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Abstract 

 

Vibration damping in offshore wind turbines (OWTs) is a key parameter to predict 

reliably the dynamic response and fatigue life of these systems. However, a 

comprehensive review of damping in OWTs identified the difficulties in quantifying 

the individual contributions from different damping sources that lead to considerable 

variation in the recommended values. 

First-principle models were developed to quantify the damping contributions from 

aerodynamics, hydrodynamics, and soil-structure interaction. Results from these 

models were systemically compared to published values and where appropriate with 

simulation results from the software package FAST. The range of values obtained for 

aerodynamic damping confirmed those available in the literature. The modelling of 

hydrodynamic damping showed that this damping is much smaller than usually 

recommended for large-size OWTs. Soil damping strongly depends on the soil specific 

nonlinear behaviour. 

Then the study focused on the aerodynamic damping in operating wind turbines. It is 

evident that even for the simplest free vibration test, conventional damping ratios 

assigned separately in the fore-aft (FA) and side-side (SS) directions cannot correctly 

characterise the vibration of wind turbines. A new aerodynamic damping model was 

developed to account for this coupling. This model is based on blade element 

momentum (BEM) theory and a linearisation of the aerodynamic forces, resulting in an 

aerodynamic damping matrix providing a new description of aerodynamic damping. 

The derivation of the aerodynamic damping matrix initially assumes that the inflow 

wind field is constant and uniformly distributed in the rotor plane. Then a turbulent and 

non-uniform wind field was considered. The aerodynamic damping model was 

successfully verified against FAST. 

In practice, the identification of damping from measured data is required. A novel 

approach based on the measurement of frequency response functions was developed to 

identify the aforementioned aerodynamic damping matrix. Numerical simulations 

confirmed the potential of this identification approach. 
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Impact Statement 

 

Europe has witnessed the fast development of offshore wind over the past two decades 

and offshore wind is believed to meet more than 5.2% of the electricity demand in the 

near future [1]. However, OWTs suffer from severe fatigue damage caused by ambient 

excitations. It is very important to assign damping values in the preliminary design stage 

of OWTs as the fatigue life prediction and any other vibration-based analysis depend 

on the damping level. The comprehensive review on the vibration damping provided in 

this study can be used as a guide for engineers to determine the range of damping values 

for monopile-supported OWTs. The developed physics-based models can be used to 

estimate the contribution from aerodynamic, hydrodynamic, and soil damping quickly 

and separately. 

Aerodynamic damping has the largest damping contribution for operating wind turbines 

and this study investigated it in detail. A new aerodynamic damping model was 

developed, which considers the coupling between the FA and SS motions neglected in 

conventional models based on damping ratios. In cases when the definition of 

aerodynamic damping is required, the aerodynamic damping matrix proposed in this 

work can be used to capture the tower-rotor interaction and allows faster computation 

compared to a fully-coupled model, e.g. for mechanical finite element (FE) models of 

wind turbine substructures including soil-structure interaction aiming at detailed fatigue 

analysis.  

Furthermore, the developed aerodynamic damping model gives new insights into the 

mechanism of aerodynamic damping in operating wind turbines. The aerodynamic 

damping matrix can be used as the target of aerodynamic damping identification. The 

identification procedure based on frequency response functions developed in this study 

provides a feasible way to obtain the aerodynamic damping matrix from measured data 

in practice. The damping identification based on aerodynamic damping matrix has the 

potential of replacing the current mainstream damping identification procedures based 

on damping ratios. 

To disseminate the novel contributions from this work to the research community, 

several papers have been published or are in the process of publication: 
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Chen C, Duffour P. Modelling damping sources in monopile‐supported offshore wind 

turbines. Wind Energy 2018; 21: 1121-1140. 
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Chapter 1 - Introduction 

 

1.1 Overview 

The increasing global energy consumption and the risks associated with the use of 

traditional energy resources like oil, coal, and natural gas generate a strong incentive to 

utilise renewable energy. Therefore, the development of renewable energy has received 

widespread attention. Wind energy technology has developed significantly over the last 

few decades due to its cost-effectiveness and relative ease of deployment. In the 

European Union (EU), the cumulative capacity of wind energy has been continuously 

increasing in recent years with the fastest growth rate compared to other energy sources, 

as shown in Figure 1-1. Wind energy currently provides 18.8% of the total installed 

power generation capacity [2], and the best case scenario expects that this energy source 

can account for 31% of the total power generation capacity by 2030 in the EU [1]. 

 

Figure 1-1. Total energy generation capacity in the EU from 2008 to 2018 [2]. 

 

Considering that onshore turbines are restricted by geographical and political 

constraints, offshore wind farms (OWFs) have recently attracted much more emphasis 

in many countries. In Europe, around 10% of the power generation capacity by wind 

energy is offshore [2]. In the UK and Belgium, offshore wind accounted for more than 

50% of the new wind energy installations in 2018. As wind is stronger and steadier 

offshore, it is anticipated that this is where future developments in wind energy 

generation will mostly occur. In the best case scenario [1], offshore wind will provide 

25% of the total power generation capacity of wind energy in the EU. Except for some 
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prototypes such as the floating wind farm, Hywind Scotland Pilot Park Offshore Wind 

Farm [3], OWFs mostly consist of wind turbines supported by substructures fixed to 

the seabed. Several different substructure types exist for OWTs including gravity 

foundations, monopiles, jackets, and tripods. Nevertheless, OWTs supported by 

monopiles account for more than 80% of the total installed OWTs in Europe [4]. 

However, the design and maintenance of site-specific OWF with monopile-supported 

OWTs is still a challenge in spite of valuable past experience and research. The 

complexities and difficulties in developing more advanced OWTs can be attributed to 

the following reasons. The offshore environment is extremely harsh and uncertain due 

to wind, wave, current, and soil conditions. The wind turbine system itself is fairly 

complex because it integrates blades which interact with the wind, an articulated nacelle 

which converts mechanical energy into electricity, a control system which adjusts the 

various components to guarantee a rated output and safety, and a support structure 

including tower and foundation which protects the whole turbine system against 

catastrophic failure. The design method for OWTs must consider the relationship 

between all these components. Therefore, offshore wind farm assets are riskier and 

more difficult to manage than onshore wind assets.  

Most OWTs are currently designed with a slender substructure because using a wider 

(and therefore stiffer) scheme would require much larger foundations at sea, which 

would probably be uneconomical. Slender structures are flexible, and this flexibility 

makes OWTs sensitive to vibration caused by environmental excitations, which greatly 

increases the possibility of resonance. For instance, previous research has shown that 

an OWT with low natural frequency can easily be made to resonate due to waves [5]. 

Resonance amplifies the wind turbine dynamic response, which causes larger fatigue 

damage and thus can reduce the life span of the turbine [6]. Moreover, during the 

turbine’s lifetime, the impact of variations from the environment, such as scour and 

change in soil conditions, is not well researched. This reduces the reliability of turbines 

and makes their management and maintenance more difficult. As the technology 

matures, OWTs also tend to become larger and installed further away from the coast, 

as shown in Figure 1-2. Larger wind turbines are more flexible and susceptible to more 

severe vibration, so more effort is required to investigate their dynamic behaviour. 

http://www.4coffshore.com/windfarms/hywind-scotland-pilot-park-united-kingdom-uk76.html
http://www.4coffshore.com/windfarms/hywind-scotland-pilot-park-united-kingdom-uk76.html
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Figure 1-2. Wind turbine size evolution over time [7]. 

 

The dynamic behaviour of OWTs is considered critical for their design as they are 

flexible and thus prone to resonate with environmental excitations. However, the 

characterisation of dynamic properties of OWT is currently quite limited. For example, 

the natural frequencies change over the lifetime of OWTs due to environmental 

variations such as scour at the seabed and tide levels, but the current models hardly 

consider these long-term effects and therefore doubts remain on the accuracy of their 

dynamic behaviour predictions [8]. Damping is particularly important for OWTs as it 

is the only mechanism reducing their vibration amplitude. However, the quantification 

of damping is difficult because damping in OWTs is strongly dependent on the 

environmental and operational conditions (e.g. wind and wave conditions, 

parked/operating wind turbines) [9]. Also, it is necessary to consider all the probable 

load combinations of wind, wave, accidental loads, and even seismic loads to cover the 

loading experienced in a turbine lifetime. The above considerations render the accurate 

modelling of turbine systems extremely difficult. Thus, accurate wind turbine models 

and data from real site conditions are required to consider appropriately the dynamic 

behaviour over the turbine lifetime and estimate reliably the remaining useful life of 

existing wind turbine [10]. The importance and complexity of damping in OWTs 

motivates this study. This study provides insights into the mechanism of damping in 

OWTs and a new type of simplified wind turbine model was developed to study the 

aerodynamic damping of wind turbines. This is particularly beneficial for fatigue and 

reliability analyses which require a large number of simulations. 
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1.2 Research objectives 

The objective of this research was to investigate and characterise more accurately 

vibration damping in monopile-supported horizontal axis offshore wind turbines. This 

research started with developing first-principle damping models able to estimate 

aerodynamic, hydrodynamic and soil damping efficiently. The focus then moved onto 

developing a new aerodynamic damping model considering the coupling of the FA and 

SS tower motions. Finally, an identification procedure was proposed based on the new 

aerodynamic damping model. 

1.3 Thesis structure 

Chapter 2 starts with a general review of the literature on the dynamics of OWTs, 

covering basics of aerodynamics, hydrodynamics and soil-structure interaction. This is 

followed by a comprehensive review of theory, numerical simulations, and 

experimental measurements of damping in offshore wind turbines. In Chapter 3, first-

principle physics-based damping models for aerodynamic, hydrodynamic and soil 

damping are developed, and the damping estimations using these models compared 

with results from numerical simulations and results reported in literature. Chapter 4 

introduces the theoretical derivations leading to an aerodynamic damping matrix which 

is the core of a new aerodynamic damping model considering the coupling between the 

FA and SS tower motions. Further verifications and discussions for this new 

aerodynamic damping model follow. Chapter 5 is an extension of Chapter 4, in which 

the aerodynamic damping model is modified so that a non-uniform turbulent inflow 

wind field can be considered. Chapter 6 proposes a novel aerodynamic damping 

identification procedure which can be used to predict the parameters in the new 

aerodynamic damping model. Numerical simulations are used to test the feasibility of 

the proposed damping identification procedure. Chapter 7 concludes this thesis and 

recommends possible future works. 
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Chapter 2 - Literature Review 

 

2.1 Introduction 

This chapter gives a comprehensive review in terms of tower damping for monopile-

supported OWTs. Section 2.2 reviews the fundamentals of the dynamics of OWTs, 

followed by a brief introduction to the offshore wind turbine simulation tool FAST 

(Fatigue, Aerodynamics, Structures, and Turbulence) in Section 2.3. In Section 2.4, 

previous theoretical and numerical studies of different damping sources in OWTs are 

reviewed in detail. Section 2.5 focuses on the experimental studies aimed at identifying 

the damping in both parked and operating wind turbines. Section 2.6 summarises the 

chapter and concludes on the research questions to be answered in this thesis. 

2.2 Dynamics of offshore wind turbine  

2.2.1 Basics 

A typical monopile supported OWT is comprised of a rotor-nacelle assembly (RNA), a 

variable-section steel tower, a grouted transition piece transferring the loads from the 

tower to the foundation, and a monopile substructure partly embedded in the seabed, as 

shown in Figure 2-1. Currently three-bladed rotors are most popular due to their 

efficiency in converting wind energy and stability compared to two-bladed rotors. The 

three blades are connected to a hub and a shaft connected to the hub drives the power 

generator inside the nacelle. Zaaijer [11] gave the definition of the support structure, 

namely the whole structure below the yaw system, including the tower, the transition 

piece, and the foundation. This is also the definition adopted in this thesis, but some 

researchers exclude the monopile from the support structure. 

From the perspective of dynamics, the overall behaviour of the OWT is well described 

by considering it as a flexible slender cantilever structure coupled with a rotational 

machine on top subjected to different loads mainly from wind and waves. The 

slenderness of the tower and of the blades and the large unsteady loads cause the OWT 

to vibrate continuously and sometimes severely. The support structure itself is a simple 

structure similar to a cantilever beam with the dynamic response mainly occurring in 

the FA and SS directions. The FA direction is the main wind direction perpendicular to 
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the rotor plane for operating wind turbines, while the SS direction is the other lateral 

direction perpendicular to the FA direction. 

 

Figure 2-1. Schematic of a monopile-based OWT. 

 

The complexities of its dynamics arise mainly from the stochastic nature of the loads 

and the rotation of blades [12]. First, the uncertainties from loads complicate the 

dynamic analysis, and the computational simulations of the loads rely on statistical 

simplifications which only partially capture the uncertainties. Second, the rotational 

machinery results in coupled effects with the support structure such as aerodynamic 

damping and causes harmonic forces transferred from rotor to tower. Third, the 

components are controlled by electric systems in modern turbines to optimise the wind 

energy harvested and reduce loads applied to blades and tower in extreme weather. For 

instance, the yaw angle and pitch angle can be regulated according to operational and 

weather states, which is very important in a dynamic analysis. Fourth, the geotechnical 

state of soil under the mudline, the sea state and wind characteristics vary significantly 

over time and from location to location. The types of soil surrounding the foundations 

of OWTs, tides, potential earthquakes, ice, currents, and marine growth also have 

impacts on the dynamic behaviour of OWTs. 
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As fundamental dynamic properties, natural frequencies are extremely important for 

slender structures like OWTs. The fundamental natural frequency of OWT towers is 

relatively low due to their flexibility, with the frequency of the first bending mode 

usually around 0.3 Hz for currently designed monopile-based OWTs [13]. These low 

frequencies are close to environmental excitations, increasing the occurrences of 

resonance. The bulk of the spectral power of the waves is usually between 0.04 Hz and 

0.1 Hz, but significant spectral density is also present at higher frequencies ([5][14][15]). 

The frequency of gusty wind is typically 0.02 Hz according to [14]. Therefore, when 

the first natural frequency of OWTs decreases due to mechanisms like scour around the 

monopile at the mudline or the degradation of the soil due to long-term cyclic loading 

originated from pile-soil interaction, the danger of resonance with environmental 

excitations increases further, especially for wave loads.  

Another key issue is the rotational excitation of the tower from the rotor. The rotation 

of the blades leads to two important frequencies to be considered, namely the 

fundamental rotational frequency 1P, and the blade passing frequency 3P if the rotor 

has three blades. The variable-speed turbines have the rotor operating at different 

speeds to maximise power output, which consequently widens the 1P and 3P frequency 

ranges. The design strategy is to keep the first natural frequency away from the 1P and 

3P range to avoid resonance. Therefore, the design strategies can be divided into three 

categories: soft-soft, soft-stiff and stiff-stiff, as illustrated in Figure 2-2. 

 

Figure 2-2. Variable design schemes [5]. 

 

OWTs are more cost-sensitive than traditional energy offshore structures like oil 

platforms. A stiff-stiff design would require larger member sizes or more members to 
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increase the stiffness of the support structure, which would be deemed an uneconomical 

design for OWTs. By contrast, if OWTs are designed according to a soft-soft design, 

their stability and strength are more difficult to guarantee because they are more 

susceptible to resonance with waves and are less able to resist large loads from extreme 

weather. As a result, the current preferred design is the soft-stiff option between the 1P 

range and the 3P range [15].  

Figure 2-3 shows the potential resonance region and safety region for a soft-stiff OWT. 

From it, it appears that during the start-up period, resonance may occur as the 3P 

frequency passes through the value of the first natural frequency. During the operational 

regime marked by grey area there is no significant resonance happening [15]. However, 

the determination of the natural frequencies is difficult due to the complexity of the 

turbine system and the natural frequencies of system change over the lifetime due to 

various effects. Firstly, the tower-rotor interaction has been proven to have an impact 

on the natural frequencies of the whole system. Secondly, the sea water dynamically 

interacting with the substructure forms a so-called hydrodynamic mass, which also has 

an impact on the natural frequencies. Thirdly, the soil around the foundation adds 

flexibility to the turbine, and variations in soil conditions caused by mechanisms such 

as degradation or stiffening under dynamic loads and scour have a significant impact 

on the natural frequencies [16]. The sensitivity of these factors has been studied 

([16][17]). 

 

Figure 2-3. Sparse Campbell diagram for a soft–stiff design [15]. 
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The simplest way to model an OWT is to consider the monopile and tower as a 

cantilever beam and lump the mass of rotor and nacelle assembly at the top, as shown 

diagrammatically in Figure 2-4. This assumes that the connection between the monopile 

and the ground is rigid. For this simple model, Tempel and Molenaar [18] proposed the 

following formula to calculate approximately the first natural frequency: 

where 𝑀 is the lumped RNA mass, 𝐸𝐼 is the tower bending stiffness, 𝐿 is the effective 

length of the tower-pile combination above soil, 𝜇  is mass per metre of tower. A 

significant deficiency of this approach is to ignore tapering of the tower and the finite 

stiffness of soil which is particularly unrealistic for monopile foundations and will lead 

to a significant overestimation of the natural frequencies. To capture more detailed 

dynamic features of the wind turbine system, the interactions between the wind turbine 

structure and the ambient loading must be considered. These interactions are mainly the 

rotor-wind interactions described by the rotor aerodynamics, the wave/current-structure 

interaction described by the hydrodynamics, and the soil-structure interaction. These 

three interactions are briefly reviewed in the following three subsections. 

 

Figure 2-4. Simplified model with a fixed end. 

 

2.2.2 Aerodynamics 

Wind profile 

The first step to analyse the interaction between wind and rotor is to know the wind 

speed distribution over the rotor plane. In a real offshore environment, wind speed and 

direction fluctuate in time and space [19]. It is usual to treat separately low-frequency 

winds and high-frequency wind components using different statistics and theories. The 

well-known Weibull function describes the low-frequency or long-term wind (e.g. the 

 

𝑓1 = √
3.04𝐸𝐼

4𝜋2(𝑀 + 0.0227𝜇𝐿)𝐿3
. (2-1) 
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mean wind speed with an averaging period of 10 minutes to 1 hour) based on 

measurements as shown in Figure 2-5. A two-parameter Weibull distribution can be 

generated by the following equation [20]: 

where 𝑠 is a scale parameter and 𝑘 is a shape parameter. Using the Weibull function, 

the distribution of the average wind speed in the long term can be probabilistically 

determined. 

 

Figure 2-5. Weibull chart [19]. 

 

On the other hand, the variation of wind speed in the short term (usually 10 minutes to 

1 hour) is found related to the intensity of turbulence and the height. Theoretically, the 

variation of wind speed with regard to height is influenced by the shear stress within 

the atmospheric boundary layer. Prandtl’s logarithmic law is widely used to describe 

this variation, in which the average wind speed at height of 𝑧 is given by: 

where 𝑈̅(𝑧𝑅𝑒𝑓) is the wind speed at the reference height 𝑧𝑅𝑒𝑓 and 𝑧0 is the roughness 

length determined by the surface condition. 

 

 
𝐹(𝑥) = 1 − 𝑒−(

𝑥
𝑠
)
𝑘

, (2-2) 

 
𝑈̅(𝑧) = 𝑈̅(𝑧𝑅𝑒𝑓)

ln(𝑧/𝑧0)

ln (𝑧𝑅𝑒𝑓/𝑧0)
, (2-3) 
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In most design codes for offshore wind turbines, an empirical method, the power law 

of wind speed profile is also widely used for simplicity. This law is written as 

where 𝛼 is an exponent obtained by measurements (a value of 0.11 is recommended in 

the Germanischer Lloyd (GL) guideline [21]). The fluctuation of the wind speed in the 

short term can be generally described with the mean speed and turbulence. The 

turbulence intensity is defined as 𝐼𝑡 = 𝜎/𝑈̅, in which 𝜎 is the standard deviation of the 

wind velocity time series. The turbulence intensity varies for different sites, and a 

recommended value of 12% is given in the GL guideline for offshore environment. In 

wind turbulence modelling, spectral methods are often used. For example, the Kaimal 

spectrum recommended by Det Norske Veritas (DNV) [22] is widely adopted. The 

Kaimal spectrum [18] is defined by 

where 𝜎𝑣 is the standard deviation of the wind velocity, 𝐿𝑣 is the integral length scale 

(model dependent), 𝑈𝑤 is the mean wind speed and 𝑓 is the frequency. An inverse fast 

Fourier’s transform (FFT) process can be used to generate the time series of the wind 

speed from this spectrum. Another widely used spectrum for turbulent wind was 

developed by von Karman [23]. 

Blade element momentum theory 

Given the inflow field, the aerodynamic loading on the blades must be calculated before 

applying this loading to the rotor structural model. Several different methods are 

available to calculate the aerodynamic loading on a wind turbine rotor. The most 

common method is BEM theory. BEM introduced by Glauert [24] is an efficient 

approach and has been successfully used for years in industry for helicopters and wind 

turbines due to its satisfactory results and fast computation. BEM is a combination of 

one-dimensional momentum theory and blade element theory. The momentum theory 

assumes a drop in wind pressure when the wind passes the rotor plane, and the drop in 

pressure is caused by the thrust subjected to the rotor. The blade is divided into several 

elements and the relationship between the induced velocities, the inflow wind velocity 

 
𝑈̅(𝑧) = 𝑈̅(𝑧𝑅𝑒𝑓)(

𝑧

𝑧𝑅𝑒𝑓
)

𝛼

 (2-4) 

 

𝑆(𝑓) =

4𝜎𝑣
2𝐿𝑣
𝑈𝑤

(1 +
6𝑓𝐿𝑣
𝑈𝑤

)
5/3
, (2-5) 
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and the rotational speed is established for every blade element. The basics of BEM 

theory is to find the attack angle of each blade element provided that the induced 

velocities are known and then applying the drag and lift coefficients from experimental 

measurements to calculate the forces on the blade element. 

Generally, an iteration process is employed to find the attack angle and induction factors 

before obtaining the aerodynamic forces. The following steps outline a standard BEM 

iteration to calculate the aerodynamic forces applied to a blade element. However, 

further in depth explanations are not provided as the theoretical background can be 

found in many textbooks on wind turbine aerodynamics [25]. Figure 2-6 shows the 

relationship between the inflow wind velocity 𝑉0, the rotation speed 𝑉𝑟 = 𝜔𝑟 and the 

relative wind speed 𝑉𝑟𝑒𝑙 seen by the blade element located at the radius 𝑟, where 𝜔 is 

the rotation speed of the rotor. A first guess of the axial and tangential induction factors 

𝑎 and 𝑎′ leads to the relationship between the axial induced velocity (1 − 𝑎)𝑉0 and the 

tangential induced velocity (1 + 𝑎′)𝜔𝑟: 

where 𝜙 is the angle between the plane of rotation and the relative velocity and is the 

sum of the local attack angle 𝛼  and the local pitch angle 𝜃 . 𝜃  can be obtained by 

summing the pitch angle and the initial twist angle of this blade element. Once 𝜙 is 

obtained, the attack angle 𝛼 can be determined as 𝛼 = 𝜙 − 𝜃.  

 

Figure 2-6. Relationship of velocities at the rotor plane [26]. 

 

Then the lift coefficient 𝐶𝑙  and the drag coefficient 𝐶𝑑  can be found given 𝛼 as the 

relationship between these two coefficients and the attack angle is one of the basic 

properties of an airfoil. Equalising the expressions for the elemental thrust and moment 

leads to the relationship between the two induction factors and 𝜙: 

 
tan𝜙 =

(1 − 𝑎)𝑉0
(1 + 𝑎′)𝜔𝑟

. (2-6) 
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and  

where 𝐶𝑛 = 𝐶𝑙cos𝜙 + 𝐶𝑑sin𝜙, 𝐶𝑡 = 𝐶𝑙𝑠𝑖𝑛𝜙 − 𝐶𝑑𝑐𝑜𝑠𝜙 and 𝜎 = (𝑐𝑁𝐵)/(2𝜋𝑟), called 

solidity. 𝑐 is the chord length and 𝑁𝐵 is the number of blades. The difference between 

the initial guess of the induction factors and the induction factors calculated by 

Equations (2-7) and (2-8) can be minimised by a number of iterations. If this difference 

is smaller than a predefined tolerance, then the corresponding induction factors can be 

used to calculate the elemental thrust and moment by: 

and 

where 𝜌  is the air density. Besides the basic BEM theory, corrections have been 

developed by Glauert and Prandtl [25] to improve the calculation accuracy. These 

corrections account for geometric features (e.g. hub-loss correction). The skew wake 

correction, which accounts for the change in wake angle caused by non-perpendicular 

inflow wind velocity, is important to obtain accurate aerodynamic forces acting on the 

rotor. The widely used approach for the skew wake correction has been developed by 

several researchers such as Glauert [27] and Pitts and Peters [28]. The review by 

Micallef and Sant [29] gives further details on this topic. The classic BEM theory 

assumes a quasi-steady inflow and wake. Further improvements can be realised by 

including the dynamic wake/flow model which considers the time delay in the 

equilibrium between the wake and the aerodynamic loads and the dynamic stall model. 

BEM theory has some limitations. First, it is highly dependent on the airfoil data, 

especially for the values of the lift and drag coefficients. As stated by Hansen et al. [26], 

the BEM model including all engineering corrections is often successful in predicting 

the aerodynamic loading, but it still requires reliable airfoil data. The airfoil data is 

derived from experimental measurements and sometimes it is difficult to obtain reliable 

 
𝑎 =

1

4𝑠𝑖𝑛2𝜙
𝜎𝐶𝑛

+ 1
, 

(2-7) 

 
𝑎′ =

1

4𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙
𝜎𝐶𝑡

− 1
. 

(2-8) 

 
𝑑𝑇 =

1

2
𝜌
𝑉0
2(1 − 𝑎)2

𝑠𝑖𝑛2𝜙
𝑐𝐶𝑛𝑑𝑟, (2-9) 

 
𝑑𝑀 =

1

2
𝜌
𝑉0(1 − 𝑎)𝜔𝑟(1 + 𝑎

′)

𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙
𝑐𝐶𝑡𝑟𝑑𝑟, (2-10) 



 

28 

airfoil data due to experimental limitations. Second, even with the dynamic 

inflow/wake correction included, BEM is not suitable for highly loaded rotors because 

it assumes that the mean induced velocity is relatively smaller than the mean inflow 

velocity [30]. Third, the blade element theory assumes the aerodynamic forces at one 

element are two-dimensional, so the spanwise flow is neglected. 

More complex models of rotor aerodynamics have been developed to describe a more 

detailed 3D flow field that develops around a wind turbine, such as the vortex wake 

model which is a combination of blade aerodynamics and wake analysis. The vortex 

wake model assumes the flow is inviscid and incompressible, in which the flow around 

the rotor, and the trailed and shed vorticity released to the wake are described by a 

lifting line theory, lifting surface theory, or panel method [26]. Compared to BEM, the 

vortex wake models provide more physics of rotor aerodynamics using boundary layer 

corrections. Computational fluid dynamics (CFD) models based on Navier-Stokes (NS) 

equations are able to provide more consistent and physically realistic flow fields around 

a wind turbine than the BEM and vortex models [31]. Currently, CFD models mainly 

include generalized actuator disc models which combine the classic actuator disc model 

and NS equations, and the direct method which directly models the rotor by 

constructing a body-fitted grid. However, the computational cost of CFD models is 

extremely high and thus they are not practical methods in the design process yet. 

Tower-rotor coupling 

It is common to use a coupled model containing the rotor model and tower model to 

evaluate the air-structure interaction. For the rotor model, the widely used approach to 

simulate the vibration of the blades is to use the BEM model to calculate the 

aerodynamic forces experienced by the blades and then use classic beam theory to 

determine the internal forces in the blades. This is the basis of the rotor design. On the 

other hand, the rotor model is coupled with the tower model to simulate the overall 

vibration of OWTs. In addition, the motion of the nacelle and other mechanical 

components such as shaft and generator are usually modelled as rigid bodies whose 

motions are coupled with the rotor and tower. 

The complexities of the aerodynamic forces experienced by the rotor comes from 

different sources. For example, as a result of the large size of the rotor and the wind 

turbulence, the wind speeds seen by different blades of the rotor can differ and cause a 
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resultant unbalanced aerodynamic force in the side-side direction, which contributes to 

the 1P loading. In addition, the tilt or yaw of the rotor, and the inertia and weight of the 

blades can result in unbalanced forces. The introduction of the unbalanced forces acting 

on a rotor can be found in [32]. Due to the coupling effect between the tower motion 

and the aerodynamic forces on the rotor, the aerodynamic forces differ significantly 

from the forces experienced by a static rotor. This coupling effect could cause nonlinear 

aerodynamic damping and more complicated unbalanced aerodynamic forces. 

Furthermore, the operational state of the turbine and the tower itself can have an impact 

on the aerodynamic forces. For example, a parked turbine suffers from higher vibration 

amplitude compared to an operational turbine, since the wave excitation cannot be 

mitigated by the aerodynamic damping and in this case the aerodynamic damping can 

be lower due to the change of pitch angle. The effect of wake for an OWT cluster is 

another important aspect, which affects the power output and actual loads applied to 

turbines which are spaced in distance. A brief introduction of the tower-rotor interaction 

can be found in [19]. 

Simplified models have been developed to model the tower-rotor interaction. In some 

studies (e.g. [33][34][35]) the RNA is lumped at the top of the flexible tower and the 

aerodynamic interaction is modelled by applying the rotor thrust at the tower top as a 

point load and using a dashpot or an equivalent Rayleigh damping to represent the 

aerodynamic damping. Such decoupled models make it easier to include more detailed 

soil-structure interaction features (e.g. [33][35]) than many integrated simulation tools 

such as FAST currently allow. Muskulus [36] and Schafhirt and Muskulus [37] used a 

decoupling strategy based on a simplified rotor load model. A simple expression for the 

thrust was derived based on actuator disc theory in terms of pitch angle and rotor speed 

by fitting a thrust coefficient to fully coupled simulation results. However, the damping 

force in these models relied on damping coefficients obtained by fitting the response to 

that of an integrated simulation. 

2.2.3 Hydrodynamics 

Wave theories and spectra 

Wave and current loads are important excitations for OWTs. Usually, the waves 

exciting OWTs mostly are wind waves. However, the waves can be caused by other 

mechanisms such as earthquakes and tides. Here only wind waves are discussed. When 
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modelling waves, regular or irregular waves can be used depending on the compromise 

between accuracy and computational effort. Wave theories have been developed and 

are well described by many textbooks such as the one by Sarpkaya [38].  

A regular wave can be simply defined by the wave height, wave length and water depth. 

It is suitable when the wave height is much smaller than the wave length and the water 

depth. An irregular wave can be generated by established wave spectra using inverse 

FFT similar to the wind spectra. The most widely used spectra are Pierson-Moskowitz 

Spectrum and JONSWAP Spectrum [39]. 

Wave-structure interaction 

 

Figure 2-7. Hydrodynamic regime schematic [40]. 

 

Unlike onshore turbines, OWTs are exposed to waves and currents which have 

stochastic characteristics and cause fatigue damage, especially for parked turbines when 

low aerodynamic damping is present. The theories of wave-structure interaction have 

been researched for a long time to support the design of ships and offshore structures 

like oil platforms. The physics of the wave-structure interaction depends significantly 

on the dimension of the waves and of the structure. The influential parameters include 

the well-known Keulegan–Carpenter (KC) number, Stokes parameter, Reynolds 

number, diffraction factor, water depth and the dimension of the submerged structure 

such as monopile diameter. The available calculation methods for the force experienced 

by the structure include Morison’s equation, diffraction analysis, and the Froude-Krilov 
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model. The introduction of these methods for OWTs can be found in the work by 

Henderson et al. [41] and hydrodynamics-related textbooks [42].  

Figure 2-7 shows the regimes related to OWTs with regard to the water depth-diameter 

ratio 𝐻/𝐷 and the wave length-diameter ratio 𝜆/𝐷 (diffraction factor). Viscous drag 

forces represented by Morison’s equation are dominant when the cross sections of the 

structure are small, whereas the wave diffraction which represents non-viscous forces 

becomes more important for structures with larger cross sections, as structures with 

large cross sections can modify the wave pattern. Negro et al. [40] pointed out that any 

wave force calculation needs to identify the correct regimes first. Most papers usually 

adopt Morison’s equation to calculate the wave forces, which may cause inaccuracy 

and lead to errors in fatigue damage calculation, as Morison’s equation is better suited 

to slender structures, while for monopile based large-size OWTs considering other 

methods like Froude–Krilov model and diffraction analysis to calculate hydrodynamic 

forces could be more accurate. 

2.2.4 Soil-structure interaction 

The characterisation of soil-structure interaction is crucial to correctly predict the 

dynamic behaviour of the turbine system. An appropriate modelling of the foundation 

is essential since the stiffness and natural frequencies of the entire system largely 

depend on the foundation and subsoil. The soil also provides damping to the system 

[43]. Currently monopile supports provide the optimal solution for shallow water 

depths up to 30 m. Gravity base foundations are also used in some situations, although 

their instability caused by heave force and overturning moment hinders their more 

widespread use [44]. For larger turbines located in deeper water, there are several 

options, such as jacket foundation, suction caisson and special foundations like suction 

anchors for floating wind turbine systems. However, this thesis focuses on monopiles. 

There are several methods to analyse and model embedded monopile foundations, such 

as fixity length method, lumped parameter models (LPMs), distributed springs method 

based on p-y curves, and FE based methods [45].  

Methods based on lumped-parameter springs 

In lumped parameter models, the properties of the foundation and the soil are captured 

through discrete elements such as lateral and rotational springs and dampers as shown 

in Figure 2-8. These models are particularly useful to determine efficiently the natural 
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frequencies of the OWT including the influence of axial loads and foundation flexibility 

[14]. 

In the studies by Adhikari and Bhattacharya ([14][46]), the flexibility of the foundation 

in a lumped parameter model was represented by a lateral spring with stiffness 𝑘𝐿  and 

a rotational spring with stiffness 𝑘𝑅, as shown in Figure 2-8(a). The analytical solution 

of the natural frequencies can be obtained by substituting the spring stiffnesses to a 

simplified fourth-order differential equation in which the properties of the turbine 

model are mainly represented by several non-dimensional parameters. The 

determination of these stiffnesses was through static tests on the 1:100 scale model of 

a Vestas V90 3 MW wind turbine. Furthermore, a spring accounting for the coupling 

effect between these two springs can also be added to improve the above method 

([47][48]). This is shown diagrammatically in Figure 2-8(b). However, it should be 

noted that an accurate stiffness for the springs is difficult to obtain since either site 

measurements or numerical models which require large computational power are 

needed. In addition, most practical monopiles will likely be surrounded by different 

layers of soil which complicates further the determination of the discrete spring 

stiffnesses. 

 

 
 

(a) (b) 

Figure 2-8. Lumped-parameter model with two springs (a) and three springs (b). 

 

Zania [49] and Damgaard et al. [50] both used the concept of dynamic impedance to 

capture the frequency response of the soil at the location of the pile in the relevant 

directions. Zania [49] modelled the OWT above the mudline as a single degree of 

freedom while Damgaard et al. [50] used a more realistic HAWC2 aerodynamic model 

for the structure above the mudline. The dynamic impedances were truncated to the 
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frequency range of interest and an equivalent lumped parameter model of the soil could 

be fitted to produce a close frequency response within that range. The coupling of the 

soil and structure was achieved through the rotation and horizontal displacement of the 

pile head. This method modifies the frequencies and the initial damping ratio calculated 

for a fixed bottom model, thus allowing the investigation of the coupling effect of 

damping on eigenfrequencies by a two-step iterative process. Damgaard et al. [15] 

showed that the inclusion of soil-structure interaction has a strong influence on the 

calculated fatigue damage compared with the fixed-base model and that the turbine 

structure is sensitive to soil type. Damgaard et al. [50] also studied the impact of soil 

variability using a probabilistic approach and their previously developed LPM. The 

results confirmed that the soil type significantly influences the dynamic behaviour of 

the turbine system. Carswell [13] developed an iterative method using a LPM and three 

other models used to compute the dynamic behaviour of the superstructure and to 

determine the parameters in the LPM. The LPM approximates the soil-pile interaction 

with a rigid bar supported by springs which are represented by a 2×2 stiffness matrix. 

This stiffness matrix was calculated from an in-house FE program INFIDEL. Harte et 

al. [51] attempted to use sub-structure methodology to construct a multiple degree of 

freedom system which accounts for the coupling effect between the rotor and the soil 

flexibility. However, this method is for the analysis of onshore wind turbines. It appears 

that LPMs can be very useful to investigate the influence of the soil finite stiffness and 

dissipative properties. They allow rapid predictions of the response of the overall 

system and are particularly suited to parametric studies, but require careful calibration. 

Methods based on p-y curves 

The conventional method to model and design monopile foundation for wind turbines 

is to use Euler-Bernoulli beam elements to represent the pile, and to use Winkler’s 

springs model (p-y curve model) to simulate the subsoil. Such a model is shown in 

Figure 2-9, in which the lateral resistance is provided by the lateral springs whose 

stiffness are obtained using p-y curves. Other curves can be used to obtain the stiffness 

of soil springs in other directions and positions, such as Q-z curves (representing the 

plug resistance) and t-z curves (representing the vertical resistance by shaft friction). 

These curves are obtained from measurements of actual piles under static or cyclic loads. 

This method has been adopted in many design codes for OWT such as DNV [22], 

International Electrotechnical Commission (IEC) [52], and American Petroleum 
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Institute (API) [53]. According to API, the formula to determine the p-y curve in the 

horizontal direction for laterally loaded pile in sand is 

where 𝑃 is the resisting force, 𝑦 is the lateral displacement, 𝑃𝑢 is the ultimate bearing 

capacity of soil at depth 𝐻, 𝑘 is initial modulus of subgrade reaction and 𝐴 is a factor 

to account for cyclic or static loading condition. More details (different soil types like 

clay, inclusion of water, layered soil etc.) about p-y curve models can be found in [54]. 

 

Figure 2-9. Model with discrete springs using p-y curves. 

 

As stated by Naggar and Bentley [55], the classic p-y curve is developed using a 

pseudo-static method involving the nonlinearities with depth and strain magnitude, but 

does not consider the stress history and loading frequency. This type of p-y curves 

cannot assess the impact of hardening, softening, and pore-pressure accumulations 

which could happen in the soil during the lifetime of OWTs. To improve the current p-

y curve model, a dynamic p-y curve was recommended in the paper of Buren and 

Muskulus [56], which is able to predict the dissipated energy of the turbine system 

through the foundation. 

Methods based on FE method 

Considering the deficiencies of traditional p-y curves, Achmus et al. ([57][58][59]) 

used a 3D FE model in ABAQUS in which an elastoplastic material law of sandy soil 

was adopted. Results were compared to those obtained with p-y curves. It was found 

that the pile deformation is underestimated by the p-y curves provided in API and p-y 

 
𝑃 = 𝐴𝑃𝑢 tanh (

𝑘𝐻

𝐴𝑃𝑢
𝑦), (2-11) 
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curves cannot correctly capture the change of soil stiffness with increasing loads for 

large-diameter piles. Moreover, the impact of cyclic loads on stiffness degradation was 

included in the finite element models [60]. Results of FE method agreed well with 

existing laboratory results. Their research shows that the displacement accumulation 

strongly relies on the amplitude of external loads and that the embedded length of the 

monopile has a large impact on the ultimate loads. 

Byrne et al. [61] and Zdravković et al. [62] also suggested that the previous design 

method for large-scale monopiles with diameters larger than 5 m may not be appropriate, 

and the joint industry project, PIle Soil Analysis (PISA), aims to develop new design 

methods for large-size monopiles. This new method is an extension of the p-y curve 

method, including four separate components, namely a distributed load curve which 

corresponds to the conventional p-y curves, distributed moment curve, base shear curve, 

and base moment curve. In PISA, a 3D finite element model shown in Figure 2-10 was 

used to provide soil-structure interaction curves, and these curves were used for a 1D 

model to assess this method. Results showed a good fit for these two models. 

 

Figure 2-10. 3D model for soil-structure interaction [62]. 

 

2.3 Brief introduction to FAST 

Current mainstream wind turbine modelling software packages such as FAST [63] by 

the US National Renewable Energy Laboratory (NREL) and HAWC2 [64] by the 

Technical University of Denmark, capture the interaction between the tower, rotor, 
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nacelle, and foundation of the wind turbine system by coupling aerodynamic 

capabilities with electromechanical and structural models. In this thesis, the wind 

turbine simulation package FAST was used to validate the proposed models. FAST v8 

contains several modules which together simulate a fully coupled nonlinear aero-hydro-

servo-elastic system in time domain [65]. As shown in Figure 2-11, the core modules 

in FAST are AeroDyn, HydroDyn, ElastoDyn and ServoDyn. AeroDyn calculates the 

aerodynamic loading on the blades and tower given the inflow wind field defined by 

the module InflowWind. The generation of a turbulent inflow wind field requires 

TurbSim which is a stochastic, full-field, turbulent-wind simulator [66]. HydroDyn 

calculates the hydrodynamic loading caused by waves and currents. ElastoDyn solves 

the structural dynamics of the multi-body system and ServoDyn controls the operational 

states by changing the pitch angles of blades, generator torque etc. 

 

Figure 2-11. FAST control volumes for bottom-fixed offshore wind turbines [67]. 

 

In FAST, nacelle and hub are modelled as rigid bodies, whereas the tower, blades and 

drive shaft are modelled as flexible bodies. Their motions are coupled during time 

integration. At each time step, the unsteady BEM theory [25] is applied to calculate the 

aerodynamic loads on the rotor, while Morison’s equation and potential flow theory are 

used to calculate the hydrodynamic loading. Such fully coupled models are usually 

computationally intensive. In FAST only structural damping can be explicitly defined 

for the substructure and the blades, but aerodynamic damping and hydrodynamic 
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damping are implicitly introduced in the calculated aerodynamic and hydrodynamic 

loading considering the coupled motions of the entire wind turbine system in the time 

integration. As a result, the quantification of aerodynamic damping and hydrodynamic 

damping in FAST can only be achieved by further identification with underlying 

damping models and simulated dynamic responses. 

2.4 Theoretical and numerical study of damping in wind turbines 

There are five main sources of damping in OWTs, namely aerodynamic damping, 

hydrodynamic damping, structural damping, soil/foundation damping and damping 

from dissipative devices [68]. OWTs are lightly damped structures so it is usual to 

assume the total damping of the turbine system is the sum of the damping from different 

sources. Damping ratios which represent the level of damping in a system relative to 

critical damping are widely used to quantify damping. In this way, the total damping 

ratio 𝜁𝑇𝑜𝑡𝑎𝑙 in an OWT can be expressed by: 

where 𝜁𝐴𝑒𝑟𝑜 , 𝜁𝑆𝑡𝑟𝑢𝑐 , 𝜁𝐻𝑦𝑑𝑟𝑜  and 𝜁𝑆𝑜𝑖𝑙  represent the aerodynamic, structural, 

hydrodynamic and soil damping ratio respectively, 𝜁𝐷𝑎𝑚𝑝𝑒𝑟  stands for the damping 

ratio from dissipative devices. The significance of damping sources for OWT varies 

depending on whether the OWT is in operation or parked. In operation, the aerodynamic 

damping, which is due to the interaction between the blades and wind accounts for a 

large proportion of the total damping effect (e.g. [13]). Hence the other damping sources 

are sometimes lumped together under the name of “additional damping” [21]. As lower 

damping is found in non-operational stormy conditions, more research has been 

devoted to the determination of damping when the OWT is parked. In literature, 

damping has usually been expressed either by damping ratios or logarithmic decrements. 

For consistency and ease of comparison, damping ratios are used throughout this thesis 

(as opposed to logarithmic decrement) and all published damping values cited have 

been converted accordingly. The conversion of logarithmic decrement values into 

damping ratios (a division by 2) as well the varying precision with which results are 

available in the literature has caused some difficulty in reporting damping values with 

a consistent level of significant figures. It should also be noted that the repeatability of 

damping measurements is usually quite poor (typically with 10-20% of variability) 

 𝜁𝑇𝑜𝑡𝑎𝑙 = 𝜁𝐴𝑒𝑟𝑜 + 𝜁𝑆𝑡𝑟𝑢𝑐 + 𝜁𝐻𝑦𝑑𝑟𝑜 + 𝜁𝑆𝑜𝑖𝑙 + 𝜁𝐷𝑎𝑚𝑝𝑒𝑟 . (2-12) 
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rendering the precision of many damping values reported in the literature somewhat 

spurious. However, this was deemed necessary for the sake of comparison. 

2.4.1 Aerodynamic damping 

Aerodynamic damping is mainly generated by the interaction between the rotating 

blades and wind. The flapwise vibration of blades is reduced due to the drag force from 

wind, which has the strongest contribution to the damping of the FA vibration of the 

support structure. The side-side vibration can also be reduced by blades with large pitch 

angles due to larger attack angles to the blade surface. For instance, in the experimental 

study reported by Devriendt et al. [69], the damping ratio in the SS mode is larger than 

that of the FA mode, and this is caused by the effect of a pitch angle of 88.2° which 

provides greater impedance for the side-side mode. It is evident that the wind speed and 

rotation speed of blades have a great impact on the aerodynamic damping from blades 

([70][71]). The complexity of aerodynamic damping is due to its dependence on the 

inflow wind speed, the rotational speed of blades and the control system inside the wind 

turbine which changes the pitch angles of blades to optimise the power output. As a 

result, it is difficult to predict aerodynamic damping if all these factors are considered. 

The vibrating tower can also experience air drag, which causes small aerodynamic 

damping. This small amount of damping ratio contribution is assumed to be in the range 

of 0.08% to 0.24% when wind speed is between 5 m/s and 15 m/s, according to [72]. 

The study of the impact of aerodynamic damping on the support structure of OWTs is 

relatively limited. Salzmann and Tempel [73] summarised several analytical solutions 

for aerodynamic damping from constant-speed turbines, including the method by 

Garrad [74] and the method by Kühn [75]. These closed-form solutions account for the 

relationship between wind speed and the motion of turbine, deriving the analytical 

expression for aerodynamic damping. These theoretical solutions are all based on BEM 

theory. An analytical solution for variable-speed turbines was also proposed by them. 

The theoretical solution of the damping ratio for the entire rotor of a variable-speed 

turbine proposed by Salzmann and Tempel [73] is: 

where 𝑉0 is the wind speed, Ω is the rotor rotation speed,  𝑁𝑏 is the number of blades, 

𝜌 is air density, 𝐶𝐿𝛼 is the slope of the lift coefficient 𝐶𝐿 when the attack angle is 𝛼, 

 
𝜁𝐴𝑒𝑟𝑜(𝑉0) = Ω(𝑉0) ∙

𝑁𝑏𝜌𝐶𝐿𝛼𝑚1𝑏

4𝑀0𝜔𝑛
, (2-13) 
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𝑚1𝑏 is the first order moment (static moment) of the area of the chord along a blade, 

𝜔𝑛 is the natural frequency of the whole turbine, 𝑀0 is an equivalent mass of a single 

mass-spring model to which the turbine is converted. 

The result from the proposed analytical solution expressed by Equation (2-13) was 

compared with simulations and results from measured data from a real turbine using 

frequency-domain fitting. It was found that there is some difference between the 

simulation and the prediction, and that both simulation and theory would largely 

underestimate the aerodynamic damping for a real turbine when the wind speed is much 

higher than the rated wind speed, as shown in Figure 2-12. 

 

Figure 2-12. Aerodynamic damping ratio vs mean wind speed [73]. 

 

Valamanesh and Myers [70] proposed a closed-form analytical solution also based on 

BEM for aerodynamic damping both for FA and SS vibration, in which the impact of 

rotational speed of blades and wind speed could be accounted for by two components 

𝐴 and 𝐵 respectively. The equations used to determine the FA damping ratios for an 

equivalent single degree of freedom (DOF) system to the wind turbine are as follows: 

 
𝐴 = 𝜌∫𝑉𝑤(1 − 𝑎)(𝐶𝑙𝑐𝑜𝑠𝜙 + 𝐶𝑑𝑠𝑖𝑛𝜙)𝑐(𝑟)𝑑𝑟, (2-14) 

 
𝐵 =

1

2
𝜌∫Ω𝑟(1 + 𝑎′)[(

𝜕𝐶𝑙
𝜕𝛼

+ 𝐶𝑑)𝑐𝑜𝑠𝜙 + (
𝜕𝐶𝑑
𝜕𝛼

− 𝐶𝑙)𝑠𝑖𝑛𝜙)]𝑐(𝑟)𝑑𝑟, 

(2-15) 
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where 𝑉𝑤 is the uniform upstream wind speed, Ω is the rotation speed, 𝑘 and 𝑚 are the 

modal stiffness and mass for an equivalent single degree of freedom wind turbine model, 

other terms have same definitions in the BEM theory introduced in Subsection 2.2.2. 

This is an improved version of the approach proposed by Salzmann and Tempel [73]. 

Their estimations from the closed-form analytical solutions were compared with the 

results from FAST. Their study concluded that when the wind speed is low, the rotation 

speed of the blades contributes a larger portion of the whole aerodynamic damping, and 

that when the wind speed is higher the damping contribution from the rotation 

component becomes smaller. However, no experimental verification has been carried 

out for this analytical solution.  

 

Figure 2-13. Aerodynamic damping ratio from contribution of wind speed and 

rotation speed [70], 𝐴-component-wind speed, 𝐵-component-rotational speed of rotor. 

 

Liu et al. [76] developed a FA aerodynamic damping representation including the 

tower-top motion of a constant-speed wind turbine and modified this model for a 

variable-speed wind turbine using a correction factor. They compared their method with 

the aforementioned method proposed by Salzmann and Tempel [73] and the method by 

Kühn [75]. They found that the aerodynamic damping prediction by their method is 

lower than the other two methods for a wind speed range from 5 m/s to 25 m/s. In 

addition, the aerodynamic damping for the entire rotor was found to be time-varying 

for a turbulent wind field. 

 
𝜁𝐴𝑒𝑟𝑜 =

𝑁𝑏(𝐴 + 𝐵)

2√𝑘𝑚
, (2-16) 
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2.4.2 Hydrodynamic damping 

Hydrodynamic damping comes from two sources: (1) wave radiation damping and (2) 

viscous damping due to hydrodynamic drag [42]. The wave radiation is proportional to 

wave velocities whereas viscous damping is proportional to the relative velocities 

squared [9]. The hydrodynamic damping for a cylinder interacting with waves and 

currents has long been a subject of research since it is a fundamental part of the classical 

fluid-wave interaction problems. The methods used to estimate analytically viscous and 

radiation damping can be found in [77], in which viscous damping is calculated based 

on Morison’s equation and radiation damping is calculated based on potential flow 

theory. Some examples of experimental studies are reported in ([78][79]). However, 

only a few studies have been conducted on hydrodynamic damping in OWTs. GL [80] 

suggests values of 0.15% for viscous damping and 0.11% is proposed for the radiation 

damping in [77]. A radiation damping ratio of 0.24% was suggested by Tarp-Johansen 

et al. [72] after simulating the radiation/diffraction component using the wave 

modelling program WAMIT. Using HAWC2 time-domain simulations (implementing 

Morison’s equation), Shirzadeh et al. [9] estimated the viscous hydrodynamic damping 

ratio at around 0.004%. The reported values for this source of damping vary widely but 

for an OWT on a monopile located in relatively shallow water, these damping values 

are consistently very low compared to other sources. 

2.4.3 Soil/foundation damping 

Soil damping plays an important role when the rotation of blades is stopped or when 

the side-side behaviour is considered. There are two types of source for soil damping, 

namely radiation damping which is in the form of wave propagation, and hysteretic 

material damping which involves the rearranging of the soil particle layout and the 

changes in soil particle contact interaction ([13][56]). Radiation damping varies 

depending on the frequency of external excitation. Radiation damping can be neglected 

when frequencies of OWT and external loads are lower than 1 Hz [13], and the 

frequencies of wind and wave loads are normally lower than 1 Hz. 

However, soil damping is uncertain compared to other sources and can possibly have a 

large contribution. As stated by Carswell et al. [13], the contribution of soil damping 

has not been studied in depth, although it is possible to predict it by back-calculation 

when the total damping and other damping sources except soil damping are known. 
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Many published papers used this back-calculation approach to quantify the damping 

contribution from soil [81]. Nevertheless, to obtain the accurate damping contribution 

from soil is still difficult and deserves further research. 

The study by Zania [49] developed a rigorous analytical solution for modified soil-

structure interaction eigenfrequency and damping. Damgaard et al. [81] modelled the 

influence of soil damping directly by introducing hysteretic springs in a cantilever 

model of the turbine to account for the soil-structure interaction. From this they found 

the contribution of soil damping to range between 0.8% and 1.3%, which is in good 

agreement with an experimental estimate of soil damping (1%) they obtained by back 

calculation. They also found that scour and backfilling can change the frequency and 

soil damping contribution according to the numerical investigation. Carswell et al. [13] 

developed a method for converting hysteretic energy loss into a viscous, rotational 

mudline dashpot that represents OWT foundation damping in a lumped parameter 

model. The damping contribution of foundation is stated to be in the range of 0.17%-

0.28%, from the numerical simulation of the NREL 5 MW reference turbine. However, 

a higher damping value of 0.72% was obtained from time history analyses in response 

to extreme wind and wave conditions. By comparing the load acting on the foundation 

at mudline, foundation damping decreases the maximum moment by 7-9%, but has little 

effect on the shear force (approximately 2% reduction). Moreover, Carswell et al. stated 

the increasing significance of foundation damping when the natural frequency of 

structure approaches the wave frequency. Modelling the soil as a viscoelastic soil block 

in ABAQUS, Tarp-Johansen et al. [72] found a soil damping ratio of 0.56%. They 

suggested that 0.80% should be used to account for the nonlinear behaviour of the soil. 

Their values are currently recommended by GL guidelines [80]. It should be noted that 

back calculating soil damping tends to increase the final uncertainty by propagating the 

uncertainties from other damping sources. Although very few studies have attempted 

to model directly soil damping in OWTs, the damping in a standard single pile in 

horizontal vibration has been the subject of many past papers (e.g. [55][82][83]). These 

could form the basis for modelling soil dissipation in monopiles. Geotechnical 

earthquake engineers also have a long history of studying soil damping (e.g. [84][85]). 



 

43 

2.4.4 Structural damping 

Structural damping in offshore wind turbines has received very little specific attention. 

It is usually assumed to follow the behaviour of standard steel structures for which 

damping values are available. For instance, Eurocode 1 [86] recommends a value of 

0.19% for unlined welded steel stacks without external thermal insulation. More 

specific values can be found in the Offshore Oil and Gas literature [87]. Offshore wind 

farms tend to have much larger turbines than those investigated in the studies reported 

in this subsection so it is not clear how reliably these values can be generalised to 

current larger OWTs. 

2.4.5 Contribution from damper 

The installation of dampers in flexible structures like OWTs is a possible way of 

mitigating their vibration. The blades and support structure both suffer from severe 

vibration, so dampers can be installed both for the blades and the support structure. 

However, this subsection mainly considers dampers for the support structure. To date, 

many offshore wind farms have been equipped with dampers to reduce dynamic 

amplitude. The strategies for damping a structure mainly fall into three different 

categories: passive, semi-active and active. The passive approach is the easiest and most 

widely used for practical structures [88]. The most classic type of passive damper is the 

tuned mass damper (TMD), which has been widely researched for OWTs [89]. The 

basic concept of the TMD uses a mass-spring-damper system to dissipate the dynamic 

energy. It was shown that the displacements at tower/nacelle for a wind turbine can be 

reduced by up to 50% [89]. However, an effective TMD requires that the mass should 

be installed in the position where the motion of the targeted vibration mode is large, 

which causes an increase in mass at the top the tower. The increased mass at the top of 

the tower can have adverse effect for slender OWT because the top motion could be 

amplified due to larger inertia forces [90]. This restricts the usage of TMD for large-

scale OWTs.  

Another type of passive control system for OWT, tuned liquid column damper (TLCD) 

has been investigated by Colwell and Basu [91]. TLCD is a U-shaped liquid damper, 

which absorbs the vibration energy of the structure by the passive oscillation of the 

liquid when the frequency of the damper is tuned to that of the structure. Although the 

TLCD might also be located in the nacelle due to the horizontal space requirement, the 
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TLCD has several advantages compared to the traditional TMD. First, the TLCD can 

act on very low excitation amplitudes and is feasible for a range of excitation levels; 

Second, the TLCD needs minimal auxiliary equipment and easy set-up because it 

utilises the nature of gravity-restored liquid. Third, the TLCD is somewhat lighter than 

a TMD. In Colwell and Basu’s research, a model with TLCD was established and the 

environmental loads were considered. Their comparable research outcome shows that 

TLCD can result in up to 55% lower peak response for OWT. 

To avoid the difficulties related to installing dampers at the top of wind turbine, some 

researchers have attempted to install dampers at other positions in OWTs. For instance, 

Brodersen and Høgsberg studied the toggle-brace damper system installed inside the 

tower [90] according to the concept that is used in shear frames. This brace system aims 

to reduce the local curvature of the corresponding tower bending deformation [92]. 

Semi-active or active dampers have been studied to optimise the dynamic performance 

of OWTs. For instance, active TMD is more effective than passive TMD ([93][94]). 

Adding an actuator in a damper system, however, requires more devices such as sensors 

which can detect the structural response to control the needed forces, and for a pure 

active damper system, there is the possibility of instability. The active damper itself 

requires power to operate, which makes it less cost-effective. More recently, a type of 

hybrid damper system was studied by Broderson and Høgsberg [92], which is proposed 

to be placed at the bottom of the turbine tower. In this system a series of viscous 

dampers and sensors are installed inside the tower, in which stroke amplification is 

realised by active control. Their numerical simulation proved that this approach is able 

to increase damping ratios by 1.25% and reduces fatigue damage 

In previous research into vibration control of OWTs, numerical models have been used 

extensively to find the impact of placing such dampers, but little actual experimental 

research has been done. One experimental study was carried out by Li et al. [95] in 

which a type of ball vibration absorber at the top of tower was used to significantly 

reduce the dynamic response by around 40% for parked conditions. For operational 

condition, the reduction is much lower, around 25%. For TLCD, Chen et al. [96] 

conducted a scaled-down test using simulated loads from wind, wave, and earthquake 

and compared the results to a numerical model. The effect of TLCD can lead to up to 

50% reduction in stress amplitude at the bottom of the tower. However, their research 
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did not consider the impact of aerodynamics of blades and hydrodynamics of water-

structure interaction. For more details of the development of dampers in wind turbine, 

see the review paper by Rahman et al. [89]. 

2.4.6 Other damping sources 

It is expected that the transition piece which usually includes a grouted connection 

would have some effect on the damping of the whole OWT substructure which is 

usually made of steel. Nevertheless, few papers account for this. A paper by Schaumann 

et al. [97] studied the impact of dynamic behaviour due to the nonlinear properties of 

the grouted transition. This simulation work concluded that the nonlinearity hardly 

affects the damping ratio of the system. However, it was observed that a significant 

decrease in the first natural frequency would occur if some parameters of the grout 

connection change, such as the overlap length and contact friction. 

2.5 Damping identification in wind turbines 

2.5.1 Damping identification on parked wind turbines 

Two main methods have been used to measure damping experimentally in OWTs, 

depending on the type of excitation. Modal properties (including damping) have been 

obtained by operational modal analysis (OMA) when the system is excited by ambient 

sources (wind and waves) or standard time or frequency domain damping identification 

techniques when the dynamic response of the system is due to a controlled measurable 

excitation. Applying a controlled excitation to an actual OWT presents a number of 

practical difficulties due to access and size. Loads from the environment could also 

influence the results. The so-called “rotor stop” test is the most commonly used 

technique (e.g. [98][99][100][81][72]). It consists in suddenly turning the blades into 

feathered position so that the tower experiences a downward step in rotor thrust. 

“Overspeed test” is a similar technique that has also been used extensively (e.g. 

[9][101][69][102][103]). Other types of excitations have also been used – for instance, 

Koukoura et al. used boat impact at sea level [104]. These techniques intrinsically 

reduce the influence of aerodynamic damping by keeping the rotor speed low or at zero, 

so that they are better suited at estimating the additional damping. As a result, the 

difference in damping between the FA and SS directions obtained from parked turbines 

tends to be small. 
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Using these various techniques, a range of values have been reported. Tarp-Johansen et 

al. [72] measured the additional damping ratio in a 3.5 MW OWT using rotor stop tests 

and estimated it at 1.91%. Versteijlen et al. [98] measured the additional damping in 

3.6 MW Siemens OWTs using spectra of the bending moment at the base of the tower. 

They obtained a damping ratio of 3% for the first FA bending mode of the turbine. 

Damgaard et al. ([99][100][81]) used “rotor stop” tests and OMA on turbines subjected 

to ambient excitation in four wind farms. The rotor stop tests gave a first FA mode 

damping ratio in the range 2.39-2.55%. Results from ambient excitation tests gave fairly 

close results with damping ratios in the range 2.55-2.86%. A series of comprehensive 

damping studies on 3 MW Vestas V90 OWTs in the Belwind Wind farm were 

completed by Shirzadeh et al. ([9][101][69][102][103]). Using overspeed tests and 

OMA under ambient excitation they measured the damping ratios of the first FA and 

SS modes at 1.05% and 1.27% respectively (with an installed tuned-mass damper kept 

inactive). Koukoura et al. [104] studied the damping in both parked and operating 

turbines excited by a boat impact and ambient excitation. They measured FA and SS 

damping ratios of 1.8% and 1.9% respectively for a parked 3.6 MW turbine. Dampers 

were installed and active in their study, but their contribution was not specified. Bajrić 

et al. [105] investigated the damping identification for an 8 MW offshore wind turbine 

in non-operating conditions using three different algorithms: eigensystem realization 

algorithm (ERA), covariance driven stochastic subspace identification (COV-SSI) and 

the enhanced frequency domain decomposition (EFDD). Results from COV-SSI 

showed that the estimated FA damping ratio is around 0.7%, which is considerably 

lower than the SS damping ratio around 1.2%. 

Structural damping in onshore wind turbines was measured by Schaumann and Seidel 

[106] and it was found to be between 0.2% to 0.5% (excluding soil damping). Ozbek 

and Rixen [107] measured the structural damping of an 2.5 MW onshore wind turbine 

at 0.3% in the FA direction and between 0.3% and 0.9% in the SS direction. However 

structural damping in OWTs could be larger (from 0.5% to 1.5% according to [9]) as 

the damping from other structural parts like the grouted connection may have a 

significant contribution. 

In conclusion the damping ratios for parked turbines have been found to vary between 

1% and 3% with reasonable agreement between published results. 
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2.5.2 Damping identification in operating wind turbines 

Measuring damping in operating wind turbines has been more difficult than for parked 

turbines [71]. Most research shows that the aerodynamic damping contribution is 

around 5% and can vary depending on the wind speed and rotation speed of the rotor.  

Hansen et al. [108] used two experimental methods to estimate the aerodynamic 

damping in an 2.75 MW operating OWT, however no measurement of the additional 

damping was provided in their study so their results are effectively overall damping 

values. One method estimated the damping from the decay in the OWT free response 

obtained after an artificial periodic pitching of the blades was stopped. One deficiency 

of this method is that the estimated damping is not exactly modal damping because the 

vibration of the excited turbine is not purely modal. The measured overall damping 

ratios obtained this way were extremely scattered, averaging around 𝜁𝐹𝐴~8% in the FA 

direction and 𝜁𝑆𝑆~2.4% in the SS direction. The other method used was OMA with 

wind excitation. Stochastic subspace identification (SSI) was used to extract the 

damping ratios, resulting in an overall damping ratio of 13.2% for the FA mode and 

7.96% in the SS mode. The damping ratio for the side-side mode can decrease to around 

3.18% when the wind speed is higher, which is much smaller than the result for the 

rated wind speed. These damping ratios were simply calculated from the logarithmic 

decrements. Assuming a 2% additional damping component, overall damping results 

from their study give an estimated 𝜁𝐴𝑒𝑟𝑜
𝐹𝐴 ~6% and 𝜁𝐴𝑒𝑟𝑜

𝑆𝑆 ~ 0.4% for the aerodynamic 

contributions using the controlled excitation. Subtracting 2% from their OMA overall 

damping ratios gives 𝜁𝐴𝑒𝑟𝑜
𝐹𝐴 ~11.2% and 𝜁𝐴𝑒𝑟𝑜

𝑆𝑆 ~6%. The comparison between these two 

methods indicates that OMA requires no advance knowledge of the turbine to be 

measured, but needs long time series, while the exciter method should be carried out 

away from the natural frequency to avoid inaccuracies in damping extraction but can 

be done more quickly. The difference between the results obtained from the two 

methods is large and OMA gave much higher values than those usually found in the 

literature. Furthermore, the reported damping ratios were scattered in this research and 

the contribution solely due to aerodynamic damping remains unclear.  

Ozbek and Rixen [107] studied experimentally the aeroelastic damping of a 2.5 MW 

onshore turbine also using OMA. They used photogrammetry and laser vibrometry to 

measure the vibration response. The least square complex exponential (LSCE) method 
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was used to obtain the damping ratios. As onshore foundations are stiffer, onshore wind 

turbines are expected to experience much less soil damping and no hydrodynamic 

damping at all. Also, they have no transition piece as such, so their structural damping 

is bound to be low. Therefore, the additional damping is likely to be very small so that 

a good estimate of the aerodynamic damping can be obtained by measuring the overall 

damping in operation. They found 5% in the FA direction and around 0.5% in SS mode. 

These values were in good agreement with results from matching HAWCS simulations 

they carried out, but not consistent with the findings of the work by Hansen et al. [108]. 

The comparison for FA and SS vibrations is shown in Figure 2-14.  

 

 

Figure 2-14. Damping ratio comparison for fore-aft and side-side modes from [107]. 
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The measurements on wind turbines withrated power from 1.8 MW to 3.6 MW using 

opto-mechanical system by Zendehbad et al. [109] showed that the aerodynamic 

damping ratio for an operating turbine is around three times that of an parked turbine. 

However, the damping ratio obtained by them for an operating turbine, around 0.8% is 

much lower than the results reported by other researchers. Devriendt et al. [110] used a 

poly least-squares complex frequency-domain (p-LSCF) estimator to identify the 

overall damping for a 3 MW wind turbine in operation. They emphasised that 

harmonics in the excitation would hinder the usage of classical OMA methods which 

require that measured responses are only caused by structural resonance. The 

measurements show that the damping ratio in the FA direction increased from 1.8% to 

6.5-7% for different wind speed bins from 1.5 m/s to 22.7 m/s, while the SS damping 

ratio varied from 1.8% to 3%.  

Koukoura et al. [104] found that the overall FA damping ratio for an 3.6 MW operating 

OWT in a relatively high wind speed of 19 m/s is 10.35% and 4.77% in the SS direction. 

The EFDD method was used for the damping estimation. They found that a beating 

phenomenon observed on the autocorrelation function of the response made the 

identification less reliable, especially for side-side vibrations. However, this again 

seems to include some unspecified supplemental damping. Dong et al. ([111][112]) 

applied the harmonic modification SSI (HM-SSI) method to identify the frequency and 

damping of an 2.5 MW operating turbine, and obtained a wide range of damping values 

from 0.87% to 5.32% in different operating conditions with mean wind speeds up to 

15.7 m/s. Hu et al. [113] also implemented the p-LSCF method to identify the total 

damping in a 5 MW operating turbine with different rotation speeds. The resonance due 

to 3P loading was observed to have a significant effect of the identified total damping. 

The averaged total damping ratios for operating wind turbines with rotor rotation speeds 

between 4 rpm to 15 rpm were found in the range of 0.5% to 4%. Chen et al. [114] 

presented a wavelet-based approach to continuously identify the different components 

of aerodynamic damping for an operating wind turbine. Using a lumped-mass model of 

the wind turbine and BEM theory, simulated time series for turbulent wind were 

analysed in the time-frequency domain and the long-time variation of the aerodynamic 

damping matrix was estimated. 
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In conclusion, there is a lot of uncertainty in the measured overall damping in operating 

wind turbines and it transpires that further work is needed to establish a reliable 

methodology to measure it. 

2.5.3 Difficulties in aerodynamic damping identification on operating wind 

turbines 

In practice only the total damping can be measured directly. The aerodynamic damping 

can be inferred by subtracting other damping contributions from this total damping if 

they can be isolated reliably. For wind turbines in operation the FA aerodynamic 

damping contributes the most, so the measured total damping could also be seen as a 

close substitute for the aerodynamic damping even without subtraction. In many 

published studies the distinction between the total damping and the aerodynamic 

damping for operating wind turbines is not always clear.  

Although much research has been conducted to identify the aerodynamic damping in 

operating wind turbines using traditional OMA methods or modified versions, 

limitations in these methods still exist. The need to extract dynamic parameters for wind 

turbines resulted in the development of OMA methods suitable for large structures 

under ambient excitations. The OMA method “the natural excitation technique” (NExT) 

by James et al. [115] was initially used for the modal parameter extraction of operating 

vertical-axis wind turbines. However, for operating wind turbines the validity of some 

basic assumptions underpinning the implementation of most OMA methods remain 

doubtful. This causes difficulties in applying current OMA techniques to wind turbines. 

These difficulties have been described by Tcherniak et al. [116] and Ozbek et al. [71]. 

First, the excitations to the structure need to be uncorrelated, but the forces exciting 

wind turbine are not uncorrelated as they are coupled due to the influence of the rotor 

rotation. Second, traditional OMA methods assume that the resultant responses due to 

ambient excitation only include harmonics caused by the natural modes of the structure 

but not harmonics due to ambient excitations themselves. This assumption is also 

violated by the rotation of the rotor which causes 1P, 2P, 3P etc. loadings to the tower. 

Third, traditional OMA techniques require that the structure system itself is a time-

invariant system, which is not the case for wind turbines as aerodynamic damping is 

influenced by the inflow wind speed, the rotation speed and the pitch angles. None of 

these parameters are constant for wind turbines in normal operation due to the stochastic 
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nature of wind turbulence and the variability of controlled conditions [117]. Fourth, and 

maybe less important, the excitations caused by turbulent wind field are not white noise. 

Fifth, all previous studies tried to find the damping ratios in the FA or SS directions 

separately, which implicitly assumed that the vibration of wind turbines in these two 

directions are separate. However, it is possible that the vibration of wind turbines is 

unconventional because of the coupling between the FA and SS motions. This coupling 

will be further studied in Chapters 4 and 5. 

2.6 Summary 

2.6.1 Uncertainties in reported damping values from past studies 

In Table 2-1, the damping ratios from some recent papers are listed. From this table, it 

can be concluded that the reported damping ratios for parked turbines vary from 1% to 

3% - a relatively small range compared to the damping ratios reported for wind turbines 

in operational condition.  

Table 2-1. Measured overall damping ratios for first bending mode of the tower. 

Author Year Parked Operational 

FA SS FA SS 

Hansen et al. 

[108] 

2006 - - 4.77%- 

12.7% 

1.11-

3.98% 

Tarp-Johansen 

et al. [72] 

2009 1.91% - - - 

Versteijlen et 

al. [98] 

2011 3% - - - 

Damgaard et al. 

[99][100][81] 

2012 

&2013 

2.39-

2.86% 

- - - 

Shirzadeh et al. 

[9][101][69] 

2013  1.27% - - 

Ozbek et al. 

[107] 

2013 0.3% 0.3-0.9% 5.0% 0.5% 

Shirzadeh et al. 

[102][103] 

2014 1.69% 2.18% - - 

Koukoura et al. 

[104] 

2015 1.8% 1.9% 10.35% 4.77% 
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The environmental condition and the state of turbines can influence the aerodynamic 

damping contribution, resulting in the large difference in the contribution of 

aerodynamic damping to the overall damping. The variation of aerodynamic damping 

in both FA and SS directions for an operational turbine is the result of a combination of 

several factors, for example, the pitch angle, the wind speed and the rotation speed of 

blades. Furthermore, despite the large amount of research effort on damping of OWT, 

it is still difficult to determine the overall damping and its components due to the 

difference between papers and the large range of damping values. 

Assuming that the various damping contributions are independent of each other, the 

usual way to interpret the measured overall damping is to divide it into several 

categories. The damping estimations from past papers are summarised and listed in 

Table 2-2 for convenience and comparison to reflect the range and uncertainties of 

damping from different sources for different modes and operational states. In  Table 

2-2, yellow cells indicate large uncertainties while green cells indicate small 

uncertainties. 

Table 2-2. Range of damping ratios based on past papers. 

Operation 

Condition 

Mode Overall 

damping 

Structural 

damping 

Aerodynamic 

damping 

Soil 

damping 

Hydrodynamic 

damping 

Parked    FA 1.05%-2.55% 0.2-1.5% 0.08%-0.24% 0.17-1.3% 0.07-0.24% 

Operational    FA 5.0%-10.35% 0.2-1.5% 3.7%-8% 0.17-1.3% 0.07-0.24% 

Parked    SS 1.05%-2.18% 0.2-1.5% 0.08%-0.24% 0.17-1.3% 0.07-0.24% 

Operational    SS 1.05%-4.50% 0.2-1.5% 0.08%-3.5% 0.17-1.3% 0.07-0.24% 

 

Structural damping from steel material is commonly assumed at around 0.2%, whereas 

the whole structural damping could vary significantly from 0.2% to 1.5% as the 

damping from other sources like the grouted connection is added. The damping from 

soil/foundation is in the range of 0.17% to 1.3%, which makes a relatively large 

contribution to the total damping. It should be noted that it is possible to propagate 

inaccuracies when using back calculation to estimate the damping ratio from 

foundations, indicated by the differences between the results from [13] and those from 

previous papers. The aerodynamic damping is stable for parked turbines and has more 

uncertainties for operational turbines, which is simply because the rotor has minimal 

impact on the vibration for parked turbines. For an operating turbine, the aerodynamic 
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damping could vary in a large range according to the wind speed and rotor speed, both 

for the FA and SS directions. The study by Koukoura et al. [104] reported on actual 

damping measurements in operating conditions leading to an estimate of the 

aerodynamic damping of 8% in the FA direction if the additional damping is assumed 

to be around 2%, which reveals the possibility of high damping ratios from 

aerodynamics. However, the hydrodynamic damping is relatively low compared to 

other sources. It should be noted that the total damping ratio significantly differs for an 

OWT in operating condition and parked condition. 

2.6.2 Research questions arising from the literature review 

Three main research questions arose from the literature review: 

1. There is significant uncertainty in damping ratio values reported by previous 

researchers, especially for aerodynamic damping in operating wind turbines, 

soil damping and structural damping. Can first-principle physics-based models 

estimate these damping values and be used to check how reliable these reported 

damping values are? 

2. Decoupled wind turbine models require the definition of aerodynamic damping 

for the tower vibration. However, relevant studies are still limited as most 

research only concentrates on the damping for FA tower vibrations. What is the 

damping level in SS tower vibrations and what is the nature of the coupling 

between the FA and SS directions? 

3. The damping identification for wind turbines has many limitations, as discussed 

in Subsection 2.5.3. One issue is that current studies all tried to identify the 

damping ratios separately in the FA and SS directions. To what extent can a new 

aerodynamic model be used to develop a new damping identification 

methodology?   

Efforts have been made in this study to provide some answers to these questions. 
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Chapter 3 - First-principle Damping Models 

 

3.1 Introduction 

As shown in the literature reviewed in Sections 2.4 and 2.5, damping in offshore and 

onshore wind turbines has been researched fairly extensively, however the variations in 

published values for most damping sources remain large. This directly translates into 

uncertainty in the prediction of the dynamic response and fatigue life of the system. As 

a result, designs may be unsafe or overly conservative. Although fully coupled wind 

turbine packages such as FAST, where the aerodynamic and hydrodynamic damping is 

implicitly included, are widely used, directly defining damping in wind turbine models 

is still needed in many situations. For example, specialised decoupled foundation 

models require the definition of the aerodynamic damping to include the wind loads 

transferred from the rotor to the foundation [118]. On the other hand, compared with 

the fully coupled models whose computation speed is relatively slow, simplified models 

with explicitly defined damping are faster for fatigue and reliability analyses, which 

usually demand thousands of calculations. For these reasons, there is a need to better 

characterise each source of damping in OWT systems. This chapter introduces direct 

methods to estimate the various damping contributions including aerodynamic, 

hydrodynamic, and soil damping through simple but physics-based models. More 

specifically, the damping studied in this chapter refers to the tower damping of OWTs.  

Section 3.2 introduces the FE model used to model the wind turbine. Sections 3.3 to 3.5 

describe the aerodynamic, hydrodynamic, and soil damping models respectively, in 

which the predicted damping values are compared with results from FAST and values 

reported in the literature. Section 3.6 concludes this chapter. 

3.2 Description of 2D finite element model 

3.2.1 Formation of the FE model 

The behaviour of a monopile-supported OWT was modelled using a bespoke decoupled 

finite element model. “Decoupled” here means that the tower FE model predicts the 

dynamic response of the system but does not include the wind/rotor aerodynamic 

interaction simultaneously. The model is based on the widely used 5 MW reference 

offshore wind turbine for which NREL has published detailed technical data [119]. The 
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schematic is shown in Figure 3-1, and the basic properties of this turbine are listed in 

Table 3-1.  

Table 3-1. Basic properties of the NREL 5 MW reference OWT. 

Rotor Diameter, 𝑅 126 m 

Hub Height from MSL 87.6 m 

Water Depth, ℎ 20 m 

Tower Diameter, 𝐷 3.87-6 m 

Tower Thickness, 𝑡 0.019-0.06 m 

Monopile Diameter, 𝐷𝑃𝑖𝑙𝑒  6 m 

Monopile Thickness, 𝑡𝑃𝑖𝑙𝑒 0.09 m 

Lumped RNA Mass at Top 3.5×105 kg 

Natural Frequency for Model fixed at Mudline 0.293 Hz 

Natural Frequency for Model considering  

Soil-structure Interaction 

0.25-0.28 Hz 

 

 

Figure 3-1. Definition of the established model from a 5 MW reference OWT. 
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At this stage, this is a plane model so only two translations and one rotation are 

considered. The vertical degree of freedom is ignored as the magnitude of the tower 

vertical motion is much smaller than that of the tower horizontal motion, as confirmed 

by FAST simulations. This model is marked as “2D” implying that only planar motions 

are considered. 

A monopile is usually a long steel tube with the bottom embedded into soil strata. The 

behaviour of a monopile supported OWT is close to a cantilever with the bottom 

restrained by soil, so it is sensible to model its substructure as a beam. A lumped mass 

at the top of the tower represents the RNA. The tower/monopile is modelled with an 

assembly of 39 elements. Following the segmentation in the data provided for the 

turbine, the tower is discretised into 13 beam elements. The monopile is divided into 

20 elements. A convergence study confirmed that this element size was adequate. The 

general expression of motion equation for the beam is 

where 𝐌, 𝐊 and 𝐂, stand for the global mass matrix, stiffness matrix and damping 

matrix respectively, 𝐮(𝑡) is the displacement vector, 𝐅(𝑡) is the external force vector.  

Using for example Euler-Bernoulli beam elements, it is easy to form the global mass 

matrix and stiffness matrix given the properties of the sections of tower with height. 

For a two dimensional beam element, the elemental mass and stiffness matrices, 𝐌𝑒 

and 𝐊𝑒, can be obtained by the following expressions according to [120]: 

 

where 𝑙 is the length of element, 𝑚 is the mass of this beam element, 𝐸 is the Young’s 

modulus, 𝐼 is the second moment of area, 𝜌 is the material density.  

The damping calculations from each source will be described in detail in turn in the 

following sections, but there are broadly two approaches. For aerodynamic and 

 𝐌𝐮̈(𝑡) + 𝐂𝐮̇(𝑡) + 𝐊𝐮(𝑡) = 𝐅(𝑡),  (3-1) 

 

𝐌𝑒 =
𝑚

420
[

156 −22𝑙 54 13𝑙
−22𝑙 4𝑙2 −13𝑙 −3𝑙2

54 −13𝑙 156 22𝑙
13𝑙 −3𝑙2 22𝑙 2𝑙2

],  (3-2) 

 

𝐊𝑒 =
𝐸𝐼

𝑙3
[

12 −6𝑙 −12 −6𝑙
−6𝑙 4𝑙2 6𝑙 2𝑙2

−12 6𝑙 12 6𝑙
−6𝑙 2𝑙2 6𝑙 4𝑙2

], (3-3) 
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hydrodynamic damping, the dissipation models produce directly a modal damping 

factor which was calculated with a separate MATLAB program. In this case, the FE 

model was only used to compute the modal properties of the system (see Subsection 

3.2.2), and the model was fixed at the mudline to avoid having to choose a particular 

soil profile. In the second approach, relevant for soil damping, nonlinear springs and 

dashpots in parallel were included below the mudline to model the SSI which 

contributed to the damping and stiffness matrices in Equation (3-1). The overall modal 

damping in the system was then extracted through time history analysis. This is 

described in more detail in Subsection 3.2.3. 

3.2.2 Modal analysis 

Modal damping factors were related to the system properties by writing the equation of 

motion in modal coordinates. Although standard, this is briefly described here to 

introduce the notation used later. Pre-multiplying Equation (3-1) with the transpose of 

the 𝑖𝑡ℎ mode shape vector 𝚽𝑖
𝑇, the equation of motion becomes: 

where 𝑚̅𝑖 , 𝑘̅𝑖 , 𝑐𝑖̅  are modal mass, modal stiffness and modal damping coefficient 

respectively with regard to 𝑖𝑡ℎ mode, and 𝛼𝑖(𝑡) is the 𝑖𝑡ℎ modal coordinate. 𝑓𝑖̅(𝑡) is a 

generalised external force which can be written as 

Rearranging Equation (3-4) and introducing the modal frequency 𝜔𝑖, the equation of 

motion for 𝑖𝑡ℎ mode becomes 

In most cases, the contribution from higher modes is negligible, so the quantities of 

interest are the fundamental frequency 𝜔1, the corresponding damping ratio 𝜁1 and the 

first modal mass 𝑚̅1. Numerical tests using FAST or the MATLAB 2D FE model 

confirmed that the dynamic responses of the 5 MW OWT are dominated by its first 

bending mode. Higher modes are not substantially excited as their natural frequencies 

lie in a range where wind and wave loads have no significant spectral density, and they 

therefore do not contribute to the response. However, in terms of the damping in higher 

modes, the damping estimation methods proposed in this chapter would still be feasible, 

if modal parameters related to those modes (for aerodynamic and hydrodynamic 

 𝑚̅𝑖𝛼̈𝑖(𝑡) + 𝑐𝑖̅𝛼̇𝑖(𝑡) + 𝑘̅𝑖𝛼𝑖(𝑡) = 𝑓𝑖̅(𝑡), (3-4) 

 𝑓𝑖̅(𝑡) = 𝚽𝑖
𝑇𝐅(𝑡). (3-5) 

 
𝛼̈𝑖(𝑡) + 2𝜁𝑖𝜔𝑖𝛼̇𝑖(𝑡) + 𝜔𝑖

2𝛼𝑖(𝑡) =
𝚽𝑖
𝑇𝐅(𝑡)

𝑚̅
. (3-6) 



 

58 

damping) are used or the responses clearly include components due to higher modes. 

The mode shape used in this chapter was normalised at the tower top with 

corresponding modal stiffnesses and masses. If a 3D model of the turbine is available 

then the FA and SS modal properties might be slightly different as the two 

corresponding rotor moments of inertia associated are quite different. In this case, the 

relevant values for 𝑚̅1 and 𝜔1 should be used in the subsequent calculations.  

3.2.3 Time history analyses and damping identification 

Whenever the damping models did not produce damping ratios directly (i.e., the 

damping ratios were not calculated from equations based on modal analysis such as 

Equation (3-6)), time domain analyses were conducted by implementing the numerical 

integration scheme Hilber-Hughes-Taylor-𝛼 (HHT-𝛼) [121], which is a generalized 

version of the Newmark-𝛽 method. The nonlinear stiffness and damping coefficients of 

the soil springs were directly added to the stiffness and damping matrices at the 

beginning of each time step. The accuracy of this method was checked by comparing 

the model with a convergence algorithm (Newton‐Raphson method), and a good 

agreement was found.  

To extract damping factors from the simulated response time histories, a decaying 

oscillation was triggered in the system by assigning an initial displacement or 

acceleration to the tower top causing a transient response superimposed on the steady‐

state behaviour. A sonogram FFT technique was then used on the transient decay so 

that the damping of the first mode could be isolated [122]. In principle, this damping 

identification technique assumes that the underlying dissipation mechanism is linear. 

This is not quite the case for the soil model used here as the soil damping is changing 

over time due to the nonlinearity in soil stiffness and damping. However, given that the 

damping ratios were identified over the whole time series length, the shape of the 

decays obtained were close enough to those of a linear system to justify the use of the 

method. 

3.3 Aerodynamic damping 

3.3.1 Theoretical derivation of the aerodynamic force 

Aerodynamic damping is caused by the drag forces experienced by the oscillating rotor 

in the surrounding air flow. In the FE model, the rotor is represented by a lumped mass 
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at the top of the beam representing the tower. The motion of the entire rotor is assumed 

to be consistent with that of the beam tip in terms of translation but not rotation. In 

BEM theory, the resultant aerodynamic force applied to the hub can be obtained by 

introducing a relative wind speed experienced by each blade element and summing up 

the element thrust component. These resultant forces and relative speeds are different 

in the FA and SS direction so these two cases must be dealt with separately. 

Fore-aft aerodynamic damping 

It is assumed that the rotor is rotating in its own plane with the angular speed 𝜔 and 

exposed to a uniform steady incoming wind field of average speed 𝑉𝑊𝑥, as shown in 

Figure 3-2. When the rotor does not oscillate, the three blade elements at radius r from 

the hub, with thickness 𝑑𝑟 experience an elemental thrust 𝑑𝑇|𝑉𝑥: 

where 𝑉𝑥 is the axial component of the relative wind speed felt by the blade element; 

𝑁𝑏 is the number of blades, 𝜌𝑎 is the air density, 𝑐 is the chord length, 𝐶𝑛 = 𝐶𝑙cos𝜙 +

𝐶𝑑sin𝜙, with 𝐶𝑙/𝑑 the lift/drag coefficients and 𝜙 is the sum of the attack, pitch and 

twist angles. If the tower top moves in the fore-aft direction with a velocity 𝑥̇, the 

element now feels a relative velocity 𝑉𝑥𝑅𝑒𝑙: 

Assuming that 𝑥̇ is a small compared to 𝑉𝑥 and that it is the same throughout the rotor 

(the rotor remains parallel to itself), 𝑑𝑇|𝑉𝑥𝑅𝑒𝑙 , the thrust felt by the three blade elements 

under a relative speed of 𝑉𝑥𝑅𝑒𝑙, can be obtained from 𝑑𝑇|𝑉𝑥 through a first-order Taylor 

expansion: 

From this derivation, it is clear that the aerodynamic damping will come into the 

equation of motion of the tower through the viscous term 
𝑑(𝑑𝑇)

𝑑𝑉𝑥
𝑥̇. The objective is to 

calculate this term and obtain the resultant thrust. 

Assuming that 𝑑𝑇 is a function of 𝑉𝑥 
and 𝜙, and that 𝜙 is a function of 𝑉𝑥, 

𝑑(𝑑𝑇)

𝑑𝑉𝑥
 can be 

calculated as 

 
 𝑑𝑇|𝑉𝑥 =

1

2
𝜌𝑎𝑁𝑏

𝑉𝑥
2

𝑠𝑖𝑛2𝜙
𝑐𝐶𝑛𝑑𝑟, (3-7) 

   𝑉𝑥𝑅𝑒𝑙 = 𝑉𝑥 − 𝑥̇. (3-8) 

 
𝑑𝑇|𝑉𝑥𝑅𝑒𝑙 = 𝑑𝑇|𝑉𝑥 + 𝑑𝑇′|𝑉𝑥(𝑉𝑥𝑅𝑒𝑙 − 𝑉𝑥) = 𝑑𝑇|𝑉𝑥 −

𝑑(𝑑𝑇)

𝑑𝑉𝑥
𝑥̇. (3-9) 
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In Equation (3-10), 
𝜕(𝑑𝑇)

𝜕𝑉𝑥
 and 

𝜕(𝑑𝑇)

𝜕𝜙
 can be obtained by differentiating Equation (3-7): 

where 

 

Figure 3-2. Blade element forces for fore-aft vibration. 

 

 
 
𝑑(𝑑𝑇)

𝑑𝑉𝑥
=
𝜕(𝑑𝑇)

𝜕𝑉𝑥
+
𝜕(𝑑𝑇)

𝜕𝜙

𝑑𝜙

𝑑𝑉𝑥
 . (3-10) 

 
 
𝜕(𝑑𝑇)

𝜕𝑉𝑥
= 𝜌𝑎𝑁𝑎

𝑉𝑥
𝑠𝑖𝑛2𝜙

𝑐𝐶𝑛𝑑𝑟,  (3-11) 

 
𝜕(𝑑𝑇)

𝜕𝜙
=
1

2
𝜌𝑎𝑁𝑎𝑉𝑥

2

𝑑𝐶𝑛
𝑑𝜙

𝑠𝑖𝑛2𝜙 − 2𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙𝐶𝑛

𝑠𝑖𝑛4𝜙
𝑐𝑑𝑟, 

(3-12) 

 𝑑𝐶𝑛
𝑑𝜙

=
𝜕𝐶𝑙
𝜕𝜙

𝑐𝑜𝑠𝜙 +
𝜕𝐶𝑑
𝜕𝜙

𝑠𝑖𝑛𝜙 + 𝐶𝑑𝑐𝑜𝑠𝜙 − 𝐶𝑙𝑠𝑖𝑛𝜙,   (3-13) 

 𝑑𝐶𝑡
𝑑𝜙

=
𝜕𝐶𝑙
𝜕𝜙

𝑠𝑖𝑛𝜙 −
𝜕𝐶𝑑
𝜕𝜙

𝑐𝑜𝑠𝜙 + 𝐶𝑙𝑐𝑜𝑠𝜙 + 𝐶𝑑𝑠𝑖𝑛𝜙. (3-14) 
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To obtain an expression for 
𝑑𝜙

𝑑𝑉𝑥
, the following two equations can be used: 

Differentiating Equation (3-15) with regard to 𝑉𝑥 and Equation (3-16) with regard to 𝜙 

gives 

and 

Equations (3-11), (3-12) and (3-17) can be substituted into Equation (3-10), and the 

resultant 
𝑑(𝑑𝑇)

𝑑𝑉𝑥
 can be used to obtain 𝑑𝑇|𝑉𝑥𝑅𝑒𝑙  in Equation (3-9), which is the 

aerodynamic force acting on the rotor element. For simplicity, denote  

So, the thrust felt by the three blade elements is: 

The total thrust felt by the rotor is: 

where 𝑅 is the radius of the rotor. Equation (3-22) shows that the total thrust can be 

divided in two parts: the first part ∫ 𝑑𝑇|𝑉𝑥
𝑅

0
 represents the static force caused by the 

steady wind on a rigid structure; the second part −∫ (𝐴 + 𝐵)𝑑𝑟 ∙ 𝑥̇
𝑅

0
 is the aerodynamic 

damping force proportional to the oscillating velocity of the entire rotor. Applying the 

total thrust on the top of the tower, the turbine model can account for the aerodynamic 

 
𝑡𝑎𝑛𝜙 =

𝑉𝑥
𝜔𝑟(1 + 𝑎′)

,  (3-15) 

 
𝑎′ =

1

4𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙
𝜎𝐶𝑡

− 1
. 

(3-16) 

 𝑑𝜙

𝑑𝑉𝑥
=

1

𝜔𝑟 (
1 + 𝑎′
𝑐𝑜𝑠2𝜙

+
𝑑𝑎′
𝑑𝜙

𝑡𝑎𝑛𝜙)
, 

(3-17) 

 

 
𝑑𝑎′

𝑑𝜙
=
−4(2𝑐𝑜𝑠2𝜙𝐶𝑡 −

𝑑𝐶𝑡
𝑑𝜙

2𝜙)

𝜎𝐶𝑡
2 (
4𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙

𝜎𝐶𝑡
− 1)

2 . (3-18) 

 
 𝐴 ∙ 𝑑𝑟 =

𝜕(𝑑𝑇)

𝜕𝑉𝑥
, (3-19) 

 
𝐵 ∙ 𝑑𝑟 =

𝜕(𝑑𝑇)

𝜕𝜙

𝑑𝜙

𝑑𝑉𝑥
. (3-20) 

  𝑑𝑇|𝑉𝑥𝑅𝑒𝑙 = 𝑑𝑇|𝑉𝑥 − (𝐴 + 𝐵)𝑑𝑟 ∙ 𝑥̇. (3-21) 

 
𝐹𝑥 = ∫ 𝑑𝑇|𝑉𝑥𝑅𝑒𝑙

𝑅

0

= ∫ 𝑑𝑇|𝑉𝑥

𝑅

0

−∫ (𝐴 + 𝐵)𝑑𝑟 ∙ 𝑥̇
𝑅

0

, (3-22) 
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damping at a given rotor speed, wind speed and pitch angles without coupling the tower 

and the rotor models. The damping part ∫ (𝐴 + 𝐵)𝑑𝑟
𝑅

0
 can be used to calculate the 

damping ratio with the following equation: 

Side-side aerodynamic damping 

 

Figure 3-3. Blade element forces for side-side vibration. 

 

For the side-side direction a similar approach can be followed. Calling 𝑉𝑟 the speed 

component in the tangential direction, BEM theory gives 𝑉𝑟 = 𝜔𝑟(1 + 𝑎′) +

𝑉𝑊𝑦 cos(𝛾𝑖(𝑡)) [25] where 𝑉𝑊𝑦 is the inflow wind speed in the side-side direction and 

𝛾𝑖(𝑡) is the azimuth angle of the blade which is a function of time 𝑡 when the turbine is 

in operation. The force in the 𝑦 direction felt by an element at distance 𝑟 along the 𝑖𝑡ℎ 

blade is 

 

 𝜁𝐴𝑒𝑟𝑜_𝐹𝐴 =
∫ (𝐴 + 𝐵)𝑑𝑟
𝑅

0

2𝑚̅1𝜔1
.  (3-23) 

                   
𝑑𝑆|𝑉𝑟 =

1

2
𝜌𝑎

𝑉𝑟
2

𝑐𝑜𝑠2𝜙
𝑐𝐶𝑡 cos(𝛾𝑖(𝑡)) 𝑑𝑟, (3-24) 
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where 𝐶𝑡 = 𝐶𝑙𝑠𝑖𝑛𝜙 − 𝐶𝑑𝑐𝑜𝑠𝜙 and 𝛾𝑖(𝑡) is the azimuth angle of the blade, which is a 

function of time 𝑡 when the turbine is in operation. It is noted that here the elemental 

force in y direction is assumed to be a function of 𝑉𝑟 and 𝜙. If there is a small change 

in 𝑉𝑟 due to the overall tower top motion, the relative speed of the element in tangential 

direction 𝑉𝑟𝑅𝑒𝑙 becomes: 

In the following derivation we can always assume that 𝑉𝑊𝑦 = 0 since the turbine can 

be controlled and oriented so as to face the wind. Again a first order Taylor’s expansion 

of the side-side force gives the expression of 𝑑𝑆|𝑉𝑟𝑅𝑒𝑙  which is the tangential force felt 

by the blade element at a relative speed of 𝑉𝑟𝑅𝑒𝑙: 

Assuming that 𝑑𝑆 is a function of 𝑉𝑟  and 𝜙, and 𝜙 is a function of 𝑉𝑟 , 
𝑑(𝑑𝑆)

𝑑𝑉𝑟
 can be 

calculated as: 

𝜕(𝑑𝑆)

𝜕𝑉𝑟
 and 

𝜕(𝑑𝑆)

𝜕𝜙
 can be obtained by differentiating Equation (3-24): 

To obtain an expression for 
𝑑𝜙

𝑉𝑟
, the following two equations can be used: 

Differentiating Equation (3-30) with respect to 𝑉𝑟 and Equation (3-31) with respect to 

𝜙 results in 

  𝑉𝑟𝑅𝑒𝑙 = 𝑉𝑟 + (𝑉𝑊𝑦 + 𝑦̇) cos(𝛾𝑖(𝑡)).  (3-25)  

  𝑑𝑆|𝑉𝑟𝑅𝑒𝑙 = 𝑑𝑆|𝑉𝑟 + 𝑑𝑆′|𝑉𝑟 ∙ (𝑉𝑟𝑅𝑒𝑙 − 𝑉𝑟)

= 𝑑𝑆|𝑉𝑟 +
𝑑(𝑑𝑆)

𝑑𝑉𝑟
𝑦̇𝑐𝑜𝑠(𝛾𝑖(𝑡)). 

(3-26) 

 
 
𝑑(𝑑𝑆)

𝑑𝑉𝑟
=
𝜕(𝑑𝑆)

𝜕𝑉𝑟
+
𝜕(𝑑𝑆)

𝜕𝜙

𝑑𝜙

𝑑𝑉𝑟
. (3-27) 

 
 
𝜕(𝑑𝑆)

𝜕𝑉𝑟
= 𝜌𝑎

𝑉𝑟
cos2 𝜙

𝑐𝐶𝑡 cos(𝛾𝑖(𝑡)) 𝑑𝑟, (3-28) 

 

 
𝜕(𝑑𝑆)

𝜕𝜙
=
1

2
𝜌𝑎𝑉𝑟

2

𝑑𝐶𝑡
𝑑𝜙

𝑐𝑜𝑠2𝜙 + 2𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜙𝐶𝑡

𝑐𝑜𝑠4𝜙
𝑐𝑐𝑜𝑠(𝛾𝑖(𝑡))𝑑𝑟. 

(3-29) 

 
 𝑐𝑜𝑡𝜙 =

𝑉𝑟
𝑉𝑊𝑥(1 − 𝑎)

 , (3-30) 

 
 𝑎 =

1

4𝑠𝑖𝑛2𝜙
𝜎𝐶𝑛

+ 1
 . 

(3-31) 
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and 

Equations (3-28), (3-29) and (3-32) can be substituted into Equation (3-27), and the 

resultant 
𝑑(𝑑𝑆)

𝑑𝑉𝑟
 can be used to obtain 𝑑𝑆|𝑉𝑟𝑅𝑒𝑙  in Equation (3-26) which is the side-side 

aerodynamic force acting on the rotor element. For simplicity, denote 

So, the side-side aerodynamic force for one element is 

The side-side aerodynamic force felt by the ith blade is 

Following a similar procedure to that outlined in the fore-aft case, the total side-side 

aerodynamic force felt by the rotor can be expressed as: 

For a symmetric three-blade rotor on steady condition without vibration and inflow 

wind in side-side direction, the total force on side-side direction, ∑ ∫ 𝑑𝑆|𝑉𝑟𝑅𝑒𝑙
𝑅

0

𝑁𝑏
𝑖=1  is 

zero, so 𝑑𝐹𝑦 can be simplified to 

 
 
𝑑𝜙

𝑑𝑉𝑟
=

1

𝑉𝑊𝑥 (
1 − 𝑎
𝑠𝑖𝑛2𝜙

−
𝑑𝑎
𝑑𝜙

𝑐𝑜𝑡𝜙)
, 

(3-32) 

 
𝑑𝑎

𝑑𝜙
=
−4(𝑠𝑖𝑛2𝜙𝐶𝑛 −

𝑑𝐶𝑛
𝑑𝜙

𝑠𝑖𝑛2𝜙)

𝜎𝐶𝑛2 (
4𝑠𝑖𝑛2𝜙
𝜎𝐶𝑛

+ 1)
2 . (3-33) 

 
 𝐴′ cos(𝛾𝑖(𝑡)) ∙ 𝑑𝑟 =

𝜕(𝑑𝑆)

𝜕𝑉𝑟
, (3-34) 

 
𝐵′ cos(𝛾𝑖(𝑡)) ∙ 𝑑𝑟 =

𝜕 (𝑑𝑆)

𝜕𝜙

𝑑𝜙

𝑑𝑉𝑟
. (3-35) 

 𝑑𝑆|𝑉𝑟𝑅𝑒𝑙 = 𝑑𝑆|𝑉𝑟 + (𝐴
′ + 𝐵′)𝑑𝑟 ∙ 𝑦̇𝑐𝑜𝑠2(𝛾𝑖(𝑡)). (3-36) 

 
𝐹|𝑦𝑖 = ∫ 𝑑𝑆|𝑉𝑟𝑅𝑒𝑙

𝑅

0

 

= ∫ 𝑑𝑆|𝑉𝑟

𝑅

0

+∫ (𝐴′ + 𝐵′)𝑑𝑟
𝑅

0

∙ 𝑦̇𝑐𝑜𝑠2(𝛾𝑖(𝑡)). 

(3-37) 

 

𝐹𝑦 =∑∫ 𝑑𝑆|𝑉𝑟

𝑅

0

𝑁𝑏

𝑖=1

+∑∫ (𝐴′ + 𝐵′)𝑑𝑟
𝑅

0

∙ 𝑦̇𝑐𝑜𝑠2(𝛾𝑖(𝑡))

𝑁𝑏

𝑖=1

. (3-38) 

 
𝐹𝑦 =

𝑁𝑏
2
∫ (𝐴′ + 𝐵′)𝑑𝑟
𝑅

0

∙ 𝑦,̇  (3-39) 
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since ∑ ∫ 𝑑𝑆|𝑉𝑟
𝑅

0

𝑁𝑏
𝑖=1 = 0 and ∑ 𝑐𝑜𝑠2(𝛾𝑖(𝑡))

𝑁𝑏
𝑖=1 =

𝑁𝑏

2
. It should be noted that the term 

𝐴′ + 𝐵′ is negative. Using modal analysis, the side-side damping ratio can be expressed 

as: 

3.3.2 Aerodynamic damping comparison 

Equations (3-23) and (3-40) were implemented in MATLAB and coupled with the 

modal properties obtained from the FE model to calculate the aerodynamic damping 

ratios in the FA and SS directions. These results are compared to FAST simulations 

obtained with identical settings for verification purposes. For a range of steady wind 

speeds, FAST simulations were run, allowing the control module in FAST to alter the 

pitch angles and the rotational speed of the rotor to achieve the desired power output. 

Figure 3-4 shows the relationship obtained this way between rotor speed, pitch and 

wind speed for the same NREL 5 MW turbine.  

 

Figure 3-4. Steady state pitch angles and rotor speeds with different inflow wind 

speed in the FA direction. 

 

For each average wind speed, an initial displacement of 1 meter was applied to the 

tower top and FAST was used to calculate time series of the tower top response. From 

these time series damping ratios were estimated as described in Subsection 3.2.3. Figure 

3-5 shows the comparison of damping ratios in the FA and SS directions (respectively) 

 

𝜁𝐴𝑒𝑟𝑜_𝑆𝑆 =
−
𝑁𝑏
2 ∫

(𝐴′ + 𝐵′)𝑑𝑟
𝑅

0

2𝑚̅1𝜔1
 . (3-40) 
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using FAST and the proposed modelling approach for varying wind speeds. The FA 

and SS degrees of freedom were decoupled in the FAST simulations to mirror the BEM 

modelling assumptions. For example, when looking at the FA damping, the FA DOF 

was switched on but the SS DOF was switched off and vice-versa. In the FA direction, 

a good agreement is found between FAST and BEM results. Figure 3-5 confirms that 

for the turbine modelled here, FA aerodynamic damping increases from 5% at low wind 

speed to 7% at the rated speed after which it remains broadly constant. This range is in 

full agreement with the results reported in the literature. In the SS direction, the 

damping ratios obtained from BEM and FAST follow similar trends and the damping 

ratios are much lower than in the FA direction and they increase steadily from 0.2% to 

1.2-1.6% at the top wind speed in the operating range. BEM results appear 

systematically higher than those from FAST by a fraction of a percent. In summary, the 

proposed aerodynamic model based on BEM theory is adequate to model the 

aerodynamic damping in the FA direction and gives a reasonable estimate in the SS 

direction. However, as the model is planar it cannot capture more detailed effects 

related to coupling in the FA and SS motions which appear to affect the dependency of 

the damping ratio on the wind speed above the rated speed of the turbine. A more 

advanced aerodynamic damping model considering this coupling will be introduced in 

Chapters 4 and 5.  

  

Figure 3-5. Comparison of FA and SS damping between proposed method and FAST. 
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3.4 Hydrodynamic damping 

In this section hydrodynamic damping is quantified directly on the basis of classical 

theories and numerical simulations. As a simple but representative model, a flexible 

cantilevered cylinder immersed in water up to MSL is considered and subjected to wave 

excitation as shown in Figure 3-6. There are mainly two approaches to calculate the 

hydrodynamic forces resulting from the interaction between the cylinder and the 

seawater: (1) through Morison’s equation or (2) potential flow theory. Morison’s 

equation deals with the viscous effects when flow separation is significant, while 

potential flow theory accounts for the diffraction and radiation phenomena.  

The physics of the water-cylinder interaction can be very different depending on the 

value of key non-dimensional parameters. The most relevant ones here are the KC 

number, the Stokes parameter 𝛽𝑆𝑡𝑜𝑘𝑒𝑠  and the diffraction factor  𝐷/𝜆 where 𝜆 is the 

wavelength and 𝐷 the diameter of the pile. By definition, 𝐾𝐶 = 2𝜋𝑥̂/𝐷 where 𝑥̂ is the 

amplitude of the sideway motion, and 𝛽𝑆𝑡𝑜𝑘𝑒𝑠 = 𝐷2/𝜈𝑤𝑇 where 𝜈𝑤  is the kinematic 

viscosity of water and 𝑇  is the oscillation period. In the case of a large monopile 

submerged in water, the KC number is in the range of low values, around 10-2, while 

the Stokes parameter and the diffraction factor are relatively large. These parameter 

values indicate that the flow separation tends to be small but not insignificant while 

diffraction and radiation are the dominant phenomena [38]. This is supported by 

Johanning et al. [78], who found that the damping of an oscillating cylinder can be 

influenced by both the viscous damping and radiation damping caused by 

hydrodynamic forces. In this section, hydrodynamic damping is estimated by modelling 

the viscous (Morison’s equation) and wave (potential theory) contributions separately. 

In addition to the two dissipative effects mentioned above, the added mass of the 

volume of water moving together with the cylinder can influence the mass distribution 

of the monopile below mean sea level (MSL). The added mass tends to reduce the 

damping ratio, but this effect has been found to be negligible [17]. The low relative 

acceleration of the submerged tower (since this part is near the clamped end) results in 

a very small effect on the frequency and dynamic response of the whole system. 

Therefore, in the subsequent calculations, the modal mass does not account for the 

hydrodynamic added mass. 
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Both for viscous and radiation damping, the wave height and wave period were set to 

6 m and 10 s for all calculations and the wave velocities were calculated using linear 

wave theory [123]. This single combination of wave period and wave height was 

selected for simplicity, but is representative of the most common sea states [6]. 

 

Figure 3-6. Schematic of hydrodynamic forces on OWT substructure. 

 

3.4.1 Viscous damping 

For an oscillating cylinder excited by waves, Morison’s equation gives the forces on a 

strip of cylinder at depth 𝑧: 

where 𝑢𝑤 is the velocity of water particles, 𝑢𝑡𝑜𝑤𝑒𝑟 is the velocity of tower vibrating 

below the MSL, 𝐶𝑑 is the drag coefficient and 𝐶𝑎 is the added mass coefficient and 𝜌𝑤 

is the density of water. The damping term is quadratic to the relative velocity and 

influenced by the drag coefficient 𝐶𝑑. The value of 𝐶𝑑 is mainly dependent on the KC 

number and Stokes parameter ([124][125]). According to Johanning et al. [78], for low 

values of the KC number (up to 5) and high values of Stokes number (of the magnitude 

of 105), 𝐶𝑑 can be obtained by the following equation: 

𝐹𝑀𝑜𝑟𝑖𝑠𝑜𝑛 =
1

2
𝜌𝑤𝐷𝐶𝑑|𝑢̇𝑤 − 𝑣̇𝑡𝑜𝑤𝑒𝑟|(𝑢̇𝑤 − 𝑣̇𝑡𝑜𝑤𝑒𝑟)

+
𝜋

4
𝜌𝑤𝐷

2𝐶𝑎(𝑢̈𝑤 − 𝑣̈𝑡𝑜𝑤𝑒𝑟) +
𝜋

4
𝜌𝑤𝐷

2𝑢̈𝑤 . 

(3-41) 

 
𝐶𝑑 =

2 × 26.24

𝐾𝐶√𝛽𝑆𝑡𝑜𝑘𝑒𝑠
+ 0.08𝐾𝐶, (3-42) 
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where the second term in this equation can be neglected for even smaller KC numbers. 

As KC number depends on the vibration amplitude, 𝐶𝑑 could be made to vary along the 

depth of the cylinder according to Equation (3-42). This was tested and the damping 

did not show much sensitivity to 𝐶𝑑  so 𝐶𝑑 = 1 was used throughout, based on the 

velocity amplitude of the pile at MSL obtained from simulations of the 5 MW reference 

turbine and recommendations from past studies (e.g. [9]). 

The viscous drag term in Morison’s equation varies along the immersed cylinder as a 

result of the non-uniform distribution of vibration accelerations and velocities. 

Following [126] and after rearranging, the damping ratio for a single pile subjected to 

viscous drag can be written as: 

where 𝜎𝑟(𝑧) is the root mean square of the relative speed between the water wave 

particle and the pile (and other notation as defined in Subsection 3.2.2). For large OWTs, 

the velocity of the pile can be estimated by 2𝜋𝑥̂/𝑇~0.1 m/s. This is much smaller than 

the wave particle velocity (usually above 10 m/s), so 𝜎𝑟(𝑧) can be replaced by the root 

mean square of the particle velocity. Usually, the wave profile can be generated using 

specific spectra, so 𝜎𝑟(𝑧) could be calculated from these spectra. 

3.4.2 Radiation damping 

According to linear potential flow theory, when only wave radiation is considered (i.e. 

ignoring the fluid viscosity), wave-structure interaction produces two kinds of forces: 

those produced by the incoming wave field on a rigid cylinder and those due to the 

motion of the structure in a disturbance-free fluid. Only the latter gives rise to 

dissipation and can be expressed in Equation  (3-4) by 

Here only the damping force for the first tower mode is considered. The derivation for 

𝐶𝑅𝑎𝑑 is based on a well-established diffraction theory and can be expressed by: 

where 𝜎 is the frequency of radiated waves, 𝑘 is the wave number. 𝐺0(𝑘ℎ) and 𝑃1(𝑘𝑎) 

are functions of wave numbers, and more details can be found in [127]. Substituting 

 

𝜁𝐻𝑦𝑑𝑟𝑜,𝑉𝑖𝑠 =
∫

1
2𝜌𝑤𝐷𝐶𝑑

√8
𝜋 𝜎𝑟

(𝑧)𝚽1
2(𝑧)𝑑𝑧

0

−ℎ

2𝑚̅1𝜔1
, 

(3-43) 

 
𝑓1̅(𝑡) = −∫ 𝐶𝑅𝑎𝑑𝑑𝑧

0

−ℎ

∙ 𝛼̇1(𝑡). (3-44) 

 𝐶𝑅𝑎𝑑 = 𝜌𝑤𝜋𝑎𝜎ℎ𝐺0(𝑘ℎ)𝑃1(𝑘𝑎)𝑐𝑜𝑠ℎ(𝑘(𝑧 + ℎ))𝚽1(𝑧). (3-45) 
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Equation (3-45) into Equation (3-4) and after rearranging, the motion equation for the 

first tower mode is written as 

The radiation damping ratio can be obtained by 

3.4.3 Hydrodynamic damping comparison 

For the model of the 5 MW reference OWT considered here, the viscous damping ratio 

calculated by Equation (3-43) is 0.0006%, while the radiation damping ratio according 

to Equation (3-47) is 0.007%, giving a total hydrodynamic damping ratio of 0.0076%. 

This result is much smaller than what has been reported in the literature such as [9] 

which suggested the viscous damping ratio around 0.004% and the radiation damping 

ratio 0.12%. This difference is explained by the size of the structure which is much 

larger in our case than those considered in the literature. In [127] from which the 0.12% 

value for radiation damping value seems to originate, the diameter of the pile considered 

was 1.2 m (4 ft) and the structure was much shorter above MSL (so the dynamics of the 

structures were very different). When these dimensions are used in the equations 

presented in this section, 0.11% is obtained confirming the soundness of the calculation 

and the effect of the size. To explore this further, plausible dimensions for tower height, 

water depth and pile thickness (based on the turbine scaling equations proposed in [128]) 

were estimated so that damping values could be calculated for various turbine sizes. 

The results are shown in (3-7), confirming that both viscous and radiation damping are 

always very small for large diameter rotors. 

The conclusion from these models is that hydrodynamic damping in OWTs is much 

smaller than usually assumed (such as the values recommended by GL [80]) and for all 

practical purposes could be safely ignored. 

 
𝑚̅1𝛼̈1(𝑡) + (𝑐1̅ +∫ 𝐶𝑅𝑎𝑑𝑑𝑧

0

−ℎ

) 𝛼̇1(𝑡) + 𝑘̅1𝛼1(𝑡) = 0. (3-46) 

 
𝜁𝐻𝑦𝑑𝑟𝑜,𝑅𝑎𝑑 =

∫ 𝐶𝑅𝑎𝑑𝑑𝑧
0

−ℎ

2𝜔1𝑚̅1
. (3-47) 
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Figure 3-7. Variation of viscous and radiation damping ratios for different turbine 

sizes. 

 

3.5 Soil damping 

The soil surrounding the monopile foundation can dissipate vibrational energy in two 

ways: (1) the motion of the pile can cause waves to radiate away from the pile into the 

ground (radiation damping), and (2) hysteretic material damping can occur as the soil 

is being cyclically stressed ([13][56]). Radiation damping depends on the frequency 𝜔 

of the external excitation. The non-dimensional parameter 𝑎0 = 𝜔𝐷/𝑉𝑠 can be used to 

assess the significance of the wave phenomenon. It compares the order of magnitude of 

the pile lateral velocity and the shear wave velocity of the soil stratum 𝑉𝑠. The shear 

wave velocity ranges from 150 m/s to 300 m/s depending on the soil type (see Table 

3-3 below). For a monopile-supported OWT, the forces experienced by the soil will 

usually have a low frequency around the first natural frequency of the wind turbine 

system (less than 1 Hz and 0.25-0.28 Hz for the OWT used in this chapter) as the 

response of the system is dominated by the first vibration mode. In these conditions, 𝑎0 

can be expected to be of the order of 10-2, indicating that the behaviour of the soil is 

largely quasi-static so that radiation damping for a monopile-supported OWT can be 

ignored [83]. 

3.5.1 Soil model 

Stiffness and damping coefficients for soil springs and dashpots 
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Soil-pile interaction can be modelled using different approaches such as linear or non-

linear Winkler’s springs or finite element solid modelling. For design purposes, p-y 

curves, which capture the nonlinear displacement-force relationship in the soil, are 

frequently used. In the present study, a combination of classic p-y curves and the study 

by Gazetas and Dobry [83] is adopted. The soil is represented by a series of horizontal 

springs and dashpots in parallel from the mudline to bottom of the pile. The stiffness of 

the springs was obtained from p-y curves while the dashpot coefficients representing 

the soil material damping were calculated following Gazetas and Dobry [83]: 

where 𝛽𝑚 represents the material damping ratio, 𝑘 is the secant modulus defined as the 

ratio between the static local soil reaction for a unit length of pile and the corresponding 

local pile deflection, 𝜔 is the circular frequency of the excitation at the pile head. The 

magnitude of material damping ratio for a soil stratum is related to the shear strain in 

the soil and can be influenced by the properties of soil such as plastic index and mean 

effective confining stress. Darendeli [85] proposed an analytical model to calculate 

material damping curves for various values of the over consolidation ratio (OCR) and 

plasticity index (PI). This study adopts this method and uses the coefficients for sand 

and clay from Southern California provided by Darendeli as the parameters he uses are 

somewhat idiosyncratic and not available from standard data tables. However 

Darendeli’s data as well as other experimental studies in soil damping [84] show that 

the curves produced using his formulae are representative of many soil types.  

Figure 3-8 shows the relationship between the material damping ratio and soil shear 

strain for clay in which the damping depends on the PI to some extent, so various curves 

were plotted for different PI values. The PI values used for the clay soils is shown in 

Table 3-2. Sandy soils (not shown) have a very similar relationship between material 

damping ratio and shear strain but their PI should be 0. Soil material damping also 

depends slightly on the OCR but in the context of offshore wind turbines, OCR should 

be 1 and this value was used for all soil types considered in this study. 

 
𝑐𝑚 = 2𝑘

𝛽𝑚
𝜔
 , (3-48)    
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Figure 3-8. Relationship between material damping ratio and shear strain in clay for 

different PI values.  

 

Following [83], the shear strain 𝛾𝑒 can be determined by 

where 𝑦𝐴𝑚𝑝(𝑧) is the oscillating amplitude of the pile in the horizontal direction, 𝜈 is 

Poisson’s ratio for the soil stratum, and 𝐷 is the diameter of the pile. 𝑘 is determined 

from the non-linear p-y curves: 

The soil around a wind turbine experiences cyclic strain on top of a constant strain 

caused by the mean wind thrust. Whether the total amplitude or simply the dynamic 

component should be used for 𝑦𝐴𝑚𝑝(𝑧) is not obvious. In this study, the amplitude 

𝑦𝐴𝑚𝑝 used to calculate the strain (and subsequently the damping ratio) was half the 

range of oscillation. An alternative method commonly used in earthquake engineering 

[84] is to evaluate the damping constant using 65% of the maximum strain reached in 

the soil strata during a response time history. Earthquake ground motion does not 

usually have a static component so it is still not clear how to implement this rule in the 

 
𝛾𝑒 =

1 + 𝜈

2.5𝐷
𝑦𝐴𝑚𝑝(𝑧, 𝑡), (3-49)    

 
𝑘 =

𝑝(𝑧, 𝑡)

𝑦(𝑧, 𝑡)
. (3-50)    
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context of offshore wind, but this was also tested and found to give very similar results 

to those obtained using Equation (3-49).  

Soil properties and p-y curves 

Here six soil profiles are selected to investigate the soil damping contribution. Profiles 

1-4 are single material soils made of medium clay, stiff clay, medium sand and dense 

sand, respectively. The low stiffness of soft clay and loose sand would significantly 

reduce the stiffness of the entire system and lead to unrealistic designs, so they were 

excluded as monolayered soils. Profiles 5 and 6 are layered soil profiles combining a 

mix of clay and sandy soils respectively. The layered clay profile is a combination of 

stiff clay, medium clay and soft clay from bottom to pile head with the height of 14m, 

14m and 6m respectively. The layered sandy profile is a combination of loose sand, 

medium sand and dense sand from bottom to pile head with the height of 14m, 14m and 

6m respectively, which is a typical layered profile based on the data provided in 

Appendix B in [129]. The different soil profiles used are summarised in Table 3-2 while 

the properties of the different soil types are listed in Table 3-3. 

Table 3-2. Soil profiles definition. 

Profile 1 Profile 2 Profile 3 Profile 4 Profile 5 Profile 6 

medium 

clay 

stiff clay medium 

sand 

dense 

sand 

28m-34m  Soft clay 

14m-28m  Medium clay 

0m-14m   Stiff clay 

28m-34m  Loose sand 

14m-28m  Medium sand 

0m-14m   Dense sand 

PI=20 PI=20 PI=0 PI=0 PI=20 PI=0 

OCR=1 OCR=1 OCR=1 OCR=1 OCR=1 OCR=1 

 

The soil-structure interaction effect was modelled using static or cyclic p-y curves 

recommended in DNV 2014 [22] and API standards [53], and the steps to establish the 

p-y curves are detailed in Reese and Van Impe [54]. Although it would seem more 

sensible to use the cyclic curves to represent the soil-structure interaction of an OWT 

under long-term excitations, both static and cyclic p-y curves were used to allow for 

comparison with published results. Figure 3-9 shows the static and cyclic p-y curves 

for each soil types at the depth 𝑧 = −8.5 𝑚 from the mudline. These figures illustrate 

that, whether static or cyclic p-y curves are used, the reaction forces from the soil 

plateau vary quickly in sandy soils as the pile moves sideway. By contrast, the 
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behaviour of clay soils is more complex and variable as the lateral displacement of the 

pile increases. The cyclic p-y curves are recognisably similar to the static ones except 

that much larger forces can be reached in the cyclic case. 

Table 3-3. Mechanical properties of the soil profiles used in the model. 

 Soil  

type 

Density 

 𝛾 

(1×103 

kg/m3) 

Undrained 

shear 

strength 

𝑐𝑢  

(kPa) 

Poisson’s 

ratio 

𝜈  

Friction 

angle 

𝜑  

Shear 

modulus 

𝐺𝑠  

(MPa) 

Shear 

wave 

velocity  

𝑉𝑠  

(m/s) 

Elastic 

Modulus 

𝐸𝑠  

(MPa) 

Clay Soft  

Clay 

1.75 30 0.45 - 43 158 15 

Medium 

Clay 

1.90 80 0.45 - 87 214 30 

Stiff  

Clay 

2.00 125 0.45 - 145 269 50 

Sand Loose  

Sand 

1.75 - 0.30 33º 47 164 18 

Medium 

Sand 

1.90 - 0.30 36º 109 240 42 

Dense 

Sand 

2.07 - 0.30 38º 182 297 70 

 

In this section, the finite element model of the OWT included soil springs and dashpots, 

with properties obtained using Equations (3-48) and (3-50) respectively. As the 

response of the soil is strongly strain-dependent, the model was subjected to forces of 

increasing intensity. This was implemented using thrust time series obtained from 

FAST with mean speed increasing from 5 m/s to 25 m/s by 1 m/s increments. To avoid 

the stochastic component of the wind adding noise to the response of the system and 

interfering with the damping calculation, these time series were averaged, and the 

average was used as a static force applied at the tower top in the finite element model. 

Then the soil damping was calculated from the vibration decay following the 

application of 1m initial displacement, consistent with the response of the system to the 

given force. For these simulations, the control system was kept on in FAST. This 

enables blade pitching and causes a decrease in aerodynamic force in the FA direction 

for wind speeds above the rated speed (12 m/s in this case). 
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(a) 

 

(b) 

Figure 3-9. Static (a) and cyclic (b) p-y curves for different soil types. 

 

3.5.2 Soil damping results and discussion 

Figure 3-10 shows the variation of the damping ratios in the various soils for mean wind 

speeds ranging from 5 m/s to 25 m/s. The plots in Figure 3-10 all show a similar 

behaviour. Soil damping ratios increase from 0.2%-0.3% at low wind speeds up to 
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around 1.3% at the rated wind speed 12 m/s. Thereafter it decreases back to 0.3%-0.6%. 

This range is in agreement with the published results reported in Subsection 2.4.3 and 

our results confirm that soil damping is quite variable and can become quite significant 

for some tower amplitudes.  

  

(a) (b) 

  

(c) (d) 

Figure 3-10. Soil damping in terms of wind speed for various soil profiles and p-y 

curves. (a) shows the clay profiles using static p-y curves; (b) shows the clay profiles 

using cyclic p-y curves; (c) shows the sand profiles using static p-y curves; (d) shows 

the sand profiles using cyclic p-y curves. 

 

To understand these results better, Figure 3-11(a) shows the average thrust for varying 

wind speed and Figure 3-11(b) shows the modal stiffnesses for the clay soils obtained 

with static p-y curves. The behaviour for sands is very similar, so the corresponding 

5 10 15 20 25 
Wind Velocity (m/s) 

0 

0.5 

1 

1.5 
Medium Clay 

Stiff Clay 
Layered Clay Strata 

D
a
m

p
in

g
 R

a
ti
o
 (

%
) 

5 10 15 20 25 
Wind Velocity (m/s) 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

D
a
m

p
in

g
 R

a
ti
o
 (

%
) 

Medium Clay 
Stiff Clay 
Layered Clay Strata 

5 10 15 20 25 

Wind Velocity (m/s) 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

D
a
m

p
in

g
 R

a
ti
o
 (

%
) 

Medium Clay 
Stiff Clay 
Layered Clay Strata 

5 10 15 20 25 

Wind Velocity (m/s) 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

D
a
m

p
in

g
 R

a
ti
o
 (

%
) 

Medium Clay 
Stiff Clay 
Layered Clay Strata 



 

78 

graph is not shown. Figure 3-11(a) shows that up to the rated wind speed, the thrust 

increases. Then the control system starts feathering the blades so that the overall thrust 

decreases despite increasing wind speeds. It can be seen that the shape of the damping 

curves in Figure 3-10 follow closely that of the thrust. This phenomenon is a 

consequence of two concomitant mechanisms: (1) the non-linear softening of the soil 

as described by p-y curves (Figure 3-9); (2) the increase in soil material damping with 

increasing strain described by Figure 3-8. 

When the deflection caused by the wind speed increases beyond critical values (the 

abrupt change in slope in the p-y curves), the soil stiffness decreases sharply, which 

reduces the stiffness of the whole system. This stiffness reduction leads to an increase 

in the soil damping contribution. The drop in stiffness in Figure 3-11(b) occurs when 

the wind speed is around the rated wind speed. This is when the largest rotor thrust and 

thus the largest displacement amplitude is experienced. According to Equation (3-48), 

the increased displacement magnitude also results in increased soil material damping 

ratio. As the constant of each soil dashpot increases the overall soil damping is further 

increased. 

  

(a) (b) 

Figure 3-11. (a) Wind speed-thrust at tower top relationship (b) Modal stiffness (no 

physical unit) in terms of wind speed using static p-y curve soil model. 

 

It should be noted that the above observations are based on the assumption that the soil 

behaviour is well described by p-y curves. Some soils actually stiffen due to cyclic 
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loading (ratchetting behaviour) and in these cases the dependence of soil damping on 

the wind speed may be very different. This should be the subject of further study. 

3.6 Conclusion 

This chapter proposed a series of first-principle physics-based models that allowed the 

quantification of aerodynamic, hydrodynamic, and soil damping separately for 

monopile supported OWTs. The dissipation models were based on a bespoke finite 

element model of the system based on the 5 MW NREL offshore wind turbine. The 

damping results in this study are for the first FA or SS mode, which dominate the OWT 

dynamic response. These damping values can be easily implemented in a FE model at 

the design stage either specifying the damping ratio for the first mode or by inputting 

Rayleigh damping coefficients so that the first mode damping reaches the desired level.  

Results showed that aerodynamic damping is in the range of 5-7% in the FA direction 

and 0.2-1.6% in the SS direction depending on the wind speed. 

The viscous and radiation components of hydrodynamics damping were modelled from 

first principle. Results showed that for the current size of offshore wind turbines, 

hydrodynamic damping is much lower than what is usually quoted in the literature and 

for all practical purposes could be ignored. 

 

Figure 3-12. Overall FA damping ratio in a 5 MW offshore wind turbine in terms of 

wind speed for two representative soil profiles. 

 

Soil damping was modelled in the form of dissipative springs distributed along the 

embedded length of the pile. The properties of these springs are based on relevant p-y 
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curves, which are nonlinear and as such their overall dissipative effect depends on the 

amplitude of vibration. Soil damping was calculated for different types of soils and 

wind speeds. Results showed that 𝜁𝑠𝑜𝑖𝑙  ranges from 0.2% to 1.3% with a strong 

dependence on the stiffness of the system. As the thrust increases, the springs weaken 

so the amplitude increases relatively. This increases the material damping and decreases 

the overall stiffness of the system, thereby increasing the damping ratio. This effect has 

not previously been studied systematically. 

Figure 3-12 combines the results from the various models by adding up the contribution 

from various damping sources in the FA direction. 𝜁𝑠𝑡𝑟𝑢𝑐𝑡 = 1%  was used. The 

similarity between the FA damping curves in Figure 3-12  and Figure 3-5 shows that 

the overall damping is dominated by the aerodynamic component. It increases sharply 

from 6% to 9% up to the rated wind speed and then decreases slowly down to 8%.  

Outside the operational range of the turbine, the aerodynamic damping drops 

dramatically so that the overall damping is dominated by the structural and soil 

components. Therefore, a reasonable range for the total damping in a non-operating 

turbine could be between 1% and 1.5%. 

For the purpose of calculating the dynamic response of the system to design a currently 

non-existing turbine, it is important to obtain damping values in the correct range, 

bearing in mind that lower damping values will lead to safe but potentially over-

conservative designs. By testing published values against simple but robust models, the 

study in this chapter can hopefully contribute to more optimal OWT designs. 
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Chapter 4 - Aerodynamic Damping Model Considering 

Aerodynamic Coupling 

 

4.1 Introduction 

As reviewed in Subsection 2.2.2, the available studies on decoupled models for 

tower/rotor interaction and aerodynamic damping mainly concentrate on aerodynamic 

damping in the FA direction and do not take into account the interaction between FA 

and SS motions. In Section 3.3, the derivation of aerodynamic damping ratios in the FA 

and SS direction was still based on the assumption that the aerodynamic forces at the 

tower top in one direction is only related to the perturbation of velocities seen by blade 

elements in that direction. However, an operating wind turbine vibrates in both 

directions simultaneously and its FA and SS motions are coupled. This coupling can be 

observed from FAST simulations, which will be shown in Section 4.2. In this chapter, 

we investigate in detail the nature of this coupling using a BEM-based derivation of the 

aerodynamic damping, and show that it can be represented through a non-standard 

aerodynamic damping matrix. This allows the wind-rotor interaction to be reduced to 

static forces applied at the tower top, with additional terms in the aerodynamic damping 

matrix proportional to the tower top velocities. The term “aerodynamic damping matrix” 

has been used to describe the aerodynamic damping for blade vibrations in the report 

by Petersen et al. [130], which implemented a similar force linearisation method. 

However, this chapter discusses the overall aerodynamic damping in tower vibration 

caused by the interaction between the air and the rotor. In the field of aircraft 

aeroelasticity, “aerodynamic influence coefficients” [131] relates the lift on the aerofoil 

element to its angle of incidence and the dynamic pressure and this phrase has similar 

meaning to “aerodynamic damping matrix” introduced in this chapter. Aerodynamic 

damping matrix can be regarded as a special case of the aerodynamics influence 

coefficient. 

This aerodynamic model was implemented as part of the finite element model of the 

tower already described and was successfully verified against the fully-coupled 

modelling package FAST. The damping matrix components explain key features of the 

coupling between FA and SS vibrations of the wind turbine. This coupling causes 

energy transfers between the two directions, complicating aerodynamic damping 
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identification. The aerodynamic damping matrix offers a new method to describe the 

aerodynamic damping of wind turbines and is potentially better than the conventional 

description of the aerodynamic damping by one or two modal damping ratios (FA and 

SS). 

4.2 Problem statement 

The coupling between FA and SS motions is illustrated in this section using simulation 

results from a fully coupled wind turbine model of the NREL reference three-blade 

onshore wind turbine available in FAST [119]. An onshore wind turbine is used here 

instead of offshore wind turbines since this chapter only describes wind turbine 

aerodynamics. The modifications and settings used in these simulations will be 

described in Section 4.5, but they do not affect the general dynamic behaviour of the 

wind turbine highlighted here. The main properties of this wind turbine model are listed 

in Table 4-1. 

Table 4-1. Basic properties of the modified NREL 5 MW reference onshore wind 

turbine. 

Rotor Diameter, 𝑅 126 m 

Hub Height from MSL 87.6 m 

Tower Diameter, 𝐷 3.87-6.00 m 

Tower Thickness, 𝑡 19-27 mm 

Lumped Mass at Top 3.5×105 kg 

Rated Wind Speed 12.1 m/s 

Natural Frequency 0.34 Hz 

 

Figure 4-1 shows the tower top FA (a) and SS (b) displacements time histories from the 

FAST software. These responses were triggered by a 1 m initial displacement in the FA 

direction of the tower top while the turbine is operational at a steady-state wind speed 

of 20 m/s. No initial displacement was given in the SS direction. Two types of dynamic 

responses were considered. For one case, the system was free to move both in the FA 

and SS directions (solid lines). For the second case (dashed lines), the system was only 

permitted to move in the FA direction, considering the SS DOF as rigid. The dynamics 
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of the tower in FAST is modelled as the superposition of the first two SS and FA 

bending modes, so it is possible to disable a particular DOF to prevent the 

corresponding motion. The wind speed, rotor rotation speed (12.1 rpm) and pitch angles 

(17.6°) of the blades were kept constant at the nominal values during the simulation. 

  

(a) (b) 

Figure 4-1. Tower top displacements in the FA (a) and SS (b) directions simulated 

using FAST with SS direction free (solid) or kept rigid (dashed). 

 

Figure 4-1(a) shows that the SS motion influences the FA motion damping, as can be 

seen from the slower FA response decay in the solid curve (SS free) compared to the 

dashed curve (SS rigid). Such an apparent change in damping in the FA direction would 

have a significant effect for fatigue analyses. Figure 4-1(b) shows that even without any 

initial displacement in the SS direction, a sideways response at the tower top is excited, 

growing initially as energy is transferred from the FA direction, before gradually 

decreasing. The SS motion is caused by the aerodynamic torque corresponding to the 

rotor rotation in addition to the forces related to the FA motion. This coupling effect is 

due to the aerodynamic forces on the rotor in the two directions. When the tower bends, 

the rotor plane moves and is no longer perpendicular to the incoming wind. This 

phenomenon causes unbalanced resultant forces in the SS and vertical directions as well 

as unbalanced moments, which cause a static deflection and oscillations. Conversely, 

the SS motion affects the FA motion and causes the damping to undergo an apparent 

change over time: the FA amplitude reduces at a fast rate initially but then decays at a 

much slower rate after 25 s (in the case shown in Figure 4-1, SS free), leading to very 
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different apparent damping values depending on which part of the curve is analysed. 

The details of this coupling depend on the inflow wind speed, pitch angle, and rotor 

speed, and for different combinations of these parameters, the vibration response may 

look slightly different than demonstrated in Figure 4-1. The study in this chapter was 

motivated by these observations. The intention was to propose an efficient methodology 

allowing the dynamics of the coupled system to be modelled without the requirement 

of unsteady aerodynamic simulations and to better characterize and understand how the 

aerodynamic damping affects the behaviour of wind turbines.  

4.3 Description of 3D finite element model 

Similar to the 2D FE model described in Section 3.2, a 3D FE model was coded in 

MATALB based on the 5 MW reference onshore turbine whose basic properties are 

described in Table 4-1. The tower was again modelled using 11 Euler-Bernoulli beam 

elements of equal length. However, unlike the model in Section 3.2 which only allows 

nodes to move in one horizontal direction, each node in this model can translate and 

rotate in two perpendicular directions, 𝑥 (FA) and 𝑦 (SS), as shown in Figure 4-2(a). 

𝜃𝑥 and 𝜃𝑦 denote the rotations about the 𝑥 and 𝑦 axes respectively. The DOFs related 

to vertical displacement and the rotation about the 𝑧  axis are ignored due to their 

negligible magnitudes.  

  

(a)                           (b) 

Figure 4-2. Schematics of the wind turbine (a) and the numerical model (b) 
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The equations of motion for the 3D model can also be expressed in matrix format 

according Equation (3-1). The elemental mass and stiffness matrices denoted by 𝐌𝑒 

and 𝐊𝑒 are expressed by 

 and 

where 𝑙 is the length of element, 𝐴 is the section area, 𝐸 is the Young’s modulus, 𝐼𝑥 is 

the second moment of area to 𝑥 axis, while 𝐼𝑦 is the second moment of area to 𝑦 axis 

[132]. The external force vector 𝐅𝑒 of one beam element corresponding to the two end 

nodes 1 and 2 is expressed by 

where 𝐹𝑥
1  is the external force in the 𝑥  direction applied to the node 1, 𝑀𝑥

1  is the 

moment about the 𝑥  axis applied to the node 1, etc. The displacement 𝐮𝑒  for this 

element is 

where 𝑥1 is the displacement of the node 1 in the 𝑥 direction, 𝜃𝑥1 is the rotation of node 

1 about the 𝑥 axis, etc. 

The lumped mass representing the RNA was added to the relevant terms in the mass 

matrix for the top node of the tower. The moments of inertia of the RNA were set to 

 𝐌𝑒 = 

𝑚

420

[
 
 
 
 
 
 
 
156 0 0 22𝑙 54 0 0 −13𝑙
0 156 −22𝑙 0 0 54 13𝑙 0
0 −22𝑙 4𝑙2 0 0 −13𝑙 −3𝑙2 0
22𝑙 0 0 4𝑙2 13𝑙 0 0 −3𝑙2

54 0 0 13𝑙 156 0 0 −22𝑙
0 54 −13𝑙 0 0 156 22𝑙 0
0 13𝑙 −3𝑙2 0 0 22𝑙 4𝑙2 0

−13𝑙 0 0 −3𝑙2 −22𝑙 0 0 4𝑙2 ]
 
 
 
 
 
 
 

,  

 

 (4-1) 

 𝐊𝑒 = 

1

𝑙3

[
 
 
 
 
 
 
 
 
12𝐸𝐼𝑦 0 0 6𝐸𝐼𝑦𝑙 −12𝐸𝐼𝑦 0 0 6𝐸𝐼𝑦𝑙

0 12𝐸𝐼𝑥 −6𝐸𝐼𝑥𝑙 0 0 −12𝐸𝐼𝑥 −6𝐸𝐼𝑥𝑙 0

0 −6𝐸𝐼𝑥𝑙 4𝐸𝐼𝑥𝑙
2 0 0 6𝐸𝐼𝑥𝑙 2𝐸𝐼𝑥𝑙

2 0

6𝐸𝐼𝑦𝑙 0 0 4𝐸𝐼𝑦𝑙
2 −6𝐸𝐼𝑦𝑙 0 0 2𝐸𝐼𝑦𝑙

2

−12𝐸𝐼𝑦 0 0 −6𝐸𝐼𝑦𝑙 12𝐸𝐼𝑦 0 0 −6𝐸𝐼𝑦𝑙

0 −12𝐸𝐼𝑥 6𝐸𝐼𝑥𝑙 0 0 12𝐸𝐼𝑥 6𝐸𝐼𝑥𝑙 0

0 −6𝐸𝐼𝑥𝑙 2𝐸𝐼𝑥𝑙
2 0 0 6𝐸𝐼𝑥𝑙 4𝐸𝐼𝑥𝑙

2 0

6𝐸𝐼𝑦𝑙 0 0 2𝐸𝐼𝑦𝑙
2 −6𝐸𝐼𝑦𝑙 0 0 4𝐸𝐼𝑦𝑙

2 ]
 
 
 
 
 
 
 
 

, 

 

(4-2) 

 𝐅𝑒 = [𝐹𝑥
1 𝐹𝑦

2 𝑀𝑥
1 𝑀𝑦

1 𝐹𝑥
2 𝐹𝑦

2 𝑀𝑥
2 𝑀𝑦

2]
𝑇
. (4-3) 

 𝐮𝑒 = [𝑥1 𝑦1 𝜃𝑥1 𝜃𝑦1 𝑥2 𝑦2 𝜃𝑥2 𝜃𝑦2]𝑇 . (4-4) 
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zero to allow verification of the model against FAST, as will be discussed in Subsection 

4.5.1. The mass and stiffness matrices can be easily formed for each element given the 

material and geometric properties of the tower. Structural damping could be added as 

Rayleigh damping to this model, but zero structural damping was assumed throughout 

this chapter so that the aerodynamic damping is the only damping source. The tower is 

assumed clamped at its bottom. The time integration algorithm used to solve the 

equation of motions in Equation (3-1) in the time domain was HHT-𝛼 method as in 

Chapter 3. 

4.4 Derivation of the aerodynamic damping matrix 

4.4.1 Formation of basic equations for aerodynamic loads 

Key features of the dynamic response of a wind turbine tower can be captured by 

modelling it as a cantilevered beam with a lumped mass connected to the free end [6]. 

The lumped mass at the top represents the RNA mass and the beam accounts for the 

wind turbine tower as shown in Figure 4-2(b). During normal operation, the rotor is 

subjected to the loads from the inflow wind, and the whole wind turbine is excited and 

vibrates. Excluding non-aerodynamic sources of dissipation, the vibration of the tower 

is damped by the wind-structure interaction – mainly the wind-rotor interaction, 

although the wind-tower interaction also has a small contribution. As the tower is 

axisymmetric, motion in the two directions is not coupled through a stiffness 

mechanism and the results confirm this. In the model presented in Section 4.3, the 

aerodynamic loads are separated into two parts: the aerodynamic load on a rigid 

tower/rotor and the aerodynamic damping force captured through a viscous damping 

matrix. To simplify the tower-rotor interaction and limit the number of variables 

necessary to describe the system, some modelling assumptions were made: 

1. The connections between the tower top (or yaw bearing in FAST), the nacelle, 

and the rotor are rigid. This means that the displacement, velocity and 

acceleration of the rotor centre can be described as a combination of the 

translational and rotation of the tower top. It is assumed that the permanent shaft 

tilt is zero.  

2. The rotor blades are rigid, so blade flapwise and edgewise vibrations are not 

considered. This means that the relative wind speed experienced by each blade 
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element is only influenced by the inflow wind speed, the RNA linear/angular 

velocity and the rotation speed of the rotor. 

3. The RNA velocity is much smaller than the inflow wind speed and the speed of 

the blade elements due to rotor rotation. This allows the aerodynamic forces to 

be linearised using a first order Taylor expansion. For the FAST 5MW NREL 

onshore wind turbine, when the mean wind speed is near the cut-in speed of 3 

m/s with 10% turbulence intensity, the magnitude of the tower top velocity is 

around 0.05 m/s and the rotation speed of the blade root can reach 1.8 m/s with 

the cut-in 6.9 rpm. For higher mean wind speeds, the RNA velocity becomes 

relatively smaller, so the condition is generally satisfied when the wind turbine 

is in operation. 

In BEM theory, the calculated aerodynamic loads are related to the relative wind speeds 

experienced by each blade element. Therefore, it is necessary to determine the velocity 

of each blade element caused by the combined translation and rotation of the rotor. It is 

assumed that the rotor is facing an inflow wind of steady velocity 𝑉0 pointing in the 

positive direction of the 𝑥 axis, as indicated in Figure 4-3. The rotor rotates positively 

clockwise around the 𝑥 axis at a speed 𝜔 so that a blade element at distance 𝑟 along the 

blade length moves at a speed 𝑉𝑟 = 𝜔𝑟 perpendicular to the blade and tangential to the 

circle described by the blade element at 𝑟  as it rotates. The azimuthal angle 𝛾𝑖(𝑡) 

indicates the azimuthal position of the 𝑖𝑡ℎ blade. The FA motion of the tower produces 

a linear velocity 𝑥̇ and an angular velocity 𝜃̇𝑦. The SS motion of the tower leads to a 

linear velocity 𝑦̇ and an angular velocity 𝜃̇𝑥. These velocities cause small variations in 

the relative wind speeds experienced by blade elements. For an arbitrary blade element 

at distance 𝑟 from the hub centre with azimuthal position 𝛾𝑖(𝑡), the relative wind speed 

experienced in the normal direction, 𝑉𝑥𝑅𝑒𝑙, can be written as 

and the relative wind speed in tangential direction, 𝑉𝑟𝑅𝑒𝑙, is 

𝑉𝑟𝑅𝑒𝑙 is tangential to the trajectory of the blade element as it rotates around the hub axis, 

perpendicular to the radial direction of a blade in the rotor plane. A positive 𝑉𝑥𝑅𝑒𝑙 is a 

velocity toward the positive direction of the 𝑥 axis, while a positive 𝑉𝑟𝑅𝑒𝑙 is a velocity 

 𝑉𝑥𝑅𝑒𝑙 = 𝑉0 − 𝑥̇ − 𝜃̇𝑦𝑟𝑐𝑜𝑠𝛾𝑖(𝑡), (4-5) 

 𝑉𝑟𝑅𝑒𝑙 = 𝑉𝑟 − 𝑦̇𝑐𝑜𝑠𝛾𝑖(𝑡) + 𝜃̇𝑥𝑟. (4-6) 
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having the opposite sign to the rotor rotation speed. In Equations (4-5) and (4-6), 𝑥̇, 

𝑦̇𝑐𝑜𝑠𝛾𝑖(𝑡), 𝜃̇𝑦𝑟𝑐𝑜𝑠𝛾𝑖(𝑡) and 𝜃̇𝑥𝑟 are caused by the motion of the tower top. 

Following from the assumptions listed, the angular velocity 𝜃̇𝑦 causes the whole rotor 

to simply rotate around the hub, therefore the resultant linear velocities of the blade 

elements above the hub have inverse signs compared to those below the hub. As a result, 

the relative velocity caused by 𝜃̇𝑦 can be calculated as 𝜃̇𝑦𝑟𝑐𝑜𝑠𝛾𝑖(𝑡).  

The next step is to find the force and moment expressions of a single blade element for 

the relative wind velocities in Equations (4-5) and (4-6). The coordinate system used 

for the resultant forces and moments is consistent with the motion coordinates shown 

in Figure 4-2. Assuming that the tower is rigid, the steady-state forces in normal and 

tangential directions applied to one blade element are denoted 𝑑𝑇(𝑉0, 𝑉𝑟)  and 

𝑑𝑆(𝑉0, 𝑉𝑟) respectively. When the tower is flexible, assuming the changes in relative 

wind speed experienced by every blade element are sufficiently small, the aerodynamic 

loads considering the tower top motion can be obtained using a first order Taylor 

expansion of the forces around the steady-state normal and tangential wind velocities. 

Effectively, this linearises the aerodynamic forces in terms of velocity.  

  

(a) (b) 

Figure 4-3. Fore-aft (a) and side-side (b) motions. 
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The force in the normal direction is given by: 

and the force in the tangential direction is given by:  

The moment about the 𝑥 direction is given by:  

and the moment about the 𝑦 direction is given by:  

𝑑𝑇(𝑉𝑥𝑅𝑒𝑙, 𝑉𝑟𝑅𝑒𝑙) = 𝑑𝑇(𝑉𝑥𝑅𝑒𝑙, 𝑉𝑟𝑅𝑒𝑙) 

= 𝑑𝑇(𝑉0, 𝑉𝑟) +
𝜕(𝑑𝑇)

𝜕𝑉0
(−𝑥̇) +

𝜕(𝑑𝑇)

𝜕𝑉0
(−𝜃̇𝑦𝑟𝑐𝑜𝑠𝛾𝑖(𝑡)) 

+
𝜕(𝑑𝑇)

𝜕𝑉𝑟
(−𝑦̇𝑐𝑜𝑠𝛾𝑖(𝑡)) +

𝜕(𝑑𝑇)

𝜕𝑉𝑟
(𝜃̇𝑥𝑟); 

(4-7) 

𝑑𝑆(𝑉𝑥𝑅𝑒𝑙, 𝑉𝑟𝑅𝑒𝑙) = 𝑑𝑆(𝑉𝑥𝑅𝑒𝑙, 𝑉𝑟𝑅𝑒𝑙) 

= 𝑑𝑆(𝑉0, 𝑉𝑟) +
𝜕(𝑑𝑆)

𝜕𝑉0
(−𝑥̇) +

𝜕(𝑑𝑆)

𝜕𝑉0
(−𝜃̇𝑦𝑟𝑐𝑜𝑠𝛾𝑖(𝑡)) 

+
𝜕(𝑑𝑆)

𝜕𝑉𝑟
(−𝑦̇𝑐𝑜𝑠𝛾𝑖(𝑡)) +

𝜕(𝑑𝑆)

𝜕𝑉𝑟
(𝜃̇𝑥𝑟). 

(4-8) 

𝑑𝑀𝑥(𝑉𝑥𝑅𝑒𝑙 , 𝑉𝑟𝑅𝑒𝑙) = 𝑑𝑆(𝑉𝑥𝑅𝑒𝑙, 𝑉𝑟𝑅𝑒𝑙)𝑟 

= 𝑑𝑆(𝑉0, 𝑉𝑟)𝑟 +
𝜕(𝑑𝑆)

𝜕𝑉0
(−𝑥̇)𝑟 +

𝜕(𝑑𝑆)

𝜕𝑉0
(−𝜃̇𝑦𝑟

2𝑐𝑜𝑠𝛾𝑖(𝑡)) 

+
𝜕(𝑑𝑆)

𝜕𝑉𝑟
(−𝑦𝑟̇𝑐𝑜𝑠𝛾𝑖(𝑡)) +

𝜕(𝑑𝑆)

𝜕𝑉𝑟
(𝜃̇𝑥𝑟

2). 

(4-9) 

𝑑𝑀𝑦(𝑉𝑥𝑅𝑒𝑙 , 𝑉𝑟𝑅𝑒𝑙) = 𝑑𝑇(𝑉𝑥𝑅𝑒𝑙, 𝑉𝑟𝑅𝑒𝑙)𝑟𝑐𝑜𝑠𝛾𝑖(𝑡) 

= 𝑑𝑇(𝑉0, 𝑉𝑟)𝑟𝑐𝑜𝑠𝛾𝑖(𝑡) +
𝜕(𝑑𝑇)

𝜕𝑉0
(−𝑥̇)𝑟𝑐𝑜𝑠𝛾𝑖(𝑡) 

+
𝜕(𝑑𝑇)

𝜕𝑉0
(−𝜃̇𝑦𝑟

2 𝑐𝑜𝑠2 𝛾𝑖(𝑡)) +
𝜕(𝑑𝑇)

𝜕𝑉𝑟
(−𝑦̇𝑟 𝑐𝑜𝑠2 𝛾𝑖(𝑡)) 

+
𝜕(𝑑𝑇)

𝜕𝑉𝑟
(𝜃̇𝑥𝑟

2𝑐𝑜𝑠𝛾𝑖(𝑡)); 

(4-10) 
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The total forces and moments applied to the rotor are obtained by summing the 

elemental forces and moments along the three blades. As ∑ 𝑐𝑜𝑠𝛾𝑖(𝑡)
𝑁𝑏
𝑖=1 = 0 for any 𝑡, 

the total force in the 𝑥 (FA) direction is: 

where 𝑁𝑏 is the number of blades, and 𝑅 is the radius of the blade.  

The total force in the 𝑦 (SS) direction is: 

The negative sign on the left-hand side of the summation operator is due to the fact that 

for a rotor rotating in the positive direction, the blade at a position above the hub is 

subjected to a tangential force towards the negative y-direction. This is a consequence 

of the chosen coordinate system. In addition, it can be easily checked that for a three-

blade wind turbine, ∑ 𝑐𝑜𝑠2 𝛾𝑖(𝑡)
𝑁𝑏
𝑖=1 = 𝑁𝑏/2.  

Eventually, the total moment about the 𝑥 axis is: 

whereas the total moment about the 𝑦 axis is: 

𝐹𝑥 =∑∫ 𝑑𝑇(𝑉𝑥𝑅𝑒𝑙, 𝑉𝑟𝑅𝑒𝑙)
𝑅

0

𝑁𝑏

𝑖=1

 

= 𝑁𝑏∫ 𝑑𝑇(𝑉0, 𝑉𝑟)
𝑅

0

− 𝑥̇𝑁𝑏∫
𝜕(𝑑𝑇)

𝜕𝑉0

𝑅

0

+ 𝜃̇𝑥𝑁𝑏∫ 𝑟
𝜕(𝑑𝑇)

𝜕𝑉𝑟

𝑅

0

, 

(4-11) 

𝐹𝑦 = −𝑐𝑜𝑠𝛾(𝑡)∑∫ 𝑑𝑆(𝑉𝑥𝑅𝑒𝑙, 𝑉𝑟𝑅𝑒𝑙)
𝑅

0

𝑁𝑏

𝑖=1

 

= 𝜃̇𝑦
𝑁𝑏
2
∫ 𝑟

𝜕(𝑑𝑆)

𝜕𝑉0

𝑅

0

+ 𝑦̇
𝑁𝑏
2
∫

𝜕(𝑑𝑆)

𝜕𝑉𝑟

𝑅

0

. 

(4-12) 

𝑀𝑥 =∑∫ 𝑑𝑀𝑥(𝑉𝑥𝑅𝑒𝑙, 𝑉𝑟𝑅𝑒𝑙)
𝑅

0

𝑁𝑏

𝑖=1

 

= 𝑁𝑏∫ 𝑑𝑆(𝑉0, 𝑉𝑟)𝑟
𝑅

0

− 𝑥̇𝑁𝑏∫ 𝑟
𝜕(𝑑𝑆)

𝜕𝑉0

𝑅

0

+ 𝜃̇𝑥𝑁𝑏∫ 𝑟2
𝜕(𝑑𝑆)

𝜕𝑉𝑟

𝑅

0

, 

(4-13) 

𝑀𝑦 =∑∫ 𝑑𝑀𝑦(𝑉𝑥𝑅𝑒𝑙, 𝑉𝑟𝑅𝑒𝑙)
𝑅

0

𝑁𝑏

𝑖=1

 (4-14) 
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The analytical expressions necessary to calculate the partial derivatives in Equations 

(4-11) to (4-14) are given below, defining the aerodynamic damping matrix in terms of 

known aerodynamic quantities such as inflow wind speed, blade profile, fluid properties 

and operational conditions. All notations used here are from the classic steady BEM 

theory [25]. These partial derivatives are 
𝜕(𝑑𝑇)

𝜕𝑉0
, 
𝜕(𝑑𝑇)

𝜕𝑉𝑟
, 
𝜕(𝑑𝑆)

𝜕𝑉0
 and 

𝜕(𝑑𝑆)

𝜕𝑉𝑟
. According to 

BEM theory, the thrust on an element at radius 𝑟 can be written as 

where 𝜌  is the air density, 𝑎  and 𝑎′  are the axial and tangential induction factors 

respectively, 𝑐  is the chord length, 𝐶𝑛  is the normal force coefficient and 𝑑𝑟  is the 

increment length for this element. The tangential force can be expressed by 

where 𝐶𝑡 is the tangential force coefficient. Assuming 𝑑𝑇 and 𝑑𝑆 are functions of 𝑉0 

and 𝑉𝑟, other intermediate variables such as 𝑎, 𝑎′, 𝐶𝑛, 𝐶𝑡 and 𝜙 can also be treated as 

functions with regard to 𝑉0 and 𝑉𝑟. 𝜙 is the sum of the attack angle, pitch and twist 

angles. According to classic BEM theory, the relationships between these variables are: 

where  𝜎 indicates the solidity, 𝐶𝑙 and 𝐶𝑑 is the lift and drag coefficients respectively; 

Firstly, from Equation (4-15), 
𝜕(𝑑𝑇)

𝜕𝑉0
 can be written as 

= −𝜃̇𝑦
𝑁𝑏
2
∫ 𝑟2

𝜕(𝑑𝑇)

𝜕𝑉0

𝑅

0

− 𝑦̇
𝑁𝑏
2
∫ 𝑟

𝜕(𝑑𝑇)

𝜕𝑉𝑟

𝑅

0

. 

 
𝑑𝑇 =

1

2
𝜌[𝑉0

2(1 − 𝑎)2 + 𝑉𝑟
2(1 + 𝑎′)2]𝐶𝑛𝑐𝑑𝑟, (4-15) 

 
𝑑𝑆 =

1

2
𝜌[𝑉0

2(1 − 𝑎)2 + 𝑉𝑟
2(1 + 𝑎′)2]𝐶𝑡𝑐𝑑𝑟, (4-16) 

 
𝑎 =

1

4 𝑠𝑖𝑛2 𝜙
𝜎𝐶𝑛

+ 1
, 

(4-17) 

 
𝑎′ =

1

4𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙
𝜎𝐶𝑡

− 1
, 

(4-18) 

 𝐶𝑛 = 𝐶𝑙cos𝜙 + 𝐶𝑑sin𝜙, (4-19) 

 𝐶𝑡 = 𝐶𝑙𝑠𝑖𝑛𝜙 − 𝐶𝑑𝑐𝑜𝑠𝜙, (4-20) 

 
𝑡𝑎𝑛𝜙 =

𝑉0(1 − 𝑎)

𝑉𝑟(1 + 𝑎′)
 𝑜𝑟 𝑐𝑜𝑡𝜙 =

𝑉𝑟(1 + 𝑎′)

𝑉0(1 − 𝑎)
, (4-21) 
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where 𝑉𝑅𝑒𝑙
2 = 𝑉0

2(1 − 𝑎)2 + 𝑉𝑟
2(1 + 𝑎′)2; 

𝜕(𝑑𝑇)

𝜕𝑉𝑟
 can be written as 

Similarly, from Equation (4-16), 

and 

The expression for the terms in Equations (4-22) to (4-25) can be expressed as follows: 

where 
𝜕𝑎

𝜕𝑉0
=

𝑑𝑎

𝑑𝜙
∙
𝜕𝜙

𝜕𝑉0
 and 

𝜕𝑎′

𝜕𝑉0
=

𝑑𝑎′

𝑑𝜙
∙
𝜕𝜙

𝜕𝑉0
; 

Then 

where 
𝜕𝑎

𝜕𝑉𝑟
=

𝑑𝑎

𝑑𝜙
∙
𝜕𝜙

𝜕𝑉𝑟
 and 

𝜕𝑎′

𝜕𝑉𝑟
=

𝑑𝑎′

𝑑𝜙
∙
𝜕𝜙

𝜕𝑉𝑟
. 
𝑑𝑎

𝑑𝜙
 and 

𝑑𝑎′

𝑑𝜙
 can be determined from Equations 

(4-17) and (4-18): 

and 

 𝜕(𝑑𝑇)

𝜕𝑉0
=
1

2
𝜌𝑐 [

𝜕(𝑉𝑅𝑒𝑙
2 )

𝜕𝑉0
𝐶𝑛 + 𝑉𝑅𝑒𝑙

2
𝜕𝐶𝑛
𝜕𝑉0

] 𝑑𝑟, (4-22) 

 𝜕(𝑑𝑇)

𝜕𝑉𝑟
=
1

2
𝜌𝑐 [

𝜕(𝑉𝑅𝑒𝑙
2 )

𝜕𝑉𝑟
𝐶𝑛 + 𝑉𝑅𝑒𝑙

2
𝜕𝐶𝑛
𝜕𝑉𝑟

] 𝑑𝑟. (4-23) 

 𝜕(𝑑𝑆)

𝜕𝑉0
=
1

2
𝜌𝑐 [

𝜕(𝑉𝑅𝑒𝑙
2 )

𝜕𝑉0
𝐶𝑡 + 𝑉𝑅𝑒𝑙

2
𝜕𝐶𝑡
𝜕𝑉0

] 𝑑𝑟; (4-24) 

 𝜕(𝑑𝑆)

𝜕𝑉𝑟
=
1

2
𝜌𝑐 [

𝜕(𝑉𝑅𝑒𝑙
2 )

𝜕𝑉𝑟
𝐶𝑡 + 𝑉𝑅𝑒𝑙

2
𝜕𝐶𝑡
𝜕𝑉𝑟

] 𝑑𝑟. (4-25) 

𝜕(𝑉𝑅𝑒𝑙
2 )

𝜕𝑉0
= 2𝑉0(1 − 𝑎)

2 − 2𝑉0
2(1 − 𝑎)

𝜕𝑎

𝜕𝑉0
+ 2𝑉𝑟

2(1 + 𝑎′)
𝜕𝑎′

𝜕𝑉0
, (4-26) 

𝜕(𝑉𝑅𝑒𝑙
2 )

𝜕𝑉𝑟
= −2𝑉0

2(1 − 𝑎)
𝜕𝑎

𝜕𝑉𝑟
+ 2𝑉𝑟(1 + 𝑎

′)2 + 2𝑉𝑟
2(1 + 𝑎′)

𝜕𝑎′

𝜕𝑉𝑟
, (4-27) 

 
𝑑𝑎

𝑑𝜙
=
−4(𝑠𝑖𝑛2𝜙𝐶𝑛 −

𝑑𝐶𝑛
𝑑𝜙

𝑠𝑖𝑛2𝜙)

𝜎𝐶𝑛2 (
4𝑠𝑖𝑛2𝜙
𝜎𝐶𝑛

+ 1)
2 , (4-28) 
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The expressions for 
𝜕𝜙

𝜕𝑉0
 and 

𝜕𝜙

𝜕𝑉𝑟
 can be found from Equation (4-21) using the following 

two equations: 

and 

where 
𝑑(

1+𝑎′

1−𝑎
)

𝑑𝜙
=

𝑑𝑎′

𝑑𝜙
(1−𝑎)+

𝑑𝑎

𝑑𝜙
(1+𝑎′)

(1−𝑎)2
 and 

𝑑(
1−𝑎

1+𝑎′
)

𝑑𝜙
=

−
𝑑𝑎

𝑑𝜙
(1+𝑎′)−

𝑑𝑎′

𝑑𝜙
(1−𝑎)

(1+𝑎′)2
. For 

𝜕𝐶𝑛

𝜕𝑉0
 , 
𝜕𝐶𝑛

𝜕𝑉𝑟
, 
𝜕𝐶𝑡

𝜕𝑉0
 

and 
𝜕𝐶𝑡

𝜕𝑉𝑟
, the following four equations can be used: 

𝑑𝐶𝑛

𝑑𝜙
 and 

𝑑𝐶𝑡

𝑑𝜙
 can be simply derived from Equations  (4-19) and (4-20): 

and 

This provides all the terms required to determine damping derivatives.  

 
𝑑𝑎′

𝑑𝜙
=
−4(𝑐𝑜𝑠2𝜙𝐶𝑡 −

𝑑𝐶𝑡
𝑑𝜙

𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙)

𝜎𝐶𝑡
2 (
4𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙

𝜎𝐶𝑡
− 1)

2 . (4-29) 

 
𝜕𝜙

𝜕𝑉0
[
𝑑 (
1 + 𝑎′

1 − 𝑎 )

𝑑𝜙
𝑡𝑎𝑛𝜙 +

1

𝑐𝑜𝑠2 𝜙

1 + 𝑎′

1 − 𝑎
] =

1

𝑉𝑟
, (4-30) 

 
𝜕𝜙

𝜕𝑉𝑟
[
𝑑 (

1 − 𝑎
1 + 𝑎′

)

𝑑𝜙
𝑐𝑜𝑡𝜙 −

1

𝑠𝑖𝑛2 𝜙

1 − 𝑎

1 + 𝑎′
] =

1

𝑉0
. (4-31) 

 𝜕𝐶𝑛
𝜕𝑉0

=
𝑑𝐶𝑛
𝑑𝜙

𝜕𝜙

𝜕𝑉0
, (4-32) 

 𝜕𝐶𝑛
𝜕𝑉𝑟

=
𝑑𝐶𝑛
𝑑𝜙

𝜕𝜙

𝜕𝑉𝑟
, (4-33) 

 𝜕𝐶𝑡
𝜕𝑉0

=
𝑑𝐶𝑡
𝑑𝜙

𝜕𝜙

𝜕𝑉0
, (4-34) 

 𝜕𝐶𝑡
𝜕𝑉𝑟

=
𝑑𝐶𝑡
𝑑𝜙

𝜕𝜙

𝜕𝑉𝑟
. (4-35) 

 𝑑𝐶𝑛
𝑑𝜙

=
𝜕𝐶𝑙
𝜕𝜙

𝑐𝑜𝑠𝜙 +
𝜕𝐶𝑑
𝜕𝜙

𝑠𝑖𝑛𝜙 + 𝐶𝑑𝑐𝑜𝑠𝜙 − 𝐶𝑙𝑠𝑖𝑛𝜙, (4-36) 

 𝑑𝐶𝑡
𝑑𝜙

=
𝜕𝐶𝑙
𝜕𝜙

𝑠𝑖𝑛𝜙 −
𝜕𝐶𝑑
𝜕𝜙

𝑐𝑜𝑠𝜙 + 𝐶𝑙𝑐𝑜𝑠𝜙 + 𝐶𝑑𝑠𝑖𝑛𝜙. (4-37) 
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4.4.2 Aerodynamic load resultants at the tower top 

Within the set of assumptions made, the rotor aerodynamic load resultants at the hub 

are completely described by Equations (4-11) to (4-14), and these loads can be 

separated into two parts: static (constant) components and “damping” components 

proportional to the velocities. Only 𝐹𝑥  and 𝑀𝑥  have a static part equal to 

𝑁𝑏 ∫ 𝑑𝑇(𝑉0, 𝑉𝑟)
𝑅

0
 and 𝑁𝑏 ∫ 𝑑𝑆(𝑉0, 𝑉𝑟)𝑟

𝑅

0
 respectively. These can easily be calculated 

using the BEM model in MATLAB or FAST by keeping the tower rigid. They can then 

be applied as external loads at the tower top in a decoupled model. The other terms in 

𝐹𝑥, 𝐹𝑦, 𝑀𝑥 and 𝑀𝑦 appear as damping components since they depend linearly on the 

tower top translational or angular velocities. These damping components can be added 

to the relevant terms for the top node in the damping matrix of the overall system. The 

matrix format of the forces resultants at the tower top is 

where the aerodynamic damping matrix 𝐂𝐴𝑒𝑟𝑜 that collects the terms multiplied by the 

velocity vector 𝐮̇𝑇𝑜𝑝 = [𝑥̇ 𝑦̇ 𝜃̇𝑥 𝜃̇𝑦]
𝑇
  for the top node can be defined as: 

𝐂𝐴𝑒𝑟𝑜 can be written more concisely:  

𝐂𝐴𝑒𝑟𝑜 has a number of relevant structural features: 

 

𝐅𝑇𝑜𝑝 = [

𝐹𝑥
0
𝑀𝑥

0

] − 𝑪𝐴𝑒𝑟𝑜

[
 
 
 
 
𝑥̇
𝑦̇

𝜃̇𝑥
𝜃̇𝑦]
 
 
 
 

, (4-38) 

𝐂𝐴𝑒𝑟𝑜𝐮̇
𝑇𝑜𝑝 = 

[
 
 
 
 
 
 
 
 
 𝑁𝑏∫

𝜕(𝑑𝑇)

𝜕𝑉0

𝑅

0

0 −𝑁𝑏∫ 𝑟
𝜕(𝑑𝑇)

𝜕𝑉𝑟

𝑅

0

0

0 −
𝑁𝑏
2
∫

𝜕(𝑑𝑆)

𝜕𝑉𝑟

𝑅

0

0 −
𝑁𝑏
2
∫ 𝑟

𝜕(𝑑𝑆)

𝜕𝑉0

𝑅

0

𝑁𝑏∫ 𝑟
𝜕(𝑑𝑆)

𝜕𝑉0

𝑅

0

0 −𝑁𝑏∫ 𝑟2
𝜕(𝑑𝑆)

𝜕𝑉𝑟

𝑅

0

0

0
𝑁𝑏
2
∫ 𝑟

𝜕(𝑑𝑇)

𝜕𝑉𝑟

𝑅

0

0
𝑁𝑏
2
∫ 𝑟2

𝜕(𝑑𝑇)

𝜕𝑉0

𝑅

0 ]
 
 
 
 
 
 
 
 
 

[
 
 
 
 
𝑥̇
𝑦̇

𝜃̇𝑥
𝜃̇𝑦]
 
 
 
 

. 

 

 (4-39) 

𝐂𝐴𝑒𝑟𝑜 =

[
 
 
 
 
𝑐𝑥𝑥 0 𝑐𝑥𝜃𝑥 0

0 𝑐𝑦𝑦 0 𝑐𝑦𝜃𝑦
𝑐𝜃𝑥𝑥 0 𝑐𝜃𝑥𝜃𝑥 0

0 𝑐𝜃𝑦𝑦 0 𝑐𝜃𝑦𝜃𝑦]
 
 
 
 

. (4-40) 
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1) For given inflow wind speed, rotation speed, and pitch angle, the coefficients in 

the damping matrix are constant and can therefore be calculated using a BEM 

model before time integration. Therefore, the proposed strategy allows the 

vibration and aerodynamics to be decoupled in the sense that the aerodynamic 

calculation can be done once, for a given range of steady-state operating 

conditions regimes. Changes of the damping matrix due to unsteady wind 

inflow are not considered in this chapter and assessing how this unsteadiness 

affects the proposed methodology will be further investigated in Chapter 5. 

2) From the structure of this damping matrix, it can be seen that the translational 

DOFs in the FA and SS are not coupled. Coupling between FA and SS directions 

only occurs through the off-diagonal terms linking rotational to translational 

DOFs. For example, 𝑐𝑥𝜃𝑥 links the FA translational velocity 𝑥̇ to the rotation 

around the 𝑥-axis 𝜃̇𝑥. 

3) When the tower is assumed to be rigid in the SS direction, two diagonal terms 

𝑐𝑥𝑥 and 𝑐𝜃𝑦𝜃𝑦, contribute to the damping in the FA direction, which means that 

both linear and angular motions contribute to the aerodynamic damping in that 

direction. A similar observation can be made in the SS direction. Coupling 

would not occur if the tower top rotation was not considered. 

4) An important feature of this aerodynamic damping matrix is that although it has 

clear structural patterns, it is not symmetric. This is not uncommon when 

considering damping in rotating machineries [133]. It should be remembered 

that this matrix was derived from the linearisation of the aerodynamic forces 

rather than from conventional dashpots located within a standard multiple DOF 

system. 

5) Only the symmetric part of this matrix represents genuine energy dissipation. 

The anti-symmetric part couples the DOFs without contributing to the overall 

damping of the system. Any matrix 𝑀 can be decomposed into a symmetric part 

𝑆 and an antisymmetric part 𝐴 such that 𝑀 = 𝑆 + 𝐴. 

The expressions defining this aerodynamic damping matrix allow a better 

understanding of the nature of the coupling between FA and SS motions and the 

aerodynamic forces. The complete derivation described in this section provides a model 
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from which the dynamic response for an operational wind turbine can be rapidly 

calculated, e.g., for fatigue or reliability analyses. This is particularly useful when 

calculating the responses of a wind turbine using a more detailed foundation model, 

which cannot be easily coupled with an aerodynamic rotor model. In this case, the 

aerodynamic damping is typically defined separately as damping ratios in the FA and 

SS directions. The aerodynamic damping matrix defined here provides another option 

which more accurately captures the interaction between the FA and SS motions. In 

addition, the damping matrix could be used to underpin an experimental methodology 

to identify the dynamic properties of the system from experimental data. In contrast to 

conventional operational modal analysis which gives modal damping factors for a 

structural system (e.g. [134][104][105]), damping identification in operational wind 

turbines could aim to quantify the terms of the aerodynamic damping matrix (e.g. using 

a time-frequency analysis as suggested by Chen et al. [114]). 

4.5 Results and discussion 

4.5.1 Model verification and overall behaviour 

FAST model settings for verification 

The onshore FAST model described in Section 4.2 was used to verify the results from 

the proposed model. For consistency with the derivations presented in Section 4.4, the 

settings “classic BEM theory with the Prandtl and Glauert’s corrections” were chosen 

in FAST’s AeroDyn module [135]. To consider the influence of the control system and 

obtain plausible wind turbine responses for varying normal operating conditions, the 

standard relationships between wind speed, rotor speed, and pitch angle were used as 

shown in Figure 3-4 [119]. The rotor speed, pitch angle, and inflow wind speed were 

kept constant during each simulation. 

In contrast to the default settings in FAST, the centre of mass of the RNA was moved 

to the tower top and the moments of inertia of the RNA relative to the tower top were 

set to zero. These modification ware necessary to make the FAST model consistent with 

the FE model used in this chapter. In principle this should not be necessary, but it is not 

clear how to define specific RNA moments of inertia in the 𝑥 and 𝑦 directions at the 

same time in FAST, so they were set to zero. FAST also requires the tower mode shapes 

as an input and they were obtained from an eigenfrequency analysis of the FE model. 
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These modifications do not affect the general dynamic behaviour of the wind turbine 

highlighted here. 

Verification and general description of the response 

  

(a) (b) 

  

(c) (d) 

Figure 4-4. FA (a, c) and SS (b, d) displacement response caused by a 1 m initial 

displacement in the FA direction; Comparison between proposed model and FAST for 

steady wind speeds of (a-b) 10 m/s, (c-d) 20 m/s. 

 

In the proposed model, the static components of the loads were calculated and applied 

as external forces and moments. An initial displacement of 1 m in the FA direction was 

then given to the tower top node to excite dynamic responses comparable to the FAST 

results. Figure 4-4 shows the time domain responses generated by the proposed model 

and the corresponding FAST simulation results for two wind velocities – one below the 
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rated speed: 10 m/s (Figure 4-4(a) and Figure 4-4(b)) and one above the rated speed: 

20 m/s (Figure 4-4(c) and Figure 4-4(d)). The agreement is very good and similar 

agreement was obtained at all other wind speeds. 

Comparing the damped responses from the proposed model to that from FAST, small 

percentage differences in frequency and dynamic amplitude, of up to 1% and 5% 

respectively, can be observed. These small differences can be explained by the 

simplifying assumptions underpinning the proposed model (linearisation of forces; no 

vertical displacement or rotation; resultant forces calculated for undeformed geometry, 

decoupled time integration). The consistently good agreement obtained confirms that 

the model adequately captures the underlying physics to the same level of accuracy as 

FAST. This also confirms that the coupling between the two directions is indeed caused 

by the off-diagonal terms of the damping matrix and not by stiffness coupling (as there 

is none in the model). The calculations of aerodynamic forces in the model and FAST 

are both based on BEM theory. The model implements an approximate approach to 

extract the derivatives of the aerodynamic forces, while FAST uses BEM theory to 

calculate the aerodynamic forces on every blade element at every time step. It should 

be noted that the comparison of the responses from the model and FAST simulation is 

under same settings, e.g. rigid rotor/blades, so this does not validate the model under 

more complex settings.  

4.5.2 Useful limit cases 

The decoupled FE model described in Section 4.3 has identical mass and stiffness 

distributions in the FA and SS directions; therefore, the bending modes in both 

directions have identical natural frequencies and mode shapes (at 90o of each other). 

The first three natural frequencies of the tower and RNA mass system are 0.34 Hz, 3.08 

Hz and 9.16 Hz. For a standard wind load spectral density spectrum peaking around 0.1 

Hz, only the first bending modes will be significantly excited. The core behaviour of 

the system is therefore governed by two bending modes with identical natural 

frequencies (ignoring the asymmetry introduced by the RNA), perpendicular mode 

shapes, no stiffness coupling (due to symmetry), and higher damping in the FA 

direction than in the SS direction. A number of limit cases are considered to understand 

the coupled behaviour of the system, considering only different parts of the full 

damping matrix derived in Section 4.4 for the time integration of the present model. To 
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this end, it is useful to decompose the aerodynamic damping matrix, 𝐂𝐴𝑒𝑟𝑜 as the sum 

of its symmetric part denoted by 𝐂𝐴𝑒𝑟𝑜
𝑆  and its anti-symmetric denoted by 𝐂𝐴𝑒𝑟𝑜

𝐴 . They 

are defined as: 

where 𝑐𝑥𝜃𝑥
𝑆 = 𝑐𝜃𝑥𝑥

𝑆 = (𝑐𝑥𝜃𝑥 + 𝑐𝜃𝑥𝑥)/2 , 𝑐𝑥𝜃𝑥
𝐴 = −𝑐𝜃𝑥𝑥

𝐴 = (𝑐𝑥𝜃𝑥 − 𝑐𝜃𝑥𝑥)/2 , 𝑐𝑦𝜃𝑦
𝑆 =

𝑐𝜃𝑦𝑦
𝑆 = (𝑐𝑦𝜃𝑦 + 𝑐𝜃𝑦𝑦)/2, 𝑐𝑦𝜃𝑦

𝐴 = −𝑐𝜃𝑦𝑦
𝐴 = (𝑐𝑦𝜃𝑦 − 𝑐𝜃𝑦𝑦)/2. From Equation (4-39), the 

asymmetry of the aerodynamic damping matrix comes from the fact that the cross terms 

of the elemental force derivatives (like 
𝜕(𝑑𝑇)

𝜕𝑉𝑟
 and 

𝜕(𝑑𝑆)

𝜕𝑉0
) are not identical if the minus 

sign in −𝑁𝑏 ∫ 𝑟
𝜕(𝑑𝑇)

𝜕𝑉𝑟

𝑅

0
 due to the selection of the coordinate system is ignored. The 

nature of the asymmetry can be understood as the mechanical properties of the rotating 

rotor interacted with the air are different in the in-rotor plane and out-of-rotor plane 

directions. On the other hand, it is natural to decompose the asymmetric aerodynamic 

damping matrix into the symmetric and anti-symmetric parts. From the view of energy 

dissipation, a system with anti-symmetric damping matrix does not lose energy, so the 

decomposition shows which parts of the aerodynamic damping matrix cause the energy 

dissipation. 

Case 1 

If the damping matrix (Equations  (4-39)(4-40)) had no off-diagonal terms, the motions 

in FA and SS directions would be completely decoupled, and the system would behave 

like two independent single DOFs with identical natural frequencies and different 

damping levels. The response are shown in Figure 4-5, in which the SS displacement is 

excited by the constant moment while  FA displacement is caused by the initial 1 m 

displacement and the constant thrust. The wind speed was set to 10 m/s as an example. 

The initial FA displacement leads to a relatively quickly decaying FA exponential 

response. However, the decay rate of the SS displacement is much slower. This is 

because the SS damping is much smaller than the FA damping, as will be observed later 

(as shown later in Figure 4-9). 

𝐂𝐴𝑒𝑟𝑜 = 𝐂𝐴𝑒𝑟𝑜
𝑆 + 𝐂𝐴𝑒𝑟𝑜

𝐴 =

[
 
 
 
 
 
𝑐𝑥𝑥 0 𝑐𝑥𝜃𝑥

𝑆 0

0 𝑐𝑦𝑦 0 𝑐𝑦𝜃𝑦
𝑆

𝑐𝜃𝑥𝑥
𝑆 0 𝑐𝜃𝑥𝜃𝑥 0

0 𝑐𝜃𝑦𝑦
𝑆 0 𝑐𝜃𝑦𝜃𝑦]

 
 
 
 
 

+

[
 
 
 
 
 
0 0 𝑐𝑥𝜃𝑥

𝐴 0

0 0 0 𝑐𝑦𝜃𝑦
𝐴

𝑐𝜃𝑥𝑥
𝐴 0 0 0

0 𝑐𝜃𝑦𝑦
𝐴 0 0 ]

 
 
 
 
 

, (4-41) 
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(a) (b) 

  

(c) (d) 

Figure 4-5. FA (a, c) and SS (b, d) displacement response of the model without off-

diagonal terms; a 1m initial displacement is applied in the FA direction and wind 

speed is 10 m/s; (c) and (d) are zooms of (a) and (b). 

 

Case 2 

The anti-symmetric components of the full damping matrix are set to zero. Then the 

two directions are coupled through conventional off-diagonal damping terms. As shown 

in Figure 4-6, the initial FA displacement leads to a fast decay in the FA direction, but 

some energy is also transferred to the SS direction so that the SS response initially 

grows before slowly decaying. This is the overall behaviour observed in Subsection 

4.5.1. However, there is no such a point at which the decay envelope of the FA response 

decreases to almost zero before increasing again in this case. 
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(a) (b) 

  

(c) (d) 

Figure 4-6. FA (a, c) and SS (b, d) displacement response of the model with 

conventional off-diagonal damping terms; a 1m initial displacement is applied in the 

FA direction and wind speed is 10 m/s; (c) and (d) are zooms of (a) and (b). 

 

Case 3 

Only the off-diagonal, antisymmetric part of the full damping matrix is considered. The 

two modes are again coupled by the off-diagonal terms and exhibit a beating behaviour: 

each direction oscillates at its decoupled natural frequency, modulated in amplitude. 

This behaviour is shown in Figure 4-7. The modulation is out-of-phase between the two 

directions, so that the energy is constantly transferred back and forth between the FA 

and the SS directions, but with no overall dissipation. 
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(a) (b) 

Figure 4-7. FA (a) and SS (b) displacement response of the model with antisymmetric 

off-diagonal terms; a 1m initial displacement is applied in the FA direction and wind 

speed is 10 m/s. 

 

As previously observed, the FA oscillation in Figure 4-4(c) decays monotonically 

whereas monotonically whereas in Figure 4-4(a) the decay envelope of this oscillation 

decreases to almost zero at around 25 s before increasing again. This behaviour can be 

interpreted as the first node of an underlying beating behaviour caused by the anti-

symmetric components of the damping matrix. For higher wind speeds, this behaviour 

disappears. To understand why, it is useful to look at how the coefficients of the 

damping matrix vary with the wind speed. 

Variation of the aerodynamic damping matrix with wind speed 

The expressions defining the aerodynamic damping matrix allow a detailed 

investigation of how the matrix coefficients change with the wind speed. Several effects 

occur simultaneously and can be observed more clearly by considering the symmetric 

and anti-symmetric parts of the damping matrix separately. The upper and diagonal 

plots in Figure 4-8 show the symmetric part of the full damping matrix with each 

subplot representing the variation of the corresponding coefficient in the matrix with 

wind speed. It should be noted that the terms in the aerodynamic damping matrix are 

dependent on the wind turbine operational status. The relationships between the wind 

speeds and the damping terms shown in Figure 4-8 are representative and correspond 

to the operational condition represented by Figure 3-4. The lower left half represents 
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the two non-zero anti-symmetric components. Missing subplots are zero coefficients. 

𝑐𝑥𝑥 and 𝑐𝜃𝑦𝜃𝑦  are the diagonal terms directly contributing to the FA damping. They 

both follow a similar trend as can be expected from their mathematical expression in 

Equation  (4-39) increasing up to 11 m/s wind speed and then plateauing at higher 

speeds. 𝑐𝑦𝑦 and 𝑐𝜃𝑥𝜃𝑥, the diagonal terms contributing to SS damping, also follow an 

increasing trend (but different from the FA damping coefficients): both are almost 

constant up to 11 m/s wind speed, then increase steadily. The sharp change in behaviour 

at 11 m/s is caused by the feathering of the blades which starts at that wind speed. This 

has been confirmed by additional simulation results without feathering (not shown). 

From these graphs it can be observed that blade feathering limits the FA aerodynamic 

damping but causes the SS damping to increase as the wind speed increases. This makes 

sense intuitively, as feathering turns the blades away from the inflow wind but increases 

their exposure in the tangential direction. 

  

Figure 4-8. Coefficients of symmetric (upper) and antisymmetric (lower) parts of 

the damping matrix in terms of wind speed. 

 

Symmetric          
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Antisymmetric 
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The symmetric off-diagonal term 𝑐𝑦𝜃𝑦
𝑆  is always negative, reasonably constant around 

-120 kNs up to 11 m/s then decreases with wind speed (increases in magnitude) down 

to -500 kNs at 20 m/s. This means that the coupling between rotation 𝜃̇𝑦 and the SS 

translation 𝑦 is dissipative and increases in intensity with the wind speed and feathering. 

By contrast the symmetric coefficient 𝑐𝑥𝜃𝑥
𝑆 is always positive, relatively constant around 

250 kNs up to 11 m/s, then increases almost linearly to reach around 1000 kNs at 20 

m/s. Positive values in off-diagonal terms indicate a negative damping or positive 

feedback from the rotation speed 𝜃̇𝑥  to the FA translation 𝑥 . This is unusual in 

conventional vibratory systems, but a wind turbine is not a closed system as the wind 

inflow constantly feeds energy in. A negative damping term indicates that the vibration 

coupling between the two relevant degrees of freedom transfers energy from the inflow 

wind into vibrational energy. From the values in Figure 4-8, this positive feedback is 

stronger than the dissipative 𝑐𝑦𝜃𝑦
𝑆  term. This explains why the system appears less 

damped at 20 m/s than at 10 m/s: in Figure 4-4(c) the FA amplitude is larger in than in 

Figure 4-4(a). As the FA amplitude is larger, the energy transferred to the SS direction 

is also larger. This positive feedback is presumably also the reason why in Figure 4-1(a), 

the FA amplitude is larger when both FA and SS directions are free (solid line) than 

when SS is rigid. In the latter case 𝜃𝑥 = 0 so this positive feedback is not available. 

Finally, both antisymmetric components decrease by about 50% from a maximum at 

11 m/s to 20 m/s, therefore reducing the influence of the beating effect. This is indeed 

what is observed, as the point at which the decay envelope of the FA response decreases 

to almost zero before increasing again disappears at wind speeds above 11m/s. 

4.5.3 Comparison with conventional aerodynamic damping description for wind 

turbines 

The previous observations highlighted that not taking the coupling between the two 

directions into account could lead to erroneous damping identification. This is explored 

further in this section. Figure 4-9(a) shows FA damping ratios measured for a range of 

wind speeds from the response of a model where the SS direction is kept rigid (dashed 

line) and from a model where both directions are free (solid). Similarly, Figure 4-9(b) 

shows how the SS damping ratios vary with wind speed depending on whether the 

coupling with the FA direction is available (solid) or not (dashed). These damping ratios 

are those of the first bending modes. 
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(a) (b) 

Figure 4-9. FA damping (a) and SS damping (b) comparisons between the model only 

having one DOF on (solid) and the model having two DOFs on (dashed). 

 

These damping ratios were obtained using the following procedure. A 1 m initial 

displacement was applied to the tower top in either FA or SS direction and zero initial 

displacement was applied in the other direction (where available). Then a 60 s time 

response was computed for each wind speed. Damping ratios were identified using a 

sonogram FFT technique [122] on the output responses. As the apparent damping value 

is dependent on the selection of time window, different damping values can be obtained 

for one output response depending on the time window chosen for the extraction. 

Fundamentally the actual damping behaviour is being fitted to the wrong mathematical 

model so there is no ideal solution to this issue. For the purpose of consistency, the 

following procedure was followed to extract damping values: the beginning of the time 

window was kept at 5 s, while the end of the window was gradually increased from 25 

s to 55 s in 5 s increments. Then the damping values obtained for each window were 

averaged to obtain the representative damping values plotted here. This procedure 

effectively puts more weight on the earlier part of the time series. This is justified by 

the fact that this is where the decrease in amplitude is more pronounced, therefore where 

damping identification works best. 

First, it is noteworthy that the dashed curve in Figure 4-9(a) is remarkably similar to 

the coefficients 𝑐𝑥𝑥 𝑎𝑛𝑑 𝑐𝜃𝑦𝜃𝑦  in Figure 4-8 and similarly the dashed curve in Figure 

4-9(b) follows closely the evolution of coefficients 𝑐𝑥𝑥 𝑎𝑛𝑑 𝑐𝜃𝑦𝜃𝑦  with the wind speed 
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in Figure 4-8. This is understandable as the diagonal terms of the matrix represent the 

damping without any coupling, so they are closely linked to a system where coupling 

is disabled. 

It can be seen from Figure 4-9 that the coupling between FA and SS directions has a 

significant impact on the damping in both FA and SS directions. Keeping one direction 

rigid increases the apparent damping in the other direction (30% for the FA damping 

and or 50% for the SS damping) when the wind speed is below the rated speed while 

decoupling decreases the damping ratios by more than 50% at 20 m/s. This is consistent 

with the time series shown in Figure 4-1(a), where the decoupled response showed a 

much faster decay rate than the coupled vibrations. 

4.5.4 Comparison with the FAST model with more complex AeroDyn setting 

  

(a) (b) 

Figure 4-10. FA (a) and SS (b) displacement response caused by a 1m initial 

displacement in the FA direction; Comparison between FAST models with a lumped 

mass, flexible blades for steady wind speed of 20 m/s. 

 

To derive the damping matrix presented in Section 4.4, the blades were assumed to be 

rigid. To investigate the validity of this assumption, the influence of the flexibility of 

the blades was studied using FAST simulations. Results from earlier FAST simulations 

were obtained by lumping the mass of the blades and the nacelle at the tower top to 

allow a like-for-like comparison with the damping model, which has been presented in 

Subsection 4.5.1.  These results are now compared with FAST outputs obtained from a 

model with distributed rotor inertia and flapwise and edgewise blade bending modes 
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enabled. This comparison is shown in Figure 4-10 for a mean wind speed of 20 m/s and 

a 1 m initial displacement in the FA direction at tower top. 

  

(a) (b) 

Figure 4-11. FA damping (a) and SS damping (b) comparisons between the FAST 

models with a lumped mass and flexible blades. 

 

From this comparison, the natural frequency of the first tower bending modes appear to 

have been shifted by 3% between the two models (0.34 Hz for the lumped RNA, 0.33 

Hz for the flexible blades). This is due to the distribution of the blade masses and the 

inclusion of blade motions. The decay rates of the responses from the two models are 

similar, only slightly slower in the flexible blade model. To quantify the decay rates for 

these two models with different steady wind speeds, the damping ratios were calculated 

using the same procedure as described in Subsection 4.5.3. From the comparison of 

damping ratios in Figure 4-11, the decay rates of the two FAST models are very close 

for all wind speeds. As the proposed model was verified against the FAST model with 

lumped RNA mass, it can be concluded that ignoring the flexibility of blades in the 

proposed model do not lead significant differences in terms of aerodynamic damping. 

Apart from the flexibility of blades, the effect of a non-zero static shaft tilt and blade 

precone were also tested. In additional FAST simulations, the shaft tilt and the precone 

were set to -5° and 2.5° respectively according to the default turbine configuration in 

FAST. Response comparison shown in Figure 4-12 confirmed that these two 

parameters have negligible influence on the aerodynamic damping. Other simulations 

including wind shear of the incoming wind field and tower shadow were also conducted 
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to test the influence of 1P and 3P excitation. Results shown in Figure 4-13 confirmed 

that these effects have no significant effect on the aerodynamic damping. The more 

observable influence is the difference in static displacement, which is caused by the 

introduction of wind shear leading to different total thrust and moment. 

  

(a) (b) 

Figure 4-12. FA (a) and SS (b) displacement response caused by a 1m initial 

displacement in the FA direction; Comparison between FAST model with zero shaft 

tilt and precone for all blades and FAST model with -5° shaft tilt and 2.5° precone for 

all blades for steady wind speed of 20 m/s. 

  

(a) (b) 

Figure 4-13. FA (a) and SS (b) displacement response caused by a 1m initial 

displacement in the FA direction; Comparison between FAST model with no tower 

effect and wind shear and FAST model considering tower effect and wind shear for 

steady wind speed of 20 m/s. 
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4.6 Conclusion 

This chapter proposes a novel two-stage methodology that uses BEM theory to derive 

analytical expressions for the aerodynamic force resultant on the rotor for steady-state 

operating wind turbines. In the first stage the aerodynamic damping matrix was 

calculated, and in the second stage the aerodynamic damping matrix can be assigned to 

a FE model whose responses can be obtained by time integration. From these results an 

efficient model was developed to predict the dynamic response of the tower/RNA 

system. The proposed decoupled modelling strategy based on analytical derivations 

would be particularly well suited for fatigue and reliability analyses. 

The aerodynamic forces experienced by the moving rotor are linearised and reduced to 

a set of resultants comprised of static terms and damping terms expressed through an 

aerodynamic damping matrix for constant wind speed. Both stages were implemented 

in MATLAB and the dynamic response was predicted using a FE model of the tower 

and RNA system. This model was systematically verified against an equivalent FAST 

model, and a good agreement was obtained, confirming that the proposed model can 

successfully and efficiently capture the coupling effects between the FA and SS motions.  

The closed-form expressions for the damping matrix coefficients give some insight into 

the links between aerodynamics and the vibration response of the tower. It was shown 

that the key features of this response are explained by a number of characteristics of the 

problem: 

 Due to the rotational symmetry of the tower, the two fundamental bending 

modes have similar natural frequencies, which facilitates energy transfer 

between the two directions, 

 Some off-diagonal coefficients of the damping matrix represent positive 

feedback, amplifying the vibration amplitude at certain wind speeds, 

 The non-symmetry of the damping matrix causes a non-dissipative coupling, 

apparent as a beating behaviour for certain conditions. 

It was found that the apparent aerodynamic damping can be significantly influenced by 

the coupling between FA and SS motions in a wind turbine. As a result, previous 

widely-used single damping ratio techniques might not be sufficiently accurate to 

describe the aerodynamic damping characteristics of wind turbines and the derived 
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aerodynamic damping matrix could form the basis for novel damping identification 

techniques better suited for wind turbine systems. 
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Chapter 5 - Aerodynamic Damping Model Considering 

Turbulent Wind Field 

 

5.1 Introduction 

The aerodynamic damping matrix introduced in Chapter 4 was derived with the initial 

assumption that the inflow wind field is uniformly distributed in the rotor plane and 

constant in time. However, in a real offshore environment the wind speed in the rotor 

plane varies in time and space due to turbulence and wind shear. Aerodynamic damping 

is a function of wind speed, rotor rotation speed and blade pitch angles. When these 

three parameters are constant, the aerodynamic damping is also constant according to 

the derivation in Section 4.4. It can be expected that the aerodynamic damping becomes 

time-varying when the wind field is turbulent and non-uniform. In this chapter, the 

influence of wind turbulence is studied. In Section 5.2, an extension to the aerodynamic 

damping matrix derived in Section 4.4 is presented considering a non-uniformly 

distributed turbulent wind field. Section 5.3 presents a method to simplify the wind 

turbine FE model with the 4×4 aerodynamic damping matrix to a two degrees of 

freedom (2-DOF) model using modal decomposition. The introduction of the 2-DOF 

model is motivated by its simplicity compared to the model with the original 4×4 

aerodynamic damping matrix. By only selecting a limited number of modes, the 2-DOF 

model is more computationally efficient than the original model which requires a full 

FE model of the tower. Moreover, the 2-DOF model can be used as the basis of 

aerodynamic damping identification, which will be shown in the next chapter. To 

distinguish from the 2-DOF model, the full FE model with the 4×4 aerodynamic 

damping matrix is denoted as “original model”. In Section 5.4, simulation results are 

given to verify the time-varying aerodynamic damping model and the simplified 2-DOF 

model. Section 5.5 concludes this chapter. 

5.2 Derivation of aerodynamic damping matrix for a non-uniform wind 

field 

To consider a non-uniform inflow wind field, some modifications are needed to the 

derivation process in Section 4.4. Keeping the initial assumptions that the rotor is rigid 

and the RNA speed is small, the aerodynamic forces applied to one blade element can 

still be expressed by Equations (4-7) to (4-10). However, when summing the elemental 
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blade forces for one blade, the three blades must be considered individually as the total 

aerodynamic forces subjected by different blades are different due to wind turbulence 

and different azimuthal positions. In this way, the aerodynamic force resultants can still 

be linearised as forces applied to a rigid tower plus terms related to the tower top 

velocities. Having the notations introduced in Chapter 4, the total force at the tower top 

in the 𝑥 (FA) direction can be expressed as the sum of thrusts applied to all blades: 

Here the force marked with “𝐹𝑙𝑒𝑥” is the force applied to a flexible wind turbine tower. 

The total force in the 𝑦 (SS) direction is: 

The total moment about the 𝑥 axis is: 

𝐹𝑥
𝐹𝑙𝑒𝑥(𝑡) =∑∫ 𝑑𝑇(𝑉𝑥𝑅𝑒𝑙, 𝑉𝑟𝑅𝑒𝑙)

𝑅

0

𝑁𝑏

𝑖=1

 

=∑∫ 𝑑𝑇(𝑉0, 𝑉𝑟)
𝑅

0

𝑁𝑏

𝑖=1

− 𝑥̇∑∫
𝜕(𝑑𝑇)

𝜕𝑉0

𝑅

0

𝑁𝑏

𝑖=1

− 𝜃̇𝑦∑𝑐𝑜𝑠𝛾𝑖(𝑡)∫ 𝑟
𝜕(𝑑𝑇)

𝜕𝑉0

𝑅

0

𝑁𝑏

𝑖=1

 

−𝑦̇∑𝑐𝑜𝑠𝛾𝑖(𝑡)∫
𝜕(𝑑𝑇)

𝜕𝑉𝑟

𝑅

0

𝑁𝑏

𝑖=1

+ 𝜃̇𝑥∑∫ 𝑟
𝜕(𝑑𝑇)

𝜕𝑉𝑟

𝑅

0

𝑁𝑏

𝑖=1

. 

(5-1) 

𝐹𝑦
𝐹𝑙𝑒𝑥(𝑡) = −∑𝑐𝑜𝑠𝛾𝑖(𝑡)∫ 𝑑𝑆(𝑉𝑥𝑅𝑒𝑙, 𝑉𝑟𝑅𝑒𝑙)

𝑅

0

𝑁𝑏

𝑖=1

 

= −∑𝑐𝑜𝑠𝛾𝑖(𝑡)∫ 𝑑𝑆(𝑉0, 𝑉𝑟)
𝑅

0

𝑁𝑏

𝑖=1

+ 𝑥̇∑cos 𝛾𝑖(𝑡)∫
𝜕(𝑑𝑆)

𝜕𝑉0

𝑅

0

𝑁𝑏

𝑖=1

 

+𝜃̇𝑦∑cos2 𝛾𝑖(𝑡)∫ 𝑟
𝜕(𝑑𝑆)

𝜕𝑉0

𝑅

0

𝑁𝑏

𝑖=1

+ 𝑦̇∑cos2 𝛾𝑖(𝑡)∫
𝜕(𝑑𝑆)

𝜕𝑉𝑟

𝑅

0

𝑁𝑏

𝑖=1

 

−𝜃̇𝑥∑𝑐𝑜𝑠𝛾𝑖(𝑡)∫ 𝑟
𝜕(𝑑𝑆)

𝜕𝑉𝑟

𝑅

0

𝑁𝑏

𝑖=1

. 

(5-2) 

𝑀𝑥
𝐹𝑙𝑒𝑥(𝑡) =∑∫ 𝑑𝑀𝑥(𝑉𝑥𝑅𝑒𝑙, 𝑉𝑟𝑅𝑒𝑙)

𝑅

0

𝑁𝑏

𝑖=1

 

=∑∫ 𝑟𝑑𝑆(𝑉0, 𝑉𝑟)
𝑅

0

𝑁𝑏

𝑖=1

− 𝑥̇∑∫ 𝑟
𝜕(𝑑𝑆)

𝜕𝑉0

𝑅

0

𝑁𝑏

𝑖=1

− 𝜃̇𝑦∑𝑐𝑜𝑠𝛾𝑖(𝑡)∫ 𝑟2
𝜕(𝑑𝑆)

𝜕𝑉0

𝑅

0

𝑁𝑏

𝑖=1

 

(5-3) 
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whereas the total moment about the 𝑦 axis is: 

The derivatives in Equations (5-1) to (5-4) can be found using expressions of partial 

derivatives in Section 4.4. According to Equations (5-1) to (5-4), the resultant 

aerodynamic forces from the rotor to the top of a flexible wind turbine tower, 

𝐅𝐹𝑙𝑒𝑥
𝑇𝑜𝑝 (𝑡) = [𝐹𝑥

𝐹𝑙𝑒𝑥(𝑡) 𝐹𝑦
𝐹𝑙𝑒𝑥(𝑡) 𝑀𝑥

𝐹𝑙𝑒𝑥(𝑡) 𝑀𝑦
𝐹𝑙𝑒𝑥(𝑡)]

𝑇
, can be rewritten in the following 

simplified form 

where 𝐅𝑅𝑖𝑔𝑖𝑑
𝑇𝑜𝑝 (𝑡) = [𝐹𝑥

𝑅𝑖𝑔𝑖𝑑(𝑡) 𝐹𝑦
𝑅𝑖𝑔𝑖𝑑(𝑡) 𝑀𝑥

𝑅𝑖𝑔𝑖𝑑(𝑡) 𝑀𝑦
𝑅𝑖𝑔𝑖𝑑(𝑡)]

𝑇
 represents the 

aerodynamic force vector applied to a rigid wind turbine tower, 𝐮̇𝑇𝑜𝑝 = [𝑥̇ 𝑦̇ 𝜃̇𝑥 𝜃̇𝑦]
𝑇
 is 

the velocity vector for the tower top and 

−𝑦̇∑𝑐𝑜𝑠𝛾𝑖(𝑡)∫ 𝑟
𝜕(𝑑𝑆)

𝜕𝑉𝑟

𝑅

0

𝑁𝑏

𝑖=1

+ 𝜃̇𝑥∑∫ 𝑟2
𝜕(𝑑𝑆)

𝜕𝑉𝑟

𝑅

0

𝑁𝑏

𝑖=1

, 

𝑀𝑦
𝐹𝑙𝑒𝑥(𝑡) =∑∫ 𝑑𝑀𝑦(𝑉𝑥𝑅𝑒𝑙, 𝑉𝑟𝑅𝑒𝑙)

𝑅

0

𝑁𝑏

𝑖=1

 

=∑𝑐𝑜𝑠𝛾𝑖(𝑡)∫ 𝑟𝑑𝑇(𝑉0, 𝑉𝑟)
𝑅

0

𝑁𝑏

𝑖=1

− 𝑥̇∑𝑐𝑜𝑠𝛾𝑖(𝑡)∫ 𝑟
𝜕(𝑑𝑇)

𝜕𝑉0

𝑅

0

𝑁𝑏

𝑖=1

 

−𝜃̇𝑦∑cos2 𝛾𝑖(𝑡)∫ 𝑟2
𝜕(𝑑𝑇)

𝜕𝑉0

𝑅

0

𝑁𝑏

𝑖=1

− 𝑦̇∑cos2 𝛾𝑖(𝑡)∫ 𝑟
𝜕(𝑑𝑇)

𝜕𝑉𝑟

𝑅

0

𝑁𝑏

𝑖=1

 

+𝜃̇𝑥∑𝑐𝑜𝑠𝛾𝑖(𝑡)∫ 𝑟2
𝜕(𝑑𝑇)

𝜕𝑉𝑟

𝑅

0

𝑁𝑏

𝑖=1

. 

(5-4) 

𝐅𝐹𝑙𝑒𝑥
𝑇𝑜𝑝

(𝑡) =

[
 
 
 
 
 
 
 
 
 
 
 
 

∑∫ 𝑑𝑇(𝑉0, 𝑉𝑟)
𝑅

0

𝑁𝑏

𝑖=1

−∑𝑐𝑜𝑠𝛾𝑖(𝑡)∫ 𝑑𝑆(𝑉0, 𝑉𝑟)
𝑅

0

𝑁𝑏

𝑖=1

∑∫ 𝑟𝑑𝑆(𝑉0, 𝑉𝑟)
𝑅

0

𝑁𝑏

𝑖=1

∑𝑐𝑜𝑠𝛾𝑖(𝑡)∫ 𝑟𝑑𝑇(𝑉0, 𝑉𝑟)
𝑅

0

𝑁𝑏

𝑖=1 ]
 
 
 
 
 
 
 
 
 
 
 
 

− 𝐂𝐴𝑒𝑟𝑜

[
 
 
 
 
𝑥̇
𝑦̇

𝜃̇𝑥
𝜃̇𝑦]
 
 
 
 

= 𝐅𝑅𝑖𝑔𝑖𝑑
𝑇𝑜𝑝 (𝑡) − 𝐂𝐴𝑒𝑟𝑜𝐮̇

𝑇𝑜𝑝(𝑡). (5-5) 

𝐂𝐴𝑒𝑟𝑜 =  

 

 



 

114 

𝐂𝐴𝑒𝑟𝑜 can be written more concisely: 

Compared to the aerodynamic damping matrix in Equation (4-40), all the terms in 

Equation (5-7) can be non-zero. When the inflow wind field is constant in space and 

time, the aerodynamic damping matrix is constant during the simulation and in the form 

described by Equation (4-40). When the turbulent wind field is uniformly distributed 

over the rotor plane but changes over time, the aerodynamic damping matrix is still in 

the form of Equation (4-40) but becomes time-varying as the initial uniform wind field 

assumption is fulfilled in every time step. Making the assumption of uniform wind field 

ignores the fact that different wind speeds seen by the three blades may result in 

imbalanced aerodynamic forces at the tower top. For a turbulent non-uniform wind field, 

the aerodynamic damping matrix is time-varying and needs to be calculated by 

Equation (5-7), as the values of partial derivatives for different blade elements are 

different. The variations in azimuth angles over time for different blades also contribute 

to the time-varying damping.  

The time-varying damping in this study is modelled by varying the damping matrix in 

the equation of motions at every time step, which is similar to the methodology of 

calculating aerodynamic forces using a quasi-steady BEM model which assumes the 

flow is steady and the momentum is balanced given the particular inflow wind speed at 

every time step. The difference is that the aerodynamic forces are linearised using 

aerodynamic damping terms while in a quasi-steady BEM model the aerodynamic 

forces are calculated using standard BEM iterations given the inflow wind speed. 

[
 
 
 
 
 
 
 
 
 
 
 
 

∑∫
𝜕(𝑑𝑇)

𝜕𝑉0

𝑅

0

𝑁𝑏

𝑖=1

∑𝑐𝑜𝑠𝛾𝑖(𝑡)∫
𝜕(𝑑𝑇)

𝜕𝑉𝑟

𝑅

0

𝑁𝑏

𝑖=1

−∑∫ 𝑟
𝜕(𝑑𝑇)

𝜕𝑉𝑟

𝑅

0

𝑁𝑏

𝑖=1

∑𝑐𝑜𝑠𝛾𝑖(𝑡)∫ 𝑟
𝜕(𝑑𝑇)

𝜕𝑉0

𝑅

0

𝑁𝑏

𝑖=1

−∑cos𝛾𝑖(𝑡)∫
𝜕(𝑑𝑆)

𝜕𝑉0

𝑅

0

𝑁𝑏

𝑖=1

−∑cos2 𝛾𝑖(𝑡)∫
𝜕(𝑑𝑆)

𝜕𝑉𝑟

𝑅

0

𝑁𝑏

𝑖=1

∑𝑐𝑜𝑠𝛾𝑖(𝑡)∫ 𝑟
𝜕(𝑑𝑆)

𝜕𝑉𝑟

𝑅

0

𝑁𝑏

𝑖=1

−∑cos2 𝛾𝑖(𝑡)∫ 𝑟
𝜕(𝑑𝑆)

𝜕𝑉0

𝑅

0

𝑁𝑏

𝑖=1

∑∫ 𝑟
𝜕(𝑑𝑆)

𝜕𝑉0

𝑅

0

𝑁𝑏

𝑖=1

∑𝑐𝑜𝑠𝛾𝑖(𝑡)∫ 𝑟
𝜕(𝑑𝑆)

𝜕𝑉𝑟

𝑅

0

𝑁𝑏

𝑖=1

−∑∫ 𝑟2
𝜕(𝑑𝑆)

𝜕𝑉𝑟

𝑅

0

𝑁𝑏

𝑖=1

∑𝑐𝑜𝑠𝛾𝑖(𝑡)∫ 𝑟2
𝜕(𝑑𝑆)

𝜕𝑉0

𝑅

0

𝑁𝑏

𝑖=1

∑𝑐𝑜𝑠𝛾𝑖(𝑡)∫ 𝑟
𝜕(𝑑𝑇)

𝜕𝑉0

𝑅

0

𝑁𝑏

𝑖=1

∑cos2 𝛾𝑖(𝑡)∫ 𝑟
𝜕(𝑑𝑇)

𝜕𝑉𝑟

𝑅

0

𝑁𝑏

𝑖=1

−∑𝑐𝑜𝑠𝛾𝑖(𝑡)∫ 𝑟2
𝜕(𝑑𝑇)

𝜕𝑉𝑟

𝑅

0

𝑁𝑏

𝑖=1

∑cos2 𝛾𝑖(𝑡)∫ 𝑟2
𝜕(𝑑𝑇)

𝜕𝑉0

𝑅

0

𝑁𝑏

𝑖=1 ]
 
 
 
 
 
 
 
 
 
 
 
 

. 

 

 

 

 

(5-6) 

𝐂𝐴𝑒𝑟𝑜 =

[
 
 
 
𝑐𝑥𝑥 𝑐𝑥𝑦 𝑐𝑥𝜃𝑥 𝑐𝑥𝜃𝑦
𝑐𝑦𝑥 𝑐𝑦𝑦 𝑐𝑦𝜃𝑥 𝑐𝑦𝜃𝑦
𝑐𝜃𝑥𝑥 𝑐𝜃𝑥𝑦 𝑐𝜃𝑥𝜃𝑥 𝑐𝜃𝑥𝜃𝑦
𝑐𝜃𝑦𝑥 𝑐𝜃𝑦𝑦 𝑐𝜃𝑦𝜃𝑥 𝑐𝜃𝑦𝜃𝑦]

 
 
 
. (5-7) 
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5.3 Simplification to 2-DOF system using modal decomposition 

If the aerodynamic resultants at the tower top are treated as external forces applied to 

the wind turbine system, the aerodynamic damping is included in the external forces. 

In this way, the equation of motion of the system can be written as: 

where 𝐌 , 𝐂𝑆𝑡𝑟𝑢𝑐  and 𝐊  are the mass, structural damping and stiffness matrices 

respectively. 𝐅𝐹𝑙𝑒𝑥(𝑡) is the external aerodynamic force vector applied to a flexible 

tower and 𝐮(𝑡) is the generalised displacement vector. The wind loads on the tower 

itself are ignored so 𝐅𝐹𝑙𝑒𝑥(𝑡) represents the resultant aerodynamic forces from the rotor 

at the tower top. As described in Section 5.2, 𝐅𝐹𝑙𝑒𝑥
𝑇𝑜𝑝 (𝑡) can be linearised with respect to 

the tower top velocities. Using the relationship 𝐅𝐹𝑙𝑒𝑥
𝑇𝑜𝑝 (𝑡) = 𝐅𝑅𝑖𝑔𝑖𝑑

𝑇𝑜𝑝 (𝑡) − 𝐂𝐴𝑒𝑟𝑜𝐮̇
𝑇𝑜𝑝(𝑡) in 

Equation (5-5), the linearised equation of motion considering aerodynamic coupling is 

where 𝐂 is 𝐂𝑆𝑡𝑟𝑢𝑐 plus the terms of 𝐂𝐴𝑒𝑟𝑜 added at the relevant locations and 𝐅𝑅𝑖𝑔𝑖𝑑(𝑡) 

is the tower top force vector 𝐅𝑅𝑖𝑔𝑖𝑑
𝑇𝑜𝑝 (𝑡)  padded with zeros for all other degree of 

freedoms. The response of the system expressed in Equation (5-8) can be calculated 

using a partial modal decomposition, when 𝐂𝑆𝑡𝑟𝑢𝑐  is assumed as a proportional 

damping matrix and 𝐅𝐹𝑙𝑒𝑥(𝑡) is initially regarded as an external force independent of 

the dynamic properties of the system. In wind turbines, the FA and SS responses are 

dominated by the FA and SS first bending modes so only these two modal coordinates 

will be considered for the derivation below. After modal decomposition, the equations 

of motion for the first bending modes can be written as: 

where 𝑚̅𝑥, 𝑚̅𝑦, 𝑘̅𝑥 and 𝑘̅𝑦 are the modal mass and stiffness for the first FA/SS  mode 

respectively, 𝜁𝑥̅ and 𝜁𝑦̅ are the structural modal damping ratios, and 𝛼𝑥(𝑡) and 𝛼𝑦(𝑡) 

are the modal coordinates for the first FA and SS modes respectively. The forces 

applied in the FA and SS directions after modal decomposition are 𝐅𝑥
𝐹𝑙𝑒𝑥(𝑡) =

[F𝑥
𝐹𝑙𝑒𝑥(𝑡) M𝑦

𝐹𝑙𝑒𝑥(𝑡)]
𝑇
 and 𝐅𝑦

𝐹𝑙𝑒𝑥(𝑡) = [F𝑦
𝐹𝑙𝑒𝑥(𝑡) M𝑥

𝐹𝑙𝑒𝑥(𝑡)]
𝑇
 multiplied by the truncated 

 𝐌𝐮̈(𝑡) + 𝐂𝑆𝑡𝑟𝑢𝑐𝐮̇(𝑡) + 𝐊𝐮(𝑡) = 𝐅𝐹𝑙𝑒𝑥(𝑡), (5-8) 

 𝐌𝐮̈(𝑡) + 𝐂𝐮̇(𝑡) + 𝐊𝐮(𝑡) = 𝐅𝑅𝑖𝑔𝑖𝑑(𝑡), (5-9) 

 
𝑚̅𝑥𝛼̈𝑥(𝑡) + 2𝜁𝑥̅√𝑚̅𝑥𝑘̅𝑥𝛼̇𝑥(𝑡) + 𝑘̅𝑥𝛼𝑥(𝑡) = 𝛟𝑥

𝑇𝐅𝑥
𝐹𝑙𝑒𝑥(𝑡), 

𝑚̅𝑦𝛼̈𝑦(𝑡) + 2𝜁𝑦̅√𝑚̅𝑦𝑘̅𝑦𝛼̇𝑦(𝑡) + 𝑘̅𝑦𝛼𝑦(𝑡) = 𝛟𝑦
𝑇𝐅𝑦

𝐹𝑙𝑒𝑥(𝑡), 

(5-10) 
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mode shapes. The truncated mode shapes for the first FA and SS bending modes of the 

system in Equation (5-10) are 𝛟𝑥 = [𝜙𝑥1 𝜙𝑥2]
𝑇 and 𝛟𝑦 = [𝜙𝑦1 𝜙𝑦2]

𝑇
, where 𝜙𝑥1 and 

𝜙𝑦1  correspond to the displacement motion while 𝜙𝑥2  and 𝜙𝑦2  correspond to the 

angular motion for the first FA and SS bending modes respectively. The linear and 

angular velocities at the tower top can be expressed by multiplying the modal shapes 

by the modal coordinates, i.e., 𝑥̇ ≈ 𝜙𝑥1𝛼̇𝑥(𝑡) , 𝑦̇ ≈ 𝜙𝑦1𝛼̇𝑦(𝑡) , 𝜃̇𝑥 ≈ 𝜙𝑦2𝛼̇𝑥(𝑡)  and 

𝜃̇𝑦 ≈ 𝜙𝑥2𝛼̇𝑥(𝑡). Since 𝐅𝐹𝑙𝑒𝑥
𝑇𝑜𝑝 (𝑡) = 𝐅𝑅𝑖𝑔𝑖𝑑

𝑇𝑜𝑝 (𝑡) − 𝐂𝐴𝑒𝑟𝑜𝐮̇
𝑇𝑜𝑝(𝑡), the modal force in the FA 

direction, 𝛟𝑥
𝑇𝐅𝑥

𝐹𝑙𝑒𝑥(𝑡), can be written as 

𝛟𝑥
𝑇𝐅𝑥

𝐹𝑙𝑒𝑥(𝑡) = 

[𝜙𝑥1 𝜙𝑥2]

{
 

 

[
𝐹𝑥
𝑅𝑖𝑔𝑖𝑑(𝑡)

M𝑦
𝑅𝑖𝑔𝑖𝑑(𝑡)

] − [
𝑐𝑥𝑥 𝑐𝑥𝑦 𝑐𝑥𝜃𝑥 𝑐𝑥𝜃𝑦
𝑐𝜃𝑦𝑥 𝑐𝜃𝑦𝑦 𝑐𝜃𝑦𝜃𝑥 𝑐𝜃𝑦𝜃𝑦

]

[
 
 
 
𝜙𝑥1𝛼̇𝑥(𝑡)
𝜙𝑦1𝛼̇𝑦(𝑡)

𝜙𝑦2𝛼̇𝑦(𝑡)

𝜙𝑥2𝛼̇𝑥(𝑡)]
 
 
 

}
 

 

. 

The above equation can be simplified to 

Similarly, the corresponding SS modal force is 

𝛟𝑦
𝑇𝐅𝑦

𝐹𝑙𝑒𝑥(𝑡) = 

[𝜙𝑦1 𝜙𝑦2]

{
 

 

[
𝐹𝑦
𝑅𝑖𝑔𝑖𝑑

(𝑡)

M𝑥
𝑅𝑖𝑔𝑖𝑑(𝑡)

] − [
𝑐𝑦𝑥 𝑐𝑦𝑦 𝑐𝑦𝜃𝑥 𝑐𝑦𝜃𝑦
𝑐𝜃𝑥𝑥 𝑐𝜃𝑥𝑦 𝑐𝜃𝑥𝜃𝑥 𝑐𝜃𝑥𝜃𝑦

]

[
 
 
 
𝜙𝑥1𝛼̇𝑥(𝑡)
𝜙𝑦1𝛼̇𝑦(𝑡)

𝜙𝑦2𝛼̇𝑦(𝑡)

𝜙𝑥2𝛼̇𝑥(𝑡)]
 
 
 

}
 

 

. 

The above equation can be simplified to 

Therefore, the equations of motion for the first bending modes in FA and SS directions 

can be written in this form: 

𝛟𝑥
𝑇𝐅𝑥(𝑡) = 𝜙𝑥1𝐹𝑥

𝑅𝑖𝑔𝑖𝑑(𝑡) + 𝜙𝑥2𝑀𝑦
𝑅𝑖𝑔𝑖𝑑(𝑡) 

−(𝜙𝑥1
2 𝑐𝑥𝑥 + 𝜙𝑥1𝜙𝑥2𝑐𝑥𝜃𝑦 + 𝜙𝑥2𝜙𝑥1𝑐𝜃𝑦𝑥 + 𝜙𝑥2

2 𝑐𝜃𝑦𝜃𝑦) 𝛼̇𝑥(𝑡) 

−(𝜙𝑥1𝜙𝑦1𝑐𝑥𝑦 + 𝜙𝑥1𝜙𝑦2𝑐𝑥𝜃𝑥 + 𝜙𝑥2𝜙𝑦1𝑐𝜃𝑦𝑦 + 𝜙𝑥2𝜙𝑦2𝑐𝜃𝑦𝜃𝑥) 𝛼̇𝑦(𝑡). 

(5-11) 

𝛟𝑦
𝑇𝐅𝑦(𝑡) = 𝜙𝑦1𝐹𝑦

𝑅𝑖𝑔𝑖𝑑(𝑡) + 𝜙𝑦2𝑀𝑥
𝑅𝑖𝑔𝑖𝑑(𝑡) 

−(𝜙𝑦1𝜙𝑥1𝑐𝑦𝑥 +𝜙𝑦1𝜙𝑥2𝑐𝑦𝜃𝑦 + 𝜙𝑦2𝜙𝑥1𝑐𝜃𝑥𝑥 + 𝜙𝑦2𝜙𝑥2𝑐𝜃𝑥𝜃𝑦) 𝛼̇𝑥(𝑡) 

−(𝜙𝑦1
2 𝑐𝑦𝑦 + 𝜙𝑦1𝜙𝑦2𝑐𝑦𝜃𝑥 + 𝜙𝑦2𝜙𝑦1𝑐𝜃𝑥𝑦 + 𝜙𝑦2

2 𝑐𝜃𝑥𝜃𝑥)𝛼̇𝑦(𝑡). 

(5-12) 
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where 

𝑐𝑥̅𝑥 = 𝜙𝑥1
2 𝑐𝑥𝑥 + 𝜙𝑥1𝜙𝑥2𝑐𝑥𝜃𝑦 + 𝜙𝑥2𝜙𝑥1𝑐𝜃𝑦𝑥 + 𝜙𝑥2

2 𝑐𝜃𝑦𝜃𝑦 , 

𝑐𝑥̅𝑦 = 𝜙𝑥1𝜙𝑦1𝑐𝑥𝑦 + 𝜙𝑥1𝜙𝑦2𝑐𝑥𝜃𝑥 + 𝜙𝑥2𝜙𝑦1𝑐𝜃𝑦𝑦 + 𝜙𝑥2𝜙𝑦2𝑐𝜃𝑦𝜃𝑥 , 

𝑐𝑦̅𝑥 = 𝜙𝑦1𝜙𝑥1𝑐𝑦𝑥 + 𝜙𝑦1𝜙𝑥2𝑐𝑦𝜃𝑦 + 𝜙𝑦2𝜙𝑥1𝑐𝜃𝑥𝑥 + 𝜙𝑦2𝜙𝑥2𝑐𝜃𝑥𝜃𝑦 , 

𝑐𝑦̅𝑦 = 𝜙𝑦1
2 𝑐𝑦𝑦 + 𝜙𝑦1𝜙𝑦2𝑐𝑦𝜃𝑥 + 𝜙𝑦2𝜙𝑦1𝑐𝜃𝑥𝑦 +𝜙𝑦2

2 𝑐𝜃𝑥𝜃𝑥 , 

𝑠̅𝑥 = 2𝜁𝑥̅√𝑚̅𝑥𝑘̅𝑥, 

𝑠̅𝑦 = 2𝜁𝑦̅√𝑚̅𝑦𝑘̅𝑦. 

Here the “modal” damping matrix 𝐂 is defined as  

The cross terms in 𝐂  reveal that the FA and SS vibrations are coupled through 

aerodynamic damping. Unlike traditional damping matrices, 𝑐𝑥̅𝑦 and 𝑐𝑦̅𝑥 are non-zero 

and not identical, making the modal damping matrix asymmetric as the 4×4 

aerodynamic damping matrix was. The 2-DOF model described by Equation (5-13) is 

an approximation of the original model described by Equation (5-9) with only the first 

bending modes considered. Higher modes could be included in the model using the 

relevant mode shapes in a similar way. The response of the turbine can be calculated 

by summing up the contributions from modes considered. This process is useful to 

lower the order of the system in a physical manner. 

5.4 Results and discussion 

5.4.1 FAST setting and verification procedure 

FAST was used to verify the time-varying damping models developed in Sections 5.2 

and 5.3. The onshore wind turbine model in FAST detailed in Chapter 4 is used 

[
𝑚̅𝑥 0
0 𝑚̅𝑦

] [
𝛼̈𝑥(𝑡)

𝛼̈𝑦(𝑡)
] + [

𝑐𝑥̅𝑥 + 𝑠̅𝑥 𝑐𝑥̅𝑦
𝑐𝑦̅𝑥 𝑐𝑦̅𝑦 + 𝑠̅𝑦

] [
𝛼̇𝑥(𝑡)

𝛼̇𝑦(𝑡)
] + [

𝑘̅𝑥 0

0 𝑘̅𝑦
] [
𝛼𝑥(𝑡)

𝛼𝑦(𝑡)
] 

= [
𝜙𝑥1𝐹𝑥

𝑅𝑖𝑔𝑖𝑑(𝑡) + 𝜙𝑥2𝑀𝑦
𝑅𝑖𝑔𝑖𝑑(𝑡)

𝜙𝑦1𝐹𝑦
𝑅𝑖𝑔𝑖𝑑(𝑡) + 𝜙𝑦2𝑀𝑥

𝑅𝑖𝑔𝑖𝑑(𝑡)
], 

(5-13) 

 
𝐂 = [

𝑐𝑥̅𝑥 + 𝑠̅𝑥 𝑐𝑥̅𝑦
𝑐𝑦̅𝑥 𝑐𝑦̅𝑦 + 𝑠̅𝑦

]. (5-14) 
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throughout this chapter.  A customised turbulent wind field generator was written in 

MATLAB as an alternative to Turbsim for the purpose of generating wind field input 

in FAST, as Turbsim does not allow a uniform wind field to be generated. The turbulent 

wind field generator was verified against TurbSim. As an example, the mean wind 

speed of 20 m/s is selected to show the verification results. A Kaimal spectrum was 

used as the input both for TurbSim and the turbulent wind field generator. The 

properties of the Kaimal spectrum were defined according to the turbulence model 

described in the  Appendix B.2 in IEC 61400 edition 3 [136]. Figure 5-1 (a) shows the 

generated wind speed time series when the turbulence intensity is 10%. It is expected 

that the power spectrum densities (PSDs) of the generated time series by these two 

models should be close if the two models are similar. Comparison shown in Figure 

5-1(b) confirms the similarity of the PSDs of the wind velocity time series from these 

two models. For other mean wind speeds, these two spectra are also close. Consequently, 

the inflow wind fields used for the FAST model and the calculation of aerodynamic 

damping matrices in this chapter were all obtained using the MATLAB wind field 

generator. For the purpose of comparison, the tower influence of the wind based on 

potential flow is not considered in the FAST AeroDyn setting [135] as the tower 

influence is not included in the derivation of the aerodynamic damping matrix. 

  

(a) (b) 

Figure 5-1. (a) Wind speed time series with 20 m/s mean wind speed and 10% 

turbulence intensity (b) Comparison of the power spectrum densities of the wind 

speed time series generated by TurbSim and the customised turbulent wind field 

generator. 
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For the FAST simulation and the calculation of the time-varying aerodynamic damping 

matrices, the operating configuration of wind turbines need to be determined. When the 

mean wind speed is 20 m/s (comparisons shown latter are based on this mean wind 

speed), the rotor rotation speed is set to 12.1 rpm and blade pitch angle as 17°, giving 

the rated power output. For comparisons with different wind speeds not shown here, 

the relationship between mean wind speed, pitch angle and rotation speed can be found 

in Figure 3-4. The intensity of turbulence is 10% if not specified. The length of 

simulation was selected as 300 s. 

For the original model and the 2-DOF model, the stiffness and mass matrices were 

formed from the material and geometric properties provided in the FAST model to 

make the models comparable. The aerodynamic damping matrices were calculated 

using Equation (5-7) and Equation (5-14). The mean wind speed is used to obtain the 

damping terms when the turbulent wind field is uniform. The case with non-uniform 

wind field will be introduced in Subsection 5.4.3. The aerodynamic forces applied to 

the rigid tower can be calculated by the customised BEM model implemented in 

MATLAB or directly obtained from the FAST model where the tower motions were 

disabled. With the damping matrices and the external forces, the FA and SS responses 

at the tower top can be obtained. The structural damping was set to zero in all models 

as this chapter mainly studies the aerodynamic damping. 

A comparison between the original model and the 2-DOF model was carried out when 

the turbulent field is uniform. Time series comparison in Figure 5-2 shows that the 

responses calculated from the model with the original aerodynamic damping matrix and 

the 2-DOF model are very close. To quantify the difference between two responses, a 

similarity indicator denoted as 𝑆𝑥𝑦 is introduced. First, two responses 𝑢𝑥(𝑡) and 𝑢𝑦(𝑡) 

are converted to zero-mean signals 𝑢𝑥
′ (𝑡) and 𝑢𝑦

′ (𝑡). Then the squared root of the sum 

of the squared difference in values between the two signals at each time step is 

calculated. This value is then divided by the squared root of the sum of squared 𝑢𝑥
′ (𝑡). 

The similarity indicator 𝑆𝑥𝑦 can be expressed by 

 

𝑆𝑥𝑦 =
√
∑ (𝑢𝑥′ (𝑡) − 𝑢𝑦′ (𝑡))

2
𝑇
0

∑ 𝑢𝑥′
2(𝑡)𝑇

0

, (5-15) 
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where 𝑇 is the length of the signal. All time series compared in Section 5.4 have the 

same duration and time step. The response from FAST or the original model is selected 

as 𝑢𝑥(𝑡). The value of 𝑆𝑥𝑦 closer to zero indicates the two signals are more similar. The 

values of the similarity indicator are 0.01 and 0.11 for the FA and SS responses 

respectively when comparing the original model and the 2-DOF model. These 

differences are relatively small compared to those from the comparison between the 2-

DOF model and the FAST model which will be shown later. This confirms that the 

modal decomposition is an accurate way of simplifying the original model and 

demonstrates that the responses are dominated by the first bending modes and the 

contribution of higher modes is very small. As similar responses are obtained by the 

original model and the 2-DOF model, the focus will be the comparison between the 

responses generated by the 2-DOF model and the FAST model for identical conditions. 

  

(a) (b) 

  

(c) (d) 

Figure 5-2. Comparison of the FA (a, c) and SS (b, d) responses from the original 

model and the 2-DOF model; (c) and (d) are zooms of (a) and (b). 
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5.4.2 Comparison between the 2-DOF model and the FAST model with uniform 

wind field 

First, the case with uniform wind field is considered. Figure 5-3 shows the comparison 

between results from the 2-DOF model with the constant aerodynamic damping matrix 

and the FAST model with a mean wind speed of 20 m/s. As can be seen, the FA 

response from the FAST model and the 2-DOF model agree well, while for the SS 

response slight differences can be observed. For the responses given in Figure 5-3, the 

values of the similarity indicator are 0.07 and 0.29 for the FA and SS responses 

respectively. 

  

(a) (b) 

  

(c) (d) 

Figure 5-3. Comparison of the FA (a, c) and SS (b, d) responses from the 2-DOF 

model with the constant aerodynamic damping matrix and the FAST model; (c) and 

(d) are zooms of (a) and (b).  

0 50 100 150 200 250 300 
Time (s) 

-0.5 

0 

0.5 

1 

FAST 
2-DOF Model 

D
is

p
la

c
e
m

e
n
t 

(m
) 

0 50 100 150 200 250 300 
Time (s) 

-0.5 

0 

0.5 

1 

D
is

p
la

c
e
m

e
n
t 

(m
) 

FAST 
2-DOF Model 

0 10 20 30 40 50 60 
Time (s) 

-0.3 

-0.2 

-0.1 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

D
is

p
la

c
e
m

e
n
t 

(m
) 

FAST 
2-DOF Model 

0 10 20 30 40 50 60 
Time (s) 

-0.3 

-0.25 

-0.2 

-0.15 

-0.1 

-0.05 

0 

0.05 

0.1 

0.15 

0.2 

D
is

p
la

c
e
m

e
n
t 

(m
) 

FAST 
2-DOF Model 



 

122 

  

(a) (b) 

  

(c) (d) 

Figure 5-4. Comparison of  𝑐𝑥̅𝑥 (a), 𝑐𝑥̅𝑦 (b), 𝑐𝑦̅𝑥 (c) and 𝑐𝑦̅𝑦 (d) in the constant 

aerodynamic damping matrix and the time-varying aerodynamic damping matrix. 

 

Considering the aerodynamic damping matrix as time-varying by calculating the 

damping coefficients at every time step for the turbulent wind velocity, the time-varying 

damping coefficients are plotted in Figure 5-4. The mean values of the time-varying 
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with the time-varying matrix is closer to the FAST response. The values of the 

similarity indicator for FA and SS responses are 0.06 and 0.24 which are lower than the 

values with the constant damping matrix, indicating that the 2-DOF model with the 

time-varying damping matrix can better represent the FAST model. 

  

(a) (b) 

  

(c) (d) 

Figure 5-5. Comparison of the FA (a, c) and SS (b, d) responses from the 2-DOF 

model with the time-varying aerodynamic damping matrix and the FAST model; (c) 

and (d) are zooms of (a) and (b). 
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the turbulence intensity is small, the aerodynamic damping in FAST is less varying as 

the variation in wind speed is smaller. Thus, this demonstrates that a constant 

aerodynamic damping matrix can better capture the dynamic response of wind turbines 

in a less turbulent wind field, resulting in smaller value of the similarity indicator when 

turbulence intensity is low. 

  

(a) (b) 

Figure 5-6. Relationship between the turbulence intensity and similarity indicator 

value for FA (a) and SS (b) responses; similarity indicator value is calculated by 

comparing responses from the 2-DOF model with the constant aerodynamic damping 

matrix and the FAST model. 
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(a) (b) 

  

(c) (d) 

Figure 5-7. Relationship between the turbulence intensity and the mean values and 

standard deviations of 𝑐𝑥̅𝑥 (a), 𝑐𝑥̅𝑦 (b), 𝑐𝑦̅𝑥 (c) and 𝑐𝑦̅𝑦 (d); the mean values and 

standard deviations are calculated from the 2-DOF model with time-varying damping 

matrix with a uniform wind field. 
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The wind field is divided into a 11×11 rectangular grid and the distance between 

adjacent two grid points is 20 m. The centre of the grid is at 90m height, which is close 

to the tower top at 87.6 m. This wind field was also generated by the customized 

turbulent wind field generator. For the 2-DOF model, the external modal forces used 

here were derived from the aerodynamic forces applied to the rigid tower considering 

the same inflow field as the FAST model. The response comparison shown in Figure 

5-8 indicates that the FA and SS responses from these two models are close, with 

similarity indicators of 0.04 for the FA response and 0.14 for the SS response. For non-

uniform wind fields, a constant aerodynamic damping matrix can sufficiently represent 

the damping characteristics of the wind turbine. 

  

(a) (b) 

  

(c) (d) 

Figure 5-8. Comparison of the FA (a, c) and SS (b, d) responses from the 2-DOF 

model with the constant aerodynamic damping matrix and the FAST model when the 

inflow wind field is non-uniform; (c) and (d) are zooms of (a) and (b). 
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Then a comparison was made between the 2-DOF model with the time-varying 

aerodynamic damping matrix and the FAST model. The modal aerodynamic forces 

applied to the rigid tower and the time-varying modal aerodynamic damping were 

calculated using Equations (5-13) and (5-14) given the wind speeds at all grid points at 

every time step. Figure 5-9 shows that the time-varying damping terms fluctuate around 

the constant damping terms calculated from the mean wind speed. The variation of the 

diagonal terms 𝑐𝑥̅𝑥  and 𝑐𝑦̅𝑦  is less than that of the off-diagonal terms 𝑐𝑥̅𝑦 and 𝑐𝑦̅𝑥. 

  

(a) (b) 

  

(c) (d) 

Figure 5-9. Comparison of  𝑐𝑥̅𝑥 (a), 𝑐𝑥̅𝑦 (b), 𝑐𝑦̅𝑥 (c) and 𝑐𝑦̅𝑦 (d) in the constant 

aerodynamic damping matrix and the time-varying aerodynamic damping matrix. 
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(a) (b) 

  

(c) (d) 

Figure 5-10. Comparison of the FA (a, c) and SS (b, d) responses from the 2-DOF 

model with the time-varying aerodynamic damping matrix and the FAST model when 

the inflow wind field in non-uniform; (c) and (d) are zooms of (a) and (b). 
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previous results when comparing the 2-DOF model with the constant damping matrix 

and the FAST model in Figure 5-8. The smaller differences for the 2-DOF model with 

the time-varying damping matrix are expected as a time-varying damping matrix can 

better capture the aerodynamic forces at the tower top. 

  

(a) (b) 

  

(c) (d) 

Figure 5-11. Relationship between the turbulence intensity and the mean values and 

standard deviations of 𝑐𝑥̅𝑥 (a), 𝑐𝑥̅𝑦 (b), 𝑐𝑦̅𝑥 (c) and 𝑐𝑦̅𝑦 (d); the mean values and 

standard deviations are calculated from the 2-DOF model with time-varying damping 

matrix with a non-uniform wind field. 
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are less variable. For example, the relative standard deviations of  𝑐𝑥̅𝑥 are from to 0.5% 

to 8.9%, a smaller range compared to the case with a uniform wind field. This is easy 

to interpret since a non-uniform wind field contains many grid points at which the 

instant wind speeds are averaged at every time step, resulting in less fluctuating 

damping coefficients. 𝑐𝑥̅𝑥  is the least variable parameter as the relative standard 

deviations of the other three damping coefficients are from 0.9% to 34%. However, the 

relationship between the mean values of the damping coefficients and the turbulence 

intensities is quite similar to that when the wind field is uniform. The mean values of 

𝑐𝑥̅𝑥 are always smaller than the constant values while those of 𝑐𝑥̅𝑦 always larger; the 

mean values of  𝑐𝑦̅𝑥 and 𝑐𝑦̅𝑦 can be larger or smaller than the constant values.  

5.4.4 Comparison between the 2-DOF model and the model with damping ratios 

In the 2-DOF model, the modal aerodynamic damping matrix provides a novel 

description of the aerodynamic damping for operating wind turbines, different from the 

traditional description using damping ratios. Many researchers have given analytical 

expressions for the FA damping [73], while analytical expressions for both the FA and 

SS damping were only provided Valamanesh and Myers [70] and Equations (3-23) and 

(3-41) in this thesis. Comparison was made between the responses generated by the 2-

DOF model with the constant aerodynamic damping matrix and the models with 

estimated damping ratios using the methods provided by these two papers. The 

derivation of damping ratios in [70] does not consider the difference in induction factors 

for different blade elements, but here this difference was considered by individually 

calculating relevant terms for each blade element and summing their values for one 

blade to obtain the damping ratio for the entire rotor. For a mean wind speed of 20 m/s, 

the response comparison is shown in Figure 5-12. Damping ratios estimated by the 

method by Valamanesh and Myers  [70] and the method in Section 3.3 are identical, so 

the responses generated by these two models with damping ratios are identical. The FA 

responses generated from the models with damping ratios are very close to the 2-DOF 

model, with a similarity indicator of 0.13. However, the SS responses from the models 

with damping ratios indicate much lower SS aerodynamic damping when compared to 

the SS response from the 2-DOF model with a similarity indicator of 0.86. From Figure 

5-3, we know the 2-DOF model is able to generate similar responses in both FA and SS 

directions compared to that from FAST, showing that the models with damping ratios 

perform worse with regard to the SS damping. 
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(a) (b) 

  

(c) (d) 

Figure 5-12. Comparison of the FA (a, c) and SS (b, d) responses from the 2-DOF 

model with the constant aerodynamic damping matrix and the model with estimated 

damping ratios; (c) and (d) are zooms of (a) and (b). 
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5.5 Conclusion 

This chapter presented an extension of the aerodynamic damping matrix considering 

wind turbulence. For a wind field uniformly distributed in the rotor plane, the form of 

the aerodynamic damping matrix follows what has been derived in Section 4.4. 

However, it requires some modifications to the derivation in Section 4.4 when 

considering a non-uniformly distributed wind field. The newly derived aerodynamic 

damping matrix in Section 5.2 is time-varying and more complex. It is found that the 

model with the original 4×4 aerodynamic damping matrix can be reduced to a 2-DOF 

model using partial modal decomposition. 

The developed model with the original aerodynamic damping matrix and the 2-DOF 

model were verified with simulation results from FAST. It was found that when the 

wind field is uniformly distributed in the rotor plane but changes over time, assuming 

a constant aerodynamic damping matrix from the mean wind speed results in FA 

responses close to the responses from the FAST model. However, there are some 

difference in the SS direction. Using a time-varying damping matrix can reduce the 

difference for the SS motion. For a non-uniform wind field, comparison results show 

that the model with the constant aerodynamic matrix can generate responses sufficiently 

close to that from FAST, and a better approximation can be obtained using a time-

varying aerodynamic damping matrix as expected. Additional comparison shows that a 

model with conventional damping ratios is able to generate similar responses in the FA 

direction but performs much worse in the SS direction. The model with aerodynamic 

damping matrix performs much better than the model with damping ratios by generating 

similar responses in both the FA and SS directions compared to those from FAST. 
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Chapter 6 - Novel Method for Aerodynamic Damping 

Identification 

 

6.1 Introduction 

According to the literature reviewed in Section 2.5, the identification of the 

aerodynamic damping of operating wind turbines in previous studies aimed at obtaining 

the damping ratios in the FA and SS directions separately. These studies implicitly 

assumed that the wind turbine system can be decoupled in terms of FA and SS motions 

as the damping identification techniques were applied on measured data only for the 

FA or SS direction. However, Chapters 4 and 5 showed that the rotating blades 

introduce significant damping coupling between the FA and SS directions for operating 

wind turbines. This finding leads to a different way of looking at the aerodynamic 

damping by introducing an aerodynamic damping matrix and casts some doubts on 

previous research as the wind turbine system behaves dynamically in a quite different 

way from that traditionally assumed by decoupled FA and SS motions. It was found 

that even for the simplest case where a free vibration decay superimposed on a steady-

state operating regime (constant wind field), simply assigning two damping ratios in 

the FA and SS directions does not provide an adequate description of the dynamic 

behaviour of a wind turbine tower. These advances in the modelling of aerodynamic 

damping motivate the development of an identification method that directly extracts the 

aerodynamic damping matrix. 

This chapter explores the possibilities for the identification of the aerodynamic damping 

matrix. Section 6.2 introduces the damping identification procedure and Section 6.3 

provides the identification results using simulated data. Section 6.4 concludes this 

chapter. 

6.2 Damping identification procedure 

6.2.1 FRF-based damping identification method 

Following the derivation in Sections 5.2 and 5.3, the aerodynamic damping can be 

expressed by either the original 4×4 aerodynamic damping matrix or the 2×2 modal 

aerodynamic damping matrix in the 2-DOF model. It is clear that it is easier to identify 

the 2×2 modal aerodynamic damping matrix as the 2-DOF model has only two DOFs. 
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However, the number of DOF of the FE model with the original 4×4 aerodynamic 

damping matrix is dependent on the number of beam element, which would complicate 

the identification of the 4×4 aerodynamic damping matrix. Further, identifying a modal 

damping matrix is of more interest as most conventional dynamic system identification 

methods aim at obtaining modal properties other than the physical stiffness, mass and 

damping matrices. As a result, the objective in this chapter is to identify the modal 

damping matrix 𝐂  in Equation (5-14) from measured responses in the FA and SS 

directions. 

The strategy for doing this is different from traditional identification methods which 

usually aim at obtaining modal damping ratios and implicitly assume that the structure 

is classically damped (proportional damping). As the damping matrix to be identified 

is not symmetric, a more general damping identification matrix method proposed by 

Chen et al. [137] was used. This method estimates the damping matrix from the 

frequency response functions (FRFs) of the structure and assumes that the mass and 

stiffness matrices for the “undamped system” are already known. Chen et al.’s method 

is briefly described here as subsequent developments are based on it.  

Given a dynamic system with mass, stiffness, and damping matrices 𝐌 , 𝐊  and 𝐂 

excited by an external force 𝐟, the equation of motion is 

where 𝐮 is the displacement vector. Rewriting this equation of motion in frequency 

domain, 

And the FRF matrix 𝐇(𝜔) at frequency 𝜔 is defined as: 

The “normal” FRF 𝐇𝐍(𝜔) is defined with the undamped system: 

With the “normal” FRF, the frequency domain equation of motion can be written as 

or 

 𝐌𝐮̈ + 𝐂𝐮̇ + 𝐊𝐮 = 𝐟, (6-1) 

 (−𝜔2𝐌+ 𝑖𝜔𝐂 + 𝐊)𝐔(𝜔) = 𝐅(𝜔). (6-2) 

 𝐇(𝜔) = (−𝜔2𝐌+ 𝑖𝜔𝐂 + 𝐊)−1. (6-3) 

 𝐇N(𝜔) = [𝐊 − 𝜔2𝐌]−1. (6-4) 

 [𝐇N(𝜔)]−1𝐔(𝜔) + 𝑖𝜔𝐂𝐔(𝜔) = 𝐅(𝜔), (6-5) 

 𝐔(𝜔) + 𝑖𝐆(𝜔)𝐔(𝜔) = 𝐇𝑁(𝜔)𝐅(𝜔), (6-6) 
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where 

Therefore, the relationship between the measured FRF 𝐇(𝜔) and the “normal” FRF 

𝐇N(𝜔) is 

where 𝐈 is an identity matrix. Since 𝐇𝑁(𝜔) and 𝐆(𝜔) are real matrices, the imaginary 

part of the RHS in the above equation is zero, giving 

Finally, the damping matrix at any given frequency can be expressed by 

This damping identification method needs prior knowledge of the stiffness and mass 

matrices and the measurement of a full FRF matrix. 

Now rewrite Equation (5-13) in a simplified form by denoting the modal external forces 

in the FA and SS directions as 𝑓𝑥̅
𝑅𝑖𝑔𝑖𝑑(𝑡) = 𝜙𝑥1𝐹𝑥

𝑅𝑖𝑔𝑖𝑑(𝑡) + 𝜙𝑥2𝑀𝑦
𝑅𝑖𝑔𝑖𝑑(𝑡)  and 

𝑓𝑦̅
𝑅𝑖𝑔𝑖𝑑(𝑡) = 𝜙𝑦1𝐹𝑦

𝑅𝑖𝑔𝑖𝑑(𝑡) + 𝜙𝑦2𝑀𝑥
𝑅𝑖𝑔𝑖𝑑(𝑡)  respectively, and assuming the modal 

shape factors 𝜙𝑥1 = 𝜙𝑦1 = 1. Then the equations of motion of the 2-DOF system can 

be written as follow: 

where 𝑥(𝑡) = 𝜙𝑥1𝛼𝑥(𝑡)  and 𝑦(𝑡) = 𝜙𝑦1𝛼𝑦(𝑡)  are the FA and SS displacements 

respectively. In this 2-DOF model, the 2×2 FRF matrix 𝐇(𝜔) can be expressed as  

where the term 𝐻𝑥𝑦 represents the harmonic response in the 𝑥 (FA) direction caused by 

a single harmonic force applied in the 𝑦 (SS) direction and other terms following this 

convention. Once 𝐇(𝜔) is obtained, 𝐆(𝜔) can be calculated using Equation (6-9). The 

modal stiffnesses and masses, and the mode shapes in Equation (6-11) can be obtained 

 𝐆(𝜔) = 𝜔𝐇𝑁(𝜔)𝐂. (6-7) 

 𝐇𝑁(𝜔) = [𝐈 + 𝑖𝐆(𝜔)]𝐇(𝜔), (6-8) 

 𝐆(𝜔) = −im(𝐇(𝜔))[Re(𝐇(𝜔))]
−1
. (6-9) 

 
𝐂 =

1

𝜔
[𝐇𝐍(𝜔)]−1𝐆(𝜔). (6-10) 

[
𝑚̅𝑥 0
0 𝑚̅𝑦

] [
𝑥̈(𝑡)

𝑦̈(𝑡)
] + [

𝑐𝑥̅𝑥 + 𝑠̅𝑥 𝑐𝑥̅𝑦
𝑐𝑦̅𝑥 𝑐𝑦̅𝑦 + 𝑠̅𝑦

] [
𝑥̇(𝑡)

𝑦̇(𝑡)
] + [

𝑘̅𝑥 0

0 𝑘̅𝑦
] [
𝑥(𝑡)

𝑦(𝑡)
] 

= [
𝑓𝑥̅
𝑅𝑖𝑔𝑖𝑑(𝑡)

𝑓𝑦̅
𝑅𝑖𝑔𝑖𝑑(𝑡)

], 

(6-11) 

 
𝐇(𝜔)  = [

𝐻𝑥𝑥(𝜔) 𝐻𝑥𝑦(𝜔)

𝐻𝑦𝑥(𝜔) 𝐻𝑦𝑦(𝜔)
], (6-12) 
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by traditional OMA methods on a parked turbine, from which 𝐇N(𝜔)  can be 

determined. Then the damping matrix can be obtained by averaging the calculated 

frequency-dependent damping terms using Equation (6-10).  

Two methods to obtain the FRFs were investigated. The first method uses responses 

only caused by the wind loading, while in the second method the FRF matrix is obtained 

using responses caused by the combination of wind loading and a series of harmonic 

forces. The former method only requires the installation of sensors to measure the 

vibration response, which is easier to implement as no additional equipment is needed 

to generate controlled excitations. In contrast, the second method is closer to 

conventional experimental modal analysis (EMA). The details of these two methods 

are given in the following two subsections. The introduction of the second method is 

because the first method is unable to accurately estimate the aerodynamic damping 

matrix when using data from FAST, which will be shown in Subsection 6.3.2.  

6.2.2 FRF measurement using responses caused by wind loading only 

The FRF matrix can be estimated given the input and output time series for a typical 

stationary random process. Denoting the input force vector as 𝐅(𝑡) and the output 

displacement vector as 𝐔(𝑡), the relationship between the input and output can be 

written in the frequency domain as 𝐔(𝜔) = 𝐇(𝜔)𝐅(𝜔), where 𝐔(𝜔) and 𝐅(𝜔) are the 

Fourier transforms of 𝐅(𝑡)  and 𝐔(𝑡)  respectively and 𝐇(𝜔)  is the FRF matrix. 

According to Bendat and Piersol [138], for a multiple-input multiple-output (MIMO) 

system, 𝐇(𝜔) can be calculated by 

where 𝐆𝑓𝑢 is the cross spectral density (CSD) matrix of 𝐅(𝑡) and 𝐔(𝑡) and 𝐆𝑓𝑓 is the 

CSD matrix of 𝐅(𝑡). For instance, the CSD matrix of the external forces in Equation 

(6-11) is a 2×2 matrix, which is constructed storing the cross spectral densities between 

the FA force 𝑓𝑥̅
𝑅𝑖𝑔𝑖𝑑(𝑡) and the SS force 𝑓𝑦̅

𝑅𝑖𝑔𝑖𝑑(𝑡) as the off-diagonal terms, and the 

auto spectral densities of these two forces as the diagonal terms.  

For the 2-DOF system, the FRF matrix can be obtained using the following steps: 

1. Measure the inflow wind speed 𝐖(𝑡) and the displacements of the tower top 

𝐔(𝑡) in the FA and SS directions. 

 𝐇(𝜔) = 𝐆𝑓𝑢
𝑇 (𝐆𝑓𝑓

−1)
𝑇
, (6-13) 
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2. Subtract the tower motions from the inflow wind speed to obtain the inflow 

wind speed acting on a rigid tower/rotor 𝐖𝑅𝑖𝑔𝑖𝑑(𝑡). Calculate the aerodynamic 

forces 𝐹𝑥
𝑅𝑖𝑔𝑖𝑑(𝑡), 𝐹𝑦

𝑅𝑖𝑔𝑖𝑑(𝑡), 𝑀𝑥
𝑅𝑖𝑔𝑖𝑑(𝑡)and 𝑀𝑦

𝑅𝑖𝑔𝑖𝑑(𝑡) using the BEM code with 

𝐖𝑅𝑖𝑔𝑖𝑑(𝑡). 

3. With the two inputs and two outputs for the 2-DOF system obtained, i.e. the 

input external forces 𝑓𝑥̅
𝑅𝑖𝑔𝑖𝑑(𝑡)and 𝑓𝑦̅

𝑅𝑖𝑔𝑖𝑑(𝑡), and the output displacement time-

series in FA and SS directions 𝑥(𝑡) and y(𝑡), the transfer functions 𝐇(𝜔) can 

be estimated using Equation (6-13). 

In practice, displacement responses can readily be obtained from simulations or 

acceleration measurements. However, input aerodynamic forces cannot easily be 

measured so some method must be devised to estimate them in an experimental context. 

  

(a) (b) 

Figure 6-1. Schematic for the data generation processes using data generated by the 2-

DOF model (a) and FAST model (b). 

 

Two computational schemes were devised to obtain the required input forces and output 

responses in order to identify the damping based on the FRF measurement method. The 

first process is based on the data generated by the 2-DOF model with the modal 

aerodynamic damping matrix (constant or time-varying) introduced in Section 5.3, 

while the second process is based on the data generated by the FAST model. These are 

shown diagrammatically in Figure 6-1. In the first process (Figure 6-1(a)), the inflow 

wind time series are generated from a Kaimal spectrum and the forces time series (thrust 
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and moment) are calculated using a customised BEM MATLAB code that converts the 

wind speed into forces. The generated aerodynamic forces are regarded as forces 

applied on a rigid tower of the original model. For the 2-DOF model, the thrust and 

moment need to be multiplied by the mode shapes to obtain the modal forces and then 

applied to the 2-DOF model. The outputs are the two responses in FA and SS directions. 

In the second simulation process (Figure 6-1(b)), both the aerodynamic loading and the 

responses are directly obtained from FAST simulations. This approach should arguably 

produce more realistic data. In order to make the FAST model closer to the MATLAB 

models, specific settings for the simulations were used in FAST. First, the inflow wind 

field assumes wind velocities only in the FA direction. Second, the pitch angle and the 

rotor speed were kept constant during the whole simulation. These can be influenced 

by the control system in reality. In the FAST process, the turbulent wind field was 

produced from a Kaimal spectrum using the wind field generator described in 

Subsection 5.4.1. This turbulent field was then applied to two FAST models. FA and 

SS tower motions were allowed in the first model named “flexible FAST model” but 

disabled in the second model named “rigid FAST model”. The second setting is to 

obtain the “static aerodynamic forces” applied to a rigid tower. In reality, the static 

aerodynamic forces can only be estimated from the absolute wind speed seen by the 

rotor. In the calculation of the CSD matrices, the inputs are the responses from the 

flexible model and the static aerodynamic forces from the rigid model.  

6.2.3 FRF measurement using responses caused by harmonic excitations 

Traditional EMA uses harmonic forces as external excitations was considered [139]. 

For external excitations with controlled frequencies applied to the wind turbine, the 

FRF matrix can be obtained from the steady state responses. For frequency 𝜔, Equation 

(6-14) below can be used to calculate the corresponding frequency point in the FRF 

matrix: 

where 𝐻𝑖𝑗(𝜔) refers to the frequency response at location 𝑖 due to the force applied at 

location 𝑗. For example, the component 𝐻𝑥𝑦(𝜔) in Equation (6-12) is calculated by the 

FFT of the response in the FA direction, 𝑈𝑥(𝜔) divided by the FFT of the external 

harmonic force, 𝐹𝑦(𝜔) at frequency 𝜔. In the FAST model which can be represented 

 
𝐻𝑖𝑗(𝜔) =

𝑈𝑖(𝜔)

𝐹𝑗(𝜔)
, (6-14) 
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as a 2-DOF system (as similar responses can be produced from the 2-DOF model 

compared to FAST responses), it is required to apply the excitation in FA and SS 

directions separately and measure the responses in FA and SS directions. With the 

applied excitations and measured responses, all four FRFs can be obtained. The 

response of an operating wind turbine is caused by the combination of the aerodynamic 

loading and the harmonic excitation at a particular frequency. The harmonic excitation 

must be large enough so that it produces a discernible component at that frequency in 

the response spectrum. This FRF “measurement” was conducted using data from the 

open-source package OpenFAST by NREL [140]. Additional code was written into the 

source code of OpenFAST to allow harmonic forces to be applied at the tower top with 

different frequencies and amplitudes. These forces can be separately applied in the 

FA/SS directions. The modified OpenFAST code was then compiled using Microsoft 

Visual Studio 2015 to generate a new FAST executable file, from which the dynamic 

responses of wind turbines can be obtained and used to calculate the FRF matrix. 

6.3 Identification results 

In this section, the NREL 5 MW reference onshore wind turbine introduced in Chapters 

4 and 5 was used to test the identification process developed in the previous section. 

Using modal decomposition in Section 5.3, the corresponding 2-DOF model can be 

obtained.  The modal mass matrix is 

[
1834 0
0 1834

] (𝑘𝑁/𝑚). 

The modal stiffness matrix is 

[
3990 0
0 3900

] (𝑘𝑁 · 𝑠2/𝑚). 

The modal stiffness and mass matrices for the 2-DOF model were assumed known 

before the estimation of damping matrix. Zero structural damping is assumed 

throughout this chapter as the focus is on the identification of aerodynamic damping. It 

was proved in Section 5.4 that a constant modal aerodynamic damping matrix is 

sufficient to characterise the aerodynamic damping in wind turbines for both uniform 

and non-uniform turbulent wind fields. Therefore, for simplicity the constant modal 

aerodynamic damping matrix is the target to identify other than a time-varying damping 

matrix. 
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6.3.1 Results by FRF measurements using responses caused by wind loading only 

Data generated by the 2-DOF model 

The case with a mean wind speed of 20 m/s and a turbulence intensity of 10% is still 

used as an example to demonstrate the identification results. Using the processes 

described in Section 5.3, the modal aerodynamic modal damping matrix of the 2-DOF 

model were obtained. The calculated aerodynamic damping matrix is 

[
108.1 21.3
41.4 11.2

] (𝑘𝑁 · 𝑠/𝑚), 

which is the target to identify. This modal aerodynamic damping matrix was set 

constant in the 2-DOF model in MATLAB to generate the displacement time series.  

  

(a) (b) 

  

(c) (d) 

Figure 6-2. Comparison the real part of analytical and identified 𝐻𝑥𝑥 (a), 𝐻𝑥𝑦 (b), 𝐻𝑦𝑥 

(c) and 𝐻𝑦𝑦 (d) with data from the 2-DOF model. 
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(a) (b) 

  

(c) (d) 

Figure 6-3. Comparison of the analytical and identified frequency-dependent 𝑐𝑥̅𝑥 (a), 

𝑐𝑥̅𝑦 (b); 𝑐𝑦̅𝑥 (c) and 𝑐𝑦̅𝑦 (d) with data from the 2-DOF model. 

 

The CSD matrices were calculated from the displacement and force time series as 
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calculated following Equation (6-13). During the calculation of the FRFs, some issues 
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DOF model (thrust and torque both generated by the same turbulent wind field) causes 

errors in the FRF estimation [138]. Second, a leakage error (caused by systematic error 

in PSD calculation as a result of the finite length of time series [141]) was observed 

when the length of measured time series is not long enough (e.g. less than 30 min). 

These errors can be reduced using a window function for the PSD calculation and a 

longer time series. Hamming windows whose length are 1/8 of the length of the input 

0.05 0.1 0.15 0.2 0.25 0.3 
Frequency (Hz) 

60 

80 

100 

120 

140 

160 

180 

c
x
x
 (

k
N

·s
/m

) 

Analytical 
Identified 

0.05 0.1 0.15 0.2 0.25 0.3 
Frequency (Hz) 

-150 

-100 

-50 

0 

50 

100 

150 

c
x
y
 (

k
N

·s
/m

) 

Analytical 
Identified 

0.05 0.1 0.15 0.2 0.25 0.3 
Frequency (Hz) 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

60 

c
y
x
 (

k
N

·s
/m

) 

Analytical 
Identified 

0.05 0.1 0.15 0.2 0.25 0.3 
Frequency (Hz) 

-40 

-20 

0 

20 

40 

60 

80 

100 

c
y
y
 (

k
N

·s
/m

) 

Analytical 
Identified 



 

142 

time series were used here. In practice a longer time series is a limitation, but as the 

damping identification is an operational identification method, long-time monitored 

data can be available (but might vary due to change of mean wind speed). The 

estimation results of the real part of the FRFs are shown in Figure 6-2, compared with 

the analytical results. Overall the estimation results agree well with the analytical results. 

The estimation of the FRFs was obtained by averaging 10 simulations of 1-hour 

duration. For larger simulation numbers and durations, the estimation of damping 

parameters becomes more accurate. 

  

(a) (b) 

  

(c) (d) 

Figure 6-4. Comparison of the analytical and identified  𝑐𝑥̅𝑥 (a), 𝑐𝑥̅𝑦 (b); 𝑐𝑦̅𝑥 (c) and 

𝑐𝑦̅𝑦 (d) with wind loading only and uniform wind field for the mean wind speeds from 

6 m/s to 24 m/s in 2 m/s steps; response data is from the 2-DOF model. 
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the method by Chen et al.’s Method introduced in Subsection 6.2.1. The estimated 

frequency-dependent damping matrix is shown in Figure 6-3, fluctuating around the 

analytical solution. There are some peaks near the resonance in the identified 

frequency-dependent damping terms, especially for 𝑐𝑥̅𝑥  in Figure 6-3(a) and 𝑐𝑦̅𝑥  in 

Figure 6-3(c). These peaks can be related to the estimated FRFs which have some 

difference near the resonance frequency compared to the analytical values as shown in 

Figure 6-2. Averaging the frequency-dependent matrix from 0.01 Hz to 0.3 Hz, an 

estimation of the aerodynamic damping matrix can be obtained as 

[
108.4 21.2
41.5 11.4

] (𝑘𝑁 · 𝑠/𝑚). 

The frequency range for averaging from 0.01 Hz to 0.3 Hz has been tested for a wide 

range of parameters to obtain reliable averaged damping coefficients. This frequency 

range includes most the power in the spectrum of turbulent wind as shown in Figure 

5-1, except the initial small range from 0 Hz to 0.01 Hz in which the estimated damping 

values undergo very large variation. The estimated aerodynamic matrix is close to the 

analytical values with percentage differences for the four damping coefficients: 

[
0.3 −0.3
−0.2 1.2

] (%). 

For mean wind speeds in the range of 6 m/s to 24 m/s in 2 m/s steps, more identification 

tests were carried out. As shown in Figure 6-4, good agreements between the analytical 

and identified values can also be found. 

Data generated by the FAST model 

Following the FAST data generation process described in Subsection 6.2.2, an example 

with mean wind speed of 20 m/s is presented. Again, 10 simulations of 1-hour duration 

were averaged to obtain the FRF estimation. The real part of the FRFs is shown in 

Figure 6-5, and the corresponding damping matrix estimation is shown in Figure 6-6. 

It can be seen that the estimation of the FRF is not very accurate. The damping 

calculation gave the averaged modal aerodynamic damping coefficients as 

[
92.3 154.6
−19.3 215.9

] (𝑘𝑁 · 𝑠/𝑚). 

The percentage difference to the analytically derived matrix is 
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[
−14.5 627
−146 1822

] (%), 

showing that the identified values do not agree well with the expected values. 

For the data generated by FAST with turbulent wind excitation, the calculated FRF 

matrix is very noisy and does not show a good agreement with the calculated FRF 

matrix of the 2-DOF model using theoretical derivations. Similar FRF estimation errors 

were obtained from responses generated by the 2-DOF model with time-varying 

damping matrix, demonstrating that the variation of the aerodynamic damping in 

operating wind turbines causes this difference. 

  

(a) (b) 

  

(c) (d) 

Figure 6-5. Comparison the real part of analytical and identified 𝐻𝑥𝑥 (a), 𝐻𝑥𝑦 (b), 𝐻𝑦𝑥 

(c) and 𝐻𝑦𝑦 (d) with data from the FAST model. 
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(a) (b) 

  

(c) (d) 

Figure 6-6. Comparison of the analytical and identified frequency-dependent 𝑐𝑥̅𝑥 (a), 

𝑐𝑥̅𝑦 (b); 𝑐𝑦̅𝑥 (c) and 𝑐𝑦̅𝑦 (d) with data from the FAST model. 
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Using the responses generated by the 2-DOF model with different turbulence intensities, 

the aerodynamic damping coefficients were calculated and compared to the analytical 

values.  

  

(a) (b) 

  

(c) (d) 

Figure 6-7. Comparison of the analytical and identified  𝑐𝑥̅𝑥 (a), 𝑐𝑥̅𝑦 (b); 𝑐𝑦̅𝑥 (c) and 

𝑐𝑦̅𝑦 (d) with wind loading only and uniform wind field for the turbulence intensity 

from 2% to 20% in 2% steps; response data is from the 2-DOF model with the 

constant damping matrix. 
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are the input forces to the 2-DOF system, resulting in stronger vibration responses and 

thus better PSD estimations. Particularly, the simulation time for the result in Figure 

6-7 is 3 hours, but the result is from only one long simulation without any averaging. It 

was found that shorter simulation time leads to larger errors (for example, 2000 s 

simulation leads to coefficient differences of around 30%). 

  

(a) (b) 

  

(c) (d) 

Figure 6-8. Comparison of the analytical and identified  𝑐𝑥̅𝑥 (a), 𝑐𝑥̅𝑦 (b); 𝑐𝑦̅𝑥 (c) and 

𝑐𝑦̅𝑦 (d) with wind loading only and uniform wind field for the turbulence intensity 

from 2% to 20% in 2% steps; response data is from the 2-DOF model with the time-

varying damping matrix. 
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6-8, which demonstrates no common trend for the identified damping coefficients with 

the turbulence intensity. The differences in the damping coefficients are large except 

𝑐𝑥̅𝑥, especially for 𝑐𝑦̅𝑦 whose lowest difference is 806%. 

The responses generated by FAST are quite similar to the responses from the 2-DOF 

model with the time-varying damping, so the identification results given FAST data is 

similar to the results shown in Figure 6-8. Therefore, the invalidity of the identification 

method using data from FAST in this section cannot be overcome by choosing different 

turbulence intensities. The turbulence intensity influences not only the forces applied 

to the rigid tower, but also influences the variation of the time-varying damping 

coefficients. Although smaller turbulence intensity corresponds to a steadier 

aerodynamic damping matrix, the variation of the forces applied to the rigid tower also 

becomes smaller. Thus, the contributions from the forces applied to the rigid tower and 

the time-varying damping matrix to the responses cannot be distinguished. The 

damping identification based on the CSD matrix is dependent on the quality of the PSDs 

of the responses and the input forces and.  As a result, the identification cannot work 

well for a time-varying system. 

Comparison not shown here demonstrates that the accuracy of the identification based 

on wind loading becomes worse when considering a non-uniform wind field. This can 

be understood as the FRF estimation using Equation (6-13) originates from a stochastic 

stationary process requiring the input to be a broad-band white noise. However, when 

the inflow wind field is non-uniform, the wind loading contains harmonics. The 

identification method based on ambient wind loading only works for conditions where 

the wind field can be controlled so that the wind field is uniform in space. Therefore, it 

is important to find another way of obtaining the FRF matrix accurately for a real wind 

turbine excited by the ambient wind field. This is the motivation for studying the 

identification method based on harmonic excitations described in Subsection 6.2.3. 

6.3.2 Results by FRF measurements using harmonic excitations 

For a mean wind speed of 20 m/s the force amplitude was chosen to be 10 kN and the 

harmonic excitation frequency from 0.2 Hz to 0.5 Hz, as this range contains the 

resonance frequency and allowed to obtain stable averaged damping coefficients. The 

computation time is quite long to obtain all the 2000 s response time series with the 

excitations of all frequencies, so the frequency resolution has to be properly chosen. 
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The frequency increment for the harmonic forces was 0.01 Hz, except for the range 

from 0.3 Hz to 0.38 Hz where a smaller frequency increment of 0.004 Hz was chosen 

to obtain higher resolutions around the resonance frequency (0.34 Hz). The forces were 

separately applied in the FA and SS directions and corresponding responses recorded. 

Other FAST settings were kept the same as stated at the beginning of Section 6.3. The 

FRFs were obtained by dividing the FFT of steady state responses with the FFT of the 

applied harmonic forces. Initially, the wind field was constant. The FRF comparison 

shown in Figure 6-9 indicates that the estimated FRFs are clear and accurate at most 

frequencies except near the resonance. Thus, as expected, estimations of the 

aerodynamic damping coefficients shown in Figure 6-10 are very accurate with 

percentage difference less than 10% compared to the analytical values. 

  

(a) (b) 

  

(c) (d) 

Figure 6-9. Comparison the real part of analytical and identified 𝐻𝑥𝑥 (a), 𝐻𝑥𝑦 (b), 𝐻𝑦𝑥 

(c) and 𝐻𝑦𝑦 (d) with harmonic excitations and constant wind field. 
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The large difference between the analytical and identified values near the resonance 

frequency in Figure 6-10 can be explained by the FRF calculation procedure. When the 

harmonic excitations of frequencies near the natural frequency were applied at the tower 

top, the sources of the frequency contents near the resonance frequency in the responses 

cannot easily be distinguished as the harmonic excitations and the vibration dominated 

by the first bending modes are both near the resonance frequency. This complicates the 

FRF estimation near resonance. 

  

(a) (b) 

  

(c) (d) 

Figure 6-10. Comparison of the analytical and identified frequency-dependent 𝑐𝑥̅𝑥 (a), 

𝑐𝑥̅𝑦 (b); 𝑐𝑦̅𝑥 (c) and 𝑐𝑦̅𝑦 (d) with harmonic excitations and constant wind field. 
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speed is 20 m/s. For harmonic excitations, the responses in the FA and SS directions 

were used to obtain the real part of FRF curves shown in Figure 6-11. A small offset 
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was found around the resonance frequency, but for frequencies away from the 

resonance a good agreement between the analytical FRF curves and the identified 

curves was obtained. The calculation of the four aerodynamic damping coefficients was 

carried out and the frequency-dependent estimations of these coefficients are shown in 

Figure 6-12. The averaged damping matrix in the frequency range from 0.2 Hz to 0.5 

Hz is 

[
108.5 20.3
44.4 11.5

] (𝑘𝑁 · 𝑠/𝑚), 

which is close to the analytical values with small percentage differences: 

[
0.4 −4.6
7.3 2.2

] (%). 

  

(a) (b) 

  

(c) (d) 

Figure 6-11. Comparison the real part of analytical and identified 𝐻𝑥𝑥 (a), 𝐻𝑥𝑦 (b), 

𝐻𝑦𝑥 (c) and 𝐻𝑦𝑦 (d) with with harmoinc excitations and non-uniform wind field. 
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(a) (b) 

  

(c) (d) 

Figure 6-12. Comparison of the analytical and identified frequency-dependent  𝑐𝑥̅𝑥 

(a), 𝑐𝑥̅𝑦 (b); 𝑐𝑦̅𝑥 (c) and 𝑐𝑦̅𝑦 (d) with with harmonic excitations and non-uniform wind 

field. 
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𝑐𝑦̅𝑦 the percentage differences are less than 30%. For 𝑐𝑥̅𝑦, most percentage differences 

are around 20%. The accuracy of this method depends on the amplitude of the harmonic 
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and easier to identify.  

  

(a) (b) 

  

(c) (d) 

Figure 6-13. Comparison of the analytical and identified  𝑐𝑥̅𝑥 (a), 𝑐𝑥̅𝑦 (b); 𝑐𝑦̅𝑥 (c) and 

𝑐𝑦̅𝑦 (d) with with harmonic excitations and non-uniform wind field for the mean wind 

speeds from 6 m/s to 20 m/s in 2 m/s steps. 
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wind turbines requiring smaller forces for the identification based on harmonic 

excitations. In practice, besides shakers to excite wind turbines, active tuned mass 

dampers could be used to harmonically excite the wind turbine (if installed), and this 

method was recommended by Oh and Ishihara [142]. 

6.3.3 Comparison of results from the model with identified damping ratios and 

the 2-DOF model with identified aerodynamic damping matrix  

  

(a) (b) 

  

(c) (d) 

Figure 6-14. Comparison of the FA (a, c) and SS (b, d) responses from the model with 

damping ratios and the FAST model when the mean wind speed is 10 m/s; (c) and (d) 

are zooms of (a) and (b). 

 

It is valuable to compare the influence of aerodynamic damping descriptions using the 
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responses. It is more practical to obtain the aerodynamic damping using OMA without 

any controlled excitation. However, classical OMA techniques without any 

modification, which assume the external excitations are white noise and do not contain 

harmonics, do not work well for wind turbines [71]. From Equation (6-11), the external 

forces that excite the vibration in the FA/SS direction can be regarded as the 

combination of two parts: the wind loads applied to a rigid tower and the harmonic 

excitation related to the motion in the SS/FA direction. As a result, to avoid the 

limitations of classical OMA techniques, the determination of the aerodynamic 

damping used the same methodology as mentioned in Subsection 6.3.3, i.e., through 

the FRFs measured from responses from the FAST model under harmonic excitations. 

Moreover, the damping identification through methodology based on EMA is normally 

deemed more accurate than that through OMA. 

First, an example with a non-uniform turbulent wind field and a mean wind speed of 10 

m/s is selected. After obtaining the FRFs, the damping ratios were calculated from 

measured 𝐻𝑥𝑥  and 𝐻𝑦𝑦  separately using a traditional Q-factor based method [143], 

resulting in damping ratios 7.18% and 0.29% in the FA and SS directions respectively. 

The Q-factor method estimates the damping ratio using the half-power bandwidth of 

the response spectrum or the FRF of a vibration system at the resonance. These two 

damping ratios can be converted into damping coefficients for the single-DOF systems 

representing the first bending modes in the FA and SS directions. On the other hand, 

the aerodynamic damping matrix can also be calculated from the full measured FRF 

matrix. The calculated two damping ratios and aerodynamic matrix were assigned to 

the 2-DOF model to reproduce the responses with the same external forces which are 

related to the wind loads applied to the rigid tower. Figure 6-14 shows the comparison 

between the responses from the model with damping ratios and the FAST model, while 

Figure 6-15 compares the responses from the model with the aerodynamic matrix and 

the FAST model. The similarity indicator gives 0.11 for the FA motion and 1.25 for the 

SS motion when comparing the responses in Figure 6-14, and 0.10 for the FA motion 

and 0.15 for the SS motion when comparing the responses in Figure 6-15. 

For the FA motion, the models with aerodynamic damping matrix and damping ratios 

can both reproduce responses close to those from the FAST model in this case. However, 

for the SS motion, the aerodynamic matrix performs much better than the damping 
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ratios. This clearly shows that the aerodynamic damping can be much better captured 

by the aerodynamic damping matrix compared to the damping ratios. 

  

(a) (b) 

  

(c) (d) 

Figure 6-15. Comparison of the FA (a, c) and SS (b, d) responses from the 2-DOF 

model and the FAST model when the mean wind speed is 10 m/s; (c) and (d) are 

zooms of (a) and (b). 
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corresponding to the FA and SS motions respectively, are shown in Figure 6-16. The 

estimated FA and SS damping ratios are both 0.29% when applying the Q-factor 

method to these two FRFs, which is in contradiction with the fact that the FA damping 
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is much larger than the SS damping. This can be explained by the similar magnitude 

shapes of  𝐻𝑥𝑥 and 𝐻𝑦𝑦 near resonance. However, it is clear the magnitude of 𝐻𝑥𝑥 is 

much lower than that of  𝐻𝑦𝑦 , meaning that the FA damping is larger than the SS 

damping. Thus, the estimations by the Q-factor method are not reliable in this case. 

  

(a) (b) 

Figure 6-16. The magnitude of identified 𝐻𝑥𝑥 (a) and 𝐻𝑦𝑦 (b) with with harmoinc 

excitations and non-uniform wind field. 

 

Then the identified damping ratios were assigned and responses were compared. In 

Figure 6-17, a very large difference in the responses from the model with damping 

ratios and the FAST model can be observed, where the similar indicator gives 0.63 in 

the FA direction and 0.67 in the SS direction.  

  

(a) (b) 

0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Frequency (Hz) 

0 

0.005 

0.01 

0.015 

H
x
x
 (

m
/k

N
) 

0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Frequency (Hz) 

0 

0.02 

0.04 

0.06 

0.08 

0.1 

0.12 

H
y
y
 (

m
/k

N
) 

0 50 100 150 200 250 300 
Time (s) 

-0.2 

-0.1 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

D
is

p
la

c
e
m

e
n
t 

(m
) 

FAST 
Damping Ratios 

0 50 100 150 200 250 300 
Time (s) 

-0.2 

-0.1 

0 

0.1 

D
is

p
la

c
e
m

e
n
t 

(m
) 

FAST 
Damping Ratios 



 

158 

  

(c) (d) 

Figure 6-17. Comparison of the FA (a, c) and SS (b, d) responses from the model with 

damping ratios and the FAST model when the mean wind speed is 20 m/s; (c) and (d) 

are zooms of (a) and (b). 

 

On the other hand, the comparison between the 2-DOF model and the FAST model in 

Figure 6-18 shows that the 2-DOF model is still able to generate very similar responses 

compared to the FAST model, and the values of the similarity indicator are 0.04 and 

0.13 in the FA and SS directions respectively. 

Some points can explain the difference caused by the different damping descriptions 

using aerodynamic damping matrix and damping ratios. First, the measured FRFs in 

the FA/SS direction are different from the one from real single DOF model because of 

aerodynamic coupling in the FA and SS directions. Second, the Q-factor method 

estimates the damping for a single DOF system, which cannot be theoretically suitable 

to estimate the damping of a coupled 2-DOF system. Thus, the estimation of damping 

ratios from the measured FRFs from operating wind turbines is difficult and lacks 

theoretical foundation. 
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(a) (b) 

  

(c) (d) 

Figure 6-18. Comparison of the FA (a, c) and SS (b, d) responses from the 2-DOF 

model and the FAST model when the mean wind speed is 20 m/s; (c) and (d) are 

zooms of (a) and (b). 
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matrix-based identification method. Then the final predication of the aerodynamic 
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dependent on the quality of the measured FRFs. 
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Two methods to obtain the FRFs were devised. In this first method, it is assumed that 

the wind turbine is only subjected to wind loads and the aerodynamic forces applied to 

a rigid wind turbine tower can be estimated in advance. Thus, the FRFs can be obtained 

from measured responses and the estimated aerodynamic forces. This method works 

well for the data obtained from the 2-DOF model with the constant modal aerodynamic 

damping matrix in MATLAB. However, it cannot accurately predict the aerodynamic 

damping matrix using the data obtained from FAST. This is because in FAST the 

aerodynamic damping is indeed time-varying when the inflow field changes over time. 

The second method is similar to traditional EMA, which requires successively applying 

harmonic external excitations with a range of frequencies to the wind turbine tower. 

The FRF matrix for a particular frequency point can be obtained from the FFT of the 

responses divided by the FFT of the applied external excitations at that frequency. 

Results show that the aerodynamic damping matrix can be extracted with good accuracy 

using this method. However, in practice the size of devices that generate the harmonic 

forces needs careful consideration. The external forces applied to the large-size wind 

turbines should be large enough so that the corresponding responses to the harmonic 

forces are observable and able to produce good FRF estimation. 

Finally, results from models with identified damping ratios and modal aerodynamic 

damping matrix were compared. It showed that for same measured FRFs, the model 

with aerodynamic damping matrix is much better than the model with damping ratios 

in terms of simulating the dynamic responses of operating wind turbines with same 

aerodynamic forces applied to a rigid tower, especially for the SS vibration. 
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Chapter 7 - Conclusions and Future Work 

 

7.1 Variation of damping values and first-principle damping models 

Vibration damping in offshore wind turbines is a critical parameter to predict the 

dynamic response. Although much research has been done to characterise energy 

dissipation in OWTs, published values vary widely and uncertainties remain as to what 

values should be used at the design stage, when actual measurements are not available. 

Following a detailed literature survey, it was found that the reported damping values 

for aerodynamic, structural and soil damping are in a relatively wide range, while the 

hydrodynamic damping is much smaller and contributes little to the total damping. The 

aerodynamic damping is significantly dependent on the operating conditions of the 

wind turbines. For instance, aerodynamic damping can be very different for parked 

wind turbines and wind turbines operating under different mean wind speeds. 

Compared to aerodynamic damping which can contribute more than 5% damping ratios 

in the total damping of operating wind turbines, contributions from structural and soil 

damping are both in the range of 0.2% to 1.5%. However, for parked wind turbines, 

structural and soil damping become more significant as the aerodynamic damping drops 

to less than 0.3%. Furthermore, the damping in the FA direction is much larger than 

that in the SS direction for operating wind turbines. 

First-principle models were developed to calculate the damping contributions from 

aerodynamic, hydrodynamic, and soil damping. The damping values calculated by 

these models were compared to reported damping values and results from FAST 

simulations. The dependence on operating conditions for aerodynamic damping was 

confirmed by the BEM-based aerodynamic damping model, and the difference in the 

FA and SS aerodynamic damping can be estimated by this model. Hydrodynamic 

damping in OWTs was found to be much lower than the values in previous studies and 

in current code recommendations, which is due to the significant size effect of the 

monopile diameter. Soil damping calculated by the nonlinear p-y curve based model is 

generally in the range of reported values. It was found that soil damping is strongly 

dependent on the stiffness of the wind turbine system. 
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7.2 Modelling of aerodynamic damping in wind turbines 

Free vibration tests carried out in FAST demonstrated the existence of coupling 

between the FA and SS motions. However, conventional damping ratios separately 

assigned in the FA and SS directions cannot correctly capture this coupling. A new 

aerodynamic damping model was developed to consider the FA and SS motions 

simultaneously, resulting in the so-called “aerodynamic damping matrix” which is a 

new aerodynamic damping description for wind turbine tower vibrations. The 

derivation of the aerodynamic damping matrix is based on BEM theory and the 

linearisation of aerodynamic forces from the rotor at the wind turbine tower top. Unlike 

conventional proportional damping matrices, the aerodynamic damping matrix is 

asymmetric and the off-diagonal terms in the matrix account for the coupling of the FA 

and SS motions. The aerodynamic damping matrix was initially derived by assuming 

the blades as rigid and the inflow wind field as constant. Then the aerodynamic damping 

model was extended to consider a turbulent inflow wind field, in which the aerodynamic 

damping matrix becomes time-varying. Moreover, it was shown that the wind turbine 

model with the original 4×4 aerodynamic damping matrix can be simplified to a 2-DOF 

model using a partial modal decomposition. 

The aerodynamic damping model was first tested with the constant inflow wind field, 

showing that the model with the constant aerodynamic damping matrix is able to 

generate accurately displacement time series from FAST with equivalent assumptions 

such as rigid blades and zero permanent shaft tilt. These assumptions were then tested 

with FAST simulations considering blade flexibility, initial shaft tilt, and blade precone. 

Results showed that the aerodynamic damping model is sufficient to capture the main 

damping characteristics of the wind turbine system. Then the damping model was 

verified with a turbulent uniform wind field and a turbulent non-uniform wind field. 

Results showed that the model with the constant aerodynamic damping matrix is still 

able to generate responses in good agreement with those from FAST. However, a time-

varying damping matrix better models the time-varying damping feature for wind 

turbines operating in turbulent wind fields. Overall, the results confirmed the potential 

of the aerodynamic damping model to accurately capture the tower-rotor interaction 

and the coupling between the FA and SS motions. 
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7.3 Identification of aerodynamic damping matrix 

A FRF-based aerodynamic damping identification procedure was developed to obtain 

the modal aerodynamic damping matrix in the 2-DOF system. Two methods to measure 

the FRFs were devised: the first one does not require controlled excitations but requires 

an estimation of aerodynamic forces applied to a rigid wind turbine tower; for the 

second method, harmonic excitations with a range of frequencies were applied at the 

tower top. Numerical simulations were carried out to test the feasibility of the damping 

identification procedure, in which two types of data were used: the responses generated 

by the 2-DOF wind turbine model in MATLAB and the responses from 

FAST/OpenFAST.  

The first FRF generation method is able to obtain a good estimation of FRFs using the 

responses from the 2-DOF model with the constant aerodynamic damping matrix. 

Therefore, an accurate damping matrix estimation was obtained from these FRFs. 

However, the first method failed to calculate accurate FRFs compared to analytical 

FRFs for the data from FAST, resulting in very large errors in the calculation of 

damping terms. This is due to the time-varying features of aerodynamic damping when 

the wind field is turbulent. 

The second method was successfully tested with turbulent wind fields with a range of 

mean wind speeds using a data model written for OpenFAST. Applying a controlled 

frequency excitation, the corresponding frequency content in the responses can be 

easily identified. The damping identification procedures based on conventional 

damping ratios and the aerodynamic damping matrix were compared. Results showed 

that the model with the identified aerodynamic damping matrix is able to generate 

closer responses to that from FAST than the model with damping ratios, especially for 

the SS motion. 

7.4 Future work 

From the literature review, one issue emerges as particularly deserving of further 

investigation: there is still no data available for the structural damping in large OWTs, 

even though this contribution is probably not insignificant. The estimated 

hydrodynamic damping by the simplified model was found to be much lower than 

recommended in current codes of practice, which can be explained by the size effect of 

the monopile. Although the contribution from hydrodynamic damping is small, it is 
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valuable to study how much hydrodynamic damping exists in large-size OWTs 

numerically and experimentally. 

The decoupled model with the aerodynamic damping matrix developed in this study 

can be used to quickly predict fatigue damage in OWTs. Further studies can be carried 

out to test the performance of this model. It was shown that the FA and SS motions are 

linked by the aerodynamic damping, so it is of interest to calculate the fatigue life of 

wind turbines considering the FA and SS vibrations simultaneously and compare the 

results to calculations which only focuses on the FA vibration. 

The aerodynamic damping model in this study assumes that the blades are rigid. 

Although the influence of the blade flexibility on aerodynamic damping is not 

significant according to the comparison with simulated responses, it is worthwhile to 

improve the aerodynamic damping model by including the blade flexibility. Another 

issue is that the aerodynamic damping model is based on the widely used BEM theory. 

However, more complex models of aerodynamics for wind turbines such as CFD model 

are more accurate than BEM theory. It will be valuable to compare the responses 

generated by the model with the aerodynamic damping matrix and the responses from 

more complex models. 

Given the importance of the aerodynamic damping component, there is comparatively 

little reliable experimental data available to test numerical predictions. The 

aerodynamic damping matrix is proven to be a better description of aerodynamic 

damping compared to damping ratios and an identification procedure has been devised 

to obtain it. After the successful implementation with simulated data, this identification 

procedure should be tested with experimental data obtained from real wind turbines. 
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