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Abstract—Estimation of attenuation from PET data only is of
interest for PET-MR and systems where CT is not available or
recommended. However, when using data from a single energy
window, emission-based non-TOF PET attenuation correction
(AC) methods suffer from ‘cross-talk’ artefacts. Based on earlier
work, this manuscript explores the hypothesis that cross-talk
can be reduced by using more than one energy window. We
propose an algorithm for the simultaneous estimation of both
activity and attenuation images as well as the scatter component
of the measured data from a PET acquisition, using multiple
energy windows. The model for the measurements is 3D and
accounts for the finite energy resolution of PET detectors; it is
restricted to single scatter. The proposed MLAA-EB-S algorithm
is compared with simultaneous estimation from a single energy
window (MLAA-S). The evaluation is based on simulations using
the characteristics of the Siemens mMR scanner. Phantoms of
different complexity were investigated. In particular, a 3D XCAT
torso phantom was used to assess the inpainting of attenuation
values within the lung region. Results show that the cross-
talk present in non-TOF MLAA reconstructions is significantly
reduced when using multiple energy windows and indicate that
the proposed approach warrants further investigation.

Index Terms—Positron Emission Tomography, Image Recon-
struction, Iterative Methods, Optimisation, Quantification and
Estimation, Attenuation Estimation, Scatter.
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IN quantitative positron emission tomography (PET) imag-
ing, photon attenuation and Compton scatter must be taken

into account. Errors in the attenuation image can significantly
affect PET quantification, especially in tissues such as the
lung, where density values vary considerably among patients
(up to a factor 2), and during the respiratory cycle [1], [2].
Although the problem of AC of PET images can be regarded
as solved to a large extent for hybrid PET/CT scanners, it
still represents an issue for PET/MR systems as mapping
MR image intensities to PET 511 keV attenuation coeffi-
cients is extremely challenging in the thorax [3]. In current
clinical practice, MR-based attenuation correction consists
of segmenting MR images into three or four tissue classes
– namely air, lung, fat and soft-tissue – followed by the
assignment of population-based density values to each tissue
class. One of the main limitations of this approach is the
neglect of the inter/intra-patient heterogeneity of attenuation
coefficients within each class [4]. These methods are however
very successful in brain imaging, where intra-patient variation
is relatively small. Other MR-based AC methods include
atlas/mapping techniques [5] and MR/CT learning [6]. These
methods can benefit from different MR sequences, such as
UTE [7] and ZTE [8] offering improved soft tissue contrast
and the possibility of an accurate bone segmentation. However,
these advantages come at the cost of longer acquisition times
compared to other MR sequences [9]. For thorax acquisitions,
MR based Attenuation Correction (MR-AC) methods are
prone to errors, especially in the lung, due to high variability
of attenuation values in the lung tissue both on a regional
basis and from person to person [1]. More details can be
found in a couple of recent review articles [10], [11], focusing
respectively on brain and thorax imaging.

Attenuation estimation strategies from PET data seem par-
ticularly promising for overcoming the quantification errors
induced by conventional MR-based approaches [12]. Methods
that aim to estimate attenuation from the emission data can
be essentially divided into analytic and iterative approaches.
The first relies on the consistency conditions of the attenuated
Radon transform [13] and offers a direct mathematical solution
from the known projections. This leads to relatively fast
reconstruction techniques, but with the major drawback of
not modelling the statistical variability of the emission data,
as well as showing significant artefacts when the number
of counts decreases. The second type of approach aims to
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find a solution by successive estimates to fit the measured
PET data. In addition to adequately modelling the statistical
nature of the data, the other advantages offered over the
analytic algorithms include the possibility of modelling more
complicated system geometries and physical processes, such
as Compton scattering.

The most popular method amongst the iterative algorithms
is Maximum Likelihood reconstruction of Activity and Atten-
uation (MLAA) introduced in Nuyts et al. [14], a (penalised)
maximum likelihood-based iterative algorithm that alternates
between activity and attenuation estimation. However, in the
absence of time-of-flight (TOF) information, the joint esti-
mation problem is strongly ill-posed [15]; as a consequence,
the activity and attenuation images estimated from non-TOF-
MLAA suffer from cross-talk artefacts, where the features of
the activity map propagate into the attenuation map and vice
versa. On the other hand, TOF-MLAA has great potential for
PET/MR applications [16], [17], but recent work has shown
that it is necessary to re-estimate the photopeak scatter during
TOF-MLAA iterations for best results [18].

Attenuation and scatter are intrinsically linked both on a
physical level and when deriving the scatter and attenuation
estimates. Scattered events are normally estimated by a 3D
model-based simulation [19], [20]. Quantitative errors in the
attenuation image propagate in the scatter estimation, and
therefore in the reconstructed activity distribution. This effect
is non-negligible in the thorax, as scatter events can represent
up to 40% of the total recorded coincidences [21].

This linking has led several authors to attempt to use
information contained in the scattered counts to estimate
attenuation. As Compton scattering decreases the energy of
the scattered photon, this could be achieved by using data
acquired in several energy windows. Energy-based methods
for attenuation estimation have first been investigated in Single
Photon Emission Computed Tomography (SPECT) [22]–[24]
using an upper (photopeak) and a lower (scatter) energy win-
dow. However, all of these approaches assumed the possibility
of distinguishing gamma rays exiting the patient that have not
been scattered from those that are scattered.

The idea of deriving additional information from scatter has
also been applied to PET [25], [26]. Although initial studies
were restricted to simple 2D phantoms and perfect energy
resolution such that scattered events can be distinguished from
those that are not scattered, the possibility of reconstruct-
ing a 3D attenuation distribution from scattered data only
(with known activity) was demonstrated with realistic energy
measurement scenarios [27]. Recently, Berker et al. [28],
[29] proposed a joint reconstruction algorithm from scatter
and unscattered data. To be able to handle high attenuat-
ing (or large) objects, a “four-step algorithm” was proposed
alternating between various activity and attenuation image
reconstruction steps. However, convergence of an alternating
algorithm with each step optimising a different objective
function can be problematic [30]. In addition, the evaluation of
[29] used 2D phantoms and disregarded energy-measurement
uncertainties. In practice however, current PET scanners have
an energy resolution in the order of 10% or worse, leading to
the presence of scatter in the photopeak window and reduced

information content in the scattered photons. Furthermore,
PET scatter is inherently 3D.

In this paper, we investigate the feasibility of a more
practically relevant method for the joint reconstruction activity
and attenuation distributions from multiple energy window
measurements by using a maximum likelihood framework.
Particular interest was given to the inpainting of the attenuation
values within the lung region; this was investigated with 3D
phantom simulations where the attenuation values outside the
lung were assumed to be known.

Overall, the improvements on previous research studies
include: (a) accounting for the uncertainty in the energy
measurements to a large extent; (b) considering the presence
of both scattered and unscattered events in the photopeak
window; (c) simulating 3D input and output according to
existing scanner geometry and specifications; (d) optimising
one unique objective function.

This manuscript is organised as follows. We first cover the
mathematical theory relevant to the framework, then give an
overview of the proposed algorithm (with some details in the
appendices). We finally present results from simulated data and
provide a comparison of the proposed method against MLAA
from a single energy window acquisition. Similarly to previous
published work [28]–[30], the current study is restricted to
single scatter only.

II. THEORY

A. Objective Function

A reasonable statistical model for PET measurements is to
describe the measured data g as independent Poisson variables.
Assuming that the scanner allows energy discrimination of the
detected photons:

gb ∼ Poisson{ḡb(λ,µ)}, b = 1, 2, . . . , B (1)

where B is the number of detection bins, characterised by
their detector pair and energy window pair, λ ∈ Rnv and µ
∈ Rnv are vectors that represent the activity and attenuation
distributions of the object, respectively, and ḡb(λ,µ) is the
expected value of the bth measurement. Taking the logarithm
and ignoring the terms independent of µ and λ, the log-
likelihood of the measured data g , [g1, . . . , gB ] is given
by:

L(g | ḡ(λ,µ)) =
∑
b

gb log ḡb(λ,µ)− ḡb(λ,µ) (2)

The joint maximum-likelihood reconstruction of λ and µ is
traditionally achieved by solving:

(λ̂, µ̂) = arg max
λ≥0,µ≥0

L(g | ḡ(λ,µ)) (3)

B. Optimisation

A common approach for maximising a joint likelihood such
as (3) consists of updating λ and µ in an alternating order:

λk+1 = arg maxλ≥0 L(g | ḡ(λ,µk))
µk+1 = arg maxµ≥0 L(g | ḡ(λk+1,µ))

(4)
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This requires two inner sub-algorithms to estimate λ and
µ separately. Alternatively, both variables can be updated
simultaneously – similar to [31] – to avoid complications
related to the settings of inner loop parameters:

θ̂ = arg max
θ≥0

L(g | ḡ(θ)) (5)

where θ = [λ ,µ]∈ R2nv . The latter approach is used in this
work.

C. Optimisation of the scatter component

In PET, the expected counts ḡ(λ,µ) are often expressed as:

ḡ(λ,µ) = A(µ)λ+ ḡsc + ḡr (6)

where A(µ) ∈ RnD×nv
+ is a matrix mapping from image

space to data space, denoting the probability of detecting non-
scattered coincidences, nD is the number of detector pairs,
nv is the number of voxels in the image and ḡsc and ḡr are
the expected scatter and random sinograms, respectively. The
scatter component is generally considered as a background
term, here we account for its dependency on the activity and
attenuation distributions. This results in ḡsc being replaced by
ḡsc(λ,µ).

D. Multiple energy window acquisition model

In the proposed method, we assume that each photon of a
photon pair is assigned to either the photopeak window (U) or
to a lower energy window (L), resulting in the measurement
of four different 3D sinograms, one for each energy window
combination (gUU, gUL, gLU, gLL). For all (w, y) ∈ {U,L}2,
the observed counts gwy can be described as a Poisson process
centred in ḡwy , given by the sum of expected scattered ḡscwy
and unscattered events ḡunscwy . In the current work, we assume
that the lower energy window excludes any unscattered events.
In addition, we restrict the study to single scatter coincidences.
Therefore, we disregard gLL as it is expected to contain few
single scatter events [27]. The expected counts are therefore
given by:

ḡUU(λ,µ) = ḡunsc
UU (λ,µ) + ḡsc

UU(λ,µ) + ḡr
UU

ḡUL(λ,µ) ≈ ḡsc
UL(λ,µ) + ḡr

UL

ḡLU(λ,µ) ≈ ḡsc
LU(λ,µ) + ḡr

LU

(7)

The following sections cover the forward scattered and
unscattered model used in this research study.

1) Unscattered Events: In PET, the expected photopeak
unscattered events ḡunsc

UU (λ,µ) are often expressed as:

ḡunsc
UU (λ,µ) = A(µ)λ (8)

where A(µ) is the detection probability matrix, taking the
attenuation into account.

2) Scattered Events: The forward model for the scatter is
an extension of the SSS model proposed in [19] to the case
of a multiple energy window acquisition, see Appendix A for
details. For computational efficiency, the scatter simulation is
performed in low spatial resolution.

Let P ∈ RnD×nD′
+ be a prolongation operator that maps

from low resolution (n′D total number of detector pairs) to
high resolution sinograms (nD total number of detector pairs).
Then, the scatter component is given by:

ḡsc
wy(θ) = P Swy(θ) (9)

with Swy(θ) indicating an operator that computes the expected
scatter at each energy window pair (w, y), defined in Appendix
A. For the results presented in this manuscript, the prolonga-
tion operator P consists of a cubic B-spline interpolation.

III. ALGORITHMS

In this section, we describe the algorithms used for the
joint reconstruction of the activity and the attenuation images.
Inputs for the reconstruction are the measured data g and an
estimate of the µ-map, for instance on a PET-MR scanner
obtained via MR-AC.

A. Initialisation via OSEM/SSS

Initial activity λinit and photopeak scatter estimates
ĝsc,init

UU ≈ ḡsc
UU(θinit), with θinit = [λinit,µinit], are obtained

from the photopeak data as follows: (i) set initial scatter
estimate to zero, (ii) reconstruct the activity image with OSEM
(7 subsets, 70 sub-iterations), (iii) estimate photopeak scatter
with Single Scatter Simulation (SSS). This process is repeated
iteratively (see Algorithm 1).

B. MLAA-EB-S

Here we describe the main Energy-Based simultaneous
Maximum Likelihood reconstruction of Activity and Atten-
uation with photopeak Scatter re-estimation (MLAA-EB-S),
summarised in Algorithm 2. It can be seen as an evolution
of MLAA-EB [30], improved on two main aspects: (i) the
algorithm optimises one unique objective function, (ii) the
activity and attenuation images are updated simultaneously.
In particular, both unknown distributions λ and µ are recon-
structed from all the available data: gUU, gUL and gLU.

Special attention was given to reducing computational ef-
fort. The scatter gradient is computed during the reconstruction
only for the UL and LU windows. The photopeak scatter esti-
mate ḡsc

UU is iteratively updated via a one-step-late approach.
In addition, the input data in the low energy windows were
downsampled to low resolution, given the presence of only
scattered events in UL and LU (7).

Image updates: The optimisation strategy follows (5),
leading to the simultaneous estimation of the two variables
[λ,µ] = θ, using a previous estimate of the scatter in the
photopeak window. The objective function is given by the sum
of each log-likelihood at a given energy window pair:

Ltot(θ) , L(gUU | ḡunsc
UU (θ) + ḡsc

UU(θprev))+
L(g′UL | γ SUL(θ)) + L(g′LU | γ SLU(θ))

(10)
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with g′wy and γ denoting respectively the downsampled sino-
gram and the down-sampling factor, and θprev indicating an
estimate of θ at previous iteration. Please note that

∑
nD

g∑
n′
D
g′ =

γ.
The activity and the attenuation estimates are updated with

bounded limited-memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS-B) [32]. Every update consists of a line-search step
in a quasi-Newton direction:

θk = θk+1 − αBθ∇θLtot (11)

where ∇θLtot is the gradient of the objective function, Bθ is
an approximation of the inverse Hessian matrix of Ltot at θ
and α is the step-size found by a line-search.

C. MLAA-S
To fairly compare our approach with a single energy win-

dow acquisition, we implemented a simultaneous Maximum
Likelihood reconstruction of Activity and Attenuation with
photopeak Scatter re-estimation (MLAA-S). The algorithm
relies on the following strategy: (i) simultaneous optimisation
of both activity and attenuation maps with LBFGS-B (as
for MLAA-EB-S), (ii) photopeak scatter re-estimation (as for
MLAA-EB-S), (iii) single energy window input data. The main
difference between MLAA-S and MLAA-EB-S lies in the
input data (one vs multiple energy window). This implies that
no scatter gradient is computed during MLAA-S iterations,
as the only scatter information comes from the photopeak
window where the scatter is updated using a one-step-late
approach. Pseudo code for MLAA-S is shown in Algorithm
3.

D. MLAA
In this study, a version of MLAA was also used: the

framework follows the one of MLAA-S, without the photo
peak scatter re-estimation. This method was first proposed in
[31].

E. LBFGS-AC
An LBFGS emission reconstruction using the true attenua-

tion map (LBFGS-AC) was also used as further comparison.
The algorithm outputs an estimate of the activity image and
inputs: (i) ground truth attenuation image µtrue, (ii) ground
truth photopeak scatter gsc,true

UU , (iii) photopeak window pro-
jection data gUU.

F. Implementation
The overall algorithm framework was written in MATLAB

(The MathWorks, Natick, MA; version R2018a). The imple-
mentation of L-BFGS-B employed in this study is summarised
in [32]. Bθ is constructed with a history length of 5 (in-
ner) iterations. The objective and gradient functions for the
unscattered model were implemented in MATLAB, whilst
those related to the scatter model were written in C++ and
implemented in open source software for PET and SPECT
reconstruction (STIR) [33]. See Appendix C for further details.
The Simplified Wrapper and Interface Generator (SWIG) [34]
was used to call the STIR functions from MATLAB.

G. Stopping Criteria

The photopeak scatter is re-estimated every outer iteration.
The reconstruction algorithms rely on three main stopping
criteria: normalised difference between two consecutive image
estimates and norm of the projected gradient. Default values
for the L-BFGSB implementation were used. At first iteration,
the line search step is initialised by:

αinit
0 = min

( 1

||∇Ltot(θinit)||
, 1
)

(12)

A maximum number of inner (MaxInnerIter) and outer
iterations (MaxOuterIter) were set. See Sec. IV-C for details.

Algorithm 1: Pseudo-code for OSEM/SSS.
Input: gUU, µinit, ĝsc,initUU = 0
Output: Initial activity estimate λinit

ĝsc,0UU ← ĝsc,initUU

for i = 0, . . . ,MaxOSEMandSSSIter− 1 do

λi ← OSEM(gUU,µ
init, ĝsc,iUU)

ĝsc,i+1
UU ← PSUU(λi,µinit)

end

λinit ← λMaxOSEMandSSSIter−1

Algorithm 2: Pseudo-code for MLAA-EB-S.
Input: gUU, g′UL, g′LU, λinit , µinit , ĝsc,initUU
Output: Estimated activity and attenuation images vector θest

θ00 ← [λinit,µinit]

ĝsc,0UU ← ĝsc,initUU

for t = 0, . . . ,MaxOuterIter− 1 do

for k = 0, . . . ,MaxInnerIter− 1 do

θtk+1 ← LBFGS-B(gUU, g′UL, g′LU, θtk , ĝsc,tUU )
end

θt+1
0 ← θtMaxInnerIter−1

ĝsc,t+1
UU ← PSUU(θtMaxInnerIter−1)

end
θest ← θMaxOuterIter−1

MaxInnerIter−1

IV. EVALUATION

The performance of MLAA-EB-S was evaluated with digital
phantoms of differing complexity. Simulations were conducted
in 3D.

A. 3D Phantoms

A first investigation was conducted on a cylindrical phantom
with a conical insert (Fig. 1). The conical shape was chosen to
simulate the lung. The image size was 30x30x8 and the voxel
dimensions were equal to 1.2x1.2x3.25 cm3.

The algorithm was also tested in a more realistic scenario. A
3D volume from the XCAT torso phantom [35] was generated,
cropped to a 60x60x8 matrix with voxel size of 0.8x0.8x3.25
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Algorithm 3: Pseudo-code for MLAA-S.
Input: gww , λinit , µinit , ĝsc,initww

Output: Estimated activity and attenuation images vector θest

θ00 ← [λinit,µinit]

ĝsc,0ww ← ĝsc,initww

for t = 0, . . . ,MaxOuterIter− 1 do

for k = 0, . . . ,MaxInnerIter− 1 do

θtk+1 ← LBFGS-B(gww , θtk , ĝsc,tww )
end

θt+1
0 ← θtMaxInnerIter−1

ĝsc,t+1
ww ← PSww(θtMaxInnerIter−1)

end
θest ← θMaxOuterIter−1

MaxInnerIter−1

Fig. 1. Cylindrical Phantoms of increasing diameters: 8 cm (first column),
16 cm (second column), 24 cm (third column), 32 cm (forth column). First
and second rows: attenuation image axial and sagittal view. Third and fourth
rows: activity image, axial and sagittal view. The attenuation is expressed in
cm−1, the activity is in arbitrary units.

cm3. Axial and sagittal views of the phantom are shown in
Fig. 2. Please note that both cylindrical and XCAT phantoms
have the same length in z-direction, covering the length of the
scanner (26 cm) and the activity distribution is expressed in
arbitrary units.

B. Projection Data

Unscattered data were simulated by forward projecting the

Fig. 2. XCAT Phantom. First row: axial view. Second row: sagittal view. From
left to right: MR-AC used as initialisation µinit, true attenuation µtrue, true
activity λtrue, lung mask µmask. The attenuation is expressed in cm−1, the
activity in arbitrary units.

Fig. 3. XCAT Phantom simulated data for MLAA-EB-S. UU data (first
column, and UL data (second column). For display purpose: 2D sinograms
obtained by summing over the rings (first row) and relative profiles (second
row).

ground truth activity image (taking attenuation into account)
into sinograms, using the Siemens mMR geometry and speci-
fications [8], [36]: 252 views and 344 tangential positions. The
number of rings was downsampled to 8 to match the image
voxel size.

The scatter component was computed in low resolution
with 21 views, 31 tangential positions and 8 rings from
the analytical model given in (9). Simulations used in-plane
detector pairs only. The energy resolution was set to 16%.

Experiments were conducted with both one and two energy
windows. For the single window acquisition, we investigated
the case of a standard window, as well as the case of a wide
energy window WW, where gWW = gUU +gUL +gLU +gLL.
Energy thresholds are shown in Table I. Please note that the
energy window Ustd was introduced to have a fair comparison
with the standard energy window used in mMR.

TABLE I
ENERGY WINDOW THRESHOLDS [KEV]

L Ustd U W
350− 460 430− 610 460− 570 350− 570

When simulating data from XCAT, a uniform background
was added in all the energy windows to simulate “random”
coincidences equal to 39% of the total number of counts of
the noise-free prompt data. Poisson noise was added to the
XCAT simulated data. The total count level was chosen based
on a 240-second PET/MR FDG thorax scan acquired in our
institution.

C. Reconstruction Parameters

Both activity and attenuation updates within MLAA-EB-
S use L-BFGS-B (Sec. III-B). In the current results, lung
segmentation was incorporated in the algorithm by only updat-
ing the attenuation values within the inner cylinder/lung mask
during iterations. This constraint is not used for the emission
update, for which we only assumed the absence of activity
outside the phantom (Fig. 2). Reconstruction parameters are
shown in Table II. No further regularisation was added at this
stage, as it was not the object of this study.
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TABLE II
RECONSTRUCTION PARAMETERS

Phantom MaxOSEMandSSSIter MaxInnerIter MaxOuterIter
Cylinder 3 40 , 100 30
XCAT 3 100 15

D. Initial Conditions

An MR-based attenuation map was generated by decreasing
the lung attenuation values by 20% with respect to the ground
truth. In order to avoid dependency on initialisation for the
different algorithms, all the reconstructions were initialised
with the same activity estimate, obtained by iterating between
OSEM (3 subsets, 70 sub-iterations) and SSS [19] (See Table
II).

E. Analysis

1) Cylindrical Phantom: Initially, we assessed the effects
of the size of the phantom and the choice of energy windows
with a two-variable analysis. In this exemplar problem, the
algorithm only estimates two values: the mean activity and
the attenuation in the insert. For each phantom, we computed
the log-likelihood functions for each energy window pair and
the sum of them. Furthermore, the relative condition number κ
was obtained from the aspect ratio of the ellipse fitted to the
contour plot. For this particular study, the energy resolution
was set to 1%, so that it was easier to understand the nature
of the joint problem under near-ideal conditions.

Then, the performance evaluations of MLAA-EB-S and
MLAA-S were assessed for different iteration schemes (Table
II). Analyses were conducted in terms of Mean Percentage Er-
ror (MPE) in the lung of the estimated images over iterations.

2) XCAT Torso Volumes: For the XCAT reconstruction, 100
noise realisations were used to compute the (voxel-wise) MPE
image in both λ and µ with respect to the ground truth im-
ages. The variance and covariance images, denoted VAR(λ),
VAR(µ), COV(λ,µ) were also obtained. A numerical ROI
analysis was also computed on λ̄ and µ̄ (mean estimate over
all the noise realisations). The mean bias (MB) was calculated
as:

MB(λ̄) =
N∑
n=1

λ̄estn −
N∑
n=1

λ̄truen (13)

with N being the number of voxels in the ROI. A similar
definition applies to MB(µ̄). Mean variance and covariance
were also calculated within the same ROI.

V. RESULTS

A. Cylindrical Phantoms

Exemplar two-variable problem: Fig. 4 shows the log-
likelihood contour plots for different energy windows for
cylinders of diameters ranging between 8 and 32 cm. The first
row shows the objective function contour plots for a single�-
energy window UU when the scatter component is considered
as a known (and correct) background. In the second, third
and fourth row instead, the dependency of scatter on the
activity and attenuation was taken into account in the forward

Fig. 4. Log-likelihood plots for cylindrical phantoms. From left to right: the
diameter increases. From top to bottom: the energy window varies. κ indicates
the condition number of each contour plot.

model. The increased curvature and a lower condition number
κ demonstrate that the incorporation of the scatter information
improves the conditioning of the problem, with larger benefit
for lower energy thresholds (third row) and multiple energy
windows (fourth row). With regard to the effect of the size of
the phantom, this analysis showed that the contours rotate and
elongate until becoming almost parallel lines as the diameter
increases, leading to a larger condition numbers.

The change in orientation of the objective function gives an
insight on the expected activity and attenuation cross-talk, i.e.
in the extreme case where a valley is placed along one of the
two axes, higher errors are expected in the image along which
the valley lies. Ideally, a prior knowledge of the expected
cross-talk would be useful for improving on the reconstruction
output; in practice, it is not possible to draw contour plots for
high dimensional problems.

1) Reconstruction Results - Noise free data: We tested
the stability of the solution — under ideal conditions —
on the cylindrical phantoms in a noise-free scenario, when
varying the number of iterations before re-computing the
scatter. Fig. 5 shows the MPE in the volume of interest, the
inner cylinder (lung), for every outer iteration of both MLAA-
S and MLAA-EB-S. We only report curves pertaining to the 8
and 32 cm cylinders, since the intermediate diameters follow a
similar trend. According to the two-variable problem analysis
conducted in the previous section, reconstructing the larger
phantoms is challenging. Nevertheless, MLAA-EB-S manages
to find the correct and stable solution for different iteration
schemes and for all the phantom sizes. By contrast, MLAA-
S was not able to converge to the true solution, with results
depending on the exact iteration scheme.

At the last iteration (N=30), MLAA-EB-S achieved a max-
imum MPE in the attenuation image of 1.259% and 1.44%
in the activity image for the 32 cm diameter. For the same
phantom, MLAA-S showed a maximum MPE of 9.418%
and 12.42% in the estimated attenuation and activity images,
respectively (Fig. 5, purple curve).
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Fig. 5. MPE over outer iterations for the attenuation (left) and activity (right)
estimations. First row: MLAA-S. Second row: MLAA-EB-S.

B. XCAT Reconstruction - Noisy Data

Axial views of the mean error images from all the noise
realisations for MLAA (from a standard energy window),
MLAA-S (from both standard and wide energy windows),
MLAA-EB-S and LBFGS-AC at the last iteration – where
convergence is reached – are shown in Fig. 6. The ROI
mean values in the lung region for relative bias, variance, and
covariance are also reported in Fig. 7.

Results showed that MLAA and LBFGS-AC achieved the
worst and best results, respectively, amongst all the four
reconstruction methods. MLAA-S outperforms MLAA, thanks
to the photopeak scatter re-estimation over iterations, with
better results from wider energy window (WW). MLAA-EB-
S further improves on MLAA-S in terms of stability of the
solution. In particular, MLAA showed a higher bias in both the
estimated attenuation (Fig. 6a) and activity (Fig. 6e) images,
whilst both MLAA-EB-S and MLAA-S converged in mean
to a similar solution (Fig. 6b-d, Fig. 6f-h), all showing a
higher noise level in the lung region compared to the one from
an LBFGS-AC (Fig. 6i). However, MLAA-EB-S achieved a
lower variance with respect to MLAA-S (WW) and MLAA-S
(UUstd) and MLAA for both the attenuation (Fig. 6j-m) and
activity distributions (Fig. 6n-r). Furthermore, MLAA-EB-S
was found to have the lowest covariance (Fig. 6s-v) between
the four algorithms, demonstrating that the joint variability of
the two unknown images is reduced.

Results from Fig. 7 show that MLAA-EB-S converged to a
solution with mean relative bias and standard deviation compa-
rable to the one obtained with an LBFGS-AC reconstruction.

Finally, we compared the error in the photopeak scatter
estimate for MLAA-S (WW), MLAA-S (UUstd) and MLAA-
EB-S (Fig. 8). MLAA-EB-S shows the lowest error in the
photopeak scatter estimate.

VI. DISCUSSION

We have proposed a new method for the joint reconstruc-
tion of PET activity and attenuation, named MLAA-EB-S.
The algorithm takes into account the mutual dependence of
scatter, activity and attenuation. The activity and attenuation

Fig. 6. Error metrics in the XCAT images for different reconstruction algo-
rithms: MLAA (UUstd), first column; MLAA-S (UUstd), second column;
MLAA-S (WW), third column; MLAA-EB-S, fourth column; LBFGS-AC,
fifth column. From the top to the bottom: MPE images [%] (a-d) and variance
(VAR) (j-m) for the attenuation from 100 noise realisations; MPE images
[%] (e-i) and variance (VAR) (n-r) for the activity image. Covariance (COV)
images (s-v).

Fig. 7. Mean bias (MB) and standard deviation (STD), indicated as error
bars, in the estimated attenuation (a) and activity (b); covariance (c). Obtained
with: MLAA (UUstd), MLAA-S (UUstd), MLAA-S (WW), MLAA-EB-S
and LBFGS-AC. All mean values are computed over the lung ROI. λ̃true =
0.3260 and µ̃true = 0.02865

distributions are updated simultaneously, whilst the photopeak
scatter estimate uses a one-step-late approach.

Section V-A investigated the benefits of incorporating the
scatter information into the system model with an exemplar
two-variable-problem study where different energy windows
and phantom sizes were used, and only two variables were esti-
mated. The results indicate that accounting for the dependency
of scatter on both unknown distributions changes the shape
of the objective function compared to the “standard” MLAA
problem (Fig. 4). Re-estimating the scatter could therefore
guide an MLAA-like algorithm towards a more stable solution.
In the case of one-energy-window acquisitions, larger benefits
are present for lower energy thresholds. This is likely due to
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Fig. 8. First column: true scatter. Second column: initial error in the photopeak
scatter estimate. Third column: final error in the photopeak scatter estimate.
First row: MLAA-S (WW). Second row: MLAA-S (UUstd). Third row:
MLAA-EB-S.

the larger amount of single scattered counts. This exemplar
two-variable problem was also used to investigate the effect
of the size of the object. Both the visual representation of
the level sets and the condition number κ (Fig. 4) imply that
reconstructing big objects is more challenging than small ones.
This was also observed in [28], [37] and further discussed
in [29]. The reconstruction algorithms were then tested for
the same cylindrical phantoms. MLAA-EB-S, which relies on
multiple energy window acquisitions, was found to be stable
for different iteration schemes, outperforming the single en-
ergy window optimisation MLAA-S (see Fig. 5). Overall both
MLAA-EB-S and MLAA-S benefit from the re-estimation of
the photopeak scatter, as from the first outer iteration the
output error was further reduced.

Simulations on 3D XCAT volumes with different noise
realisations showed that both MLAA-EB-S and MLAA-S
improved on a standard MLAA reconstruction and converged
on average to a similar solution, but appear noisier than the one
from LBFGS-AC in the lung region (see Fig. 6b-d and 6f-i);
we believe this is because of additional uncertainty brought
by the unknown attenuation values in the lung region. The
ROI analysis in Fig. 7 shows that MLAA-EB-S converges
in mean to the ground truth solution, with a variance only
slightly higher than the one of LBFGS-AC. Reconstructions
from MLAA-S exhibited a higher variance and covariance,
with increasingly worse results for narrow windows (WW,
and UUstd), confirming the previous observations on the level-
set plots (Fig. 4). As the co-variance can be interpreted as a
measure of cross-talk, this result illustrates the ill-conditioning
of non-TOF MLAA (Fig. 6 s). Overall, MLAA-EB-S outper-
formed MLAA-S in terms of stability of the ML solution.

This study has improved on previous publications in several
ways: further understanding of the ill-posed nature of the joint
problem, taking into account the finite energy resolution of
PET detectors, reconstructing 3D volumes with data simulated
for a clinical PET/MR system in the presence of noise and
investigating the cross-talk effects based on noise correlations.

The current study has however several limitations. In the
current evaluation, the same forward model is used for the
simulation of the projection data as for the reconstruction.

While this allowed us to assess the accuracy of the recon-
struction and the stability of the solution in absence of model
mismatch, the effects of errors in the forward model will need
to be investigated.

An additional limitation is the reconstruction of low reso-
lution objects. Possibly, multi-resolution methods [38] could
be explored. However, the possibility of recovering high fre-
quency features will need further investigation. The large voxel
size in the reconstruction leads to a relatively low amount of
noise in the reconstructed images. The performance of the
proposed algorithm at clinical voxel sizes with realistic noise
level will need to be evaluated in future work.

An additional limitation is related to the absence of multiple
scatter events. Potentially, multiple scatter estimation [39],
[40] could be incorporated into our algorithm using the same
strategy as for the single scatter estimation in the photopeak
window (one-step-late approach). However, accurate estima-
tion of multiple scatter is likely to be more difficult and
computationally expensive for the low energy windows. This
could impact the performance of the proposed algorithms. The
fraction of multiple scatters will be larger in LL in the case
of a multiple energy window acquisition. It might therefore
be beneficial to ignore this data, indicating another potential
advantage of MLAA-EB-S compared to using a single wide
energy window WW. However, further studies will be needed
to confirm this hypothesis.

Our current model neglects detector scatter. In practice, the
probability of scatter within the crystal itself will result in
partial energy deposition of photopeak events. Consequently,
these photons can be wrongly assigned to the low energy win-
dows. This effect could be taken into account via modification
of the detection efficiency model.

We expect that the accuracy of the detection efficiency
model will affect the possibility of applying this approach
in the case of realistic data sets. In addition to the necessity
of accounting for detector scatter, normalisation factors also
differ for scattered and unscattered events [41], as scatter
events show a heterogeneity of the angles of incidence and
points of origination. This will inevitably impact the accuracy
of the application of current normalisation techniques to the
case of lower energy windows. These considerations will need
to be addressed to make a practical application of this type of
methodology possible.

The activity and attenuation images used in this study were
in similar intensity scales. The absolute scale of the images
to be reconstructed influences both the line-search and the
convergence rate. Referring to (12), the initial step size can
be crucial and strongly dependent on the image intensity
scale [31], [42], leading to suboptimal step-size at the first
iteration for certain problems. Furthermore, different activity
and attenuation gradient intensity scales would lead to slow
convergence. Since the scale of the activity can vary with
applications, a preconditioner could be introduced [42] into
the reconstruction to address the aforementioned challenges.

The proposed methodology was tested on thorax acquisi-
tions given the fact that, among the different tissue classes
defined in standard MRAC methods, the lungs have the
largest inter-patient attenuation values variability [4]. However,
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assuming the knowledge of attenuation values outside the
lung region represents a further restriction of our method.
Nevertheless, this assumption is fairly common in PET/MR
studies [1], [4].

Potentially, MLAA-EB-S could find additional application
for metal hip implants, dental implants or cardiac pacemak-
ers. Brain applications could also benefit from the proposed
methodology. However, further investigation would be re-
quired to confirm this hypothesis.

MLAA-type algorithms are known to be limited by the
possibility of estimating attenuation values in LORs within
the support of the activity distribution [4]. However, by using
additional information from scatter events it is possible that
both MLAA-S and MLAA-EB-S could recover more of the
attenuation image, as suggested in [25]. Out-of-FOV scattering
could be accounted for by our method as the only constraint
on the scatter locations is given by the boundaries of the
attenuation map. The template image given to the algorithm
could be extended beyond the FOV to place scatter locations
outside the edge of the scanner. Similarly to how the arm
regions were recovered in [27], there could be potential for the
joint reconstruction case. However, this would require further
assessment.

It has been shown that TOF information improves the condi-
tioning of the joint estimation problem, although a remaining
limitation is a global scaling factor in the estimated activity
distribution [15]. Based on the non-TOF results in this paper,
it is likely that incorporating the scatter information would
solve the scaling issues of TOF-MLAA, but this needs to be
confirmed in future studies.

Finally, investigating the benefits of using more than two
windows could also represent an interesting area of future
research.

VII. CONCLUSION

PET activity and attenuation reconstruction is challenging
due to the ill-posed nature of the inverse problem. The
benefits of incorporating low energy window information were
investigated. A new reconstruction algorithm, MLAA-EB-S
was proposed. The method was tested on digital 3D cylindrical
phantoms and XCAT volumes and compared against the
reconstruction from a single energy window (MLAA-S). Both
MLAA-EB-S and MLAA-S re-estimate the photopeak scatter
during the reconstruction. Quantitative results demonstrate that
taking scatter into account reduces cross-talk between the
activity and attenuation images, and that by using multiple
energy windows, MLAA-EB-S outperforms MLAA-S.

This study provides the first evidence that the incorporation
of scatter information is beneficial for joint activity and
attenuation reconstruction in 3D PET, even with finite energy
resolution. It therefore warrants further investigation.
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APPENDIX A
SINGLE SCATTER FORWARD MODEL

An extension of the SSS model proposed in [19] to the
case of a multiple energy window acquisition is proposed in
this paper. Let Swy(θ) ∈ Rn

′
D×nv

+ be the forward operator
computing the expected scatter at each energy window pair
(w, y) for every pair of detectors (i, j) ∈ {1, ..., n′D}:

[Swy(θ)]i,j =

nS∑
s=1

ḡsc
wy,i,j,s(θ) (14)

where:

ḡsc
wy,i,j,s(θ) = εw(E)εy(511)Ii,s,j + εw(511)εy(E)Ij,s,i (15)

and E indicating the photon energy after (single) Compton
scattering (in keV), as a function of the scatter angle ϕ
for a scatter point at voxel s, εw(E) indicating the detector
efficiency at a given energy window w and photon energy E;
it follows a Gaussian distribution and it takes into account the
finite energy resolution of PET detectors [39]. Finally, Ii,s,j
is defined as:

Ii,s,j =

(
σi,sσj,s
R2
i,sR

2
j,s

dσ

dΩ
(ϕ) µs

·Ki,s λ e−Ki,sµe−Kj,sµE

) (16)

where dσ
dΩ (ϕ) is the differential cross-section given by the

Klein-Nishina equation [43], µE and µ indicate respectively
the attenuation value at a given energy E and at 511 keV,
Ri,s is the distance between the scatter point s and detector
i, σi,s denotes the detector cross-section presented to the ray
i, s, and Ki,s indicates the line integral operator along the line
i, s.

The dependency of the attenuation on the energy was ad-
dressed by assuming that the attenuation reconstruction is only
dependent on Compton scatter and is therefore proportional
to the total Compton scatter cross-section σtot at a particular
energy E:

µE =
σtot(E)

σtot(511)
µ = f∗µ (17)

APPENDIX B
SSS JACOBIAN - ANALYTICAL DERIVATION

Here we give an overview of the calculation of the Jacobian
of the forward scatter model Jsc with respect to both the
attenuation and activity images, needed to be able to compute
the gradient of the log-likelihood ∇Ltot

θ (10):

∇θLtot = ∇θLUU +∇θLUL +∇θLLU (18)

with:

∇θLUU =
(
Junsc

UU

)>(
gUU � ḡUU − 1

)
∇θLUL =

(
Jsc

UL

)>(
g′UL � (γSUL(θ))− 1

)
∇θLLU =

(
Jsc

LU

)>(
g′LU � (γSLU(θ))− 1

) (19)
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where � indicates the element-wise division and 1 is a vector
of ones.

In this paper, we use the following definition for the
probability matrix (6):

A(µ) = D(exp(−Lµ))L (20)

with D indicating a diagonal matrix and L computing the line
integral operation.

For each energy window, Junsc = [Junsc
λ ,Junsc

µ ] and:

Junsc
λ = A(µ)

Junsc
µ = −D(A(µ) λ)L

(21)

In the following, we replaced the discretised images λ and
µ by two functions λ : R3 → R and µ : R3 → R for
variational formulation. For simplicity the same notation for
the line integral operator K is used in the continuous case.

Attenuation

Here we compute the (variational) Jacobian Jsc
µ of the

forward scatter model ḡsc with respect to µ (17). With
regard to the scatter Jacobian Jsc = [Jsc

λ ,Jsc
µ ], a simplified

expression can be found in [28], [29]. We derived it in our
own notation, according to our forward model. We report the
relevant calculations for a pair of detectors (i, j), an energy
window pair (v, w), and a scatter point location rS , where r
indicates the Cartesian coordinates (x, y, z).

To compute the Jacobian, we rely on the definition of
variational derivative [44]:

∫
δḡsc
wy,i,j,rS

δµ(r)
φ(r)dr = (22)

lim
ε→0

ḡsc
wy,i,j,rS

[µ+ εφ]− ḡsc
wy,i,j,rS

[µ]

ε

where φ is an arbitrary function. For simplicity of notation, we
omit the dependency of ḡsc

wy,i,j,rS
on (λ, µ). In addition, we

group in a constant Ci,rS ,j all the terms that are independent
of µ:

Ci,rS ,j = εi(E)εj(511)
σiσj
R2
iR

2
j

dσ

dΩ
(ϕ) Ki,rSλ (23)

Therefore, (15) becomes:

ḡsc
wy,ij,rS

=

Ci,rS ,j µ(rS) e−Ki,rS
µ e−f

∗Kj,rS
µ+

Cj,rS ,i µ(rS) e−f
∗Ki,rS

µ e−KjrS
µ

(24)

where f∗ was defined in (17). By taking the limit, the right
hand side of (22):

C̃i,rS ,j

[
φ(rS)− µ(rS)

(
Ki,rS φ+ f∗Kj,rS φ

)]
+ (25)

C̃j,rS ,i

[
φ(rS)− µ(rS)

(
f∗Ki,rS φ+ Kj,rS φ

)]
where:

Fig. 9. Illustration of one row of Jsc
µ , for one given detector pair within the

same ring. UL energy window. Cylindrical phantom (D = 16 cm).

C̃i,rS ,j = Ci,rS ,j

[
e−Ki,rS

µ e−f
∗Kj,rS

µ

]
(26)

To finally obtain
δḡscwy,i,j,rS

δµ from (22), an integral-expression
for (25) is needed. This can be achieved by considering the
integral:

φ(rS) =

∫
φ(r)δrS (r)dr (27)

where δrS is a Dirac function centred in the scatter point rS
and

Ki,rSφ =

∫
Li,rS

φ(r)dr =

∫
φ(r)δLi,rS

(r)dr (28)

where δLi,rS
should be interpreted as a measure of integration

along the line segment Li,rS between detector i and the scatter
point location rS .

Consequently, the first line of (25) can be re-written as:

C̃i,rS ,j

∫
dr

[
φ(r)δrS (r)−µ(rS)

(
φ(r)δLi,rS

(r)+f∗φ(r)δLi,rS
(r)

)]
It follows that:

δḡsc
wy,i,j,rS

δµ(r)
= (29)

C̃i,rS ,j

[
δrS (r)− µ(rS)

(
δLi,rS

(r) + f∗δLj,rS
(r)

)]
+ C̃j,rS ,i

[
δrS (r)− µ(rS)

(
f∗δLi,rS

(r) + δLj,rS
(r)

)]
Finally, the Jacobian Jsc

µ is obtained by summing the
contribution of all the scatter points rS :

[J sc
µ ]i,j =

∑
rS

δḡsc
wy,i,j,rS

δµ(r)
(30)

Fig. 9d provides an illustration for (29). Whilst the non-
scatter Jacobian (21) corresponds to the well known set of
lines of response, the scatter Jacobian (30) can be interpreted
as the set of ’broken-paths’ between each detector pair and
the scatter point locations allowed for a given energy window.
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Activity

The Jacobian Jsc
λ with respect to the activity can be obtained

using a similar derivation to the one of the attenuation. We
group all terms of (15) which are independent of λ:

Fi,rS ,j =
σi,rSσj,rS
R2
i,rS

R2
j,rS

dσ

dΩ
(ϕ)µ(rS)e−Ki,rS

µ e−f
∗Kj,rS

µ (31)

This results in:

δḡsc
wy,i,j,rS

δλ(r)
= Fi,rS ,jδLi,rS

(r) + Fj,rS ,iδLj,rS
(r) (32)

APPENDIX C
DISCRETISATION AND IMPLEMENTATION IN STIR

In order to be suitable for numerical computing, the varia-
tional derivatives shown in Appendix B need to be transformed
to (ordinary) derivatives w.r.t. the discretised images µ and λ.

Discrete formulation of SSS and SSS-jacobian

The STIR SSS implementation approximates the line inte-
grals in the forward model by line ray-tracing between the
centre of the detector and the scatter point. The ray-sums are
obtained by computing the length of intersection Vi,s,n of a
line from a scatter point in voxel s to detector i with the voxel
n:

Ki,rsh ≈
N∑
n=1

Vi,s,nhn (33)

where hn is the value at voxel n of the discretised image
h. Please note that h can either be µ or λ. The attenuation
and the activity image discretisation schemes are described
in [45]. The set of scatter points is placed uniformly through
the volume determined by the attenuation image. Each scatter
point is placed at the centre of one voxel of the image. The
object’s attenuation coefficient at each scatter point is checked
and compared to a specified threshold; the scatter point is
rejected if its attenuation value falls below the threshold to
avoid wasting computational time on points that contribute
very little to the total scatter estimate. For this study, the
attenuation threshold was set to 0.01 cm−1. The computational
burden scales inversely as the product of the three mesh
dimensions, whilst the accuracy of the scatter calculation is
not highly sensitive to the grid size [19]. A mesh size of
approximately 2-3 cm was found to be a good compromise
between accuracy and speed of most studies [19]. The sum
over all scatter points m gives the total contribution at each
detector pair. After discretisation, (29) becomes:

∂ḡsc
wy,i,j,s

∂µn
= (34)

C̃i,s,j

[
δm,n − µn

(
Vi,s,n + f∗ Vj,s,n

)]
+ C̃j,s,i

[
δm,n − µn

(
f∗ Vi,s,n + Vj,s,n

)]

where δm,n is the Kronecker delta. Similarly, (32) can be
discretised as:

∂ḡsc
wy,i,j,s

∂λn
= Fi,s,jVi,s,n + Fj,s,iVj,s,n (35)

STIR implementation strategy for the SSS-Jacobian

The implementation of the Jacobian matrix into the STIR
libraries follows the following strategy : (i) select a scatter
point s from the set of sample scatter points and a pair of
detectors (i, j); (ii) compute the scatter angle ϕ; (iii) compute
the corresponding scattered energy E(ϕ) and all the terms
related to it (differential cross-section, detection probabilities,
etc.); (iv) compute the discretised Jacobian.

The Jacobian matrix is re-computed at each iteration. The
current implementation uses caching and other techniques in
order to significantly reduce the computational burden both in
the likelihood and the gradient calculation.

Numerical Validation

The implementation of Jµ was tested by comparing it
against a finite-difference approximation of the gradient, by
using a small ε perturbation at each voxel n in the µ image.
The accuracy of the implementation was evaluated in terms of
absolute error between the gradient and the finite differences,
normalised with respect to the maximum absolute value of the
gradient. For ε = 0.0005, the order of magnitude of the mean
and maximum relative error were found to be 10−4 and 10−3,
respectively.
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