
“Where Is My Parcel?” Fast and Efficient Classifiers
to Detect User Intent in Natural Language

Constantina Nicolaou‡, Amal Vaidya‡, Fabon Dzogang†, David Wardrope‡ and Nikos Konstantinidis‡
‡Department of Physics and Astronomy, University College London, London, UK

Emails: constantina.nicolaou.17@ucl.ac.uk
amal.vaidya.15@ucl.ac.uk

d.wardrope@ucl.ac.uk
n.konstantinidis@ucl.ac.uk

†ConversationalAI Team, ASOS AI, London, UK
Email: fabon.dzogang@asos.com

Abstract—We study the performance of customer intent clas-
sifiers designed to predict the most popular intent received
through ASOS.com Customer Care Department, namely “Where
is my order?”. These queries are characterised by the use of
colloquialism, label noise and short message length. We conduct
extensive experiments with two well established classification
models: logistic regression via n-grams to account for sequences
in the data and recurrent neural networks that perform the
extraction of these sequential patterns automatically. Maintaining
the embedding layer fixed to GloVe coordinates, a Mann-Whitney
U test indicated that the F1 score on a held out set of messages
was lower for recurrent neural network classifiers than for linear
n-grams classifiers (M1=0.828, M2=0.815; U=1,196, P=1.46e-20),
unless all layers were jointly trained with all other network
parameters (M1=0.831, M2=0.828, U=4,280, P=8.24e-4). This
plain neural network produced top performance on a denoised set
of labels (0.887 F1) matching with Human annotators (0.889 F1)
and superior to linear classifiers (0.865 F1). Calibrating these
models to achieve precision levels above Human performance
(0.93 Precision), our results indicate a small difference in Recall
of 0.05 for the plain neural networks (training under 1hr), and
0.07 for the linear n-grams (training under 10min), revealing the
latter as a judicious choice of model architecture in modern AI
production systems.

Index Terms—text classification, customer intent, n-grams,
conversational-AI, recurrent neural networks, word-embedding.

I. INTRODUCTION

Over the past couple of decades, there have been significant
advancements in the scientific research of computational lin-
guistics and natural language processing (NLP) which led to
many practical technological applications in consumer prod-
ucts. These advancements were facilitated by the vast increase
of available data used to train Machine Learning models, the
development of highly efficient learning algorithms and the
substantial increase in computational power. NLP is a sub-field
of Artificial Intelligence that is focused on using computational
techniques to understand, manipulate and produce natural
language. Natural language, whether spoken or written, is
the most natural means of communication between Humans
with the associated challenges including being able to handle
colloquialism, variability, ambiguity and context-dependent
interpretation of Human languages.

With online fashion sales increasing year-on-year, one of the
challenges retailers face is the ability to handle customer care
queries efficiently. ASOS.com is a global e-commerce fashion
company with the entirety of their sales originating online.
With millions of customers across the globe their customer
care advisors handle large numbers of contacts every week
through live chat, email and dedicated social media. The time
of a customer care advisor is extremely valuable and as such
making their jobs as easy and efficient as possible is of great
importance to the company. Customer care is the front face
of any company and hence has to be operating flawlessly as a
smooth customer experience is crucial. AI-powered chatbots
working alongside Human agents can help accelerate customer
service and provide increased functionality.

The top most frequent customer query received through
ASOS.com customer care is “Where is my order?” (WISMO).
These queries can often be resolved by simply communicating
the order status to the customer or advising them of the
expected delivery date. In a typical scenario, advisors have to
process long message queues manually in a two step process:
they first identify a correct intent for the customer and then
initiate a conversation to seek query resolution. In this work we
study two different approaches to build an efficient customer
intent classifier. This will improve cost-efficiency in customer
care as once the correct intent is automatically identified, the
relevant information can be served to the advisor, or used
directly by the Conversational AI agent to assist the customer
when the request lends itself to automated resolution (e.g
customers contacting to inquire about their parcel before the
expected delivery date).

Also, the recent successes of large transformer models [1]–
[3] has led to the standardisation of transfer learning tech-
niques such as model pre-training and embedding of words
and sentences in modern AI production systems. However it
is not clear to what extent does pre-training and embedding
help with training faster and more efficient classifiers on a
typical downstream classification task. This work is aimed
at shedding light on the cost-benefits trade-off of deploying
machine learning models in an AI production system using
accelerated computing resources [4].

We compare the efficiency of a simple logistic regression
classifier to that of a more computationally intensive recur-
rent neural network classifier. We describe our procedure for
selecting optimal configurations in each case, and discuss the
statistical robustness of our results. Finally, we introduce a
comparison with Human performance.

II. ANONYMISED CUSTOMER CARE QUERIES

The dataset used in this study is composed of anonymised
customer messages received through the ASOS.com online
chat at the time a new query is opened. Each message is
associated with a binary label where 1 represents a “Where is
my order?” query and 0 represents any other intent. Both the
message and the label have been provided by the customers
when opening a query with customer care service. Our aim is
to study how efficient a fast classifier can be at predicting
WISMO queries by training on a vast sample of labelled
customer queries data.

A. Collection and data preparation

The majority of the messages are short with 2% of all
messages containing more than 100 words in the training set
and 3% in the test set as shown in Figure 1. The median length
of messages in the training dataset is 21 words and in the test
set 33 words. All messages have been cleaned from personally
identifiable information including customer identifiers, order
identifiers, email addresses, names and postcodes, each time
replacing the personally identifiable content with a tag indi-
cating which type of information was removed. Non-English
messages have been removed from the collection by applying
an automatic language detection tool [5]. We then manually
reviewed a sample of the data to check that only English
messages were left for analysis. To ensure that all messages
provide sufficient information to convey an intent clearly,
we also removed every message shorter than three words
from the collection. After removing duplicates in the data by
indexing each message by the conversation identifier, residual
duplicate content was found to occur only to a negligible
extent, with largest repeated occurrence amounting to 0.1%
of all messages.

B. Data splits and label cleaning

Following anonymisation and data preparation steps, the
training set was composed of 91,189 messages and the test
set was composed of 1,138 messages held out for evaluation
and not seen during training. The number of WISMO queries
in the data amounts to 32% of all messages in the training
set and 20% of all messages in the test set. Since we expect
the customer labels to contain substantial level of noise due
to their nature, we also asked a group of expert advisers to
carefully re-label our test sample to compare with the customer
annotations. We found that original labels provided by the
customers predict the set of denoised labels from the group of
expert advisers with 93% Precision, and 85% Recall giving us
an estimate of Human annotator performance of 0.89 F1 on
this task.

0 100 200 300 400 500 600 700 800
Length of Messages

100

101

102

103

104

105

Fr
eq

ue
nc

y

Training Set
Test Set

Fig. 1. Distribution of message length in the training set (blue) and in the
test set (orange) where length is measured as the sum of the number of words
in a message.

III. LINEAR N-GRAMS CLASSIFIERS

Linear n-grams models are widely employed for their ef-
fectiveness in many NLP tasks such as detecting the language
of a document [6], as well as identifying the topic of that
document [7], or sentiment analysis [8].

N-grams of higher orders allow the classification model to
account for fine sequential patterns in each input message.
In our experiments we considered n-gram sequences up to
order seven, see Section V-B. All sentences in the training set
are first tokenised and a word index is built by extracting
all sequences at different n-gram order. Using the binary
encoding scheme we represent each sentence as a vector of
length |V | where we set to one each entry in the index
corresponding to a word found in the sentence, and to zero
every other entry index. On Figure 2 we have plotted the
distribution of words and n-grams in the training data and
in the test data. We observe that only a few words/n-grams
appear very often whereas most words/n-grams appear very
few times as one should expect since the distribution of word
frequencies in a corpus of documents is known to follow Zipf’s
law [9]. In solid agreement in both sets we notice that unigram
frequencies follow an equivalent Zipf-Mandelbrot distribution
that accounts for the peculiarities of function words in the
low ranks of the distribution [10]. In the training data we
observed that function words and action verbs used in the
past tense dominate top frequent unigrams: in this corpus of
transcript conversational data we expect function words to
occur naturally as the authors relate the chains of events that
led them to open a new query. As observed in the literature,
n-grams of higher orders better align with the straight line
pattern one should expect under the original Zipf law [11].

Given a binary encoded sentence on the n-gram index,
the logistic regression classifier outputs a probability used to
threshold the decisions of the classifier between the signal
class (“Where is my order?”) and the background class (Every
other intent). In this study the threshold was taken to be 0.5
during development. We then calibrate all final models to

Fig. 2. Log of word frequency against log of word rank for all words
appearing in the training set (blue shades - top panel) and the test set (orange
shades - bottom panel). The x-axis is sorted in increasing order of word rank.
The grey dashed line in the top panel represents the frequency cutoff applied
set to 10.

control for a given precision level, see Section VI-C for a
discussion. The total number of parameters in the linear model,
nlinear, scales with the total size of the word index, accounting
for the bias term this amounts to:

nlinear = |V |+ 1.

IV. RECURRENT NEURAL NETWORK CLASSIFIERS

A recurrent neural network learns to extract n-grams while
allowing skips when a positional word is not informative
when forming a discriminative sequential pattern. In this
work we make use of lstm (Long short-term memory) cells
which have the capacity to handle long-term dependencies
and provide a solution to the vanishing gradient problem [12].
This is achieved by a gating mechanism that allows the
neural networks to learn sequential patterns while also learning
strategical skips when forming a hidden representation of each
training message. An lstm cell is composed of four gates
updated recursively across the sequence of words, with the

update equations at word position t being:

it = σ[Wxixt +Whiht−1 + bi]

gt = tanh[Wxgxt +Whhht−1 + bg]

ft = σ[Wxfxt +Whfht−1 + bf]

ot = ft · ct−1 + it · gt
ht = ot · tanh[ct]

where σ denotes the sigmoid function, · denotes the Hadamard
product, it is the input gate, gt the input modulation gate, ft
the forget gate, ot the output gate, ct the memory state of each
cell, xt are the coordinates of the embedded word at the tth

position of the sentence, and ht is the final memory state of the
lstm cell at that position. W are matrices of internal weights
and b are trainable bias parameters specific for each gate. The
word embedding layer is a lookup table mapping a word index
entry to the corresponding word vector representation (xt as
above). Each input token is associated with a set of coordinates
in a latent vector space resolved by predicting word contexts
from vast amounts of pre-training data, or resolved by training
them jointly with all other network parameters on the given
task. Pre-trained coordinates are often used to avoid the sub-
stantial overhead in number of model parameters (e.g millions
of model parameters) and corresponding model complexity.
The GloVe coordinates (Global Vectors for Word Represen-
tation) [13] are pre-trained on corpora larger in volume than
any typical labelled dataset available on a downstream task.
As a result of pre-training at scale, they are expected to
correctly associate words with similar meanings [13] and help
the classifier with encoded common sense information. The
benefit of using pre-trained vectors is evident if the information
they contain can successfully transfer to the task at hand. In
this study we experiment with GloVe vectors pre-trained on the
2014 Wikipedia snapshot for different sizes of word vectors
ranging between 50 and 300 dimensions. The total number of
parameters in glove-lstm is given by:

nlstm = 4(ncnd + n2d + nd) + nd + 1

where nc denotes the number of coordinates used to encode
each word and nd the size of the lstm memory. Now jointly
training the continuous word representation layer incurs a
|V |nc additional cost to nlstm. Denoting by T the maximum
length of the input message, this set of parameters is shared
across all T word positions neural network, being updated
recursively from left to right at each word step.

V. COMPARATIVE EXPERIMENTS

We conduct an extensive grid search across the hyperpa-
rameter space, where two classes of lstm classifiers (glove-
lstm and plain-lstm) are compared with a faster linear n-grams
classifiers. The glove-lstm model uses GloVe coordinates
while the plain-lstm trains randomly initialised coordinates on
the classification task.

A. Evaluation metrics

We monitor both the test performance of a classifier and
the time it takes to train the model. We train all models on
the same training set and evaluate their performance on the
same test set to ensure that our comparison highlights the
difference in model architecture and training configuration.
Reported times are indicative and dependent on the imple-
mentation settings. In our comparisons we make use of Ten-
sorflow 1.12 [14], Python 3.6 [15], and the multiclass softmax
function to implement the logistic regression step in all model
architectures. Using the equivalent binary sigmoid function
reduces by half the number of parameters and processing
times for the n-grams models, but not for the lstm models
(see Section III and Section IV). We emphasise the differ-
ence in architecture by reporting the number of parameters
and training times per epoch when using a binary sigmoid
activation function. We also want to stress that training times
for the lstm can be improved by using a faster implementation
on accelerated computing resources which makes an extensive
use of parallel computing on the GPU [16]. Each tested model
was designed to complete training in a budget of 20 epochs
under reasonable times.

B. Grid search settings

In all experiments, we use simple pre-processing steps
that are easily applicable to other languages. We used the
Tweet tokenizer provided in the NLTK Natural Language
Toolkit [17], delimiting words on every punctuation character,
and discarding every word occurring less than 10 times in the
training set. All models are tested against a batch size in the set
{32, 64, 128, 256, 512, 1024}. We conduct an extensive search
in the hyperparameter space as described in the remainder of
this section.

a) Linear n-grams classifiers: The optimiser used to train
the n-gram model is a simple mini-batch gradient descent
solver with a decay factor of 0.01. Each model is trained
for 20 epochs on a given configuration of the following grid
search: learning-rate in {0.05, 0.10, 0.50, 1.00}, regularisation-
value in {1e−6, 1e−5, 1e−4, 1e−3} and a maximum n-grams
order between one to seven.

b) Lstm classifiers: We train two lstm models with
their difference being that one makes use of fixed pre-
trained word coordinates (glove-lstm), while the other jointly
trains all neural layers on the classification task (plain-lstm).
Both models are trained using Adam optimiser, a learning
rate of 0.001 and a regularisation value of 0.001. A de-
cay factor was used for glove-lstm as its performance on
the train set and on the test were not found to strongly
associate (ρ = 0.59) across configurations. After applying
a decay factor of 0.01 we observed improved association
between train and test performance (ρ = 0.99). Each glove-
lstm model is train in a given configuration of the fol-
lowing grid search: memory-size in {1, 16, 32, 64, 128, 256},
embedding-size in {50d, 100d, 200d, 300d} and max-input-
length in {20, 30, 50, 100, 200}. The plain-lstm models with

a fixed input length of 100 word positions, a memory size in
{1, 16}, and an embedding size in {1, 16, 32, 64, 128, 256}.

C. Model selection procedure

Since any best performing configuration on the test set could
be a random fluctuation due to the stochastic nature of the
descent algorithm used to train these models, before selecting
a top performing model we conducted replication trials by re-
training the same model on the same data 100 times and re-
calculating their performance after each trial. A top performing
configuration was discarded if the replication trials did not
yield similar or greater test F1 levels as observed during the
grid search. This situation can lead to critical bottlenecks in
a production environment where these models are re-trained
regularly (e.g weekly) on recent data. Our procedure ensures
that each selected model can be reproduced to similar levels
of performance in a reasonable number of trials. We also
leverage the trials statistics to conduct a proper statistical test
for comparing between n-grams, glove-lstm and plain-lstm.
Finally we introduce and discuss the best realised performance
of these models on our denoised set of labels.

VI. RESULTS AND DISCUSSION

A. Grid search results

a) Comparison of selected configurations: The top per-
forming plain-lstm configuration was reproduced 5% of the
times in the replication trials while for the glove-lstm this
was 2% of the times. For the n-grams the configuration that
passed the replication trials was the second top performing
model with 2% of success. Interestingly, the only difference
between the two top performing n-grams configurations was
the regularisation value which was found to be 1e−5 and 1e−4
respectively. We therefore safely selected the second n-gram
configuration with the understanding that higher regularisation
improves the generalisation ability of a classifier.

In summary all identified optimal classifiers were as follow:
the n-grams classifier used a maximum of 3-grams, with a
learning rate of 1.0, a regularisation value of 1e−4 and a batch
size of 32. The plain-lstm classifier used embedding vectors
of dimension 256, with a memory size of 16 and batch size
of 128. The glove-lstm classifier used GloVe coordinates of
dimension 200, with a memory size of 256, a batch size of
512 and an maximum message length of 200 word positions.

We indicate the performance of each top performing clas-
sifier in Table I and provide the summary statistics of the
replication trials in Table II. First, we observe that the n-grams
model consistently outperformed the glove-lstm model in both
the grid search runs and in the replication trials. Since the
GloVe vectors were found to cover 94% of all words in the
training set, it is unlikely that the better performance of the
n-grams model is solely due to the fact that it fully accounts
for arbitrary vocabulary. It is also unlikely that glove-lstm is
limited by only processing the first 200 word positions in a
message, as most messages in the test set are shorter than
100 words (see Figure 1). We rather observed that most of
the signal was concentrated in the first word positions of each

Precision Recall F1
plain-lstm 0.817 0.882 0.848
n-grams 0.816 0.855 0.835
glove-lstm 0.789 0.868 0.827

TABLE I
TEST PERFORMANCE FOR THE OPTIMAL CONFIGURATIONS FOUND BY

GRID SEARCH.

F1Med
test F1IQR

test F1Min
test F1Max

test F1Max
denoised

Human n/a n/a n/a n/a 0.889
plain-lstm 0.831 0.010 0.811 0.854 0.887
n-grams 0.828 0.006 0.817 0.835 0.865
glove-lstm 0.815 0.012 0.784 0.834 0.856

TABLE II
F1 SCORES FOR THE OPTIMAL CONFIGURATIONS IDENTIFIED BY GRID
SEARCH. THE MEDIAN, INTERQUARTILE RANGE (IQR), MIN AND MAX

QUANTITIES CORRESPOND WITH RE-TRAINING EACH CONFIGURATION IN
100 TRIALS. THE LAST COLUMN IS THE MAXIMUM F1 SCORE OBTAINED
ON A VERSION OF THE TEST SET RE-LABELLED BY A GROUP OF EXPERT

ANNOTATORS.

message, with top performing glove-lstm configurations also
showing shorter input lengths of 100 positions or even 50
positions. The statistical robustness of the above observations
are tested in Section VI-B.

b) Trade-off between accuracy and processing times:
The information contained in pre-trained GloVe vectors does
not seem amenable to training a top performing classifier on
this downstream task, whereas the word coordinates resolved
from the training data perform the best in conjunction with
the lstm layer. Interestingly, glove-lstm processes nearly three
times as much data as the plain-lstm configuration at equiva-
lent input length. This difference in speed is directly associated
with the batch size, suggesting that maintaining a fixed word
representation layer set to GloVe coordinates may help glove-
lstm to generalise better at larger batch size.

Linear n-grams were the second top performing model.
They showed the highest worst-case performance and lowest
IQR across replication trials. This model is relatively simple
compared to the top performing plain-lstm model, fitting two
orders of magnitude less weights on the training data. This
could explain the remarkable performance stability observed
during the trials, it could also be related to the nature of
the discriminative features used to support a class decision:
extracted at the global sentence level for the n-grams, as
opposed to read off sequentially from left to right for the lstm.

We observe that n-grams models train under 10 minutes (26s
per epoch) owing to their small size overall (see Figure 3).
While it takes almost five times longer to train the top
performing recurrent neural model on a GPU, whether the
gain in F1 performance is worth the extra costs of training
a recurrent neural classifier depends on the availability of
accelerated computing resources to train and deploy these
classifiers.

B. Statistical significance

We tested whether the linear n-grams classifier tends to
outperform glove-lstm, while being inexpensive to train. A

0 20 40 60 80 100 120
Training Time/Epoch (s)

glove-LSTM

N-grams

plain-LSTM

96 s

26 s

116 s

0 2 4 6 8 10 12 14
Number of Trainable Parameters (x105)

glove-LSTM

N-grams

plain-LSTM

468,225

52,957

1,163,601

Fig. 3. Training time per epoch in seconds (top panel) and number of trainable
parameters (bottom panel) for the three models.

Fig. 4. Precision-recall curves associated with each replication run of all
optimal configurations: glove-lstm (green), n-grams (blue), plain-lstm(orange).

Mann-Whitney U test indicated that test F1 for linear n-
grams classifiers was statistically greater than for the glove-
lstm classifier (M1= 0.828, M2= 0.815; U= 1, 196, P =
1.46e−20) where M denotes the median F1 score across 100
trials for each model and P the test’s p-value). Now training
all neural layers including the continuous word representation
layer (i.e. the plain-lstm model), a Mann-Whitney U test
indicated superior performance for the neural network model
(M1= 0.831, M2= 0.828; U= 4, 280.0, P= 8.24e−4).

C. Calibration analysis on denoised labels

Before deploying these models in an AI production en-
vironment, we wish to control their level of precision to
limit the number of irrelevant messages identified. We first
asked a group of expert advisers to review the 1,138 labels
initially provided in the test data, by showing them both the
message and the corresponding label assigned by the author.

This procedure allowed us to access Human performance on
the task of annotating the correct intent, see last column of
Table II. The discrepancies in the original labels could be
attributed to the users being pressed when opening a new
query. Also expert advisers received extensive training on
identifying the correct intent from short user messages. The
original labels were found to predict the new set of denoised
labels provided by the group of expert advisers with 0.93
Precision and 0.85 Recall giving us an estimate of Human
performance of 0.889 F1 on this task. Remarkably, the plain-
lstm achieved similar level of performance with 0.887 F1,
followed by the n-grams model with 0.865 F1, and the glove-
lstm model 0.856 F1. To control for precision level above
that of users’, we then conducted a systematic analysis as
follows: the classification layer in each of the three model
architectures has parameters w ∈ R|V | and b ∈ R, such that
P (y = 1|x) = σ[wx + b] = [1 + exp (−wx− b)]−1. Given a
decision threshold ε the classifier returns a binary prediction
ŷ = {P (y = 1|x) > ε}1,0 ∈ {0, 1} for a training example
x ∈ R|V | associated with a label y ∈ {1, 0}. Here we calibrate
the predictions ŷ’s of a classifier by tuning the threshold
function for different values of ε in the unit interval, and
re-calculating the performance in each individual replication
trial, see Figure 4. Following our procedure we identified the
trials which maximise recall for all three model architectures
after controlling for precision level above Human performance.
This was achieved with corresponding 0.80 Recall for the
plain-lstm, 0.78 Recall for the n-grams, and 0.69 Recall for
glove-lstm, meaning plain-lstm can address 80% of incoming
“Where is my Order?” queries for a corresponding error rate
below the level of noise produced by Human authors.

VII. CONCLUSION

We studied the design of a user intent classifier aimed at
detecting the top most popular intent received in a customer
care service, namely “Where is my order?”. Two differ-
ent model architectures were compared, a logistic regression
classifier combined with n-grams, and more computationally
intensive recurrent neural network classifiers, using either
fixed pre-trained word coordinates (glove-lstm) or training
these coordinates jointly with all other network parameters
(plain-lstm). A grid search was performed to identify a top
performing configuration in each three cases, accompanied by
replication trials to assess their robustness. While the linear n-
grams model was found to outperform glove-lstm in a Mann-
Whitney U test to test for significant difference in medians
(M1= 0.828, M2= 0.815; U= 1, 196, P = 1.46e−20) the
plain-lstm was found as the best performing classifier overall
(M1= 0.831, M2= 0.828, U= 4, 280.0, P= 8.24e−4). On
a set of denoised labels, this classifier was found to match
Human performance (0.89 F1). A calibration analysis revealed
that linear n-grams achieved interesting levels of Recall at
equivalent Human Precision, with a 0.07 difference while for

plain-lstm this was 0.05. Our findings indicate that linear n-
grams models offer appealing levels of accuracy for user intent
classification while being inexpensive to train. If the necessity
for higher accuracy significantly outweighs the cost of longer
training times, then in order to observe the expected gain it was
necessary to update all neural layers including re-training the
word representation layer on GPU. Future works will consist
in exploring larger models, comparing with our current set of
observations both in terms of accuracy and processing times.

VIII. ACKNOWLEDGEMENTS

We are thankful to Adam Jelley and Hamzah Hussian for
their contributions to the preliminary experiments and useful
discussions. We thank Naeem Khedarun, lead Engineer of
ASOS.com ConversationalAI for his assistance and expertise
in deploying the grid search experimentation on GPU servers.
We also thank Ben Chamberlain for managing ASOS.com
CDT program with UCL and Gabriel Facini for his insightful
comments on an earlier version of this document. CN was
supported by the STFC UCL Centre for Doctoral Training in
Data Intensive Science (grant number ST/P006736/1).

REFERENCES

[1] A. Vaswani et al., “Attention Is All You Need,” arXiv e-prints, p.
arXiv:1706.03762, Jun 2017.

[2] A. Radford et al., “Language models are unsupervised multitask learn-
ers,” 2019.

[3] J. Devlin et al., “BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding,” arXiv e-prints, Oct 2018.

[4] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy consid-
erations for deep learning in nlp,” 2019.

[5] N. Shuyo, “Language detection library for java,” 2010. [Online].
Available: http://code.google.com/p/language-detection/

[6] H. Sababa and A. Stassopoulou, “A classifier to distinguish between
cypriot greek and standard modern greek,” in 2018 Fifth International
Conference on Social Networks Analysis, Management and Security
(SNAMS). IEEE, 2018, pp. 251–255.

[7] Y. Shao et al., “Clinical text classification with word embedding features
vs. bag-of-words features,” in 2018 IEEE International Conference on
Big Data (Big Data). IEEE, 2018, pp. 2874–2878.

[8] N. Cummins et al., “Multimodal bag-of-words for cross domains senti-
ment analysis.”

[9] G. K. Zipf, Selected Studies of the Principle of Relative Frequency in
Language. Harvard University Press, 1932.

[10] M. A. Montemurro, “Beyond the zipf–mandelbrot law in quantitative
linguistics,” Physica A: Statistical Mechanics and its Applications, vol.
300, no. 3-4, pp. 567–578, 2001.

[11] L. Q. Ha et al., “Extension of Zipf’s law to word and character n-grams
for English and Chinese.”

[12] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997. [Online]. Available:
https://doi.org/10.1162/neco.1997.9.8.1735

[13] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for
word representation,” in Proc. of the Conf. on Empirical Methods in
Natural Language Processing (EMNLP), 2014, pp. 1532–1543.

[14] M. Abadi et al., “TensorFlow: Large-scale machine learning on
heterogeneous systems,” 2015, software available from tensorflow.org.
[Online]. Available: http://tensorflow.org/

[15] “Python software foundation. python language reference.” [Online].
Available: http://www.python.org

[16] J. Appleyard, T. Kocisky, and P. Blunsom, “Optimizing performance of
recurrent neural networks on gpus,” arXiv preprint, 2016.

[17] E. Loper and S. Bird, “Nltk: the natural language toolkit,” arXiv preprint
cs/0205028, 2002.

