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SUMMARY

Loss of p53 function contributes to the development
of many cancers. While cell-autonomous conse-
quences of p53 mutation have been studied exten-
sively, the role of p53 in regulating the anti-tumor
immune response is still poorly understood.
Here, we show that loss of p53 in cancer cells modu-
lates the tumor-immune landscape to circumvent
immune destruction. Deletion of p53 promotes the
recruitment and instruction of suppressive myeloid
CD11b+ cells, in part through increased expres-
sion of CXCR3/CCR2-associated chemokines and
macrophage colony-stimulating factor (M-CSF),
and attenuates the CD4+ T helper 1 (Th1) and CD8+

T cell responses in vivo. p53-null tumors also show
an accumulation of suppressive regulatory T (Treg)
cells. Finally, we show that two key drivers of tumor-
igenesis, activation of KRAS and deletion of p53,
cooperate to promote immune tolerance.
INTRODUCTION

There is strong evidence that cancer cells have the potential to

be recognized by the immune system but that they can mobilize

various mechanisms of immune evasion and escape, such as

upregulation of immune checkpoint proteins to dampen T cell

effector responses (Ribas and Wolchok, 2018). Current human

studies have shown durable and complete responses to immune

checkpoint blockades in a number of tumors; however, for rea-

sons that are not completely clear, a sizable proportion of can-

cers fail to respond. It is apparent that the constellation of onco-

genic events that leads to full neoplastic transformation can

influence the effector function of the immune response in several

ways. Oncogenic RAS can promote expression of various cyto-

kines (Ancrile et al., 2008) that result in an inflammatory

response, which is thought to promote cancer progression.

RAS signaling also increases tumor cell expression of PD-L1
Ce
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(Coelho et al., 2017), thereby suppressing activated T cells,

and increases secretion of granulocyte-macrophage colony-

stimulating factor (GM-CSF) to promote pancreatic neoplasia

(Bayne et al., 2012; Pylayeva-Gupta et al., 2012). The co-activa-

tion of KRAS and MYC in lung tumors restructures macrophage

and T cell responses in a CCL9 and interleukin-23 (IL-23)-depen-

dent manner (Kortlever et al., 2017). Loss of PTEN, another com-

mon oncogenic event, results in resistance to PD-1 blockade in

both melanoma and uterine leiomyosarcoma (George et al.,

2017; Peng et al., 2016), while b-catenin signaling in melanoma

was shown to limit T cell infiltration (Spranger et al., 2015).

p53 is best understood as a tumor suppressor (Hollstein et al.,

1991). However, in the immune compartment, p53 also functions

as a negative regulator of autoimmunity by supporting regulatory

T (Treg) cells, through directly upregulating Foxp3 and promoting

STAT5 activity, and restricting STAT3 in the pro-inflammatory

helper T cells (T helper 17 [Th17] cells) (Kawashima et al.,

2013; Okuda et al., 2003; Park et al., 2013; Watanabe et al.,

2014; Zhang et al., 2011). Expression of p53 in macrophages

leads to both an inflammatory response through co-operation

with nuclear factor kB (NF-kB) and an anti-inflammatory

response through STAT1 inhibition (Lowe et al., 2014; Yoon

et al., 2015; Zheng et al., 2005). In the context of cancer, activa-

tion of p53 in the tumor stromal compartment has been shown to

promote a tumor-restricting immune response. Induction of p53

in hepatic stellate cells (HSCs) results in senescence and the se-

nescent-associated-secretory phenotype (SASP) that drives

M1-macrophage polarization and limits cancer progression (Lu-

jambio et al., 2013). Conversely, HSCs lacking p53 induce the

differentiation of macrophages toward the tumor-promoting

M2 state (Lujambio et al., 2013). Stromal loss of p53 changes

the cytokine secretion pattern to promote myeloid-derived sup-

pressor cells (MDSCs), thereby accelerating tumor growth (Guo

et al., 2013). Interestingly, activation of p53 in the tumormicroen-

vironment using local injection of the MDM2 inhibitor Nutlin

selectively eradicated tumors that were rich in leukocytes. This

response was dependent on stromal-p53 expression (Guo

et al., 2017). These studies show that p53 levels in the stroma

shape the inflammatory responses that influence tumor

progression.
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Despite the clear role of p53 in immune regulation, relatively

few studies have examined how p53 status of the cancer cells

affects the immune response in vivo. Reactivation of p53 in

established liver cancers induced senescence and SASP, which

promoted polymorphonuclear (PMN) infiltration and tumor

regression (Xue et al., 2007). Futher studies showed that the in-

duction of p53-dependent senescence in hepatocellular carci-

nomas was accompanied by the elimination of the tumor cells

through a mechanism dependent on natural killer (NK) cells (Ian-

nello et al., 2013). In silico correlations between the retention of

wild-type (WT) p53 expression and immune infiltration in breast

and head and neck cancers have also been noted (Siemers

et al., 2017). However, a recent study of a PTEN-driven prostate

cancer model indicated that concomitant loss of p53 enhanced

tumor infiltration of CD11b+Gr1+ PMN cells. The recruitment of

this myeloid population was through increased CXCL17 secre-

tion by p53-null prostate cancer cells, and their role in promoting

tumor development was associated with the expansion of immu-

nosuppressive Treg cells (Bezzi et al., 2018). Similar findings

were observed in mouse models of breast cancers, where loss

of p53 increased frequencies of circulating and tumor neutro-

phils through unchecked WNT signaling, resulting in enhanced

metastasis (Wellenstein et al., 2019).

In this study, we show that tumor-specific loss of p53 expres-

sion in both autochthonous lung and pancreatic tumor models

correlates with changes in the tumor microenvironment. Using

KRAS-driven pancreastumor-derived cancer cells as a model

of p53 loss, we demonstrate that p53 deletion can promote im-

mune tolerance through the recruitment of both myeloid cells

and Treg cells. The enrichment of these suppressive populations

results in enhanced protection of p53-null cancer cells from

immune-mediated elimination. Furthermore, concomitant acti-

vation of KRAS and loss of p53 coordinate to promote immune

tolerance.

RESULTS

Loss of Trp53 Promotes Myeloid Recruitment in the
Tumor Microenvironment
Tumor growth involves a complex interaction between stromal

cells (of mesenchymal and immune origin) and cancer cells.

Numerous studies have shown a role for macrophages in sup-

porting cancer progression (Cassetta and Pollard, 2018; Noy

and Pollard, 2014; Prenen andMazzone, 2019; Qian and Pollard,

2010), and so we examined whether loss of p53 in autochtho-

nous mouse models of pancreatic and lung cancers could influ-

ence myeloid cell recruitment to the tumor microenvironment

(TME). Immunohistochemistry (IHC) sections were analyzed for

F4/80+ immune cells in pancreatic tumors derived at equivalent

endpoints from a pancreatic ductal adenocarcinoma cell

(PDAC) model driven by pancreas-specific mutations in

KRASG12D with either wild-type p53 (KC model; Pdx1-cre; LSL-

KrasG12D/+) or one floxed Trp53 allele (KFC model; Pdx1-cre;

LSL-KrasG12D/+; Trp53fl/+) (Tan et al., 2014) (Figure 1A, left). Tu-

mors derived from KFC pancreatic tumors revealed increased

macrophage F4/80+ staining (Figure 1A, right). We also exam-

ined an epidermal growth factor receptor (EGFR)-driven model

of lung cancer with (ROSA26tTA-LSL-EGFRL858R, EL) and
482 Cell Reports 30, 481–496, January 14, 2020
without p53 (Rosa26tTA-LSL-EGFRL858R;Trp53fl/fl, EFL). Tumors

excised at similar endpoints were digested and stained for flow

cytometry to detect CD11b+ and F4/80+ tumor immune infil-

trates. Frequencies of CD11b+myeloid-derived cells were signif-

icantly increased in EGFR-driven tumors null for p53, which were

also enriched in CD11b+F4/80+ macrophages (Figure 1B).

To gain insight into the interplay between macrophages and

the p53 status of cancer cells, we isolated primary cancer cells

from three independent KC and KFC tumors. KC-tumor-derived

cells lines retained p53 expression and activity, showing growth

inhibition in response to the p53 activator Nutlin, while cell lines

derived from KFC tumors did not express p53 and were resistant

to Nutlin treatment (Figures S1A and S1B). Previous studies have

also shown that KFC tumors undergo loss of heterozygosity and

become p53 null during tumor development (Tan et al., 2014).

Reexpression of p53 in tumors can induce their ability to produce

various inflammatory cytokines (Iannello et al., 2013), prompting

us to examine whether conditioned media from the KC- and

KFC-tumor derived cells could impact macrophage surface acti-

vation markers: major histocompatibility complex (MHC) class I,

MHC class II, PD-L1, and CD80. In comparison to untreated

bone-marrow-derived macrophages (BMDMs), conditioned me-

dia from all PDAC cell lines induced expression of all the activa-

tion markers to similar levels (Figure S1C), although this was not

affected by p53 status. As both our autochthonous models

(pancreas and lung) displayed a p53-associated change in

macrophage infiltration, we examined the effect of conditioned

medium on BMDM migration and chemotaxis. Interestingly,

BMDMs exposed to conditioned media from KFC-derived cell

lines displayed increased migration, demonstrated by enhanced

wound healing and chemotaxis, compared to conditionedmedia

from KC cell lines (Figures 1C, 1D, S1D, and S1E).

To explore the basis of this difference in the activity of the

conditioned media, we analyzed cytokine secretion from three

independently derived p53WT KC and p53-null KFC tumor-

derived cell lines. Out of the 35 cytokines tested by a cytokine

Luminex array, 20 were detectable and only 5 (CCL11, CXCL1,

CXCL5, CCL3, and macrophage colony-stimulating factor

[M-CSF]) were elevated in the three KFC cell lines (Figure 1E).

While these myeloid-attracting and differentiating cytokines

were elevated, T-cell-associated cytokines were not dependent

on p53 expression (Figure S1F). Taken together, these results

indicate that the KFC tumors secrete cytokines that have a

myeloid-macrophage stimulating effect.

To understand the consequences of the p53 status of our tu-

mor-derived cell lines on the myeloid compartment in vivo, we

used a T-cell-deficient CD1nu/nu subcutaneous tumor model. In

order to track accurately and in an unbiased fashion in vivo tumor

growth, KC and KFC cells were engineered to express near-

infrared fluorescent protein (iRFP) (Hock et al., 2014; Shcherba-

kova and Verkhusha, 2013) (Figure 1F). While the initial GEMM

KC and KFC tumors arise at different rates, cells derived from

these tumors grew at similar rates in CD1nu/nu recipients, as as-

sessed by in vivo real-time imaging of the tumors (Figures 1G,

S1G, and S1H). Flow cytometry analysis of tumor digests at

endpoint revealed no changes in total frequency of CD11b+

myeloid infiltration; however, CD11b+F4/80+ macrophages

were enhanced in KFC tumors, as seen in the autochthonous
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Figure 1. Cancer-Specific p53 Loss Increases Macrophage Infiltration, Chemokine Secretion, and Migration

(A) Immunohistochemical stain for F4/80 expression in pancreatic tumor sections from Pdx1-Cre;KrasLSL-G12D/+ (KC) (left) and Pdx1-Cre;KrasLSL-G12D/+;Trp53fl/+

(KFC) (right) mice. F4/80+ expression was evaluated based on color intensity per section. Scale bar at 1 mm. Each point on the graphs represents one mouse;

cohort size n = 5, the means are represented as ± SEM.

(B) Lung tumors induced by adenoviral Cre were assessed by flow cytometry for CD11b+ and F4/80+ cell infiltrates from mice bearing the following genotypes:

ROSA26tTA-LSLEGFRL858R (EL) (gray) and Rosa26tTA-LSLEGFRL858R;Trp53fl/fl (EFL) (red). Cohort sizes n = 8–9; the means are represented as ±SEM.

(C and D) Migration and chemotaxis assays using IncuCyte technology with bone-marrow-derived macrophages (BMDMs) cultured in the presence of condi-

tioned media from PDAC-derived cell lines from KC1 (black) and KFC1 (red) tumors. The means are represented as ±SD of technical replicates (n = 6–8).

(C) Scratch-wound assay performed on BMDMs to measure wound closure.

(D) Chemotaxis assay of BMDMs migrating toward conditioned media of KC1 or KFC1 cancer cells.

(E) Luminex cytokine array performed on three independent KC and KFC cell lines derived from mouse PDACs. Values are represented as fold change in

concentration compared to one of the PDAC-derived KC cell lines (KC1), and the means are represented as ± SEM.

(F) Schematic representation of the experimental design. Pancreatic derived cancer cell lines (KC1 and KFC1) were transduced with a near-infrared plasmid

(iRFP) and subcutaneously injected into CD1nu/nu recipient mice.

(G) Growth curve represented as fold increase in iRFP fluorescence measured in real time by the Pearl imager over 12 days for KC1 (black circle) and KFC1 (red

circle) cell lines injected into CD1nu/nu recipient mice (cohort size n = 5 per genotype). Two-way ANOVA was used for statistical analysis and the means are

represented as ±SEM.

(H) Flow cytometry analysis of individual tumor digests for immune infiltrates expressing CD11b+ and F4/80+ surface markers. The means are represented

as ±SEM, with cohort sizes n = 7–9.

Student’s unpaired t test was performed when not otherwise indicated, and p values are *p < 0.05 and **p < 0.01. See also Figure S1.
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mouse models (Figures 1H and S1I). These results demonstrate

that p53 ablation in the tumor can influence the TME indepen-

dently of tumor growth.

p53 Deletion Delays Tumor Rejection and Promotes
Myeloid-Associated Cytokines
Loss of p53 in the tumor-derived cell lines did not accelerate

subcutaneous tumor growth in athymic recipients, despite the

increase of CD11b+F4/80+ infiltrates in the TME. We therefore

turned to examine the effect of p53 loss in an immunocompetent

model. Since our tumor-derived cells originated from mice of a

mixed background, we used a tumor rejection model that has

been previously employed to explore contributions of tumor-

associated genetic alterations on a complete immune response

(Chang et al., 2015; Dunn et al., 2005). Mixed strain KC- and

KFC-derived cells were injected subcutaneously into pure FVB

recipient mice, an immunocompetent MHC-mismatched strain

(Figure 2A). The p53WT KC1 cells followed the expected growth

kinetics of initial expansion until day 7, followed by progressive

rejection. Surprisingly, the p53-null KFC1 cells continued to

grow until the point where ethical considerations determined

the termination of the study (Figure 2B). A similar pattern of de-

layed rejection in p53-null cells was seen in two further indepen-

dently derived KFC cells (Figures S2A and S2B). Further exami-

nation of the tumor digests taken from these mice at day 7

showed an increase in F4/80+ macrophages in p53-null (KFC1)

tumors (Figure 2C). In order to confirm that the p53-dependent

effect on tumor-associated myeloid cells was not site specific,
Figure 2. Tumor Regression, Cytokine Production, and Myeloid Infiltra

(A) Schematic representation of the experimental design. KC1 and KFC1 pancre

into FVB, MHC-mismatched recipient mice.

(B) Growth curve of KC1 (black circle) and KFC1 (red circle) cell lines injected into fi

in iRFP signal compared to the original fluorescence count on day 1 using the Pea

represented as ±SEM.

(C) Individual tumors were harvested on day 7 post-injection and digested into si

tumor infiltrates, and the means are represented as ±SEM.

(D) KC1 (black circle) and KFC1 (red circle) cells were orthotopically injected into

percentage of pancreatic CD11b+ infiltrates 7 days post-operation, and the mea

(E) Schematic representation of the experimental design. KC1 PDAC cells were

KC1-p53KO).

(F) A chemotaxis assay performed on BMDMs migrating towards KC1-p53WT o

migration was calculated as phase area density of technical replicate wells (n =

(G) Enzyme-linked absorbent assays (ELISAs) were performed with conditioned m

from left to right are CCL11, CXCL1, CXCL5, CCL3, M-CSF, and MCP1. Concen

(H) Cytokine array of conditioned media from KC1-p53WT (left) and KC1-p53KO (

CXCL11 (pink), TNF-a (blue), with a positive invariant control (orange). (Right) pixe

represented as ± SD.

(I) 6 mice were injected with either the KC1-p53WT (black circle) or the KC1-p53KO

using the Pearl imager and graph shows fold increase in fluorescence from day 1 p

are represented as ± SEM.

(J–M) Tumors derived from KC1-p53WT (n = 5) or KC1-p53KO cells (n = 7) were

infiltrating myeloid populations by flow cytometry. Graphs show tumors from ind

(J) Flow cytometry analysis showing frequencies of tumor-infiltrating CD11b+

(open circles) tumors.

(K) Frequency of proliferating intratumoral CD11b+ populations measured by Ki6

(L) Frequency of CXCR3 expression on infiltrating CD11b+ cells.

(M) Percentage of CD11b+ cells within tumor digests expressing surface CCR2.

(N) Serum collected at endpoint (day 14) from FVBmice injected with the KC1-p53

levels of MCP1 by ELISA. The means are represented as ±SEM.

Student’s unpaired t test was applied to experiments unless otherwise indicated
we performed pancreatic orthotopic injections of KC1 and

KFC1 cell lines in FVBmice. In line with the genetic tumormodels

and the subcutaneous models (Figures 1A, 1H, and 2C), p53-null

orthotopic tumors displayed increased myeloid infiltration

(Figure 2D).

One potential caveat with tumors arising in genetically engi-

neeredmice is that additional genetic alterations acquired during

tumor development may also contribute to tumor-immune inter-

actions. To test directly the effect of p53 loss, we used gene edit-

ing to delete p53 from two KC-p53WT cell lines (KC1 and KC2),

generating matched isogenic cell lines named KC1-p53KO and

KC2-p53KO (Figure 2E). BMDM chemotaxis assays using condi-

tioned media from KC1-p53WT and KC1-p53KO PDAC cell lines

confirmed our previous findings that KFC-p53KO conditioned

media enhanced BMDM migration (Figure 2F). ELISAs for

CCL11, CXCL1, CXCL5, CCL3, M-CSF, and MCP1 (Figure 2G)

showed that as seen in the tumor-derived KFC cell lines, p53

loss increased production of these cytokines (Figures 2G and

S2C). Additionally, we performed an unbiased analysis of 62 cy-

tokines in conditioned media from KC1-p53WT and KC1-p53KO

cells, which further revealed increased CXCL10 and 11, and

decreased tumor necrosis factor a (TNF-a) secretion (Figure 2H).

Of note, CXCL10 and 11 uniquely bind to the CXCR3 receptor.

Our results show that cancer cells deficient for p53 increase

the production of chemokines involved in myeloid recruitment

and macrophage differentiation.

Turning back to the in vivo rejection model, we found that the

isogenic p53KO cells displayed delayed rejection kinetics, similar
tion Are Influenced by p53

atic-tumor-derived cell lines expressing iRFP were subcutaneously implanted

ve FVB recipient mice per genotype. Tumor growth is measured as an increase

rl imager. Two-way ANOVAwas used for statistical analysis, and themeans are

ngle cells. Flow cytometry analysis was performed to measure F4/80+ immune

the pancreas of FVB recipients (cohort size n = 3 per genotype). Graph shows

ns are represented as ±SEM.

deleted for Trp53 by CRISPR, generating an isogenic pair (KC1-p53WT and

r KC1-p53KO conditioned medium, or culture medium. The extent of BMDM

8) and the means are represented as ±SD.

edium collected from KC1-p53WT (black) and KC1-p53KO (white) cells. ELISAs

tration was measured as pg/mL and the means are represented as ±SD.

right) cell lines. (Left) Boxed duplicate dots show changes in CXCL10 (green),

l quantification of each dot normalized to the positive control and themeans are

(open circle) cells. The growth curve was measured by in vivo imaging of iRFP

ost-injection. Two-way ANOVAwas used for statistical analysis, and themeans

digested into single-cells at day 3 post-injection. Digests were analyzed for

ividual mice, and the means are represented as ±SEM.

myeloid cells in mice harboring KC1-p53WT (black circles) or KC1-p53KO

7 staining.

WT cell line (n = 8) or the KC1-p53KO cell line (n = 8) and analyzed for circulating

and p values are *p < 0.05, **p < 0.01. See also Figure S2.
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Figure 3. Tumoral Loss of p53 Promotes Suppressive Myeloid Lineages and Reduces T Cell Activation

(A) CD11b+ cells isolated from individual KC1-p53WT (gray shade) and KC1-p53KO (black line) tumors 3 days post-injection and co-cultured with pre-activated

CD8+ T cells stained with V450 proliferation dye. Cells were analyzed after 48 h. T cell proliferation in the absence of CD11b+ cells is denoted in green.

(legend continued on next page)
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to PDAC cells that lost p53 during tumor development (Figures 2I

and S2D). At an early time point (3 days post-injection), CD11b+

myeloid cells were enriched in p53-deleted tumors in compari-

son to their parental p53WT controls (Figure 2J), although this dif-

ference was lost by day 7 (Figure S2E). Next, we looked more

closely for potential in vivo consequences of the changes in cyto-

kine secretion detected in vitro. M-CSF is a key driver of myeloid

differentiation and proliferation, and we detected a 2-fold in-

crease of proliferating CD11b+Ki67+ myeloid cells in p53KO tu-

mors (Figures 2K and S2F), correlating with enhanced M-CSF

production by these cells. We also probed for myeloid cells ex-

pressing CXCR3 (the receptor for CXCL9-11) and CCR2 (one

of the receptors for CCL11 and uniquely a receptor for MCP1)

(Martinelli et al., 2001) within our tumor digests. Interestingly,

both CXCR3+ and CCR2+ infiltrating CD11b+ myeloid cells

were significantly enhanced within KC1-p53KO tumors (Figures

2L, 2M, and S2G), correlating with increased production of the

cytokines for these receptors by the p53-deleted tumor cells.

We further confirmed an increase in intra-tumoral CD11b+ cells

expressing CXCR3 in the second isogenic tumor pair at day 3

(Figure S2H). Systemic cytokine changes were also observed

in tumor-bearing mice. At endpoint (day 14 post-tumor chal-

lenge), mice harboring p53-null tumors displayed significantly

increased serum levels of MCP1 (Figure 2N). In conclusion,

data from both GEMM-derived cells and the isogenic pairs

show that loss of p53 in tumor cells promotes the production

of cytokines involved in myeloid recruitment and homeostasis.

p53-Null Tumors Reeducate Myeloid Cells to Attenuate
T Cell Responses
Our observation that loss of p53 affects tumor growth in immu-

nocompetent, but not athymic, mice indicated that an intact

T cell response is required for the rejection of p53-expressing
(B) Graph displays percent proliferation of CD8+ T cells with tumor-derived CD11b

or in the absence of CD11b+ cells (green). Each dot represents CD11b+ cells d

as ±SEM.

(C) Schematic representation of the experimental design. BMDMs activated with

cytokine expression by qPCR and functional assays.

(D) mRNA expression of T-cell-polarizing cytokines expressed by BMDMs inc

conditioned media. Red indicates higher and blue lower expression levels, whe

represented as ±SEM.

(E and F) Incubation of BMDMs with conditioned media, followed by a 2-h pulse

Graphs show one of three experiments and display technical replicates (n = 3-4)

(E) OTII CD4+ T cells restimulated with OVA 323-339 peptide after co-culture with

circles). Representative flow cytometry plot (right) of restimulated OTII T cells follo

differentiation.

(F) CD8+OTI cells activated by BMDMs pulsed with OVA andmeasured by flow cy

(MFI). Left graph represents technical replicates for CD44 MFI, and on the right,

(G–J) Analysis of CD4+ andCD8+ T cells in the periphery of FVB recipients injected

replicates and the means are represented as ±SEM.

(G and H) Intracellular cytokine flow cytometry analysis of spleen and draining lym

FVBper genotype), 7 days post injection. Graphs illustrate (G) CD4+ T cells expres

PMA, ionomycin, and GolgiStop (n = 9–10 per genotype).

(I) CD4+ T cells isolated from KC1-p53WT and KC1-p53KO tumor-bearing FVB mic

isolated from ex vivo sorted CD4+ CD25� T cells and tested for Il2 and IfngmRNA

mice (cohort size n = 6 per genotype).

(J) Ex vivo restimulation of spleen and dLN from tumor bearing FVBmice to detect

n = 9–10 per genotype).

Unpaired t tests were performed on all data except for multiple comparisons, w

**p < 0.01, and ***p < 0.001. See also Figure S3.
cells. To test whether the CD11b+ cells found in the KC1-

p53KO tumors were immune suppressive, we isolated CD11b+

cells from the tumors at day 3 and co-cultured them with preac-

tivated T cells stained with the v450 proliferation dye. While the

myeloid cells derived from both tumors attenuated T cell prolifer-

ation, the myeloid cells isolated from KC1-p53KO tumors more

robustly inhibited CD4+ and CD8+ T cell proliferation (Figures

3A, 3B, S3A, and S3B). These observations were confirmed in

the second pair of isogenic cells (Figures S3C and S3D).

Cancer cells have been shown to influence the crosstalk be-

tween myeloid cells and T lymphocytes (Cooks et al., 2018), so

we examined the effect of conditioned media from KC1-p53WT

and KC1-p53KO cells on BMDM-dependent T-cell-activating

functions (Figure 3C). Focusing on cytokines involved in CD4+

T helper and CD8+ cytotoxic T lymphocyte (CTL) differentiation,

we found only two of the seven cytokines showed significantly

changed mRNA expression in response to KC1-p53KO condi-

tioned media; namely, a strong increase in expression of Il6, a

T helper 1 (Th1) cell antagonist, and a subtler decrease in expres-

sion of Il12, a Th1-cell- and CTL-promoting cytokine (Figure 3D).

These changes predict that BMDMs conditioned by KC1-p53KO

media would show impaired polarization of CD4+ Th1 cells and

CTL activation (Athie-Morales et al., 2004; Dodge et al., 2003;

Wu et al., 2015). To verify this hypothesis, we co-cultured

BMDMs pulsed with the model antigen ovalbumin (OVA) with

T cell receptor (TCR)-transgenic CD4+ or CD8+ T cells recog-

nizing the OVA peptides (OTII [CD4+] or OTI [CD8+] T cells).

BMDMs educated by KC1-p53KO conditioned media and loaded

with OVA peptide were less effective in differentiating Th1 cells,

as demonstrated by reduced interferon-g (IFN-g)+TNF-a+-pro-

ducing OTII CD4+ T cells (Figure 3E). Furthermore, CTL activa-

tion was compromised by KC1-p53KO-instructed BMDMs, as

shown by the weaker expression of the activation marker
+ cells isolated from individual KC1-p53WT (black) or KC1-p53KO (white) tumors

erived from a pool of two tumors per genotype and means are represented

conditioned media (CM) from KC1-p53WT or KC1-p53KO cells and screened for

ubated in the presence of IMDM (medium), or KC1-p53WT, or KC1-p53KO

re each lane represents BMDMs derived from individual mice; the means are

of ovalbumin and co-cultured with CD4+OTII or CD8+OTI cells, respectively.

; means are represented as ±SD.

BMDMs educated by KC1-p53WT CM (closed circles) or KC1-p53KO CM (open

wed by intracellular cytokine staining (ICS) for IFN-g and TNF-a after 4 days of

tometry for surface expression of CD44, shown as mean fluorescence intensity

the histogram shows CD44 surface expression.

with KC1-p53WT (black) or KC1-p53KO (white) cell lines. Graphs showbiological

ph nodes of FVB mice bearing KC1-p53WT and KC1-p53KO tumors (n = 9–10

sing TNF-a and (H) CD4+ T cells producing IFN-g upon ex vivo restimulationwith

e and cell sorted for CD4+ CD25� populations. qPCR was performed on RNA

. The means are represented as ±SEM, and each point represents two pooled

CD8+T cells producing IFN-g. Themeans are represented as ±SEM (cohort size

here Tukeys’s multiple comparisons test was used. p values are *p < 0.05,
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Figure 4. CSF1R Blockade Increases the Activation of Intratumoral T Cells in p53-Null Tumors but Depends on Treg Cell Depletion for

Regression

(A) Scheme of CSF1R blockade administration and subcutaneous growth in FVB mice.

(legend continued on next page)

488 Cell Reports 30, 481–496, January 14, 2020



CD44 on CD8+ OTI cells (Figure 3F). Led by our mouse data, we

stratified pancreatic cancer patients from The Cancer Genome

Atlas (TCGA) dataset according to a designed gene list based

on classical MDSC markers, including ITGAM (CD11b) and

CXCL10 (Figure S3E). Patients with a high MDSC signature dis-

played statistically lower overall survival (Figure S3F). Interest-

ingly, patients with a high MDSC gene signature trended toward

an enrichment of TP53 mutations compared to the low-MDSC-

signature population (Figure S3G). Taken together, these data

demonstrate that p53 deletion in cancer cells creates a tumor-

promoting environment through remodeling myeloid-T cell

crosstalk.

Encouraged by our in vitro and ex vivo results, we assessed

T cell activity in mice bearing GEMM-derived or isogenic

p53WT and p53-null tumors. Ex vivo restimulation of the spleen

and tumor draining lymph node (dLN) on day 7, when tumors

were of equivalent sizes, revealed a reduction in anti-tumor

T cell responses (as measured by CD4+ Th1 TNF-a+ and IFN-

g+ cells) in mice bearing p53-null tumors from either isogenic

(Figures 3G, 3H, and S3H) or the GEMM-derived lines (Figures

S3I and S3J). Furthermore, sorted CD4+CD25� T cells from

mice bearing KC1-p53KO tumors expressed less Il2 and Ifng

mRNA than CD4+CD25�T cells from KC1-p53WT recipients (Fig-

ure 3I), suggesting an overall lack of CD4+ T cell activation.

Impaired CD8+ CTL IFN-g+ production further demonstrated

weakened T cell responses inmice carrying p53-null tumors (Fig-

ures 3J and S3K–S3M). Overall, our data suggest that p53 dele-

tion in cancer cells undermines T cell effector responses, at least

in part through co-opting myeloid cell functions.

Combination Therapy of CSF1R and CD25 Blockade
Attenuates p53-Null Cancer Cells
Our in vitro data suggested that the dampened T cell re-

sponses seen in mice bearing p53KO tumors may be a conse-

quence of pro-tumorigenic myeloid cells responding to

elevated M-CSF from p53-ablated cancer cells (Figure 2G).

To test the contribution of M-CSF production by p53-null cells

to the modulation of the T cell response in vivo, we treated

immunocompetent mice challenged with either p53WT or
(B and C) Isolated tumors at day 7 frommice injected with PBS (untreated) or CSF

ionomycin, and GoligStop. Each point represents one individual tumor (cohort si

CD8+ TNF-a+ in KC1 control (black circles), KC1 treated (blue), KFC1 (red), and

(D) Subcutaneous growth of KC1 PDAC tumors treated with PBS (black line) or an

(red open circle) in FVB recipients (cohort size n = 5 per condition). The means a

(E) Tumors were processed and stained for CD4+ infiltrates and expression of FO

tumor infiltrating CD4+ cells. The means are represented as ±SEM with cohort s

(F) Representative flow cytometry plots of CD4 and FOXP3 expressing T cells in

(G) Flow cytometry analysis of tumor digests for CD4+ FOXP3+ T cell infiltration in

Means are represented as ±SEM, with sample sizes n = 4-5.

(H) Growth curve using in vivo imaging of the KFC1 tumors treated with isotype co

(n = 5) over 17 days post-tumor challenge. Graph shows relative growth compar

statistical analysis and the means are represented as ±SEM.

(I and J) Flow cytometry analysis of in-vitro-activated CD8+ T cells cocultured wi

(I) IFN-g production of restimulated CD8+ T cells with independent KC (KC1-3) or K

and as a graph showing biological replicates (right). Means are represented as ±

(J) IFN-g+GzmB+-producing CD8+ T cells assessed by restimulation and ICS. Rep

Each dot on the graph (right) represents one co-culture of pre-activated CD8+ T

represented as ±SEM. Co-culture experiments represent one of three independe

An unpaired Student’s t test was applied unless otherwise indicated. p values ar
p53-null tumor cells with neutralizing antibodies against

CSF1R, the receptor for M-CSF (Figure 4A). CSF1R specificity

was confirmed by showing the expected compensatory in-

crease in serum M-CSF levels in treated mice (Bartocci

et al., 1987), with no change in serum granulocyte colony-

stimulating factor (G-CSF) (Figures S4A and S4B). Subcutane-

ous tumors were harvested at day 7, and effector function of

infiltrating CD4+ and CD8+ T cells was assessed. Consistent

with results from spleen and dLN of tumor-bearing mice,

vehicle-treated, p53-null tumors contained less activated

effector CD4+ and CD8+ T cells secreting IFN-g and TNF-a

(Figures 4B, 4C, and S4C–S4E). CSF1R blockade restimulated

T cell function in p53-null tumors to levels seen in p53-WT tu-

mors (Figures 4B, 4C, and S4C–S4E) but did not change the

rate of rejection of tumors of either genotype (Figure 4D).

Furthermore, T cell reactivation in p53-null tumors was irre-

spective of absolute tumor size, as confirmed by in vivo imag-

ing of the tumors (Figure S4F). These data suggest that inhibi-

tion of M-CSF signaling that is induced by p53-deleted cells

can reactivate T cell function within the tumor but fails to pro-

mote rejection when used as a monotherapy.

The failure of CSF1R blockade to promote tumor rejection

prompted us to investigate other mechanisms of immune sup-

pression that may reflect additional effects of tumor cells on

T cell function. One essential immunosuppressive population

that is at the epicenter of T cell immune tolerance are Treg cells

(Sakaguchi et al., 2008), which are currently being targeted for

cancer immunotherapies (Tanaka and Sakaguchi, 2017). Flow

cytometry analysis of the original untreated tumors showed an

accumulation of Treg cells within p53-null tumors with no

changes in CD4+ T cell frequencies (Figure 4E). Tumors deleted

for p53 were biased toward Treg cells, as assessed by the Treg

cell/non-Treg cell ratio of CD4+ T cell infiltrates (Figures 4E and

4F). The inability of CSF1R blockade to reduce intra-tumoral

Treg cell frequencies (Figure 4G) led us to perform a double

blockade targeting both CSF1R and Treg cells using aCD25 to

eradicate Treg cells. This method is well established to effec-

tively deplete Treg cells (Onizuka et al., 1999; Setiady et al.,

2010; Shimizu et al., 1999), although various studies have shown
1R neutralizing antibody (treated), digested and ex vivo restimulated with PMA,

ze n = 4–5), and the means are represented as ±SEM. (B) CD8+ IFN-g+ and (C)

KFC1 treated (red open circles) mice.

ti-CSF1R (blue) and KFC1 PDAC tumors treated with PBS (red) or anti-CSF1R

re represented as ±SEM.

XP3. Graph on the right shows the ratio of Treg cell/non-Treg populations in

izes n = 5.

individual tumors of each genotype.

tumors of untreated and treated mice, where each point represents one tumor.

ntrol (red) (n = 5) or with aCD25 treatment followed by aCSF1R treatment (blue)

ed to day 1 measured by in vivo fluorescence. Two-way ANOVA was used for

th individually derived PDAC cell lines.

FC (KFC1-3) PDAC cell lines shown as a representative flow cytometry plot (left)

SEM.

resentative flow cytometry plot of restimulated and stained CD8+ T cells (left).

cells with KC (black) (KC1-3) or KFC (red) (KFC1-3) cell lines. The means are

nt experiments.

e *p < 0.05 and **p < 0.01. See also Figure S4.
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Figure 5. p53 Loss Increases Intratumoral

and Systemic Suppressive Treg Cell Line-

ages

(A–E) Flow cytometry analysis of tumors from FVB

mice injected with the isogenic cells lines KC1-

p53WT (black circles) and KC1-p53KO (open cir-

cles) and analyzed 7 days post-injection. Cohort

sizes n = 7–10 , the means are represented

as ±SEM.

(A) CD4+ T cell frequencies in the dLN from KC1-

p53WT KC1-p53KO recipients.

(B) Intracellular staining of FOXP3 and CD4 sur-

face expression in T cells within the dLN.

(C) The mean fluorescence intensity (MFI) of CD25

and GITR and the frequency of KLRG1 surface

expression within Treg cell populations in tumor

dLN.

(D) Frequencies of CD4+ T cell infiltration in KC1-

p53WT KC1-p53KO tumors.

(E) Intracellular staining for FOXP3 in tumor-infil-

trating CD4+T cells (left) and surface expression of

KLRG1 within the CD4+FOXP3+ T cell population

(right).

(F) Ex vivo Treg suppression assay of sorted

CD4+CD25+ Treg cells from mice (cohort size n = 6) injected with KC1-p53WT (black circles) and KC1-p53KO (open circles) cell lines. Data show percentage of

proliferating co-cultured CD4+CD25� T cells that were stainedwith v450 proliferation dye. Each point represents CD4+CD25+ Treg cells from two pooled recipient

FVB mice, and the means are represented as ±SEM.

An unpaired Student’s t test was used for statistics with p values of *p < 0.05 and **p < 0.01. See also Figure S5.
that CD25 blockade alone does not effectively block the growth

of established tumors (Arce Vargas et al., 2017; Onizuka et al.,

1999). Using a combined treatment of aCD25 for 3 days prior

to tumor challenge followed by an aCSF1R regime, we were

able to attenuate the growth of the p53-null tumors in FVB

recipients (Figure 4H). These intervention data suggest that

immunotherapy for p53-compromised tumors requires targeting

both the myeloid and Treg cell compartments for a positive

outcome.

Finally, we examined the consequences of direct interactions

between CD8+ cytotoxic T lymphocytes (CTLs) and cancer cells.

CTL cytotoxic function is elicited by IFN-g and granzyme B

(GzmB) production and can be affected by cancer cells (Fischer

et al., 2007). CTLs co-cultured with KC-p53WT and KFC-p53KO

cells were equally capable of secreting IFN-g (Figure 4I). Howev-

er, co-culture with KFC-p53KO cells clearly impaired CTL GzmB

production upon restimulation (Figure 4J).

Tumor cells can evade CTL responses through downregula-

tion of MHC class I surface expression (McGranahan et al.,

2017), although this was not observed in the p53-null PDAC-tu-

mor-derived cells (Figure S4G). In order to assess if loss of p53 in

cancer cells influences their ability to present endogenous pep-

tides, we introduced the model antigen, OVA, into the isogenic

PDAC cell lines. Co-culturing of peptide-stimulated OTI cells

with KC1p53WT-mOVA and KC1p53KO-mOVA increased cell

death in both PDAC cell lines, as marked by increased propi-

dium-iodide-positive cells. However, loss of p53 did not lead

to an increased resistance to OTI killing by MHC class I (Fig-

ure S4H). Taken together, these results indicate that immune

evasion in response to loss of p53 reflects both an accumulation

of suppressive Treg cells and inhibition of T cell cytotoxic

functions.
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CancerCell-Associated Loss of p53 Selects for
Suppressive Regulatory T Cell Lineages
Our observation that targeting Treg cells in parallel with CSF1R

was critical in reducing tumor growth of p53-null cells prompted

us to examine the effect of the p53 status of cancer cells on reg-

ulatory T cells more closely. Treg cells have different degrees of

suppressive abilities, which can be phenotypically identified

through surface expression of CLTA-4, KLRG1, and GITR and

high expression of CD25 (Arpaia et al., 2015). Mice bearing

KFC1 p53-null tumors displayed increased systemic presence

of CD4+FOXP3+CTLA-4+ T cells in the spleen and dLN (Figures

S5A and S5B), suggesting a greater suppressive immune

response. To determine whether the skewing toward more sup-

pressive Treg cells depended on the site of the tumor, we ortho-

topically implanted KC1 and the KFC1 cell lines into the pan-

creata of FVB recipients. Tumors of both genotypes were

detected in the pancreas at day 7 (Figure S5C) with a strong

accumulation of highly suppressive Treg KLRG1+ cells in p53-

null pancreatic tumors (Figure S5D).

To validate the p53 specificity of these Treg cell responses, we

turned again to the isogenic KC1-p53WT and KC1-p53KO cells.

Identical CD4+ T cell frequencies were present in the tumor

dLN of both KC1-p53WT and KC1-p53KO recipients (Figure 5A).

However, the proportion of FOXP3+ (Treg) cells present within

the CD4+ population was enhanced in mice bearing KC1-

p53KO cancer cells (Figure 5B). Phenotypic characterization of

these Treg cells revealed an increase in the proportion express-

ing markers of suppression (high CD25, GITR, and KLRG1

expression) (Figures 5C and S5E). In addition, while p53 status

did not affect total CD4+ T cell frequency in the tumor (Figure 5D),

KC1-p53KO tumors accumulatedmore FOXP3+ Treg cells, espe-

cially those with KRLG1 surface expression (Figure 5E).
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Figure 6. KRAS Coordinates with p53 Loss for the Recruitment of Myeloid, but Not Treg, Cells

(A) Schematic representation of the inducible iKrasG12D/+;Trp53f/f PDAC cell model (iKRASG12D).

(B) Growth kinetics of the iKRASG12D cell line (red circles) expressing iRFP subcutaneously injected into FVB recipients. Doxycycline (Dox) was maintained (red

circles) or removed at day 7 (open circles) to modulate mutant KRAS expression. Tumor growth was measured using in vivo imaging using the Pearl imager and

expressed relative to initial iRFP fluorescence at day 1 post-injection. Cohort sizes n = 10 and the means are represented as ±SEM.

(C–E) Analysis of individual tumor infiltrates of myeloid and T cell subsets 48 h post-Dox withdrawal. Cohort sizes n = 8�12 and the means are represented

as ±SEM.

(C) Analysis of CD11b+, CD11b+F4/80+, and CD11b+CXCR3+ tumor-associated myeloid cells analyzed by flow cytometry (open circles Dox OFF and red circles

Dox ON).

(D) Flow cytometry analysis of CD4+ and CD8+ T cell infiltrate frequencies.

(E) Analysis of intra-tumoral CD4+ T cell post ex vivo restimulation for expression of TNF-a+ (left) and CD4+FOXP3+KLRG1+ (right).

(F) Schematic representation of experimental design. C57Bl6/J-derived ID8 ovarian cancer cell lines were deleted of Trp53 using CRISPR/Cas9 and injected

intraperitoneally into syngeneic recipients.

(G–I) Flow cytometry analysis of ascites and omentum at equivalent endpoints frommice bearing ID8-p53WT (black circles) and ID8-p53KO (open circles) tumors.

(legend continued on next page)
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Consistent with these data, ex vivo Treg cell suppression assays

of CD4+CD25+ Treg cells sorted from tumor-bearing mice

showed that Treg cells isolated from KC1-p53KO recipients

were more efficient at inhibiting the proliferation of CD4+CD25�

T cells in vitro (Figures 5F and S5F). Both our in vivo characteriza-

tion and ex vivo functional assays highlight the relationship be-

tween tumor p53 loss and the local and systemic accumulation

of regulatory T cell responses.

KRAS Mutations Coordinate with p53 Loss for Myeloid,
but Not Treg, Cell Recruitment
In humans, nearly 90% of pancreatic cancer patients show mu-

tations in KRAS (cBioportal) (Cerami et al., 2012), and our

autochthonous models were based on mutations in KRAS or

in upstream signaling receptors (EGFR). Recent work has

shown that activating KRAS mutations can drive an immuno-

suppressive response in cancer cells through increased PD-

L1 expression (Coelho et al., 2017). In order to examine the

role of KRAS activation in promoting tumor tolerance in the

context of p53 loss, we used previously described doxycycline

(Dox)-inducible KRASG12D-driven p53-null PDAC mouse cells

(Ying et al., 2012) (Figure 6A). Tumors were initiated for 7 days

in FVB recipient mice treated with Dox to drive mutant

KRAS expression before either maintaining Dox treatment

(iKRASG12D-ON) or removing Dox (iKRASG12D-OFF). Despite

the lack of p53 in all of these tumor cells, removal of Dox re-

sulted in complete eradication of the tumor within 7 days (Fig-

ure 6B). We evaluated early and late tumor-associated immune

infiltrates at 48 h and 5 days post-Dox withdrawal. Within 48 h of

Dox removal, iKRASG12D-OFF tumors displayed reduced fre-

quencies of CD11b+ cells, especially those positive for F4/80

and CXCR3 expression (Figure 6C), with a modest influx of

CD4+ T cells but no changes in CD8+ T cell frequencies (Fig-

ure 6D). At this time point, iKRASG12D-ON and iKRASG12D-

OFF tumors showed no difference in CD4+ T effector cells or

CD4+FOXP3+KLRG1+ suppressive Treg cells (Figure 6E).

Evaluation of peripheral T cells in recipient mice 5 days after

Dox removal showed a significant increase of pro-inflammatory

CD4+ and CD8+ T cells in the spleen and a trend toward an in-

crease in the dLNs under iKRASG12D-OFF conditions (Figures

S6A and S6B). There was no overall change in suppressive

Treg cell populations (Figure S6C). These data suggest that

KRAS inactivation in part reactivates T cell effector immune re-

sponses but has no impact on the accumulation of regulatory

T cells. To further explore the cooperation between p53 loss

and KRAS activation, we turned to a previously described model

of isogenic C57Bl6/J ID8 ovarian cancer cells with and without

p53, which are WT for KRAS (Walton et al., 2016). These cells

were injected into the peritoneum of syngeneic C57Bl6/J mice

(Figure 6F), and as we previously published, there was a skewing

toward PMN cells present in the ascites of mice carrying p53KO

tumors (Walton et al., 2016). Interestingly, while there was no
(G) CD4+FOXP3+ Treg cells in the ascites. Cohort size n = 4; means are represen

(H) Representative plot of CD4+ T cells expressing FOXP3 and CD44.

(I) CD4+FOXP3+ T cells in tumor-immune infiltrates in the omentum Cohort size n

A two-way ANOVAwas used to analyze in vivo growth kinetics, and an unpaired S

***p < 0.001. See also Figure S6.
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change in the total frequency of CD4+ T cells (Figures S6D and

S6E), the ascites frommice injectedwith ID8 p53KO cells showed

a 2-fold increase of regulatory T cells (Figures 6G and 6H) and a

preferential skewing toward Treg cells, as illustrated by the

FOXP3+ to FOXP3� ratio (Figure S6F). A major site of ovarian

cancer spread is to the omental fat or the omentum (Worzfeld

et al., 2017). Processing and staining of omental tumors for

flow cytometry revealed enriched populations of regulatory

T cells present in p53-ablated lesions (Figure 6I). These results

further support a model in which p53 loss in tumors promotes

Treg cell infiltration.

DISCUSSION

In this study, we showed that p53-deficient tumors can re-

orchestrate the innate immune response through suppression

of effector CD4+ and CD8+ T cells, which reflected an increase

in the inhibitory actions of myeloid suppressor cells and regula-

tory T cells, accompanied by a direct impairment of GzmB in

CD8+ T cells. Other studies have shown that mutations in p53

correlate with reduced GzmB in gastric cancers (Jiang et al.,

2018) and a CSF1 (M-CSF) response signature in breast cancers

(Beck et al., 2009). Somatic changes in the tumor can also induce

systemic changes beyond the tumor microenvironment, and we

showed dampened local and systemic T cell effector function in

mice harboring p53-deficient tumors, seen as decreased IFN-g

and TNF-a production (Figure 3). We propose that these weak-

ened T cell responses are partially mediated by suppressive

myeloid cells derived from the tumor as well as through Treg

cell suppressive functions. Conditioned media from p53-null

cancer cells alters the cytokine profile of BMDMs, which in turn

influences CTL and Th1 cell differentiation (Figure 3). These ob-

servations are consistent with previous publications showing

that tumor-derived CD11bGr+ cells promote the de novo differ-

entiation of Treg cells in prostate cancer models and reduce

circulating IFN-g-producing T cells in B cell malignancies (Bezzi

et al., 2018; Christopoulos et al., 2011). Systemic changes were

also seen in p53-deficient breast cancer models, which also

showed an increase in MCP1 serum levels similar to those

seen in our p53-null tumor-bearing mice (Wellenstein et al.,

2019).

It is important to note that unlike the response to reexpression

of p53 in p53-null cancers, the p53-expressing cells in our study

did not undergo senescence and maintained proliferative ability

that was similar to the p53-null cells both in vitro and in vivo (Fig-

ure 1). Recent studies have attributed changes in cytokine pro-

files to oncogenic drivers, such as mutation in KRAS, MYC,

and loss of PTEN (Coelho et al., 2017; Kortlever et al., 2017;

Peng et al., 2016; Pylayeva-Gupta et al., 2012). Our data suggest

that one consequence of p53 loss is enhanced secretion of cyto-

kines involved in myeloid recruitment and proliferation. Our

work suggests the loss of p53 in tumors has a complex effect
ted as ±SEM.

= 9–10; means are represented as ±SEM.

tudent’s t test was used for all bar graphs. p values are *p < 0.05, **p < 0.01, and



on cytokine secretion of both tumor and macrophage popula-

tions, ultimately affecting the T cell response. These observa-

tions complement recent work showing that an increase in

WNT secretion in response to p53 loss in breast cancer cells

can stimulate systemic inflammation and drive metastasis (Well-

enstein et al., 2019). The complexity of the immune response to

p53 loss is further highlighted by a recent study showing that loss

of p53 in a prostate cancer model increases expression of

CXCL17 and CXCL5 and consequent attraction of tumor-pro-

moting Gr-1+CD11b+ cells (Bezzi et al., 2018). Consistent with

our study, loss of p53 in the prostate model also led to an

increased expression of CXCL9 and CXCL10 (Bezzi et al.,

2018). Although we were unable to identify any changes in the

intrinsic ability of p53-null cancer cells to present antigen, previ-

ous studies have shown p53-dependent alterations in antigen

presentation (Wang et al., 2013; Zhu et al., 1999), and it remains

possible that cell-intrinsic changes also play a role in the immune

response to p53 loss.

Although blockade of the M-CSF receptor, CSF1R, produced

a positive effect in allowing infiltration of T cell effector function in

the p53-null tumors, this was not sufficient for rejection. This

observation dovetails with a previous study targeting CSF1R

with PD-L1 in an orthotopic pancreatic model (with mutations

in KRAS and loss of INK) to increase the efficacy of PD-L1

blockade (Zhu et al., 2014). Blocking CSF1R by chemical target-

ing in the p53R172H Kras pancreatic mouse model has shown a

2-week increase in survival and, as we also showed, an increase

in T cell effector function (Candido et al., 2018). In addition,

macrophage depletion with clodronate and CSF1R inhibition

did not provide therapeutic benefit to primary tumors in the

KPC pancreatic cancer model, similar to our results (Griesmann

et al., 2017). Given the complexity of the immune modulatory

response to loss of p53, it is not surprising that reversal of only

one part of the response is insufficient to fully regain tumor rejec-

tion, since CD11b+ and Treg cell populations remained enriched

in p53-null tumors. By targeting both suppressive populations

through double blockade with anti-CSF1-R and anti-CD25, we

were able to diminish the growth of p53-null tumors in an

MHC-mismatched recipient. Indeed, our data show that the

enhanced Treg cell infiltration into p53-null tumors is not pre-

vented by CSF1R blockade, highlighting the importance of a

combination immunotherapy.

MSDCs and Treg cells are two major immune-suppressive

populations hijacked by many cancer cells. MDSCs arise and

expand under pathological conditions, especially during cancer.

Naturally occurring Treg cells are a heterogeneous population,

with different surface markers predicting suppressive capacity

(Cheng et al., 2012). In both our subcutaneous and orthotopic

models, we detect an enrichment of KLRG1+ and CLTA4+ Treg

cells in p53-null tumor-bearing mice. KLRG1+ Treg cells are

considered a highly suppressive and terminally differentiated

population of Treg cells that arise during tissue repair, such as

influenza-induced lung injury, and help in tissue regeneration

(Arpaia et al., 2015). Consistently, Treg cells isolated from recip-

ients harboring p53-deficient tumors displayed increased sup-

pressive capacity compared to their WT counterparts, dovetail-

ing with a similar observation in PTEN- and p53-null prostate

tumors (Bezzi et al., 2018).
Pancreatic and lung tumors harboring mutations in KRAS

also frequently acquire mutations in p53. While loss of p53 per-

mits the proliferation of mutant-KRAS-expressing cells, which

would otherwise undergo senescence, our data also demon-

strate cooperation between KRAS and p53 mutations in allow-

ing cancer cells to evade the immune response. Previous

studies on pancreatic cancer have focused on the effects of

mutant KRAS in pancreatic ductal epithelial cells (PDECs) and

in combination with mutant p53 in PDAC models, where GM-

CSF was a contributing factor for neutrophil recruitment to the

tumor (Bayne et al., 2012; Pylayeva-Gupta et al., 2012). Inter-

estingly, while neutrophils were enriched in orthotopically im-

planted KRASG12D PDECs, there was no change in Treg cell

infiltration (Pylayeva-Gupta et al., 2012), supporting our obser-

vation that p53 plays a more important role in modulating Treg

cells in cancer. The selection for suppressive Treg cells seems

to depend predominantly on p53 loss rather than the coordi-

nated overexpression of mutant KRAS, as demonstrated by

the iKRAS system and the ID8 ovarian cancer model. Moreover,

a recent study analyzing lung cancer patients treated with PD-

L1 blockade reported that patients harboring both KRAS and

TP53 mutations were resistant to immunotherapy through a

mechanism that was independent of PD-L1 expression levels

(Skoulidis et al., 2018). Hence, understanding how different

oncogenic drivers interact to promote immune tolerance will

be required to understand how best to apply immunomodula-

tory therapies in cancer.
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PeCy7 anti-mouse CD80 eBioscience Cat# 25-0801-82; RRID:AB_2573370

eFluor450 anti-mouse IL-2 eBioscience Cat# 48-7021-82; RRID:AB_1944462

vFluor450 anti-mouse CD4 TONBO bioscience Cat# 75-0042-U100; RRID:AB_2621928

eFluor450 anti-mouse CD8a eBioscience Cat# 48-0081-82; RRID:AB_1272198

BV605 anti-mouse Ly6C BioLegend Cat# 128036; RRID:AB_2562353

BV605 anti-mouse CXCR3 BioLegend Cat# 126523; RRID:AB_2561353

BV650 anti-mouse CD8a eBioscience Cat# 100555; RRID:AB_2561353

BV650 anti-mouse CD4 BioLegend Cat# 100555; RRID:AB_2562529

BV650 anti-mouse CD11b BioLegend Cat# 101259; RRID:AB_2566568

BV711 anti-mouse CD11b BioLegend Cat# 101242; RRID:AB_2563310

BV711 anti-mouse CD4 BioLegend Cat# 100557; RRID:AB_2562607

BV711 anti-mouse CD8a BioLegend Cat# 100759; RRID:AB_2563510

BV785 anti-mouse MHCII I-A/I-E BioLegend Cat# 107646; RRID:AB_313317

BV785 anti-mouse B220 BioLegend Cat# 103246; RRID:AB_2563256

APC anti-mouse CD4 eBioscience Cat# 17-0042-82; RRID:AB_469323

APC anti-mouse FOXP3 eBioscience Cat# 20-0191-U100; RRID:AB_2621561

APC anti-mouse MHCI H-2Kd,H-2Dd eBioscience Cat# 17-5998-82; RRID:AB_2573250

APC anti-mouse TNF alpha eBioscience Cat# 506308; RRID:AB_315429

APC anti-mouse CD25 eBioscience Cat# 20-0251-U100; RRID:AB_2621567

APC anti-mouse CD86 eBioscience Cat# 17-0862-81; RRID:AB_469418

AlexaFluor647 anti-mouse CCR2 (CD192) BioLegend Cat# 150604; RRID:AB_2566140

Vinculin mouse monoclonal Santa Cruz Biotechnology Cat# SC-73614; RRID:AB_1131294

p53 mouse monoclonal antibody Cell Signaling Technology Cat# 2524; RRID:AB_331743

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

InVivoPlus mouse IgG2a isotype control BioXCell Cat# BP0085; RRID:AB_1107771

InVivo monoclonal anti mouse CSF1R BioXCell Cat#BE0213; RRID:AB_466565

InVivo monoclonal anti-CD25 BioXCell Cat# BE0012; RRID:AB_1107619

Anti-mouse CD28 Functional grade purified eBioscience Cat# 16-0281-86; RRID:AB_468923

Anti-mouse CD3e Functional grade purified eBioscience Cat# 16-0031-86; RRID:AB_468849

IRDye� 800CW Donkey anti-mouse Li-Cor Cat# 926-32212; RRID:AB_621847

IRDye� 680LT Donkey anti-Rabbit Li-Cor Cat# 926-68023; RRID:AB_10706167

Chemicals, Peptides, and Recombinant Proteins

Recombinant Murine Il-2 Peprotech Cat# 212-12

Ovalbumin peptide 257-364 Francis Crick Institute N/A

Ovalbumin peptide 323-339 Francis Crick Institute N/A

Recombinant Murine M-CSF Peprotech Cat# 315-02

Critical Commercial Assays

Mouse M-CSF ELISA Kit RayBio � Cat# ELM-MCSF

Mouse G-CSF ELISA Kit RayBio � Cat# ELM-GCSF

Mouse CXCL1/KC ELISA Kit OriGene Techologies, Inc Cat# EA100460

Mouse Cytokine Array Panel A - Proteome Profiler R&D systems � Cat# ARY006

Mouse CCL2 Uncoated ELISA Kit Invitrogen Cat# 99-7391-22

Mouse MIP1 alpha (CCL3) Uncoated ELISA Kit Theromo Fisher Scientific Cat# 88-56013-22

Mouse LIX ELISA Kit RayBio � Cat# ELM-LIX

ProcartaPlex Mouse Cytokine & Chemokine Panel

1 (26 plex)

Invitrogen eBioscience EPX260-26088-901

LEGEND MAX Mouse CCL11 ELISA Kit BioLegend Cat# 4438907

High capacity cDNA reversts transcription kit AppliedBiosystems Cat# 4368814

RNeasy � Mini Kit QIAGEN Cat# 157029548

RNase Free and DNase set QIAGEN Cat# 79254

Deposited Data

PAAD - TCGA TCGA https://gdac.broadinstitute.org/;

RRID:SCR_003193

Experimental Models: Cell Lines

Phoenix-ECO ATCC� Cat# CRL-3214; RRID:CVCL_H717

KC1 Pdx1-cre; LSL-KRasG12D Beatson Institute for Cancer Research N/A

KC3 Pdx1-cre; LSL-KRasG12D Beatson Institute for Cancer Research N/A

KC3 Pdx1-cre; LSL-KRasG12D Beatson Institute for Cancer Research N/A

KFC1 Pdx1-cre; LSL-KrasG12D; Trp53fl/+ Beatson Institute for Cancer Research N/A

KFC2 Pdx1-cre; LSL-KrasG12D; Trp53fl/+ Beatson Institute for Cancer Research N/A

KFC3 Pdx1-cre; LSL-KrasG12D; Trp53fl/+ Beatson Institute for Cancer Research N/A

ID8 Walton et al., 2016 N/A

ID8-p53KO Walton et al., 2016 N/A

iKRAS;p53f/+ Ying et al., 2012 N/A

Experimental Models: Organisms/Strains

C57Bl6/J mice females (6-10weeks) Charles River Laboratories CR: 632

CD1 nude- Crl:CD1-Foxn1nu./nu. females

(6-10weeks)

Charles River Laboratories CR: 087

FVB/NCrl females (6-10weeks) Charles River Laboratories CR: 207

Oligonucleotides

Primers for qPCR T cell cytokines See Table 1 This paper N/A

Trp53 gRNA/Cas9 Walton et al., 2016 N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Recombinant DNA

pBABE-iRFP plasmid Hock et al., 2014 N/A

pCl-neo-mOVA Yang et al., 2010 Addgene Cat# 25099; RRID:Addgene_25099

MIGR1 Pear et al., 1998 Addgene Cat# 27490; RRID:Addgene_27490

Software and Algorithms

ImageJ Schneider et al., 2012 https://imagej.nih.gov/ij/; RRID:SCR_001935

Image Studio v5 Li-Cor N/A

FlowJo version 9.0 FlowJo https://www.flowjo.com/solutions/flowjo/

downloads; RRID:SCR_008520

survival package version 2.41-3 https://cran.r-project.org/web/packages/

surviva/index.html

R version 3.4.3 RStudio http://www.R-project.org; RRID:SCR_000432

Prism Version 7 GraphPad https://www.graphpad.com/scientific-

software/prism/; RRID:SCR_002798
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact Karen H

Vousden (karen.vousden@crick.ac.uk). All unique/stable reagents generated in this study are available from the Lead Contact with a

completed MTA.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
Themousemodels of pancreatic ductal adenocarcinomas were generated using Pdx1-Cre; LSL-KrasG12D/+; Trp53+/+ and Pdx1-Cre;

LSL-KrasG12D/+; Trp53fl/+ as previously published (Morton et al., 2010). The mouse model of non-small cell lung carcinomas was

based on the tetracycline inducible EGFR-L858R [Tg(tet-O-EGFR*L858R)56Hev] from the Mouse Repository of the National Cancer

Institute. The R26tTA and Trp53fl/fl mice were obtained from the Jackson laboratory. Mice were crossed to generate Rosa26tTaLSL

tet(O)EGFRL858R and Rosa26tTaLSL tet(O)EGFRL858R Trp53flox/flox mice and all backcrossed to C57Bl6/J background. Adenoviral Cre

(Viral Vector Core, University of Iowa, USA) was delivered via intratracheal intubation (single dose, 2.5x107 virus particles in 50 ml).

FVB (male and females) and CD1nu/nu (females) were purchased from Charles River, and OTI and OTII mice were purchased from

Jax and maintained at the Beatson Institute for Cancer Research and the Francis Crick Institute animal facilities. All animals used

ranged from 10-30 weeks of age and littermates of the same sex were randomly assigned to experimental groups.

Animal experiments were subject to ethical review by the Francis Crick Animal Welfare and Ethical Review Body and regulation by

the UK HomeOffice project license P8AA77917 and P319AE968 or at the BICR reviewed and approved by the University of Glasgow

and UK Home Office for the project license (70/8645). All mice were housed under conditions in line with the Home Office guidelines

(UK). Mice were housed from 3-5 per cage and were kept in a 12-hour day/night cycle starting at 7:00 until 19:00. Food and water

were available ad libitum and rooms were kept at 21�C at 55% humidity. All procedures were performed following the Animals

(scientific procedures) Act 1986 and the EU Directive 2010.

Cell lines and transfection
Phoenix-ECO (ATCC� CRL-3214TM) were purchased from the ATCC. PDAC cells from Pdx1-Cre; LSL-KrasG12D/+; Trp53+/+ and

Pdx1-Cre; LSL-KrasG12D/+; Trp53fl/+ mice were derived as previously described (Tan et al., 2014). Cell lines used (KCs and KFCs)

were tested for genetic background purity by the Charles River Genetic Testing Services. After a 384 SNP panel batch analysis

(MB-160318AJ), cell lines derived from tumors were deemed mismatched (e.g., B6N 73%–78.9%, FVB 46.7%–59.8%, 129S4SvJae

60.3%–71.7%). ID8 isogenic ovarian cancer cells were previously described (Walton et al., 2016). iKRAS cell line was gifted by RA

DePinho andweremaintained in DMEM, 10%FBS and 2mg/ml of doxycycline (Ying et al., 2012). All other cell lines weremaintained in

DMEM, 10% FBS and penicillin-streptomycin and in 37�C, 5% CO2 humidified incubators.

Primary T cells and bonemarrowwere derived fromC57Bl6/Jmice (eithermale or female) held at the BICR or Francis Crick institute

and aged between 10-30 weeks.
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Mouse Cancer Orthotopic Models
The pancreatic orthotopic model protocol was described by Kim et al. (2009). Briefly, pancreatic cancer cells were surgically im-

planted into the pancreas of recipient mice (500,000 cells in 25ml of Matrigel, BD-Biosciences). For the ovarian ID8 cancer model,

5x106 cells were injected intraperitoneally (IP) in 6-8-week-old female C57Bl6/J mice (Charles River Laboratories, UK). The develop-

ment of ascites and other symptoms were diagnosed as previously described (Walton et al., 2016).

Tumor Challenge and Rejection Models
PDAC derived cells expressing iRFP were subcutaneously injected into the left flank of FVB mice at 1x106 cells/mouse. Growth was

monitored by in vivo imaging and mice were taken at humane endpoint as dictated by the UK Home Office and the animal license.

Allograft growth in CD1nu/nu mice was performed by unilateral flank injections of 1x106 per mouse. Growth was measured by in vivo

imaging and humane endpoints were respected. All in vivo antibodies were purchased from Bio-X-Cell. Anti-CSF1R (clone AFS98)

was used at a concentration of 300mg/mouse and administered twice a week. Anti-CD25 (PC-61.5.3) was used three days prior to

tumor challenge and used at 400mg/mouse. Isotype control used was IgG2a (C1.18.4) and 200mg/mouse was used as a control.

METHOD DETAILS

T cell and CD11b+ cell purification, macrophage differentiation, and cell culture
CD8+ T cells and CD4+ T cells were isolated from spleens and peripheral lymph nodes, prepared into single cell suspensions and

lysed for red blood cells (10x RBC lysis buffer, Biolegend). Negative isolation kits and positive isolation kits (CD11b+ cells) were pur-

chased from StemCell Technologies and isolation was performed following manufacture’s procedures. T cells were activated and

cultured as previously described (Jones et al., 2007) using plate-bound anti-CD3 and anti-CD28 antibodies.

Isolation of intratumoral CD11b+ cells was performed on tumors digested using the tumor preparation protocol (see below).

CD11b+ cells were isolated from tumor single cell suspensions using positive isolation kits from StemCell Technologies, following

the manufacturer’s protocol.

Macrophages were differentiated from bone marrow flushed using PBS, a 1mL syringe and a 25G needle. Bone marrow was

collected, lysed for red blood cells (10x RBC lysis buffer, Biolegend), and plated on non-TC treated plates at 5x106 cells/10cm

dish and 20ng/ml of M-CSF (Peprotech).

Cell culture of pancreatic ductal adenocarcinoma cells (PDACs) and ID8 cell lines were maintained in DMEM supplemented with

10% FBS and Pen/Strep.

Treg and CD11b suppression assays
CD4+CD25+ and CD4+CD25- T cells were isolated by performing CD4+ T cell negative isolation by STEMCELL technology kits and

sorted by flow cytometry (FACS Aria Sorter) (CD4-FITC and CD25-APC). Briefly, ratios of 1:1 (Treg:Teffector) to 1:32 were generated

in the presence of irradiated splenocytes and activated with 1mg/ml of aCD3 for 3 days (Collison and Vignali, 2011).

CD11b+ cells were isolated by positive selection from digested tumors (see above). T cells were stained with V450 dye and plate-

bound activated with a-CD3 (5mg/ml) and a-CD28 (2mg/ml) for 24 hours. After 24 hours, T cells were co-cultured with isolated tumor-

associated CD11b+ cells at a ratio of 1:4 in a 24 well plate for a further 2 days and proliferation was assessed using a the eBioscience

live/dead fixable viability dye, APC-Cy7, and flow cytometry. Isolated CD11b+ intratumoral cells were plated 8 hours prior to co-cul-

ture at 0.5x106 cells per 24 well plate (Corning). Plate-bound activated T cells were plated 24 hours post-activation at 0.75x106 cells

per 24 well plate.

Flow cytometry
Single cell suspensions were stained for surface markers in PBS for 20 minutes at 4�C. Intracellular proteins (i.e., cytokines, FOXP3,

and Ki67) were assessed using the FOXP3/Transcription staining buffer set (eBioscience, San Diego, CA) and following manufac-

turer’s instructions. Cells were permeabilized for 30 minutes and stained for intracellular proteins for 1 hour at 4�C. All fluorochromes

were purchased from Biolegened and eBioscienes. Ex vivo re-stimulation was performed using PMA (Sigma-Aldrich), ionomycin

(Sigma-Aldrich), and Golgi Stop (BD Biosciences) for 4 hours as previously described (Kornete et al., 2012). For OTI and OTII peptide

re-stimulation, peptides OVA257-264 and OVA323-339, were incubated with transgenic T cells at 10mg/ml with Golgi Stop (BD Bio-

sciences) for 6 hours followed by surface staining and ICS. Dead cells were distinguished using the fixable viability dye efluor780�
from eBioscience. Single cell suspensions were fixed and permeabilized using the FOXP3 Transcription staining buffer set. Samples

were acquired on the BD LSRFortessaTM and on the BD FACSymphonyTM. Flow cytometry data was analyzed using FlowJo

(TreeStar).

Extracellular Cytokine Measurements
ELISA kits were purchased from R&D systems for M-CSF, CXCL1, CCL11, and G-CSF. ELISAs for MCP1, CCL3 and CXCL5 were

purchased from Life Technologies, Invitrogen. All ELISAs and cytokine arrays were performed on conditioned media (cells were

plated at 1x106 cells/10cm dish) harvested after 24 hours. Cytokine arrays were purchased from R&D systems � (Mouse cytokine

panel array A) and performed on conditioned media from cells prepared as for ELISAs. Cytokines were detected following the
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manufacture’s procedures and using chemiluminescence (read at 450nm). Pixels from cytokine array data were analyzed using

ImageJ software. The Luminex cytokine array used in this studywas the Invitrogen eBioscience ProcartaPlexMouseCytokine &Che-

mokine Panel 1 (26 plex) with 4 additional cytokines

Immunoblotting
Cells were lysed using RIPA buffer supplemented the 1%SDS and phosphatase inhibitors (La Roche Ltd), denatured at 95�C, and
resolved on NuPAGE polyacrylamide pre-cast gels (ThermoFischer Scientific). Transfer of gels onto nitrocellulose membranes

was performed using the iBlot2 (Invitrogen). Cells were probed for p53 with monoclonal anti-mouse p53 antibody from Cell Signaling

Technologies (clone 1C12). Vinculin (H10, Santa Cruz Biotechnologies) was detected as a loading control. Secondary antibodies

were purchased from LiCOR IRDye 800CW and 700CW.

In Vivo Imaging
Mice were anesthetized with isoflurane and imaged using the Pearl Imager by LiCOR. iRFP fluorescence was excited using the

685nm laser and emission was detected in the 700nm channel (730nm). Fluorescence was analyzed using the Image Studio v5

from LiCOR.

Co-Culture Assays
Activated T cells and PDACS

Primary T cells were activated with plate-bound anti-CD3 (5mg/ml) and anti-CD28 (2mg/ml) for 24 hours. Activated T cells were then

co-cultured with adherent PDAC cells in 24 well plates or 96 well plates. PDACs were plated at 20 000 cells/well with 1x106 T cells

(24 well plate) or 10,000 PDAC cells/well with 200,000 T cells (96 well plate) and co-incubated for 2 days. T cells were re-stimulated

with PMA, ionomycin and GolgiStop (BD Biosciences) for 4 hours prior to ICS. Intracellular cytokines probed by ICS and flow cytom-

etry were Granzyme B, IFNg and TNFa.

BMDMs and Transgenic T cells

0.3x106 BMDMs pulsed with 10mg/ml of ovalbumin (Sigma-Aldrich) for 1 hour, washed and naive OTI or OTII cells were added to the

culture at 1x106 cells/well. T cells were kept in co-culture for 3-4 days followed by OVA257-264 and OVA323-339 re-stimulation at

10mg/ml in the presence of a Golgi blocker (GolgiStop, BD Bioscience), surface staining, ICS and acquired by flow cytometry.

OTI and PDAC-mOVA cell viability

Splenocytes fromOT1 TCR transgenic mice were stimulated in vitrowith 10mg/ml of SIINFEKL (OVA257-264) for 48 hours. Cells were

spun down using Lympholyte M (Cedarlane) following the manufacturer’s instructions. Activated CD8+OT1 cells were co-cultured in

a 24 well plate (Corning) at 0.5x106 cells to 200,000 PDAC-mOVA isogenic cells. Cells were stained with propidium iodide for cell

viability and acquired on the BDLSRFortessaTM.

Tissue collection, Immunohistochemistry (IHC) and scoring
Tissue was collected and fixed in 10% neutral buffered formalin (NBF). Samples were replaced with 70% ethanol after 48hours,

embedded in paraffin blocks, and processed by standard histological techniques. Sections were cut at 5mM. IHC and H&E was per-

formed as previously published (Myant et al., 2013). F480 antibody was purchased from eBioscience (rat anti-mouse F4/80 Cat. No

14-4801-82; RRID:AB_467558). Scoring of tumor sections for individual markers was performed by counting 30 fields using QuPath

open source digital software (Bankhead et al., 2017) and set as an average per field.

Tumor Preparation and Serum Collection
Tumors

Tumors were carefully excised from the animals and kept in ice cold medium till processing. Tumors were minced into small (about

1mm) pieces and digested in digestion buffer containing: collagenase 0.012%, dispase, 0.1mg/ml DNase I, 1% FBS in Krebs Ringer

Bicarbonate Buffer (KRB) for 45-60 min at 37�C with gentle oscillation. The digestion was stopped by the addition of at least 10 vol-

ume of ice cold DMEM supplemented with 10% FBS. The solution was filtered through a 100 mm cell strainer and the isolated cells

were precipitated by centrifugation at 300 X g for 5 min, washed with PBS before further processing.

Serum

Serum was collected by cardiac puncture into EDTA coated tubes. Blood was spun in 1.5mL Eppendorf tubes at 2000xg for 15 mi-

nutes at 4�C. Serum was collected in upper phase and stored at �80�C.

RNA extraction and QPCR
Total RNA was extracted using RNeasy� columns (QIAGEN) from at least 3 technical replicates per sample according to manufac-

turer instructions. Genomic DNA was removed using on column DNA digestion (QIAGEN). cDNA was generated using the High-Ca-

pacity cDNA reverse transcription kit (Thermofisher) according to manufacturer’s instructions. Power up TM SYBR� Green Master

MIX (Applied Biosystem) was used to perform QPCR with the following primers:
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Table 1
Gene and accession number Forward primer Reverse primer

Il-6 tcctaccccaatttccaatgctc ttggatggtcttggtccttagcc

Tnf-a CCCCAAAGGGATGAGAAGTT CTCCTCCACTTGGTGGTTTG

IL-12b CTGCTGCTCCACAAGAAGGA ACGCCATTCCACATGTCACT

Il-1b GCAACTGTTCCTGAACTCAACT TCTTTTGGGGTCCGTCAACT

cyc ATGGTCAACCCCACCGTGT TTTCTGCTGTCTTTGGAACTTTGTC
Gene expression values were calculated according to Pfaffl method (Pfaffl, 2001) and expressed as relative units compared to the

control group

Scratch-Wound and Migration Assays
Scratch-wound Assay

BMDMs were differentiated with 10ng/ml M-CSF and re-plated onto Imagelock 96 well plates. Scratches were made using the Es-

senbio scratch making tool. Wound closure was monitored in real-time using IncuCyteTM Live-Cell Analysis System and analyzed

using IncuCyte S3 software.

Chemoattraction assays

BMDMs at 5000 cells per chamber were plated in the upper chamber of an IncuCyteTM ClearView 96-well Cell Migration plate (Essen

BioScience). Conditioned medium from different PDAC cell lines was placed in the bottom chamber. The Incucyte ZOOM� live-cell

imaging system was used to measure cell migration.

Plasmids, stable expression and CRISPR/CAS9
Plasmids for iRFP (Hock et al., 2014) were transfected into Phoenix-ECO (ATCC� CRL-3214) using GeneJuice� Transfection re-

agents (MerkMilipore). PDAC cell lines were transducedwith viral media and pBABE-iRFP selected for by puromycin (Sigma-Aldrich)

at a concentration of 2.5mg/ml. Plasmid positive cells were cultured in selection media for 7 days. CRISPR/CAS9 methods were em-

ployed for genetic deletion of the Trp53 gene as previously described (Walton et al., 2016). Retroviral introduction of ovalbumin

sequence for membrane bound ovalbumin (mOVA) was cloned out of the pCl-neo-mOVA plasmid (Addgene No 25099) (Yang

et al., 2010) and into the MSCV-based MIGR1 (Addgene 27490) vector (Pear et al., 1998). Phoenix-EC (ATCC � CRL-3214) were

used for virus production and PDAC cells were virally transduced three consecutive days. mOVA expressing cells were selected

by cell sorting for GFP expression.

Bioinformatics Analysis of TCGA datasets
Survival curves & gene expression: SEM normalized data was downloaded from the TCGA firehose website [ https://gdac.

broadinstitute.org/]. Top (high group) and bottom (low group) quartiles pancreatic adenocarcinoma samples for MDSC-signature

ranked expression were compared using the survival package version 2.41-3 (https://cran.r-project.org/web/packages/survival/

index.html) in R version 3.4.3 (http://www.R-project.org) and the level of statistical significance determined by the log rank test.

Expression data from PAAD patients with a mutation in TP53 was compared to those without a mutation using DESEQ2 (Love

et al., 2014). Boxplots show the log2 expression values of selected genes grouped by their TP53mutation status, with the adjusted

p value determined by the Wald test.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data are presented as mean ± SD for technical replicates, or mean ± SEM for biological replicates. Data was analyzed using the un-

paired Student t test when comparing two conditions. One-way ANOVA with a Tukey’s multiple comparisons test was performed on

comparisons of more than two conditions as well as in vivo growth studies. Two-way Anova was performed on the in vivo tumor

growth studies with treatments and different p53 alterations. Statistical significance is indicated in all figures by the following anno-

tations: * p < 0.05; **p < 0.01;***p < 0.005. GraphPad Prism 7 was used for statistical analysis and graph generation.

DATA AND CODE AVAILABILITY

This study did not generate any unique datasets or code
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