012] closely in our setup and use a unigram noise

distribution and k = 25 noise samples, which was shown to strike a reasonable

balance between predictive performance and computational cost in [Mnih and

Teh, 2012].

Tricks for LBL Training

Training neural language models is conceptually straightforward, but some

commonly used tricks are necessary in order to obtain good results. The main

free parameters for LBL training are the initialization of the weights and rep-

resentations, the strength of regularization, and the learning rate(s) and their

decay. Discussing this in detail is beyond the scope of this thesis and we refer

the reader to [Montavon et al., 2012] for a discussion of many of these issues.

However, one thing we found to be particularly important when training the

hybrid LBL/HPYP models is learning rate scaling (and early stopping). He were

use the following simple approach also used in [Mnih and Teh, 2012]: During

training, we monitor the performance (in terms of perplexity) of the current

model by evaluating it on a held-out validation set after each epoch. If the

perplexity increased compared to the last epoch, we scale the learning rate by

a factor of 1/2. This procedure is repeated for some fixed number of epochs,

and in the end the model with the lowest validation set perplexity is chosen.

8.3 Hybrid Model

Conceptually, integrating a neural language model into a hierarchical (or graph-

ical) PYP model is straightforward: as a neural language model can be viewed

as a set of predictive distributions {Lθv(s)}v for each context v ∈ΣM and symbol

s, jointly parameterized by the network weights θ, these can be used directly

as base distributions for (a subset of) the PY-distributed random distributions

Gu (u ∈ΣK ) in a hierarchical PYP model (2.41) or the Sequence Memoizer (3.2).

We will compare several possible model architectures which are summarized

in Figure 8.1. Inference in these models amounts to both computing the poste-

rior distribution over the random distributions (or the predictive distributions

when the distributions are integrated out using the CRP) as well as optimizing
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Figure 8.1: Model architectures combining a neural language model model with a
(hierarchical) Pitman-Yor Process. (a) PYP used as “adaptor” for the neural model;
(b) “back-off” combination; (c) combined back-off (b) with adaptor (a); (d) GPYP
combination. For most experiments we considered |u| = 2, so that (a) and(d) use an
LBL model with context size 2, wheres (b) and (c) use and LBL with context size 1.

the likelihood wrt. the parameters of the neural model θ (and possibly the

concentration and discount parameters).

In the most basic model of this sort we fix some context length K and let

Gu ∼ PY(αu,du,Lθu) ∀u ∈ΣK . (8.12)

This model does not make use of any explicit hierarchical structure, but just

uses the PYP as an “adaptor” [Goldwater et al., 2006b] on top of the conditional

distributions coming from the neural model. As we are using the LBL as the

neural language model, we call this model LBL/A (log-bilinear model with

adaptor). Considering the CRPs associated with each of the Gu, we can see that

the “training data” for the neural language model are the dishes served at the

tables (i.e. the draws from the base distribution) in each CRP. Intuitively, as the

number of tables will be smaller than the number of customers (i.e. the original

observations) both in expectation and at the most likely configuration, this

tends to “flatten” the conditional distributions of words that the LBL is trained

on towards a uniform distribution over the words observed in each context u.

Indeed, if inference were performed using the Kneser-Ney approximation to

inference in PYP models, the training data for the LBL model would simply be

context/observation pairs (u, s) for each cus > 0. In other words, no matter how

many times the symbol s is observed in context u, the LBL will be trained as if

it only occurred once.
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A variation on this model, emphasizing the hierarchical aspect over the

adaptor aspect, is given by

Gu ∼ PY(αu,du,Lσ(u)) ∀u ∈ΣK (8.13)

so that subsets of the Gu that share the same suffix σ(u) share the same LBL-

based base distribution. The idea underlying this model is that the LBL tends

to perform well when short context lengths (1 or 2) are used, but does not

benefit much from using longer contexts [Mnih and Hinton, 2007], whereas

count-based models see significant improvements in predictive performance

for longer contexts. We will not further consider this architecture in this form,

but instead focus on the following combination of these two ideas, that keeps

both the hierarchical aspect as well as using a PYP adaptor for the LBL:

Gu|Gσ(u) ∼ PY(αu,du,Gσ(u)) |u| > M (8.14)

Gu ∼ PY(αu,du,Lu) |u| = M . (8.15)

Note that in this model each LBL conditional distribution is directly used as

base distribution for a single Gu, which in turn is used as base distribution for

Gsu for all s ∈Σ, so that in comparison to the model described above there is an

additional level of PYP adaptors. Further, this kind of model can be extended

to deeper hierarchies with K > M +1, where for context lengths larger than M

the model has the standard HPYP structure.

Finally, we can integrate the LBL model using the graphical Pitman-Yor

process, by making the base distribution Hu for a Pitman-Yor distributed ran-

dom measure Gu a mixture distribution between the HPYP parent node Gσ(u)

within the context tree and the LBL distribution Lu at some context length M

and using the usual HPYP hierarchy otherwise:

Gu ∼ PY(αu,du, Hu) (8.16)

Hu =
{
λuGσ(u) + (1−λu)Lu if |u| = M

Gσ(u) if u < M .
(8.17)

One can easily extend this setup further to other architectures, e.g. involving

multiple LBL models at different context lengths, adding an additional layer

of adaptor nodes, or adding other further types of language models, but we

restrict our experiments to the model types described above.

As in the original application of the GPYP to domain adaptation as well as

the simple mixture model (8.1), the value of the mixing weight λu has a signif-

icant influence on the performance of this model. We follow Wood and Teh

[2009] and use a hierarchical prior on the mixing weights as well (as described



8.4. INFERENCE & LEARNING 147

above) and perform inference over the hierarchy of indicator variables using

Gibbs sampling.

8.4 Inference & Learning

Given a training corpus, inference and learning in the proposed models

amounts to both fitting the parameters of the LBL model as well as inferring

the posterior distributions (or the most likely posterior state) over the latent

variables in the hierarchical (or graphical) Pitman-Yor process.

If the parameters θ of the LBL model were fixed, the approaches for infer-

ence in (hierarchical) PYP models discussed in Chapters 2 & 3 could directly be

applied to the non-GPYP models, and the multi-floor CRF Gibbs sampler of

Wood and Teh [2009] could be used to infer the seating arrangements and floor

indicator variables of the GPYP model. Conversely, if we were given a seating

arrangement in the CRF and the settings of the m-CRF indicator variables (for

the GPYP), we knew which dishes were assigned to the LBL component and

could optimize the LBL model component based on these by either using a

gradient-based maximum-likelihood method or noise-contrastive estimation.

Based on this observation, our inference and learning approach alternates

between sampling the seating arrangements and indicator variables of the

HPYP/GPYP component using Gibbs sampling, and optimizing the parameters

of the LBL model using NCE. In all reported experiments we interleave one

iteration of Gibbs sampling (i.e. reseating all customers in all restaurants) with

one iteration of NCE updates for all counts assigned to the LBL component.3

The proposed approach can be seen as form of an incremental EM algorithm,

where the expectation step is approximated by a “single sample” Monte Carlo

approximation to the true posterior distribution, and the (partial) maximization

step is performed using a series of NCE updates. The use of a single sample

to approximate the expected value required for an optimization is akin to the

Contrastive Divergence [Hinton, 2002] algorithm which has been successfully

used for training e.g. restricted Boltzmann machines.

In a similar fashion, we can additionally interleave gradient-based updates

to the hyperparameters of the HPYP/GPYP model component, i.e. the con-

centration and discount parameters, as mentioned in Section 5.7.2 for the

SM model. While due to the approximations made this algorithm enjoys no

theoretical guarantees of convergence or optimality, in practice it appears to

3We did not perform extensive experiments comparing different schedules, as ad-hoc
experiments did not hint at consistent improvements by either taking more steps in the sampler
or performing more optimization steps for the LBL component.
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reliably converge to states of similar predictive performance when started from

different initializations.

We also explore a simpler version of the training procedure (for the HPYP-

based models) where the table counts tus in HPYP component are determinis-

tically set using the Kneser-Ney approximation (cf. Seq 2.4.2), i.e. no additional

sampling needs to be performed.

8.5 Results & Analysis

In order to quantitatively and qualitatively explore the performance of the hy-

brid models, we performed several experiments on the Penn Treebank corpus.

We focus on models with shallow trees (i.e. contexts lengths one and two),

as this is where the differences between the models can be most easily observed.

When using models with longer contexts for the LBL part (e.g. a HPYP tree of

depth 4 with a LBL base measure at depth 4), many context/symbol pairs will

only be observed once, so that these models become similar to a plain LBL

model without the PYP component. Conversely, increasing the depth of the

HPYP component while using small context lengths for the LBL will mainly

demonstrate the ability of the HPYP to make use of longer contexts, which was

already explored in Chapter 4.

8.5.1 Predictive Performance

The first set of experiments asses the predictive performance of the presented

models in terms of perplexity on the Penn Treebank test set. All models were

trained using the iterative training procedure discussed above for 100 iterations

or until the learning rate for the LBL model decreased below 1e−10 (the learning

rate was initialized at 0.1 and halved every time the validation set performance

stopped improving). The LBL model weights were initialized randomly and

the dimensionality of the LBL representations was fixed at D = 100 for these

experiments.

Table 8.1 summarizes the results. Several observations can be made: All of

the hybrid model variants outperform the individual component models (using

the same context size). While taken individually an LBL model with context size

M = 2 significantly outperforms a model with context size M = 1 (perplexity

160 vs. 186), the combined models tend to perform better when the L = 1 LBL

is combined with a depth K = 2 HPYP/GPYP model. The GPYP models perform

worse than their HPYP counterparts (though still outperforming the individual

baselines), though this can be partially remedied by initializing the LBL com-



8.5. RESULTS & ANALYSIS 149

ponent in the hybrid GPYP models with a pre-trained LBL state (see below).

Performing inference in the HPYP component (instead of setting the counts

deterministically using the Kneser-Ney approximation) provides a significant

performance improvement. For the trigram K = 2 models, a linear interpo-

lation (8.1) of the two pure base models trained separately outperforms the

hybrid models (perplexity 129.1 with optimal weights chosen on the validation

set). For the bigram models, the test set perplexity of the linear interpolation is

very similar to that of the PYP adaptor model.

It is revealing to study the individual models’ strengths and weaknesses

in order to understand why combinations of them—in form of mixtures or

the HPYP/GPYP models presented here—tend to outperform the individual

components by a large margin. Figure 8.2 shines some light on this question

(focussing on the bigram HPYP-based models): it shows the average cumulative

log-loss, i.e. 1
i

∑i
j=0− logP(s j | u j ) as a function of i , where (u j , s j ) are context-

symbol pairs from the test set, sorted by the number of times they occur in

the training set in ascending order. This type of plot allows us to examine how

the predictive performance on the test set breaks down into losses incurred at

individual positions, as a function of how often a particular symbol-context

pair was observed during training. The head of the curves on the left reflects the

performance for contexts where little training data is available, while the tail

shows how well the model performs on contexts with more occurrences in the

training data. A few interesting observations can be made here: The interval to

the left of the first dashed line contains context-symbol pairs that did not occur

in the training data at all. In order to make predictions for these, the count-

based models fall-back to their unigram models, so that the non-smoothed

unigram model shown in black represents a lower bound for these models in

this regime. The plain bigram HPYP model shown in red performs poorly in

this regime, while the LBL model trained with a PYP adaptor but where the

adaptor is not used during prediction (PYP\A), shown in blue performs best

and outperforms both the unigram baseline and the LBL model trained on

the raw data, demonstrating (a) that using the “adapted“, flattened counts

for training the LBL model improves its performance in this regime; and (b)

that the LBL model can effectively leverage the learned word representations

to generalize to unseen context-symbol pairs. The combined adaptor model,

as well as mixtures between the plain LBL and the adapted LBL lie between

these extremes. For context-symbol pairs that occur more frequently in the

training data the picture is mostly reversed: the unigram baseline unsurpris-

ingly performs poorly, as does the LBL component trained with adaptor when
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Figure 8.2: Average cumulative log-loss, i.e. 1
i

∑i
j=0− log p(s j | u j ) as a function of i ,

where (u j , s j ) are context-symbol pairs from the test set, sorted by the number of times
they occur in the training set in ascending order. Vertical dashed lines mark 0,1,2, . . . ,10
occurrences in the training set. The top panel (a) shows models where inference in the
HPYP component is performed using Gibbs sampling. Panel (b) shows models where
the HPYP component is deterministically set using the Kneser-Ney approximation.
The different methods are named as follows: (1) LBL\A – bigram LBL model trained
through a PYP adaptor, but predictions made directly from the LBL; (2) LBL/A – as
(1), but predictions made through PYP adaptor; (3) HPYP – plain bigram HPYP model;
(4) LBL – plain bigram LBL model; (5) LBL + HPYP – Linear interpolation of (3) and
(4); (6) LBL\A + HPYP – Linear interpolation between (1) and (3); (7) Unigram – MLE
Unigram model
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HPYP Models

Tree Depth K LBL depth M KN approx. Perplexity

1 1 yes 178.9
1 1 no 175.2
2 1 yes 146.4
2 1 no 141.8
2 2 yes 145.8
2 2 no 143.5

GPYP Models

Tree Depth K LBL depth M Perplexity

2 1 144.9
2 2 149.7

Baseline Models

Model Context Size Perplexity

LBL, D = 100 1 186
LBL, D = 100 2 160
HPYP-1PF 1 186
HPYP-KN 1 186
HPYP-1PF 2 150
HPYP-KN 2 151

Table 8.1: Perplexity results of various LBL/HPYP hybrid models on the Penn Treebank
corpus test set. For models where KN=yes, the Kneser-Ney approximation (Sec. 2.4.2)
was used to infer the counts for the HPYP part, i.e. only the LBL component was
optimized; the KN=no models were trained using the alternating EM-like algorithm
using Gibbs sampling for the HPYP counts. For all these model the LBL representation
dimensionality is D = 100. The top table contains results for the HPYP models, with
models where K = M refer to model type (a) and models where K = M+1 refer to model
type (c). The bottom table contains results for GPYP models (type (d)). For the GPYP
models the full alternating inference procedure over counts, indicator assignments,
mixing weights, and LBL parameters was used, with randomly initialized weights.

the adaptor is not used during prediction. Interestingly, the plain HPYP and

LBL models have virtually identically performance for context-symbol pairs

that occur more than three times, which implies that the HPYP makes more

effective use of observations that occur one to three times (the red and cyan

lines converge between the first and third vertical line). Finally, in this setting,

an equally-weighted mixture between separately trained LBL and HPYP mod-

els has a final performance that is indistinguishable from the jointly-trained
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model.

The top panel of Figure 8.2 shows the performance of models where the

counts of the HPYP component are inferred using Gibbs sampling (only the last

sample is used, i.e. no averaging across samples), and the bottom panel shows

results were the counts were deterministically computed using the Kneser-

Ney approximation, and only the LBL parameters and the hyperparameters

were optimized. Interestingly, the LBL\A model performs better on unseen

observations when the KN approximation is used, but the final performance

of such a model is significantly worse. Further, the final perplexity of the KN-

based LBL/A model is worse than that of the linear interpolation LBL+HPYP,

while in the Gibbs sampled setting it is on par.

8.5.2 Initialization & Pre-Training

As our alternating optimization and inference method is not guaranteed to

converge to the globally optimal parameters, we empirically evaluate the effect

of initialization on the predictive performance. For the HPYP-based models,

pre-training the LBL component either on raw data or on modified counts

obtained from the Kneser-Ney approximation did not significantly improve

(or degrade) performance, with models achieving similar performance after

convergence. However, for the GPYP-based models, initializing the LBL com-

ponent randomly seems to have a detrimental effect: if the LBL component is

initialized randomly the predictive distributions are initially effectively uniform,

so that the initial stages of inference of the indicator variables will assign most

of the observations to the HPYP component, which in turn will prevent the

optimization of the LBL component from improving its accuracy. For a depth-2

GPYP/LBL model, randomly initializing the weights for the LBL component

leads to a final test set perplexity of 149.7. Pre-training the LBL component on

the raw data until convergence (achieving a test set perplexity of 160.0) before

starting the Gibbs sampling inference procedure for the GPYP component leads

to an improved final perplexity of 145.5 (for the last sample, 142.9 if the last 10

samples are averaged).

8.5.3 Varying the Representation Dimensionality

For the hybrid LBL/PYP models, the LBL component is trained on significantly

less data than an LBL model trained by itself. For example, for the WSJ corpus,

of the 920k training tokens only about 370k are used to train an LBL at context

length 1. However, the described LBL model with D = 100 has about two
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million parameters, and thus can significantly overfit the data. The learning rate

adaptation and early stopping procedures described in Section 8.2.1 mitigate

this problem somewhat, but shrinking the complexity of the model with the

size of the available training seems desirable. Figure 8.2 shows the performance

of the best-performing model from Table 8.1, i.e. the HPYP combination with

M = 1 and K = 2, as the representation dimensionality is varied.

10 20 30 40 50 60 70 80 90 100

Perplexity 140.2 140.9 141.5 142.0 142.4 142.7 143.1 143.1 141.2 141.8

Table 8.2: Perplexities on the WSJ corpus of an LBL/PYP model with total context
length K = 2 and LBL context length M = 1 as the representation dimensionality D is
varied.

8.5.4 Conditional Distribution

Finally, we qualitatively investigated how the conditional distributions learned

by the different models compare. Figure 8.3 shows the conditional distribution

following the word “the”, which is the most frequent token in the corpus, and

Figure 8.4 shows the conditional distribution following “now”, which is the

100-th most frequent token. In both plots, the black line shows the conditional

distribution of a non-smoothed bigram model. The area to the right of the plot,

where the black line is not visible, corresponds to the symbols that did not fol-

low “the” or “now” in the training set, respectively. The other models all assign

non-zero probability mass to these zero-frequency types, which they necessar-

ily need to take away from some of the more frequently occurring tokens. For

the more frequently occurring context token “the”, the conditional distributions

are almost identical to the unsmoothed bigram distribution, with the exception

of–as expected–the LBL-1 model which has been trained skewed towards a uni-

form distribution by the PYP adaptor. For the less frequent “now” conditional

distribution, the re-distribution off probability mass to the zero-frequency

types is more pronounced, as there are more of these types. Interestingly, the

LBL and HPYP models re-distribute the probability mass somewhat differently:

The LBL assigns higher mass to the high-frequency tokens, and deducts this

mass from the types the occur with frequency one and two, while for the HPYP

and combined HPYP/LBL model this effect is less strong. Finally, it can be seen

the the conditional probabilities assigned by the LBL models are more variable

in the low training frequency buckets, indicating that the models are less reliant

on the conditional counts in this regime.
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Figure 8.3: Learned predictive distribution following the context the, which is the
most frequent token in the corpus. Models were trained on the WSJ corpus. The
words are ordered on the x-axis according to their (relative) frequency following the
in the training sequence, which is shown in black. LBL denotes a plain LBL model,
HPYP-1/LBL-1 a hybrid model with tree depth and LBL context length both 1, HPYP-1
a plain HPYP model with context length 1, and LBL-1 is just the LBL component of the
HPYP-1/LBL-1 model.
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Figure 8.4: Learned predictive distribution following the context now, which is the
100-th most frequent token in the corpus. The models are the same as in Figure 8.3
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8.6 Discussion

We have explored several hybrid model variants combining a LBL neural lan-

guage models with variants of hierarchical PYP models. While the predictive

performance of the specific models considered is underwhelming (i.e. they do

not outperform simple linear interpolations in terms of test set perplexity), the

general direction of combining count-based on neural language models is still

an interesting avenue for further exploration.

Most of the work on the model described in this chapter was performed

around 2012, when (non-recurrent) neural language models such as the LBL

model incorporated here were showing very promising results, but the im-

provements neural language models would bring to the field over the next

couple of years was not clear yet. Neural language models were still a niche and

suffered from drawbacks such as slow training, the requirement to use small

vocabularies, and the necessity to blend the model with an n-gram model to

achieve state-of-the-art performance.

Since then, the language modelling landscape has shifted quite dramati-

cally, and modern recurrent neural language models outperform the models

presented here by a large margin. For example, Zaremba et al. [2014] report a

perplexity of 68.7 on the WSJ/Penn Treebank corpus for an ensemble of LSTM-

based RNN models. This success of recurrent neural networks for language

modelling, started by the work of Mikolov [2012] has not only lead to the in-

tegration of such language models into downstream NLP tasks and systems,

but also to the development of end-to-end models for such tasks based on

recurrent neural networks (e.g. neural machine translation [Bahdanau et al.,

2014; Popescu-Belis, 2019] and speech recognition [Graves et al., 2013]). The

idea of using deep learning models to solve “NLP from scratch” [Collobert et al.,

2011], i.e. replacing complex pipelines with models based on word representa-

tions obtained through unsupervised language modelling, has also been very

successful, exemplified e.g. by the BERT [Devlin et al., 2018] and ELMo [Peters

et al., 2018] embeddings.

In spite of the great success of such “purely neural” models, we do believe

there is value in studying combinations of count-based models, which explicitly

encode and exploit structure, and neural models, which induce representations

of syntactic and semantic patterns, as both have strengths and weaknesses.

While neural models appear to be able to model and reproduce the power-

law behavior present in natural language [Takahashi and Tanaka-Ishii, 2017],

explicitly encoding this power-law behavior in the model might allow it to

devote more of its capacity to modelling the remaining structure.
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The benefits of such hybrid approaches when combined with modern deep

learning techniques have recently been demonstrated by Neubig and Dyer

[2016], who have shown that a different way of integrating count-based and

neural language models can be very effective: by either parametrizing the

mixing weights in a mixture language model using a neural network, or by

combing this technique with a feed-forward neural language model they are

able to achieve state-of-the art results.

8.7 ScaNPB – Software Framework for PYP-based

Nonparametric Bayesian Models

The model architectures presented in this and the preceding Chapters are

just a small subset of the models that can be constructed from hierarchical or

graphical Pitman-Yor processes as fundamental building blocks. Implement-

ing the model construction and inference procedures (e.g. Gibbs sampling or

particle filtering) for each new model architecture can be time-consuming and

error prone, making it costly to explore and experiment with new models. In

order to alleviate this burden (and to perform the described experiments), we

implemented a generic toolkit for constructing and performing inference in

PYP-based nonparametric Bayesian models. This software, the Scala Nonpara-

metric Bayes toolkit, ScaNPB if freely available under an open-source licence.4

Mature software packages for probabilistic modelling exist for other classes

of probability distributions, e.g. Stan [Carpenter et al., 2017] (for parametric

models), or Edward [Tran et al., 2017] (for deep learning-based models and

inference techniques), but they either do not support nonparametric Bayesian

models, or are not scalable to models with hundreds of thousands of random

variables (or both). For example, while generic probabilistic programming

languages such as Church [Goodman et al., 2012] or Anglican [Wood et al.,

2014] support nonparametric Bayesian models, they rely on generic inference

algorithms that do not scale to the models considered here.

ScaNPB is written in the Scala programming language, which provides high

performance (being a compiled language running on the JVM) while at the

same time providing the programmer with high-level abstractions yielding

high development speed.

In ScaNPB, models are constructed by Scala programs that describe that

random variables in the model and the relationships between them. This de-

scription of the model structure is kept separate from the inference algorithm

4https://github.com/jgasthaus/scanpb
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and any state that may need to be kept for each random variable during infer-

ence (e.g. some CRP representation). This separation makes both models as

well as inference procedures composable, allowing them to be built up from

smaller building blocks. Each node in the model (representing a random vari-

able) can be assigned an inference (or optimization) procedure. Making models

and inference procedures composable has been identified as a desireable fea-

ture in other work on software for probabilistic modelling, such as Edward

[Tran et al., 2017] and Pyro5.

ScaNPB contains generic code for handling context tries and trees, making

it easy to construct the hierarchical models described in this thesis. To illustrate

how models are constructed in ScaNPB, let us consider a fixed-depth HPYP

model. The model is constructed by first constructing the context trie out of

nodes objects that also mix in the PYPRandomVariable trait, and then setting

the base measure of each node to its parent in the trie, as well as setting the

discount and concentration parameters (to shared parameters in this example).

Finally, we assign MCMC sampling procedures to parts of the model by adding

a mapping from node indices to samplers to the model:

class ContextTreePYPNode[A](val slice: Slice)

extends ContextTreeProbabilityMeasureNode[A]

with PYPRandomVariable[A]

def buildModel(seq: Seq[Int], depth: Int, numTypes): Model = {

// construct the context trie

val root = SuffixTrie.buildForSeq(seq, depth,

ContextTreePYPNode[Int](_))

val rootMeasure = UniformIntegerProbabilityMeasure(numTypes)

val concentration = PositiveRealParameter(1.0)

val discount = UnitRealParameter(0.5)

// hook up dependencies between variables

Tree.preorderIterator(root).foreach { n =>

n.baseMeasure = n.parent.getOrElse(rootMeasure)

n.concentration = concentration

n.discount = discount

}

val treeNodes = Tree.preorderIterator(root).toIndexedSeq

val otherNodes = Seq(rootMeasure, concentration, discount)

val model = Model(treeNodes ++ otherNodes)

5https://pyro.ai

https://pyro.ai
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// assign MCMC sampling inference

val mhSampler = MHSampler(defaultRNG,

new GaussianProposal(Seq(0.1, 0.05)), false)

val pypSampler = new ReseatingSampler[Int](defaultRNG)

model.samplers ++= Seq(

pypSampler -> treeNodes.map(model.nodeIndex.apply(_))

mhSampler -> otherNodes.map(model.nodeIndex.apply(_)))

model.assignIndices() // finalize model construction

model

}

In addition to models and their building blocks (Nodes and Variables), the

second core concept in ScaNPB is that of state, which is maintained separately

from the model. There are two motivations for this separation between model

and state: First, different implementations of the state interface for a given

random variable type can be used by the same generic inference code. For

example, the generic remove/add sampler for PYP random variables (Algorithm

2) can be used with state classes implementing different CRP representations

(Chapter 4). Second, the state can be mutated and saved independently from

the model, making it easy to implement operations such as checkpointing,

particle filtering (maintaining multiple different copies of the state), or global

Metropolis-Hastings updates, which require an old state to be reconstructed

when a proposal is rejected.

Samplers in ScaNPB typically define a default state implementation for the

node types they can operate on, so that creating a default state object is easy:

val buffer = new Array[State](model.nodes.length)

model.samplers.foreach { case (sampler, idxs) =>

idxs.foreach { idx =>

buffer(idx) = sampler.getInitialState(model, idx)

}

state = ImmutableMultivariateState(s)

Samplers implement a step()method that transforms a state into and updated

state. When multiple samplers are defined on a given model, we can easily run

them sequentially by using a fold():
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def sample(model: Model, state: MultivariateState): MultivariateState = {

model.samplers.foldLeft(state) { case (s, (sampler, indices)) =>

sampler.step(model, s, indices)

}

}

To complete the HPYP example, we need to further ingredients. Before running

the Gibbs sampling-based inference procedure, we need to add the customers

corresponding to our observations into the state. This is achieved by finding

the context node in the tree and using the AddCustomerKernel (which is a

building block of the remove/add sampler) to modify the state:

val kernel = AddCustomerKernel(defaultRNG)

seq.indices.foldLeft(state) { case (s, i) =>

val (node, slice) = SuffixTree.findInsertionPoint(

seq,

root,

Slice(0, i)

)

kernel.step(model, s, node.idx, seq(i))

}

Finally, after obtaining one or multiple states representing the posterior

distribution of interest, we can use the state to make predictions. In the HPYP

model example, for a given new context-symbol pair, this amounts to finding

the corresponding node in the the context tree and then using the local state

associated with that node to make a prediction:

def predictSingle(seq: Seq[Int],

ngram: Seq[Int],

root: ContextTreeProbabilityMeasureNode[Int],

model: Model,

state: MultivariateState): Double = {

val node = SuffixTrie.findLongestSuffixSeq(

seq,

root,

ngram.slice(0, ngram.length - 1)

)

val localState = state(node.idx).asInstanceOf[MeasureState[Int]]

localState.measure(model, state, node.idx, ngram.last)

}
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Further examples, as well as code implementing the models discussed in

this thesis can be found in the scripts directory in the source code.



CHAPTER 9
Summary & Conclusions

9.1 Summary

In this thesis we have considered probabilistic models for sequences of symbols

that explicitly incorporate prior knowledge about structural and distributional

properties of the sequences. In particular, we have constructed various mod-

els from hierarchies of random probability measures following a Pitman-Yor

process, thus explicitly encoding assumptions about the power-law nature of

the marginal and conditional distributions, as well as encoding hierarchical

relationships between distributions following different context sequences.

The bulk of the work presented here focussed on how to make inference

and learning in such models practical, by exploring various approximate in-

ference techniques and associated space-efficient model representations and

construction algorithms, some of which can be used in an online setting, where

model construction and inference happen sequentially as new data is observed.

The resulting techniques are fast enough to build models for sequences with

millions of symbols in a matter of seconds on commodity hardware.

In addition to the more traditional language modelling setting, we have

considered an application of such models and associated online approximate

inference techniques to the task of lossless data compression by coupling a

Sequence Memoizer model to an entropy coder. The very promising results

in this direction have led to some interesting follow-up work [Bartlett et al.,

2010; Bartlett and Wood, 2011; Steinruecken, 2014], as well as the founding of a

startup company1 to commercialize this technology.

In the final two chapters we have explored ways of going beyond hierar-

chical PYP models by incorporating other model structures and distribution
1http://deplump.org founded by Frank Wood, who was a co-author on some of this

work.
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types. Chapter 7 explored how PYP-based models that incorporate a form

of caching for modelling burstiness and non-stationarity can be built from

the same building blocks developed in the first half of the thesis. The hybrid

HPYP/LBL models described in Chapter 8 are one attempt to integrate the

strengths of neural language models and PYP-based hierarchical models. While

more work in this direction is needed to fully explore the potential of such

models, especially when combined with recent, more complex neural language

model architectures (e.g. based on recurrent, convolutional, or transformer

networks), we believe that the initial results demonstrate that the models have

complementary strengths and that combining them in the PYP framework

(e.g. by using the proposed alternating optimization scheme) is one feasible

approach for such an integration.

We have implemented the methods described in this thesis in two open

source software packages, libPlump and ScaNPB, that can be used as basis

for applications of these techniques or further research using these or similar

classes of models.

9.2 Future Work

There are several concrete directions along which the work presented here

could be continued and extended. On the theoretical side there are interesting

open questions about the consistency and universality properties of Sequence

Memoizer-style models with unbounded context length. For example, for the

Context Tree Weighting algorithm [Willems et al., 1995; Willems, 1998] it has

been shown that the method is universal for FSMX sources, in the sense that an

entropy coding-based compression scheme based on this method converges

to the optimal rate if the true source is an FSMX source. It would be interesting

to explore whether a similar result can be established for models similar to the

Sequence Memoizer.

On the algorithmic side, one open question is whether it is possible to ob-

tain a better approximation to the most probable setting of the “multiplicity”

variables tus under the posterior distribution of an HPYP model. While the

particle filter or fractional counts-based approximations can be used to obtain

settings of these variables that lead to good predictive performance without

requiring an iterative procedure, it would be interesting to explore whether a

scheme that more directly approximates the MAP solution (as we attempted in

Section 5.5 without success) can be constructed. Another somewhat unfortu-

nate property of all described inference techniques is that they become slower
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and less accurate as the discount parameter approaches one, i.e. as the distri-

bution becomes more similar to the base distribution. Intuitively one would

prefer the opposite behavior, where modelling becomes easier the closer the

distribution is to the base distribution. It is thus interesting to explore whether

inference techniques and/or representations for the HPYP model class exist

that have this property, or whether a model class that with similar attributes

that has this property can be found.

More broadly, one could explore other classes of non-parametric (or para-

metric) distributions that allow modelling the power-law (or other) properties

of the data more closely, or are more amenable to fast (yet accurate) approxi-

mate inference.

The Sequence Memoizer language model has state-of-the-art performance

among count-based language models. However, recently the performance gap

between these models and language models based on deep learning techniques

has widened considerably. While a Sequence Memoizer model without exten-

sive hyperparameter tuning (e.g. using the default configuration in libPlump)

achieves a perplexity of around 140 on the WSJ data set and thus outperforms

a 5-gram model with Kneser-Ney smoothing (perplexity 141.2 reported in

[Mikolov, 2012]), the performance of RNN-based models has rapidly improved

(from 113.7 reported in [Mikolov and Zweig, 2012] to 78.4 in [Zaremba et al.,

2014], to 52.8 (using a form of neural cache model) in [Merity et al., 2017].

In light of this, one question of practical importance is whether any of the

techniques developed here can be brought to bear on this class of models to

improve this impressive performance even further. Whether such a fusion of

techniques can be successful by explicitly combining both model classes (as we

explored with simple models in Chapter 8), or whether a different approach for

incorporating structural and distributional assumptions into neural language

models is necessary to improve performance even further is entirely open and

an exciting area for research.

More generally, while deep learning-based techniques have been very suc-

cessful at addressing many highly relevant machine learning problems in do-

mains like computer vision, natural language processing, and reinforcement

learning, practical methods for solving real-world problems often require prior

knowledge, for example in the form of structural or distributional assumptions,

to be encoded in the model to be data-efficient or to guarantee predictable

and reliable behavior in regimes where little training data is available. How to

best combine the strengths of deep learning-based techniques with models

that encode explicit prior assumptions, or how to encode such assumptions
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in a principled way in neural network models directly, is an interesting broad

direction for future research.
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APPENDIX A
Additional Background Material

A.1 Kramp’s Symbol / Rising Factorial

The rising factorial (also called the Pochhammer symbol) and its generalization

Kramp’s symbol appear frequently in equations for the probability of partitions

under the CRP. Kramp’s symbol is defined as

[b]n
α =

n−1∏
i=0

(b + iα) = b(b +α)(b +2α) · · · (b + (n −1)α) (A.1)

i.e. it is a rising factorial with increment α. The Pochhammer symbol (b)n

amounts to the special case where α= 1, and they are related by

[b]n
α =αn[b/α]n

1 =αn(b/α)n . (A.2)

This relation to the Pochhammer symbol is useful because its direct definition

in terms of the Gamma function (b)n = Γ(b +n)/Γ(b) yields a formula that is

useful for computation:

[b]n
α =αn Γ(n +b/α)

Γ(b/α)
. (A.3)

In implementations, the division should be implemented as a subtraction in the

log domain if needed to avoid numeric overflow (see e.g. the implementation

of gsl_sf_poch in the GNU Scientific Library [Gough, 2009].) An alternative

notation that is sometimes used (e.g. in [Pitman, 2002]) is (b)n↑α = [b]n
α.

A.2 Generalized Stirling Numbers

The generalized Stirling numbers Sd (c, t) that appear in many expressions

related to the two-parameter CRP in this thesis are generalized Stirling numbers

of type (-1, -d, 0) according to the classification of Hsu and Shiue [1998]. They
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appear as the normalization constant in the CRP distribution over partitions

with a fixed number of blocks and can be given an explicit characterization as

the sum

Sd (c, t ) = ∑
A∈Act

∏
a∈A

[1−d ]|a|−1
1 . (A.4)

It can also be given the following recursive definition [Hsu and Shiue, 1998;

Teh, 2006a]

Sd (c, t ) = Sd (c −1, t −1)+ (c −1−d t )Sd (c −1, t ) (A.5)

with base cases

Sd (0,0) = Sd (1,1) = 1 (A.6)

Sd (c,0) = Sd (0, t ) = 0 for c, t > 0 (A.7)

Sd (c, t ) = 0 for t > c. (A.8)

Another alternative explicit definition is via Toscano’s formula [Pitman, 2002,

Eq. (3.19)] (see also [Buntine and Hutter, 2012]):

Sd (c, t ) = 1

d t t !

t∑
j=1

(−1) j

(
t

j

)
[−td ]n

1 (A.9)

Buntine and Hutter [2012] also show that it is possible to directly compute

ratios of these Stirling numbers recursively. Such ratios appear in some ex-

pressions related to the CRP (e.g. in the probability that a randomly chosen

customer sits by himself (4.2)), and being able to compute them directly yields

a significant speed up, as it avoids having to compute the Stirling numbers in

log space (which is necessary due to their large dynamic range), and also yields

more accurate results.

A.3 Posterior Distribution over ts

Recall the joint distribution over observations/counts and tables (2.33):

P ({cs , ts}, z1:c ) =
(∏

s∈Σ
H(s)ts

)(
[α+d ]t·−1

d

[α+1]c·−1
1

∏
s∈Σ

Sd (cs , ts)

)
. (A.10)

From this we can see that the (log) posterior distribution over the number of

tables ts is given by

logP ({ts}|{cs}, z1:c ) = ∑
s∈Σ

(
ts log H(s)+ logSd (cs , ts)

)+ log[α+d ]t·−1
d +C (A.11)
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Figure A.1: Components of the (log) CRP posterior distribution of ts for cs = 10 and
α= 0.
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Figure A.2: Components of the (log) CRP posterior distribution of ts for cs = 10 and
α= 10.

where C is a constant ensuring normalization. Figures A.1-A.3 shows the indi-

vidual components of this function, namely logSd (cs , ts) and log[α+d ]t·−1
d as a

function of ts for varying d (not shown is the linear function ts logG0). Figures

A.4–A.5 plot the (normalized) posterior distribution of ts for various values of

α,d , and H(s).
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Figure A.4: Posterior distribution over the number of tables ts in a CRP with α = 1
given cs = 10 observations of the same symbol as the base distribution H(s) is varied
from 0.2 to 1.0, and the discount parameter d is varied from 0 to 0.9. The crosses mark
the points (E [ts],d) and the lines are drawn in the same color as the corresponding
cross. Note that the vertical axis is the posterior mass for the lines, but d for the crosses,
both of which are in [0,1].
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Figure A.5: Same as Figure A.4 but for α= 10.



APPENDIX B
Datasets

This appendix provides information on the data sets that were used in this

thesis. Most of these data sets have been extensively used by other work on

language modelling and compression. Where possible the data sets have been

used in the same pre-processed form that has been conventionally used, so

that results can be directly compared to previous work. For each data set we

provide some background information, information about the preprocessing

that has been applied, and descriptive statistics about the data set.

B.1 Penn Treebank (PTB) / Wall Street Journal (WSJ)

n TR-TYP VA-TYP VA-1TYP VA-1TOK TE-TYP TE-1TYP TE-1TOK

1 10000 6022 0 0 6049 0 0
2 264989 38514 14062 15113 41423 14740 15594
3 615128 61239 42130 43217 67814 46464 47698
4 792627 69064 59343 60014 77339 66963 67809
5 857994 71467 66332 66783 80263 75173 75666
6 883429 72356 69108 69430 81266 78286 78615

Table B.1: n-gram statistics for the WSJ data set. Total number of tokens: 929,589 train;
73,760 validation; 82,430 test. Vocabulary size: 10,000. TR: training set, VA: validation
set, TE: test set; TYP: types (unique n-grams), TOK: tokens (number of occurrences),
1TYP and 1TOK: same as TYP and TOK but only counting types/tokens not occurring
in training set

Various subsections of the Penn Treebank data set [Marcus et al., 1993]

have been used extensively for the evaluation of language modelling tech-

niques. In particular, the Wall Street Journal (WSJ) subsection as originally

pre-processed by Bengio et al. [2003] has been used in many comparative stud-

173



174 APPENDIX B. DATASETS

ies involving neural language models, mostly because of its relatively small size

(approximately one million tokens) and the small vocabulary size (reduced

to 10,000 word types). We refer to this corpus interchangeably as either the

Penn Treebank (PTB) or the Wall Street Journal (WSJ) data set. The data set

was pre-processed to limit the vocabulary to the 9,998 most frequent words;

all occurrences of other words were replaced by a special out-of-vocabulary

token. Sentences are delimited by a special sentence end token, so that the total

vocabulary size is 10000. The convention for splitting the data set into training,

validation, and test set is to use sections 1-20 (929,589 tokens) for training, sec-

tions 21-22 (73,760 tokens) for validation, and sections 22-23 (82,430 tokens)

for testing. See Table B.1 for n-gram statistics for this data set.
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Figure B.1: n-gram frequencies by rank for the PTB/WSJ corpus.

B.2 Brown Corpus

The Brown corpus [Francis and Kucera, 1964] was one of the first and is one

of the most widely used corpora of English language text. Here, we use a

version that has been preprocessed as in Bengio et al. [2003] and uses the same

train/test/validation split that has been used in several other works on language

modelling. The training set contains 800,000 tokens, and the validation and test

sets contain 200,000 tokens and 181,041 tokens, respectively. The vocabulary

contains 16,383 types.
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n TR-TYP VA-TYP VA-1TYP VA-1TOK TE-TYP TE-1TYP TE-1TOK

1 15653 10823 508 2950 9476 448 2505
2 272051 87143 48210 57146 74176 42374 50592
3 592801 161312 132736 141714 142046 118595 127301
4 740459 189529 179982 184840 170237 162663 167116
5 782282 196831 194593 196934 178077 176361 178259
6 792837 198751 198281 199389 180184 179853 180519

Table B.2: n-gram statistics for the Brown corpus dataset. Total number of tokens:
800,000 train; 200,000 validation; 181,041 test; Vocabulary size: 16,383. TR: training set,
VA: validation set, TE: test set; TYP: types (unique n-grams), TOK: tokens (number of
occurrences), 1TYP and 1TOK: same as TYP and TOK but only counting types/tokens
not occurring in training set
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Figure B.2: n-gram frequencies by rank for the Brown Corpus data set.

B.3 AP News Corpus

The AP news corpus is collection of about 16 million tokens of news text from

Associated Press collected between 1996 and 1997 [Bengio et al., 2003]. We

use the preprocessed version of Bengio et al. [2003] which maps all characters

to lower case, and maps numbers, rare words, and proper nouns to special

symbols, resulting in a vocabulary of 17,964 tokens. The train/validation/test

split is the same as in Bengio et al. [2003] with 13,994,528 training tokens,

963,138 validation tokens, and 964,071 test tokens.
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n TR-TYP VA-TYP VA-1TYP VA-1TOK TE-TYP TE-1TYP TE-1TOK

1 17964 16513 0 0 16597 0 0
2 1461061 255475 62795 73145 255935 63846 74700
3 5349976 572474 304633 344751 575984 309640 351395
4 8875131 752071 571674 633909 757534 582479 646196
5 10751221 825374 728023 795931 830519 740870 810006
6 11606373 856767 800948 868112 861571 814127 881950

Table B.3: n-gram statistics for the AP News dataset. Total number of tokens:
13,994,528 train; 963,138 validation; 963,071 test. Vocabulary size: 17,964. TR: training
set, VA: validation set, TE: test set; TYP: types (unique n-grams), TOK: tokens (number
of occurrences), 1TYP and 1TOK: same as TYP and TOK but only counting types/tokens
not occurring in training set
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Figure B.3: n-gram frequencies by rank for the AP News corpus.

B.4 Calgary Corpus

The Calgary corpus is a widely-used data compression benchmark data set.1 It

consists of 14 files of various types and sizes with a total size of 3,041,622 bytes

(see Table 6.1 for a list of the individual files and sizes). It was originally created

researchers at the university of Calgary (I. Witten, T. Bell and J. Cleary).

1http://corpus.canterbury.ac.nz/descriptions/#calgary

http://corpus.canterbury.ac.nz/descriptions/#calgary
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