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I, Adam William Harwood, confirm that the work presented in this thesis is 
my own. Where information has been derived from other sources, I confirm 
that this has been indicated in the thesis.  
 
Abstract: 
 
Typically, Wittgenstein is assumed to have been apathetic to the 
developments in computability theory through the 1930s. Wittgenstein’s 
disparaging remarks about Gödel’s incompleteness theorems, and 
mathematical logic in general, are well documented. It seems safe to assume 
the same would apply for Turing’s work. The chief aim of this thesis is to 
debunk this picture. I will show that: 
 

a) Wittgenstein read, understood and engaged with Turing’s proofs 
regarding the Entscheidungsproblem. 

b) Wittgenstein’s remarks on this topic are highly perceptive and have 
pedagogical value, shedding light on Turing’s work. 

c) Wittgenstein was highly supportive of Turing’s work as it manifested 
Wittgenstein’s prevailing approach to mathematics. 

d) Adopting a Wittgensteinian approach to Turing’s proofs enables us to 
answer several live problems in the modern literature on computability. 

 
Wittgenstein was notably resistant to Cantor’s diagonal proof regarding 
uncountability, being a finitist and extreme anti-platonist. He was interested, 
however, in the diagonal method. He made several remarks attempting to 
adapt the method to work in purely intensional, rule-governed terms. These 
are unclear and unsuccessful. 
 
Turing’s famous diagonal application realised this pursuit. Turing’s 
application draws conclusions from the diagonal procedure without having to 
posit infinite extensions. Wittgenstein saw this, and made a series of 
interesting remarks to that effect. He subsequently gave his own (successful) 
intensional diagonal proof, abstracting from Turing’s. He endorsed Turing’s 
proof and reframed it in terms of games to highlight certain features of rules 
and rule-following.  
 
I then turn to the Church-Turing thesis (CTT). I show how Wittgenstein 
endorsed the CTT, particularly Turing’s rendition of it. Finally, I show how 
adopting a family-resemblance approach to computability can answer several 
questions regarding the epistemological status of the CTT today.  
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Impact Statement: 
 
The chief impact of the thesis will be on its immediate academic environment. 
This is primarily Wittgenstein scholarship. I hope to have uncovered and 
explicated some new ideas from Wittgenstein and also provide new criticisms 
to the secondary literature that might be of further interest.  
 
Some of the work contained herein may have pedagogical value in a broader 
context. In §2 I run through some of Wittgenstein’s (relatively unknown) 
abstractions from some of Turing and Gödel’s mathematical proofs. The 
original proofs themselves are highly complex and demanding, but 
Wittgenstein manages to spell them out simply without substantive loss of 
explanatory power. Shedding light on these passages may be useful for 
philosophers (or indeed anyone) interested in the staple proofs of recursion 
theory without a strong mathematical background.  
 
Mathematicians may also find some use in the contents of this thesis. 
Wittgenstein’s mathematical ability, or rather lack thereof, usually 
discourages a serious consideration of his work in a mathematical context. An 
underlying theme throughout this thesis is that this is unfair (and indeed 
unhelpful). My final and most lengthy section argues that a Wittgensteinian 
approach to the ordinary language associated with the Church-Turing thesis is 
useful to understanding its status in modern scholarship. If my analysis is 
correct, then this cements the Church-Turing thesis beyond doubt (and thus 
the proofs relative to the Entscheidungsproblem). This clearly has interesting 
and desirable implications in mathematics. Whilst I am not naïve enough to 
think I have presented any kind of breakthrough here, I hope that I have 
shown that an appeal to the Wittgensteinian approach to mathematics is 
worth serious consideration. Although my scope here is restricted to 
Wittgenstein’s interest and approach to Turing’s work, I am confident that an 
extension of this to recursion theory tout court, modern computability and 
related mathematical fields would be equally worthwhile.  
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Abbreviations: 
 
The following are abbreviations that refer to works of Wittgenstein and 
Turing that are frequently cited throughout. Please see Bibliography for full 
entries.  
 
AWL: Wittgenstein’s Lectures, Cambridge, 1932-1935. 
 
BB: The Blue and Brown Books. 
 
CN: On Computable Numbers, with an Application to the 
Entscheidungsproblem. 
 
LFM: Wittgenstein’s Lectures on the Foundations of Mathematics: Cambridge 
1939 
 
MS + n: the n-th manuscript in the Wittgenstein Nachlass. 
 
PG: Philosophical Grammar. 
 
PI: Philosophical Investigations. 
 
PR: Philosophical Remarks. 
 
RFM: Remarks on the Foundations of Mathematics. 
 
RPP: Remarks on the Philosophy of Psychology. 
 
TLP: Tractatus Logico-Philosophicus. 
 
WVC: Wittgenstein and the Vienna Circle: Conversations Recorded by 
Friedrich Waismann. 
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Schoolmaster: ‘Suppose x is the number of sheep in the problem’. 
Pupil: ‘But sir, suppose x is not the number of sheep’.  
 
[I asked Prof. Wittgenstein was this not a profound philosophical 
joke, and he said it was.] 
 
——J.E. Littlewood, A Mathematician’s Miscellany. 
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Introduction 
 
The turn of the twentieth century famously saw David Hilbert issue a call to 
arms for the modern mathematician. This took the form of 23 Mathematische 
Probleme (1900): a smorgasbord of major, then-unsolved problems extending 
across fields the solutions of which would shape the future of mathematics. 
The tenth of these called for a decision procedure for Diophantine equations. 
That is: find an algorithm which can take as an input any given polynomial 
equation with integer coefficients and decide whether that equation has a 
solution. The idea of decidability later generalised: are there procedures that 
can decide entire formal systems e.g. propositional logic, predicate logic, 
perhaps even arithmetic?  
 
Questions of this nature formed the core of ‘Hilbert’s programme’, which 
aimed to rigorously formalise mathematics by formulating it as a set of 
axioms that had been proved consistent by only finitary methods. Broadly, it 
was concerned with the limitations and qualities of axiomatic formal systems 
and what can be done within them. At a 1928 international congress Hilbert 
offered his new questions for the mathematical world with precision: Is 
mathematics complete? Is mathematics consistent? Is mathematics decidable?  
 
A system is complete iff every sentence of the language of that system is 
either provable or refutable. A system is consistent iff there is no sentence of 
that system such that both the sentence and its negation can be derived from 
the axioms. Finally, and most importantly for our purposes, a system is 
decidable iff there is some algorithm to determine the provability of any given 
sentence. At this time, ‘algorithm’ was understood intuitively as an effective 
method—an effectively calculable or computable procedure. These give a finite 
list of instructions, capable of being followed step-by-step without creativity 
or insight, which guarantee an answer. In the Tractatus, Wittgenstein would 
notably invent an algorithm that demonstrated the decidability of the 
propositional calculus: the truth table. The truth table can take any sentence 
of propositional logic and through a simple method show whether that 
sentence is universally valid in a finite number of steps.   
 
Hilbert thought, indeed hoped, that his questions would return in the 
affirmative.  
 
In 1930, the young Kurt Gödel announced work that foreshadowed a 
shattering blow to Hilbert’s programme. By 1931, the results were in: Gödel 
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had proved remarkable theorems concerning incompleteness and consistency 
(cf. Gödel (1931)). Gödel showed that the formal system in Principia 
Mathematica1—the quintessential formal system—and other similar systems 
such as ZF2, are incomplete assuming they are ω-consistent.3 Gödel showed 
that any ω-consistent system capable of modelling a certain amount of 
arithmetic, whose axioms can be recursively defined4, contains undecidable 
sentences—Gödel sentences. These sentences are neither provable nor 
disprovable within the system. Further, he showed that statements of 
consistency within a system cannot be proved within that system, if that 
system is consistent.  
 
This still left Hilbert’s Entscheidungsproblem [decision problem], which by 
then had become “one of the leading problems of mathematical logic” 
(Ramsey 1930, 264). The decidability of fragments of predicate logic had been 
established, such as a restriction of it to unary predicates and other special 
cases.5 However, the Entscheidungsproblem—the question of the decidability 
of the predicate calculus tout court—remained open. More specifically, the 
target was Hilbert’s engere Funktionkalkul—the restricted functional calculus 
incorporating propositional and first-order predicate logic (cf. Hilbert & 
Ackermann (2000)).  
 
No solid answer appeared until 1936, when both Alonzo Church, working from 
Princeton, and Alan Turing, from Cambridge, independently published 
answers that proved that the Entscheidungsproblem has no solution. Church’s 
proof came first (cf. Church (1936a), Church (1936b)). Usually this would 
preclude the publication of Turing’s work. However, Turing’s paper was so 
original and general that it warranted exposure to, and further development 
by, the mathematical community. Turing’s paper—On Computable Numbers, 
with an Application to the Entscheidungsproblem (CN)—was published in the 
LMS Proceedings in November 1936. Turing was 24.  
 

                                     
1 Cf. Russell & Whitehead (1910), (1912), (1913). 
2 ZF abbreviates Zermelo-Fraenkel set theory, the orthodox axiomatic system of set theory.  
3 This requirement is stronger than simple consistency; ω-inconsistency occurs when every 
formula of a sequence 𝜙(0), 𝜙(1), . . . 𝜙(𝑛) are provable, and also the formula ~∀𝑥 𝜙(𝑥). 
4 More on this later. 
5 This is due to the Löwenheim-Behmann theorem; see Boolos et al., (2007, Ch 21) for the 
proof and related theorems. Other ‘special cases’ include the Schönfinkel-Bernays-Ramsey 
class: the fragment, now sometimes called ‘effectively propositional’, with which Ramsey was 
concerned in Ramsey (1930). 
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Turing outlined a logical blueprint for computing machines, now commonly 
called ‘Turing machines’. These, he argued, can compute any result calculable 
via an algorithm. He showed that there is no Turing machine capable of 
deciding whether or not any given sentence in the first-order predicate 
calculus is universally valid. Therefore, if his analysis is correct, there is no 
effective method that settles the Entscheidungsproblem. 6  This work was 
important not only for its own sake: formulating an acceptable notion of 
algorithm led directly to an absolute definition of an effectively axiomatisable 
formal system. This meant that—in conjunction with other developments in 
the literature7—Gödel’s proofs could be extended to include any consistent, 
effectively axiomatisable system capable of modelling a certain amount of 
arithmetic. It is now common knowledge that Gödel’s proofs entail that the 
Entscheidungsproblem has no solution. However, the true scope of Gödel’s 
achievement was not apparent until long after the publication of his proofs. 
 
There is an anecdote about Turing that I like. Sometime during the first 
months of the Second World War, a discussion arose in a cosy Parisian café 
between English and Polish cryptographers over which system of 
measurement and currency was more logical: the (famously chaotic) British 
imperial system or the European decimal system. Turing characteristically 
defended the former: the pound sterling, with its composition of 20 shillings 
divided into 240 pence, uniquely allowed three, four, five, six, or eight persons 
to precisely split a pub tab with a tip rounding off perfectly to a full pound 
(Hodges 2014, xxviii). 
 
Turing found the system ‘logical’ in virtue of its utility—in this case, for its 
neat divisibility relative to pint pricing. This might well have been a 
Pavlovian response for Turing. Only months before this, Turing was sat in 
Cambridge attending a lecture series by Wittgenstein entitled Lectures on the 
Foundations of Mathematics (LFM). Wittgenstein would here attach the 
purpose of a given calculus to its application: calculi are inventions employed 
by us to make inferences in everyday scenarios. 
 
The Lectures are a fascinating read. At times, they give the impression that 
Wittgenstein and Turing were intellectual enemies. Turing is charged with 
giving the typical mathematician’s response against which Wittgenstein lays 

                                     
6 Church’s proof used another formalism—the λ-calculus—in a similar way; the class of λ-
definable functions coincides with Turing-computable functions. 
7 Notably Rosser’s trick, which meant that formal systems need only be consistent, rather 
than ω-inconsistent for the incompleteness proofs to apply. 
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his arguments. Ray Monk claims that their approach to the foundations of 
mathematics at the time of the Lectures “could not have been more different” 
(Monk 1991, 417). The lectures saw Wittgenstein attack, and Turing defend, 
the importance of mathematical logic. They debated extensively on the nature 
of contradiction, Turing having to defend the (intuitively obvious) position 
that contradictions in mathematics are worrying (and indeed that they matter 
at all) (Monk 1991, 421). Turing then stopped attending the lectures: 
“convinced, no doubt, that if Wittgenstein would not admit a contradiction to 
be a fatal flaw in mathematics, then there could be no common ground 
between them” (Monk 1991, 421-422). Despite lengthy discussions on the 
nature of ‘rule’ in mathematics, Turing never gave a definition of rules in 
terms of Turing Machines. Monk does not find this curious: “surely, Turing 
realised that Wittgenstein would have dismissed such a definition as 
irrelevant”—his concerns were far more fundamental (Monk 2991, 422). 
 
This picture is, in fact, misleading. I will show that in no way did 
Wittgenstein find Turing machines ‘irrelevant’. Wittgenstein was not 
hopelessly unaware or unengaged with the developments in recursion theory in 
the 1930s. Rather, I will show that: 
 
a) Wittgenstein read, understood and engaged with Computable Numbers. 
b) Wittgenstein’s remarks on this topic are highly perceptive and have 
pedagogical value, shedding light on Turing’s work. 
c) Wittgenstein was highly supportive of Turing’s work as it was indicative of 
Wittgenstein’s prevailing approach to mathematics. 
d) Adopting a Wittgensteinian approach to Turing’s proofs enables us to 
answer live problems in the modern literature on computability. 
 
It is true that Wittgenstein and Turing disagreed over several issues, the most 
famous of which being machine-thinking. Turing famously defended the 
proposition that machines are capable of thinking, whereas Wittgenstein 
vehemently opposed it. These differences, however, are contained to the 
philosophy of mind and related areas. Wittgenstein was not opposed to 
Turing’s logico-mathematical work. Rather, he endorsed it thoroughly. I will 
show that Turing’s work is consistent with Wittgenstein’s core philosophy of 
mathematics at the time of Computable Numbers. Instead of viewing Turing’s 
work as steeped in linguistic confusion, Wittgenstein reconstructs some of 
Turing’s discoveries in his own framework, and uses them to deduce 
conclusions concerning his own work on rules.  
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I consider d) my most interesting and novel claim. The Wittgensteinian 
approach is typically taken to be gormlessly incommensurable with the 
practices of mathematical logicians concerned with computability. The fact 
that adopting a Wittgensteinian approach to computability—especially in 
modern discourse—can prove fruitful should, I hope, be an exciting 
development. 
 
This paper is divided into three sections: 
 
§1—Mathematics—gives an excavation of Wittgenstein’s philosophy of 
mathematics relevant to Turing’s work. This is largely concerned with 
Wittgenstein’s arguments in Part II of his Remarks on the Foundations of 
Mathematics (RFM). I give an exposition of Wittgenstein’s treatment of 
Cantor’s famous diagonalisation method. Understanding Wittgenstein’s (quite 
curious) approach to Cantor’s work is paramount for a correct interpretation 
of his remarks about Computable Numbers.  
 
§2—Turing—offers my interpretation of Wittgenstein’s interest in Computable 
Numbers. I will show how Wittgenstein understands Turing’s proofs in terms 
of games. He also reconstructs his own version of Turing’s application of the 
diagonal method. He uses this to show an interesting feature of rules and rule-
following. My reconstruction of these remarks is largely similar to Juliet 
Floyd’s interpretation, although I hope to go slightly further. I will counter 
Floyd’s argument that Wittgenstein influenced the inception of Computable 
Numbers. Influence, if we are to posit any regarding Computable Numbers, 
flowed only in one direction. 
 
§3—Computability—is concerned with the Church-Turing Thesis. 
Wittgenstein’s makes a pithy remark about Turing machines being humans. I 
show that this is actually an insightful comment on Turing’s contribution to 
the thesis. I argue this in opposition to Stuart Shanker, who erroneously 
argues that Wittgenstein objected to the thesis. After this, I examine the 
current status of the thesis moving forward. There is a philosophical debate to 
be had over the epistemological status of the thesis today. That is, whether it 
is (undoubtedly) true, provable, proved etc. I will make a case for the truth of 
the thesis by appeal to the Wittgensteinian notion of family resemblance. 
Although the truth of the thesis is largely accepted, I think that my account 
is the only approach that successfully accommodates the historical reception 
of the thesis.  
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1 Mathematics—Wittgenstein on Cantor and 
Foundations 

 

1.1 Cantor 
 
Cantor’s diagonalisation method is perhaps the most widely used tool in 
mathematical logic. This simple technique underpins a host of influential 
proofs, including Gödel and Turing’s. It dates back to 1891, where Cantor 
used it to prove the uncountability of the set of real numbers (ℝ). He had, in 
fact, already proved this in 1874 using a different method. This new method, 
however, was far neater and has since become a staple in mathematical logic. 
I will briefly run through it. Cantor’s original formulation (1891) is not 
formalised, relying on the informal concept of Mannigfaltig (manifold). As 
such, I will instead (loosely) follow the presentation given in Boolos et al. 
(2007, Chs 1-2).  
 
A set is enumerable, or countable, iff it can be arranged in some list such that 
every member corresponds to a natural number, these being 0,1,2,3… That is, 
a set is enumerable iff it is the image of some function of natural numbers.8  
 
All finite sets are clearly enumerable, being the images of partial functions of 
natural numbers. Take {2,19, 48}: 
 

0 → 2 
1 → 19 
2 → 48 

 
So are many infinite sets. Take the positive even numbers: 
 

0 → 2 
1 → 4 
2 → 6   . . . 

 
Every even number will eventually appear on the list 2,4,6. .. Every even 
number can be associated with a natural number.  
 

                                     
8 A total/(partial) function is a relation between sets which takes arguments from a domain 
(arguments x of a set X) and maps every/(some) member(s) each to a single element y of a 
set Y (the range). The image of a function is the subset of the range that is the output of the 
function (the elements y of Y).  
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Not all sets can be arranged in this way. For instance, the set of all subsets of 
natural numbers—the power set of ℕ, 𝒫(ℕ)—is not enumerable. Assume for 
reductio, that the members of 𝒫(ℕ) could be laid in the following list (i.e. 
assume it is enumerable): 
 

𝑆1, 𝑆2, 𝑆3, . . . 
 
where each 𝑆! is some subset of ℕ.  
 
We can always define another subset of the natural numbers (hence another 
element of 𝒫(ℕ))—𝑆0—which does not appear as any 𝑆!. We simply define 𝑆0 
to be the set containing each natural number n iff n is not in 𝑆!. From this 
definition we know that 𝑆0 cannot be an entry on the list 𝑆1, 𝑆2, 𝑆3, . .. for it 
differs with each of these by at least one member. 𝑆0  cannot be any 𝑆! 
because, by definition, either 𝑛 ∈ 𝑆! and 𝑛 ∉ 𝑆0, or 𝑛 ∉ 𝑆! and 𝑛 ∈ 𝑆0. Yet, 
𝑆0 is an element of 𝒫(ℕ), being it a subset of ℕ, and so by the assumption 
must appear on the list 𝑆1, 𝑆2, 𝑆3, … Let 𝑆0 be 𝑆!: then, 𝑚 ∈ 𝑆! and 𝑚 ∉  𝑆0, 
or, 𝑚 ∉ 𝑆! and 𝑚 ∈  𝑆0. Thus, we have derived a contradiction. Our original 
assumption is thus false and 𝒫(ℕ) is uncountable (or non-denumerable). 
 
We can make this clearer by interpreting 𝑆1, 𝑆2, 𝑆3, … as functions 𝑠1, 𝑠2, 𝑠3, … 
which return values of 0 or 1. We say for each 𝑆! that for each natural 
number n: 
 

𝑠!(𝑛) = { 1 if 𝑛 ∈ 𝑆!
0 otherwise

 

 
We can plot this spatially as follows: 
 

𝑠!(𝑛) 1 2 3 4 … 
𝑠1 𝑠1(1) 𝑠1(2) 𝑠1(3) 𝑠1(4) … 
𝑠2 𝑠2(1) 𝑠2(2) 𝑠2(3) 𝑠2(4) … 
𝑠3 𝑠3(1) 𝑠3(2) 𝑠3(3) 𝑠3(4) … 
𝑠4 𝑠4(1) 𝑠4(2) 𝑠4(3) 𝑠4(4) … 

… … … … … … 
 
This represents an array of 0s and 1s, each dependent on whether the natural 
number n appears in 𝑆!. For instance, if 𝑆1 happened to be {1,3}, then 𝑠1 
would read horizontally 101000… 
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We can now represent 𝑆0 in terms of the function 𝑠0. For all n: 
 

𝑠0 𝑛 = 1 − 𝑠! 𝑛  
 
This takes the outputs diagonally across the table (𝑠1(1), 𝑠2(2), 𝑠3(3), …) and 
switches them. If 𝑠1(1) = 0 then 𝑠0(1) = 1, and vice versa and so on.  
 
Now, we know 𝑠0 must appear as a row on the table above. If 𝒫(ℕ) were 
enumerable, its members could be laid out 𝑆1, 𝑆2, 𝑆3, …  such that each 
member corresponded to a natural number. By definition, 𝑆0 must appear on 
the list as it is a set of natural numbers and thus an element of 𝒫(ℕ). 𝑆0 
therefore corresponds to 𝑠0 on the table.  
 
However, 𝑠0 cannot appear as any m-th row in the list above. If it did, then 
the following equation would hold: 
 

𝑠! 𝑚 = 1 − 𝑠! 𝑚  
 
This says that 0=1 as 𝑠! 𝑚  returns either 0 or 1.  
 
𝑠0 must appear, but its doing so results in a contradiction. Therefore, contra 
our assumption, 𝒫(ℕ) is uncountable. 
 
The aesthetic effect created by altering the values of 𝑠! 𝑚  explains why this 
is commonly referred to as Cantor’s diagonal proof, or proof by 
diagonalisation.  
 
From the proof that 𝒫(ℕ)  is uncountable, if follows that ℝ  is also 
uncountable. The real numbers are those numbers that form the continuum: 
any number that can be represented as a point along an infinite line. These 
include any quantity that is not imaginary e.g. 0.00001, √2, π, 100.8, etc. In 
order words, the reals are those numbers that can be represented by an 
integer followed by a possibly infinite sequence of digits.  
 
If r is a real number 0 < 𝑟 < 1 , then r has an infinite binary expansion 
. 𝑥1𝑥2𝑥3 … where each 𝑥!  is either 0 or 1. Some have two expansions i.e. 
1
2 = 0.1000 … = 0.0111 … If there is a choice, choose the one trailing in 0s 
rather than 1s. Every set S of natural numbers can be associated to some real 
number r between 0 and 1—just take the function s corresponding to the 
subset S of ℕ to be the sequence of 0s and 1s in the binary expansion of r. 
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Thus, an enumeration of ℝ would entail an enumeration of 𝒫(ℕ) which we 
know from above is impossible. Therefore, ℝ is uncountable.  
 
Uncountability is a feature of the cardinality (size) of sets. The cardinality of 
A is greater than that of B—|𝐴| > |𝐵|—iff there is an injection from B into A 
but no bijection.9 We know by diagonalisation that any 𝑓: ℕ → ℝ has real 
numbers in its range that are not the image of an element from the domain ℕ. 
Therefore, |ℝ| > |ℕ|. We denote |ℕ| by ℵ0. We denote |𝒫(ℕ)| as 2ℵ0.10 As there 
is a bijection between ℝ and 𝒫(ℕ) , |ℝ| = 2ℵ0 . By diagonalisation we have 
shown that 2ℵ0 > ℵ0.  
 
Cantor’s work gave access to an entirely new branch of mathematics: 
transfinite arithmetic. The diagonalisation method delivered more still though. 
For its initial purpose, the method was virtually redundant: as I have already 
mentioned, Cantor had already proved the uncountability of the real numbers 
way back in 1874. However, this technique is so simple and elegant that it 
proved highly transferable.  
  
I would like to analyse the remarks that Wittgenstein devoted to Cantor. I 
will distinguish Cantor’s proof—that ℝ  is uncountable—from Cantor’s 
technique (method, procedure). By this I mean the construction of a diagonal 
sequence as follows: 
 

𝑎11, 𝑎12, 𝑎13, 𝑎14, 𝑎15, … 
𝑎21, 𝑎22, 𝑎23, 𝑎24, 𝑎25, … 
𝑎31, 𝑎32, 𝑎33, 𝑎34, 𝑎35, … 
𝑎41, 𝑎42, 𝑎43, 𝑎44, 𝑎45, … 
𝑎51, 𝑎52, 𝑎53, 𝑎54, 𝑎55, … 

    … 
New sequence: 𝑏1, 𝑏2, 𝑏3, … such that 𝑏! ≠ 𝑎!!. 
  
For whatever reason, many authors have tried to poke holes in the legitimacy 
of Cantor’s method. None of these attempts, however, have been treated 
particularly seriously. Wilfrid Hodges has written a rather amusing, if not 
slightly disrespectful, article entitled: ‘An Editor Recalls Some Hopeless 
Papers’ (1998). This paper is entirely devoted to highlighting (and in some 
cases mocking) errors in the many papers sent to him for publication that 

                                     
9 A function is injective iff every element of the function’s range is the image of at most one 
element of its domain. A function is surjective iff every element in the range is the image of 
some element in the domain. A total function that is both injective and surjective (i.e. there 
is a one-to-one correspondence) is bijective. 
10 This was, in fact, proved by Cantor. If |𝐴| = 𝑛 then |𝒫(𝐴)| =  2!. Further, for any set 
(finite or infinite) |𝒫(𝐴)| > |𝐴|.  
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claimed to refute Cantor’s proof. This goes to show, if only superficially, the 
esteem in which Cantor’s proof is held in the mathematical community. 
Hodges actually mentions a court case from 1995 where William Dilworth, 
having published a ‘refutation’ of Cantor’s proof, sued mathematician 
Underwood Dudley for libel after he called Dilworth a ‘crank’ (1998, 1). 
Perhaps it is telling that the case was dismissed.  
  
Given this, Wittgenstein’s remarks on Cantor should be immediately 
surprising: Wittgenstein criticises the results of Cantor’s proof. These remarks 
are worth further inspection for their own sake. However, they will also be 
instrumental in understanding Wittgenstein’s later remarks on Turing’s 
application of the diagonal procedure. I do not find Wittgenstein’s attack 
especially convincing. I will say this though: despite being, I dare say, the 
quintessential crank, Wittgenstein is absolved of that charge on this count. 
 

1.2 Wittgenstein on Mathematics in 1938 
 
The bulk of Wittgenstein’s comments on Cantor’s diagonalisation proof come 
from MSS 117 and 121, which have been collated into Part II of RFM. These 
originate mostly from 1938. These remarks are highly cryptic and require an 
understanding of Wittgenstein’s prevailing philosophy of mathematics, of 
which they are symptomatic.  
 
By 1938 Wittgenstein was well into the formation of his philosophy that 
became known as the ‘later Wittgenstein’. This was characterised by a 
vehement rejection of the system of language and reality described in his first 
work: Tractatus Logico-Philosophicus (TLP), written during the First World 
War. The Tractatus describes a rigid relationship between language and the 
world—we describe facts by picturing them with language. The structure of 
language logically pictures the structure of reality—language is “laid against 
reality like a measure” (TLP 2.1512). Thus, language has sense if it pictures 
some possible or actual state of affairs. Any other utterance is nonsense. 
 
The principal aim of the Tractatus—aside from solving all philosophical 
problems—was to resolve the core issues with which Russell was struggling at 
the time, such as the class-theoretic problems in Principia and the multiple-
relation theory of judgement. Wittgenstein was highly suspicious of class and 
set theory. Thus, when it came to mathematics, the Tractatus offered 
alternative foundations that attempted to dispense with classes altogether. 
This turned on a theory of formal operations. Wittgenstein defines the natural 
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numbers in terms of successive ‘operations’ upon a variable, much like a 
successor function (cf. TLP 6.01-6.02).11  
 
Importantly, Wittgenstein’s take on mathematics in the Tractatus is non-
referential, and in many ways formalist—for Wittgenstein, mathematical 
propositions are purely syntactical and make no reference to independent 
mathematical objects or facts. Numbers are defined not by appeal to 
mathematical objects, but by successive applications of rules. Mathematics 
(or, at least, arithmetic) in the Tractatus consists only in the manipulation of 
signs. Wittgenstein is clear that mathematical statements are not bona fide 
propositions: they do not create a picture of the world (qua representing 
certain states of affairs and their relation to one another). Having said this, 
mathematical propositions are relevant in justifying inferences between 
propositions:  
 

Indeed in real life a mathematical proposition is never what we want. 
Rather, we make use of mathematical propositions only in inferences 
from propositions that do not belong to mathematics to others that 
likewise do not belong to mathematics (TLP 6.211).  

 
Mathematics is not purely a manipulation of signs, then, but a set of 
operations yielding normative results used to reason about contingent 
propositions.  
 
Wittgenstein subsequently came to reject most of the ideas in the Tractatus. 
His analysis of logic became less formalised, and he dropped his key idea that 
there is a pervasive logical form across all of language. By the early thirties, 
the ‘language game’ made its way into Wittgensteinian parlance—a tool for 
highlighting the use of language in certain isolated contexts. This emphasised 
that the meaning of expressions came from their use, which needn’t be 
constant across language. 
 
Wittgenstein’s outlook on mathematics followed suit. His account became far 
less formalised and inquiry was always directed at the application of a given 
calculus. Having said this, his core approach remained substantively similar. 
He still maintained the formalist aspects of his philosophy of mathematics: 
  

                                     
11 See Marion (1998, Ch2) for a good exposition. Marion interestingly points out that, save 
notation, Wittgenstein’s definition of the natural numbers is identical to Church’s definition 
in the λ-calculus—the formalism used in the first proof of the unsolvability of the 
Entscheidungsproblem.  
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Mathematics is always a machine, a calculus. The calculus does not 
describe anything. [...] The calculus is an abacus, a calculator, a 
calculating machine (WVC, 106). 

 
For Wittgenstein, “mathematics consists entirely of calculations” (PG, 468). 
Calculations can be thought of only as the manipulation of signs like the 
manipulation of beads on an abacus. As such, mathematics does not describe 
anything. We cannot describe it; we can only do it (PR, §159). Mathematics 
is thus fundamentally algorithmic: “in mathematics everything is algorithm, 
and nothing is meaning” (PG, 468).  
 
Around this time Wittgenstein developed a distinction between calculus and 
prose.12 Only manipulating a calculus, like moving beads on the abacus, is 
doing mathematics. There is no place for prose in mathematical calculation. 
Having said this, we use calculations to reason over propositions in prose. He 
would continually emphasise the claim from the Tractatus that the sine qua 
non of a mathematical calculus is its use to reason about everyday 
propositions:13  
 

I want to say: it is essential to mathematics that its signs are also 
employed in mufti. It is the use outside mathematics, and so the 
meaning of the signs, that makes the sign-game into mathematics. 
(RFM V, §2).  

 
That is, mathematics is a game we play to reason about extra-mathematical 
propositions. Only calculation is doing mathematics, but it is the application 
that makes the game mathematics. Similarly, we do not study mathematical 
calculi simply because they make an interesting pattern, but rather we use 
them normatively to reason about how things must be.  
 
At the core of this is the tenet that (all) mathematics is an invention by us. 
Wittgenstein would insist that “the mathematician is not a discoverer: he is 
an inventor” (RFM I Appendix II, §2).  
 
From this crucial point follow many important corollaries. There are no 
mathematical objects independent of our inventions. From this there can be 
no such thing as an ‘infinite extension’. That would require, amongst other 

                                     
12 See Shanker (1987a, Ch5) for a good exegesis of this.  
13 This tenet was seemingly dropped in the early thirties, where Wittgenstein talks cryptically 
in places about arithmetic ‘taking care of its own applicability’ (cf. PG, 308). The tenet 
reappears by RFM.  
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things, a superhuman capacity to invent infinitely many discrete objects. 
Wittgenstein makes a sharp distinction between ‘extensions’—symbols, sets, 
axioms etc. (the mathematical objects we invent)—and ‘intensions’, which he 
understands as the mathematical rules for e.g. transformations, generating 
sequences etc.14 The concept of infinity can only be understood in terms of 
intensions. Infinity is a property of a concept contained entirely within its 
rules for construction; it is never a question of ‘large’ extensions. For instance, 
Wittgenstein claims that “[a]n irrational number isn’t the extension of an 
infinite decimal fraction,… it’s a law” (PR, §181). Wittgenstein continually 
criticised the conflation of intensions and extensions in mathematics: “there 
isn’t a dualism: the law and the infinite series obeying it” (PR, §180). When 
we talk of infinity, we must avoid thinking that we are talking about 
extensions: “only laws reach to infinity” (PR, §181). The crux of the point is 
that “‘[i]nfinite’ is not a quantity”, it represents a possibility, and thus is a 
predicate of a certain property; its grammar is entirely distinct from that of 
finite numbers, which we can label as mathematical objects (WVC, 228).  
 

The infinite number series is only the infinite possibility of finite series 
of numbers. It is senseless to speak of the whole infinite number series, 
as if it, too, were an extension. (PR, §142).  

 
This is characteristic of Wittgenstein’s vehement anti-platonism, this 
following from his conviction that mathematics is invented by us. This 
restricts him to finitism: an insistence that there can be no such thing as 
infinitely many mathematical objects. This precludes the existence of infinite 
sets for Wittgenstein. He was heavily critical of set theory on these exact 
grounds, calling it a “fictitious symbolism” (PR, §174). It is fictitious due to a 
failure to heed the distinction between intension and extension. Sets do not 
have intensions, being intuitively just collections of objects. This leads to the 
labelling of an infinite set as if it were an actual extension. For Wittgenstein, 
there can be no such thing: infinity is only a property, or rather a possibility, 
of an intension. Further, this symbolism, in lieu of an enumeration of infinite 
sets, settles with describing them by signs. However, as mathematics is 
essentially algorithmic for Wittgenstein, there is no room for description of 
possibilities.  
 

                                     
14 N.B. This is different to how the extension/intension distinction is commonly understood 
nowadays. Usually we use ‘extension’ to denote the class of objects denoted by a given 
expression, whilst the ‘intension’ is its meaning. For instance, ‘the morning star’ and ‘the 
evening star’ have the same extension—Venus—but different intensions.  
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For this reason, Wittgenstein’s approach to mathematics is in various places 
referred to as ‘intensionalist’, or rather ‘anti-extensionalist’ (cf. Marion 
(1998)). This lies in opposition to what Wittgenstein would label the 
‘extensionalist’ approach seen in his Cambridge peers such as Russell and 
Ramsey. Wittgenstein was highly suspicious of extensional talk; understanding 
mathematics involves only grasping the underlying rules in a given calculus or 
algorithm.  
 
From this picture it is clear why Wittgenstein would oppose Cantor’s set-
theoretic proof that some infinite sets have a greater cardinality than others.  
 

1.3 Wittgenstein on Uncountability 
 
Wittgenstein rejected the results of Cantor’s proof as a fundamental 
confusion: the proof claims more than its method allows because it is muddied 
by ordinary language.  
 
Mathematics is simply a calculus, a game with signs. Following from his 
distinction between calculus and prose, Wittgenstein argues that any result of 
a calculation expressed verbally is to be regarded with suspicion (RFM II, §7). 
We should never try to confer meaning upon a calculus via prose. Rather, 
“the calculation illumines the meaning of the expression in words” (ibid.). 
That is, calculation should inform the meaning of the verbal expression, not 
the other way around: 
 

[T]he verbal expression casts only a dim general glow over the 
calculation: but the calculation a brilliant light on the verbal expression 
(ibid.). 

 
This point is very important and explicitly directed at Cantor’s proof, which 
is almost always explained using prose with a pre-existing meaning. Take the 
following quotation lifted from SEP:  
 

There are relatively small infinite sets like the set of even numbers, the 
set of integers, or the set of rational numbers. These sets can all be put 
into one-to-one correspondence with the natural numbers; they are 
called countably infinite. In contrast, there are much “larger” infinite 
sets like the set of real numbers, the set of complex numbers, or the set 
of all subsets of the natural numbers. These sets are too big to be put 
into one-to-one correspondence with the natural numbers; they are 
called uncountably infinite. Cantor's Theorem, then, is just the claim 
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that there are uncountably infinite sets—sets which are, as it were, too 
big to count as countable (Bays 2014). 

 
Wittgenstein would entirely oppose such an interpretation of Cantor’s proof. 
Here, the pre-theoretical concepts of size (largeness, big-ness etc.) are being 
attached to Cantor’s calculus as a means by which which to interpret it, with 
no reference to the actual proof. Because the diagonal procedure involves 
finding an ‘extra’ number not included in a given list, there is a temptation to 
follow an analogy with finite sets and declare that Cantor’s proof shows that 
ℝ is larger than ℕ. We are led to believe that we are comparing these sets in 
terms of magnitude.  
 
This, however, is not what Cantor’s method shows for Wittgenstein. What the 
method shows is that: 
 

[T]he concept ‘real number’ has much less analogy with the concept 
‘cardinal number’ than we, being misled by certain analogies, are 
inclined to believe (RFM II, §22).  

 
Traditionally, this disanalogy represents, “by a skew form of expression, a 
difference of extension” (ibid.). He declares this tactic “hocus pocus” (ibid.).  
 
What he means by a disanalogy in the concept real versus cardinal number is 
not initially explicit. I take him to mean that there is some difference in kind 
in the rule for the generation of successive real numbers comparatively to 
natural numbers, cardinal numbers etc. This must be what he means as, for 
Wittgenstein, the infinity displayed in these series is entirely a feature of the 
rules for their construction. There is no difference in extension between these 
disanalogous concepts: both have the potential for infinite expansions. That is, 
the rules for generating them “lack the institution of an end” (RFM II, §45). 
Thus, the extensions in either case are not in question. The difference between 
the concepts that Cantor has shown is that it makes no sense to talk of an 
enumeration of the real numbers. That is, there is no definite rule or 
algorithm which will yield the series of real numbers. The generation of the 
‘next’ real number makes no sense because the rule does not turn on a 
tangible, recursive operation such as ‘+1’. As such, there is no stepwise rule I 
can apply which will capture ‘an enumeration of the real numbers’. That is 
what Cantor showed with the diagonal method. Disanaologously, all 
enumerable concepts can be enumerated stepwise. Take the rational numbers: 
even though there is no way in which this series can be ordered in 



 23 

magnitude15, there is a definite rule for their enumeration which turns on a 
simple operation: 
 
We can illustrate that the set of rational numbers (ℚ) is enumerable by giving 
a rule for counting the rational numbers 𝑝/𝑞 in order of the sums 𝑝 + 𝑞 i.e. 
begin with those where 𝑝 + 𝑞 = 2 (i.e. 1/1), then those where 𝑝 + 𝑞 = 3 (i.e. 
1/2 and 2/1) and so on. To enumerate ℚ we just follow such a rule listing its 
positive and negative counterparts successively, avoiding repeats: 
 

ℚ = 0, 1
1 , − 1

1 , 1
2 , − 1

2 , 21 , − 2
1 , 1

3 , − 1
3 , …  

 
For Wittgenstein, the analogy between the concepts natural number and 
rational number is that there is a rule that can be followed which successively 
enumerates their extensions. The purpose of Cantor’s proof, for Wittgenstein, 
is to show that a similar rule cannot be defined for the concept real number. 
Any rule intended to lay down all the real numbers in a sequence 
𝐸1, 𝐸2, 𝐸3, … will exclude some real number 𝐸0. Thus, there is a disanalogy 
between this concept and those of cardinal, natural, rational etc.  
 
Wittgenstein argues on this point that the only proper use of the diagonal 
proof could be to dissuade someone from attempting to enumerate the 
irrational numbers. We could say: “leave it alone; it means nothing; don’t you 
see, if you established a series, I should come along with a diagonal series!” 
and he might abandon his attempts (RFM II, §13).16  
 
This is the true sense of Cantor’s proof for Wittgenstein. He has shown 
something about the nature of the rules associated with these concepts. It is 
the interference of prose and our intuitive understanding of the concepts 
involved that skews the results creating misunderstanding. Of course, we may 
want to use ordinary language to explain the results of a given calculus. In 
fact, this is common practice and surely advisable. What is important is the 
direction in which meaning is fixed. 
 
For instance, it makes perfect sense to say “I call number-concept X non-
denumerable if it has been stipulated that, whatever numbers falling under 
this concept you arrange in a series, the diagonal number of this series is also 
to fall under that concept” (RFM II, §10). However, this is different to 

                                     
15 There is another rational number (𝑛 + 𝑚)/2 between any rational numbers n and m. 
16 It should be emphasised here that Wittgenstein uses ‘series’ to mean ‘enumeration’.  



 24 

declaring after Cantor’s results: “therefore the X numbers are non-
denumerable” (ibid.). It is admissible to label the results of a calculus with 
prose, thereby fixing its meaning and allowing us to export the result to 
reason about verbal propositions. What is inadmissible is reasoning about the 
calculus in terms of our everyday prose, importing its pre-existing meaning. 
This ultimately leads to confusion. The ‘therefore’ above cannot be seen as an 
appeal to some independent concept non-denumerable which we are now 
entitled to apply to this calculus, as if we have discovered that a certain 
number-concept satisfies our existing concept non-denumerable.  
 
Wittgenstein stresses this point in the first of the Lectures:  
 

Suppose Professor Hardy came to me and said, “Wittgenstein, I've 
made a great discovery. I've found that [X]” I would say, “I am not a 
mathematician, and therefore I won't be surprised at what you say. For 
I cannot know what you mean until I know how you've found it.” We 
have no right to be surprised at what he tells us. For although he 
speaks English, yet the meaning of what he says depends upon the 
calculations he has made (LFM, 17).  

 
We are perfectly entitled to claim that Cantor has shown that some infinities 
are greater than others. However, this can only be understood by reference to 
the calculus. The meaning of ‘greater’ relative to Cantor’s proof must have its 
meaning fixed therein. Furthermore, the use of the word ‘greater’ as applied 
to this proof bears no analogy to its use outside of this calculus. If someone 
claims that Cantor has proved that the real numbers are more numerous than 
the cardinal numbers, we cannot understand what this means without appeal 
to the proofs themselves, for the language is only meaningful relative to the 
calculi which it interprets. We cannot understand the claim until we 
understand how the word ‘numerous’ is being used to express Cantor’s 
results.  
 
Wittgenstein therefore asks: “what can the concept non-denumerable be used 
for?” (RFM II, §12). If we decide to label a certain concept as non-
denumerable based on its susceptibility to diagonalisation, what can this tell 
us? The implication is: nothing. This point turns on Wittgenstein’s conviction 
that mathematical calculi are inventions of ours which are used to make 
inferences about non-mathematical propositions. For instance, the algorithm 
which tells me that 2 + 2 = 4 can be used to make inferences about the total 
number of bananas in my hands given that I have two in each. Non-
denumerability cannot be applied outside of mathematics in this way. The 
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difference between countable and uncountable infinities on this picture is 
useless. We cannot employ these concepts outside of abstract set theory. 
There is no picture outside of this calculus to which we can attach it.  
 
Wittgenstein thus insists that, when told by Cantor’s proof that we cannot 
arrange the irrational numbers in a series, we can insist: “I don’t know...what 
it is that can’t be done here” (RFM II, §16).  
 
As non-denumerability is a concept fixed by its mathematical surroundings, 
we are just forcing a calculus to give us a certain result which we label ‘non-
denumerable’, but which means nothing outside of that calculus. As such the 
statement that ‘2ℵ0 > ℵ0’ simply “hangs in the air”, it looks like an architrave 
but is “not supported by anything and supporting nothing” (RFM II, §35). He 
compares it to the proposition that 1010 souls fit into a cubic centimetre. We 
could say this, but we do not because the picture it conjures is of no use to us 
(RFM II, §36).  
 
The real problem, of course, is that talking in this way misleads us to think 
that the claims about non-denumerability are substantive. Calling a set 
‘uncountable’ because there are ‘too many’ elements to be placed in a one-to-
one correspondence with an enumerable set conjures a picture that goes 
beyond what the calculus shows. It allows the proof to prove “more than its 
means allow it”; it becomes a “puffed-up proof” (RFM II, §21). The danger 
here is that it makes the determination of a concept “look like a fact of 
nature” (RFM II, §19). The error lies in allowing a conflation between 
calculus and prose.  
 

Ought the word ‘infinite’ to be avoided in mathematics? Yes; when it 
appears to confer meaning upon the calculus; instead of getting one 
from it (RFM II, §58). 
 

1.4 Analysis 
 
It should be clear that Wittgenstein is not one of the ‘cranks’ as described in 
Hodges’ Hopeless Papers. Wittgenstein nowhere contends that Cantor’s 
technique is guilty of some logical blunder. It isn’t. Wittgenstein has not 
misunderstood the technique or what it claims to show. Rather, Wittgenstein 
objects to the way Cantor frames his results, due to differences at a more 
foundational level. For instance, Wittgenstein is opposed to the idea that 
Cantor has described a difference in extension; admitting this makes his proof 
look like a fact of nature. This would contradict Wittgenstein’s conviction 
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that mathematics is pure invention. Wittgenstein’s objections all follow quite 
straightforwardly from his philosophy of mathematics in 1938 as per my 
explication.  
 
If we take Wittgenstein’s critique at face value, he is surely unsuccessful. 
Cantor’s proof is framed set-theoretically. Sets do not have intensions. Of 
course, we may use rules as a means to talk about a set, but the set exists 
independently of them. A rule describing a set is thus ontologically irrelevant. 
What Cantor showed must be a difference in extension. Given Cantor’s 
definitions, for a set to have the same cardinality as another set is for a one-
to-one correspondence to pertain between their extensions. He proved that no 
bijection pertains between ℝ and any enumerable set. The only way to cash 
out this result is in terms of the cardinality of the sets involved i.e. properties 
of their extensions.  
 
Having said this, the source of Wittgenstein’s critique on this score is clearly a 
product of other beliefs about mathematics i.e. his finitism, his extreme anti-
extensional approach, etc. Wittgenstein resists the concept of a set altogether 
due to its ‘fictitious symbolism’. Their disagreement is more fundamental than 
the proof of uncountability itself. They are, as it were, sat at different 
chessboards, so Wittgenstein is wrong to expect a game. In Cantor’s terms, he 
really has shown a difference in extension. I do not think that Wittgenstein 
would deny that, but rather disagree with the terms in the first place. This is 
a different kind of objection to the ones seen in the Hopeless Papers. There is 
a distinction between being framed in the wrong terms and being wrong in the 
terms set out—Cantor’s proof is only susceptible to objections of the former 
kind. To be sure, if we accept Cantor’s set-theoretic framework then his 
results do follow; it is a bona fide proof. However, the question of whether to 
accept this framework goes to the root of what (one thinks) mathematics is.  
 
One crucial point that I find successful is Wittgenstein’s dichotomy between 
calculus and prose and his subsequent conviction that we should be wary of 
expressing results verbally, without inspection of the calculus. This is because 
we fix the meaning of verbal expression by association with a given calculus. 
That is why Wittgenstein said in the Lectures that he cannot understand 
Hardy’s claim to have proved such and such, until he has seen how he proved 
it. He cannot know what it means to prove that X until he knows what X 
actually means; this can only be understood by reference to the calculus that 
proves X.  
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Now, it is clear how an expression of the uncountability results could be guilty 
of such confusion. For instance, my earlier quotation from SEP explains the 
results of Cantor’s proof (in terms of numerousness) with no mention of how 
the results were obtained via the calculus. This, I think, is impermissible and 
exactly the kind of confusion Wittgenstein has in mind. The ordinary 
language associated with numerousness already carries its own meaning which 
must not be projected onto the results of the proof. This gives the (false) 
impression that we have the extensions laid out before us of, say, the naturals 
and the reals, and when pairing them off we somehow run out of natural 
numbers—some “sets are too big to be put into one-to-one correspondence 
with the natural numbers” (Bays 2014).  
 
Despite this, Wittgenstein’s criticism here seems to miss its target. His worry 
seems more applicable to the pedagogy of Cantor’s proof rather than a 
practicing mathematician using transfinite arithmetic.  
 
I cannot foresee any real confusion (for a mathematician) in the claim that 
‘2ℵ0 > ℵ0’. The notation here is an expression of cardinality that elucidates 
the relationship between these sets and their respective properties. It describes 
which kinds of functions pertain between these sets and their behaviour 
relative to one another. We may still talk about the uncountability proofs 
verbally, and numerosity is arguably the neatest way of doing so. What must 
be avoided is importing the pre-theoretic meaning of the ordinary language 
onto the calculus and thereby misrepresenting the results. I think, however, 
that mathematicians are fully aware of this. Even Hardy—arch-extensionalist 
and Cantor supporter of the mathematician-as-discoverer persuasion—heeds 
Wittgenstein’s point, refraining from explicating Cantor’s proof to the lay-
mathematician in A Mathematician’s Apology:  
 

[T]he proof is easy enough, when once the language has been mastered, 
but considerable explanation is necessary before the meaning of the 
theorem becomes clear (1940, §13).  

 
Mathematical discussion requires that we have means to talk about proofs in 
prose. This is entirely permissible so long as the distinction between prose and 
calculus is respected and no meaning is conferred upon the calculus by its 
verbal expression. Rather, meaning must be fixed in the other direction. We 
should be suspicious of verbal expressions of Cantor’s uncountability results 
that do not reference the proofs. That being said, I do not think practicing 
mathematicians routinely fall into this trap. Wittgenstein’s worry, although 
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well founded, does not seem applicable to those who should be its primary 
target.  
 
Further, I would resist Wittgenstein’s conviction that the concept non-
denumerable is somehow useless, or that the claim that 2ℵ0 > ℵ0 ‘hangs in the 
air’ as a picture with no application. As I have insisted, these are distinctions 
that tell us about the behaviour of certain sets, and the relations pertaining 
between them. Uncountable sets are salient in their contrast to countable sets. 
The distinction between countable and uncountable sets can, in fact, be highly 
informative on occasions. For instance, once this distinction was clarified it 
led directly to a (constructive) proof that there are transcendental numbers.17 
It is fairly simple to show that the algebraic numbers are enumerable and 
there are several ways of giving a rule for their enumeration. 18  As the 
algebraic numbers are a countable subset of the (uncountable) real numbers, 
it follows directly that there are transcendental numbers. This is inferable 
directly from employment of the concept non-denumerable. What is more, a 
rule for the generation of a transcendental number can be given by employing 
the diagonal method. We could program a computer to begin enumerating the 
decimal expansions of algebraic numbers, then printing a new sequence by 
altering the n-th digit of the n-th number. By the standard diagonal 
reasoning, this number must be transcendental—it differs from every algebraic 
number by at least one digit. This strikes me as a proper and useful 
application of the concept non-denumerable and the diagonal method. I 
cannot see how Wittgenstein would object to the diagonal algorithm that 
successively generates the expansion of a transcendental number.  
 
Wittgenstein was certainly aware of the diagonal proof concerning the 
transcendental numbers; he alludes to it in several places (cf. RFM II, §34). It 
strikes me as a counterexample to his claim that Cantor’s results regarding 
uncountability are ‘not supported by anything and supporting nothing’. 
Perhaps it is because the results still do not conform to Wittgenstein’s tenet 
that mathematics should be used for reasoning about everyday propositions. I 
cannot think how Cantor’s results could be used in this way. Having said this, 
Cantor’s results surely inform other mathematical propositions (e.g. in 
topology or measure theory) which in turn have an extra-mathematical 
application. In any case, this criticism is not particularly threatening unless 

                                     
17 These are numbers that are not the root of any nonzero polynomial equation with integer 
coefficients. Numbers that are roots of these are called ‘algebraic’. 
18 See Gray (1994), the basic idea is to enumerate equations of the form 𝑎!𝑥! + 𝑎!−1𝑥!−1 +
𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0 and then generate from these their roots. 
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you already agree to that tenet. Once again, that question is more 
foundational than Cantor’s results themselves. To say the least, I doubt 
Cantor or his disciples would find Wittgenstein’s arguments problematic on 
this score. To paraphrase Hardy once more: ‘very little of mathematics is 
useful practically, and that little is comparatively dull’ (cf. 1940, §11).  
 

1.5 Wittgenstein on Diagonalisation 
 
It seems to me that Wittgenstein’s critique, although free from the 
misunderstandings present in many objections to Cantor’s proof, is not 
especially successful. It might well be convincing, but only if the reader is 
already sympathetic to Wittgenstein’s general philosophy of mathematics.  
 
Putting this to one side, there is one further point from RFM II that I wish to 
explore before moving onto Turing. There is a class of remarks in RFM II 
that I have hitherto neglected; these are Wittgenstein’s remarks on the 
diagonal technique itself, rather than Cantor’s proof. These roughly follow the 
spirit of Wittgenstein’s critique of the proof. Wittgenstein neglects the 
orthodox extensional approach to the technique, instead discussing the 
prospect of the technique being fruitful under his peculiar intensional, finitistic 
gaze.  
 
His remarks are largely confusing: the technique does not transpose naturally 
to an instensional reading. This is hardly surprising seeing as Cantor’s proof is 
non-constructive, and the technique was developed especially to prove set-
theoretic results. Wittgenstein is largely concerned with the nature of the rule 
which generates a diagonal sequence and what that rule can be used for. The 
general form of a diagonal sequence takes inputs (the n-th digit from the n-th 
sequence) and generates a sequence of which the m-th digit is different from 
each n-th digit where 𝑚 = 𝑛. Wittgenstein compares this with another task: 
 

‘Name a number that [dis]agrees with √2 [precisely] at every second 
decimal place.’ What does this task demand? The question is: is it 
performed by the answer: It is the number got by the rule: develop √2 
and add 1 or -1 to every second decimal place? 
It is the same as the way the task: Divide an angle into three can be 
regarded as carried out by laying 3 equal angles together (RFM II, 
§2).19 

                                     
19 I have changed ‘agrees’ to ‘disagrees’, and added ‘precisely’. Wittgenstein has made a 
mistake here as √2 already agrees with itself at every second decimal place. As Wittgenstein 
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The point here is: tampering with extensions is just a cheat-answer—a redraft 
of the question. You have not given an answer per se, but rather a template 
for what a real answer would look like. But this much was already contained 
within the task as described. He likens this tactic to laying three equal angles 
together. This is a reference to one of the classic Greek compass-and-straight-
edge problems: there is no possible method for trisecting arbitrary angles 
using only an unmarked straight edge and a compass. Laying out three angles 
side-by-side as a solution to the task ‘divide an angle into three’ is a cheat-
answer. It is not technically wrong, but it certainly would not be acceptable as 
a proof of the possibility of trisecting an angle. A natural response to this 
method might be: “But I didn’t mean like that!” (RFM II, §3).  
 
As for diagonal numbers, Wittgenstein says the method does not give us a 
‘number different from all of these’, but rather “a rule for the step-by-step 
construction of numbers that are successively different from each of these” 
(ibid.). That is, we are given a rule that will generate sequences stepwise, 
successively dodging each expansion on a list. What he has in mind here are 
what Felix Mühlhölzer calls “𝑎!"-carpets” (Floyd & Mühlhölzer (forthcoming), 
146).  
 
We are confronted with an infinite list of sequences:  
 

𝑎11, 𝑎12, 𝑎13, 𝑎14, 𝑎15, … 
𝑎21, 𝑎22, 𝑎23, 𝑎24, 𝑎25, … 
𝑎31, 𝑎32, 𝑎33, 𝑎34, 𝑎35, … 
𝑎41, 𝑎42, 𝑎43, 𝑎44, 𝑎45, … 
𝑎51, 𝑎52, 𝑎53, 𝑎54, 𝑎55, … 

    … 
 
Of course, given Wittgenstein’s finitism, the ellipses here do not represent an 
infinite expansion, but the potential infinity indicated by the rules generating 
each 𝑎!"-row, which have no end digit. 
 
The construction of a diagonal sequence involves altering each n-th digit of 
the n-th row. Thus, to compute a diagonal number, we follow the rule for 𝑎1!, 
calculate its first digit, then alter the result and write it down. We then follow 
the rule for 𝑎2! and calculate its expansion up to the second place, then alter 
the result write it down. We do this for every 𝑎!", calculating it up to the i-th 
digit of its expansion and altering 𝑎!! . This will generate the diagonal 
sequence. This computes successive carpets of results as follows:  
                                                                                                       
certainly meant this as an analogy for the diagonal procedure, the correction illustrates 
Wittgenstein’s point better anyway. I took this point from Floyd & Mühlhölzer 
((forthcoming), 131).   
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𝑎11  
 
𝑎11, 
𝑎21, 𝑎22 
 
𝑎11 𝑎21, 𝑎22 𝑎31, 𝑎32, 𝑎33 
 
𝑎11 𝑎21, 𝑎22 𝑎31, 𝑎32, 𝑎33 𝑎41, 𝑎42, 𝑎43, 𝑎44      … 

 
For Wittgenstein, there is no such thing as a mathematical object until we 
invent it. As such, it makes no sense to speak of extensions laid out unless we 
construct them via some rule. An intensional approach to the diagonal 
sequence requires an interpretation whereby we generate successive finite 
sequences of expansions and use our diagonal rule to successively avoid them. 
This is why Wittgenstein argues that the diagonal procedure does not give a 
result vis-à-vis ‘a number different from all of these’; rather, it gives 
instructions on how to avoid a given system of expansions. Given the above 
picture, it is clear why Wittgenstein insists:  
 

Let us say—not: “This method gives a result”, but rather, “it gives an 
infinite series of results” (RFM II, §5).  

 
Now, one may retort: granted, we are given a rule by the diagonal procedure 
rather than a result, but we are also given a result (in some sense) i.e. a 
number—the rule shows how to construct an infinite diagonal number.  
 
Wittgenstein’s response is: “But what is the method of calculating, and what 
the result, here?” (ibid.). He follows this by asking: 
 

What can this number be used for? True, that sounds queer.—But 
what it means is: what are its mathematical surroundings? (ibid.).  

 
What he means is: interpreting the diagonal sequence qua its general form as 
a rule for avoiding a given system of expansions, the number obtained by the 
rule is inseparable from that given system of expansions. We cannot take this 
number out of its mathematical context for use elsewhere; it is in the DNA of 
the diagonal number, as it were, that it be defined in terms of the system of 
expansions it is designed to avoid.  
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This is quite a bizarre point to pick up on, but Wittgenstein is correct in some 
sense. The rule we obtain for computing the transcendental number via the 
diagonal procedure is different in kind to the rule for, say, computing the 
expansion of π. The latter is inward looking, as it were. The diagonal 
transcendental is defined in terms of the system of algebraic numbers, and so 
the rule cannot be understood, less so applied, separately from that system.  
 
What Wittgenstein has picked up on is that: “Cantor defines a difference of 
higher order, that is to say a difference of expansion from a system of 
expansions” (RFM II, §34). Of course, the difference of higher order here must 
be a reference to rules. What Cantor has shown, for Wittgenstein, is that 
whilst the generation of numbers by some rule on the surface appears to be 
the same thing, there can be a difference in kind in the rules that produce 
them. There is a higher-order difference between the generation of the 
diagonal sequence and the generation of the system of algebraic numbers. Due 
to this, he resists the diagonal reasoning:  
 

[W]e cannot very well say that the rule of altering the places in the 
diagonal in such-and-such a way is as such proved different from the 
rules of the system, because this rule is itself of ‘higher order’; for it 
treats of the alteration of a system of rules (ibid.).  

 
This argument is interesting and will be especially important for §2. 
Wittgenstein is arguing that, if we interpret the diagonal procedure as a rule 
for generating a sequence, it makes little sense to declare that this is different 
from the rule, or set of rules, which enumerate a particular list of expansions. 
This is because the rule for developing the diagonal sequence is of higher 
order: it is a rule cast over that system of expansions. As such, Wittgenstein 
claims that we already know that the diagonal sequence is of a different kind 
to the system of expansions. It is already obvious from its design that the 
diagonal rule could not appear as a rule for one of the expansions in the 
system. Wittgenstein thus claims it makes no sense to say you have shown 
that the diagonal sequence is different from all of these sequences in a given 
expansion: we are not left any clearer on what it means in general that a 
given expansion is ‘different from all of these’. Or so it goes. 
 
Obviously this worry bears no threat to Cantor’s formulation, his being purely 
extensional. I think, though, we should read RFM II as an attempt by 
Wittgenstein to intellectually experiment with the diagonal procedure and see 
what would happen if we were to approach it intensionally. As I have shown, 
it does not work very well for Wittgenstein. The diagonal procedure does not 
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seem to transpose well into the Wittgensteinian approach. Despite this, 
Wittgenstein devotes many remarks specifically to the technique. As such, he 
clearly thinks this is an interesting pursuit. However, there is a lack of clarity 
from Wittgenstein over what the intensional diagonal technique shows. This is 
why his remarks here are so cryptic. I contend that RFM II is an expression of 
Wittgenstein’s nascent thoughts of the diagonal technique. He is attempting 
to derive some value out of the technique as an intensional exercise, but 
cannot find a clear way of cashing this out. I will show in §2 how Turing’s 
application of the diagonal procedure accomplishes this task of RFM II. 
Abstracting from Turing’s diagonal proof in Computable Numbers shows how 
an intensional diagonal procedure can deliver meaningful results about the 
nature of rules. Wittgenstein saw this, and later made a point of doing so.   
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2 Turing—On Computable Numbers and 
Wittgenstein’s Diagonal 

 

2.1 Enters Alan 
 
The chief aim of this chapter is to show that Wittgenstein read, understood 
and endorsed Turing’s results in Computable Numbers. I will show that 
Turing’s diagonal proof realised the intensional diagonal procedure that 
Wittgenstein pursued in RFM II. Wittgenstein employed Turing’s proof as a 
model for his own diagonal argument, which he used to shed light on the 
notion of a rule.  
 
Before doing this, I must of course briefly run through the contents of 
Computable Numbers. There are three proofs in the paper. The first turns on 
an application of the diagonal procedure. The second proof draws important 
consequences from this to deliver the final proof, which shows that the 
Entscheidungsproblem has no solution. The first proof is the most relevant for 
my purposes. I will run through this in detail then give a brief sketch of the 
two proofs that follow.  
 
Intuitively, the effectively computable (or calculable) functions are those for 
which a finite list of definite instructions can be given such that in principle 
every value of the function can be determined. Turing depicts computable 
sequences as those that “can be written down by a machine” (CN, 116). 
Turing then expands on what he means by this. He explicates what are now 
familiar as Turing machines. 
 
These are abstract computing machines capable of a finite number of 
conditions (‘m-configurations’: 𝑞1, 𝑞2, 𝑞3, … ). The machines can recognise 
finitely many easily distinguishable symbols (𝑆!). They are fed an abstract 
infinite tape divided into squares and a set of instructions that tell it what to 
do when a given symbol is scanned in a given m-configuration. The machine 
may scan one square at a time, which contains a symbol or is blank. The 
machine can erase/print/replace/leave a symbol in the square, move left/right 
to a different square and/or enter a different m-configuration. Machines are 
either circular (if it ever halts)20, or circle-free (otherwise). The computable 
sequences are those computed by circle-free machines. At any stage of motion, 

                                     
20 Or continues indefinitely but only printing ‘rough notes’ (cf. CN, 118). 
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the number of the scanned square, all the previously printed symbols on the 
tape and the m-configuration will be called the complete configuration of that 
stage (CN, 118). 
 
The machines can be arithmetised by coding their behaviour into natural 
numbers. Each machine is uniquely describable in terms of its description 
number (D.N.). Turing machines are describable as sets of quintuples of the 
form 𝑞!, 𝑥, 𝑦, 𝑧, 𝑞!, where x and y are some 𝑆! (symbol or blank) and z is 
either R for right or L for left. They should read as ‘when configuration n 
obtains and x is scanned, replace it with y and move right/left then adopt 
configuration m’. It is well known (proved by Cantor) that quintuples of 
symbols taken from an enumerable alphabet can be put in a one-to-one 
correspondence with the natural numbers, allowing the latter to function as 
codes for the former. It follows that the computable sequences are enumerable.   
 
Turing defines a universal machine (U), which is capable of computing any 
computable sequence i.e. mimicking the sequence outputted by any Turing 
machine. It is fed the D.N. of any Turing machine and then successively 
prints its complete configurations. This machine underpins the proofs that 
follow. 
 

2.1.1 The Proofs 
 
Turing titles one section ‘application of the diagonal process’ (CN, 132). This 
should immediately be worrying: as I showed in §1, Cantor’s method generally 
shows that a class of numbers is non-denumerable. However, as already 
stated, the computable sequences are enumerable. 
 
Turing imagines an interlocutor: 
 

If the computable sequences are enumerable, let ⍺!  be the n-th 
computable sequence, and let 𝜙!(𝑚) be the m-th figure in ⍺!. Let 𝛽 be 
the sequence with 1 − 𝜙!(𝑛) as its n-th figure. Since 𝛽 is computable, 
there exists a number K such that 1 − 𝜙! 𝑛 = 𝜙!(𝑛) all n. Putting 
𝑛 = 𝐾, we have 1 = 2𝜙!(𝐾), i.e. 1 is even. This is impossible. The 
computable sequences are therefore not enumerable (ibid.). 

 
Prima facie, this argument is pretty plausible. Assume the computable 
sequences (of 0s and 1s) are enumerable. From an enumerated list of the 
computable sequences, have a machine compute a new sequence by taking the 



 36 

n-th digit from the n-th computable sequence and altering it. This computes a 
sequence that is not on the original list yet is itself a computable sequence 
and so must appear. We have a contradiction. The computable sequences are 
thus susceptible to diagonalisation and by reductio they are not enumerable. 
 
However, this argument is delivered in quotation marks. It is not, in fact, 
sound: “the fallacy in this argument lies in the assumption that 𝛽  is 
computable” (ibid.). As it happens, 𝛽 is not computable. The problem is 
equivalent to the problem of finding out whether a number is the D.N. of a 
circle-free machine, and there is no general way of doing this in a finite 
number of steps (ibid.).  
 
Turing proves this by giving the correct application of the diagonal method. 
This involves attempting to compute not the anti-diagonal21 as above, but the 
positive diagonal—a sequence whose n-th figure is 𝜙!(𝑛) (ibid.). Supposing 
this is possible, let’s hypothesise that there is a machine D which, when 
supplied with the D.N. of any machine M, will test whether or not M is 
circular. It will mark ‘u’ if M is circular, or ‘s’ if it is circle-free (CN, 133). 
We can then pair D with the universal machine to construct H—a machine 
that will compute the (positive) diagonal sequence (ibid.). 
 
It should be clear that to enumerate the computable sequences, we need D. 
To compute a diagonal along all computable sequences, H must compute one 
figure from each computable sequence successively. To do this, it must be fed 
the D.N.s of machines that compute computable sequences; these are the 
circle-free machines. So, we need a general, finite way of determining which 
numbers to feed H, as it were. 
 
Turing continues: H’s work is divided into sections. It begins with D testing 
every natural number starting from 1,2,3,… It marks all unsatisfactory 
numbers (numbers that are not the D.N. of a circle-free machine) with ‘u’. It 
continues checking numbers until it reaches a satisfactory number, r, which it 
marks ‘s’. The next section of H’s behaviour is to compute the sequences 
determined by those satisfactory numbers; it must compute up to the r-th 
digit of the sequence defined by the r-th satisfactory number. It then 
continues to the next sequence. It does not matter in particular how these 
sections are divided. What matters is that these sections of H’s behaviour 
must work in tandem, as each section continues its work infinitely. From the 

                                     
21 I have hitherto called this just a diagonal sequence, where the rule is to alter the n-th digit 
of the n-th sequence successively. 
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behaviour described above, H is itself clearly circle-free by definition (ibid.). 
Each section can be completed in a finite number of steps and the rules of its 
formation allow it to move between sections infinitely. H has no final 
position: it will keep computing the diagonal sequence infinitely. 
 
Eventually, D will run into a D.N. of H. What is the verdict of D: is the 
D.N. of H ‘s’ or ‘u’? H’s D.N. cannot be ‘u’—it is circle-free. Interestingly 
though, it cannot be ‘s’ either (ibid.).  
 
If we say the D.N. of H is the k-th satisfactory number determined by D, 
then the rule for H is to start calculating the sequence of H, and then print 
its k-th digit. But how can the k-th digit be determined? H is a machine 
whose figures are computed by printing the n-th digit of the n-th computable 
sequence. The rule is empty for 𝑛 = 𝑘. The instruction is to calculate the k-th 
figure by calculating the k-th figure. The machine cannot proceed, meaning it 
cannot be circle-free. H is both (and neither) circular and circle-free i.e. it is 
contradictory. We must conclude then that machine D is impossible (ibid.). 
 
There is thus no general way of deciding whether a machine is circle-free. This 
is the first proof in Computable Numbers, and the one with which I am most 
concerned. This is, in fact, the most important proof in the paper; the others 
follow quite directly.  
 
The second proof is contained to one page—(CN, 134)—and shows that there 
can be no machine E that, when supplied with the D.N. of any machine M, 
will determine whether M ever prints a given symbol (say, 0). Turing shows 
that if E is possible, then there is also a machine that determines whether M 
prints 0 infinitely often. If so, there is another machine that determines 
whether M prints 1 infinitely often. Combining these machines, we have a 
process that determines whether M prints an infinity of digits (i.e. whether M 
is circle-free). We know from the first proof that such a machine is impossible. 
Therefore, E cannot exist.  
 
The third proof is slightly trickier, involving several lemmas and developments 
on the previous material. The basic idea is to show that there is no machine 
that will determine whether any formula of the functional calculus K is 
provable (CN, 145). Turing constructs a formula 𝑈𝑛(𝑴) in K that says “in 
some complete configuration of M, [...] 0 appears on the tape” (CN, 146). He 
then proves two lemmas: first, that if 0 does appear in some complete 
configuration of M, then 𝑈𝑛(𝑴)  is provable; second, that if 𝑈𝑛(𝑴) is 
provable then 0 appears in some complete configuration of M. After these, the 
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proof of the unsolvability of the Entscheidungsproblem is simple via reductio. 
If the Entscheidungsproblem had a solution, i.e. there was a mechanical way 
to decide the provability of all formulas in K, then there is a mechanical 
method to decide whether 𝑈𝑛(𝑴) is provable. From the lemmas we know 
that if there is such a process, this implies that there is a process for 
determining whether M ever prints a 0. This cannot be done as shown in the 
second proof. Therefore, the Entscheidungsproblem has no solution.  
 
This third proof originally contained some problematic technical errors. These 
were subsequently addressed and corrected in Turing (1937b).  
 

2.2 Wittgenstein’s Reception 
 
The default assumption—and, were it not for the evidence I am about to 
present, quite an astute one—should be that Wittgenstein would not have 
cared at all for Turing’s paper. Wittgenstein was generally very dismissive of 
mathematical logic. Wittgenstein viewed it as merely another mathematical 
calculus, but he was not concerned with doing mathematics. Rather, he 
wanted to establish its grammar from the outside. It was paramount for him 
“not to interfere with the mathematicians” (LFM, 1): 
 

I must not make a calculation and say, “That's the result; not what 
Turing says it is.” Suppose it ever did happen—it would have nothing 
to do with the foundations of mathematics (ibid.).  

 
Further, Wittgenstein infamously made a series of disparaging remarks about 
Gödel’s incompleteness theorems in RFM Appendix III.22 Turing and Gödel’s 
proofs are, to a large extent, variations on the same theme. As such, there is 
no reason to think that Wittgenstein’s treatment of Turing’s work would be 
any more sympathetic. It would not be surprising if Wittgenstein was not 
even aware of Turing’s work, and if he were, it would be safe to assume he 
would have been either nonplussed or derisive.  
 
However, this picture is quickly debunked by examination of the historical 
evidence. First, Turing had an offprint of Computable Numbers sent to 
Wittgenstein in 1937. Shortly after, Alister Watson formally introduced them, 

                                     
22  These remarks have received extensive attention cf. Kreisel (1958), Dummett (1959), 
Goodstein (1957), Floyd & Putnam (2000) & (2006). Most commentators take Wittgenstein 
to have misunderstood the incompleteness theorems, although some are more sympathetic 
than others. I do not intend to contribute to this debate. 
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and the three shared discussions in the Cambridge botanical gardens (Hodges 
2014, 172). In Watson’s paper on the foundations of mathematics in which he 
discusses, amongst other things, Gödel’s proofs and Turing machines, he 
credits both Turing and Wittgenstein for helpful discussions (1938).  
 
These discussions clearly had a lasting effect on Wittgenstein. A decade later, 
in 1947, he writes: 
 

Turing’s ‘Machines’. These machines are humans who calculate. And 
one might express what he says also in the form of games. And the 
interesting games would be such as brought one via certain rules to 
nonsensical instructions. I am thinking of games like the “racing game”. 
One has received the order “Go in the same way” when this makes no 
sense, say because one has got into a circle. For that order makes sense 
only in certain positions. (Watson.) (RPP 1, §1096). 

 
This reference to Watson at the end suggests that the remark might be a 
recollection of their 1938 discussions. For the moment, I will put to one side 
the first claim that ‘these machines are humans who calculate’; I will give a 
rigorous interpretation of this in §3. 
 
Unsurprisingly, Wittgenstein wants to interpret Turing’s results in the form of 
games. We cannot be sure exactly what ‘the racing game’ refers to. Let’s 
suppose it is a board game. We receive the instruction, by, perhaps, picking 
up a card that says ‘go in the same way’. But, as it stands, this makes no 
sense; the order cannot be followed. The order cannot be followed because it 
only makes sense in certain positions. This particular instruction clearly only 
makes sense if you are already doing something. It can be read as: ‘continue 
as you are’.  
 
It is initially difficult to see how this is an expression of what Turing says, as 
Wittgenstein is suggesting. This is, in fact, a reference to Turing’s application 
of the diagonal procedure in the first proof of Computable Numbers. More 
specifically, this is an expression of the behaviour of Turing’s machine H—the 
contradictory machine that was supposed to compute the positive diagonal 
sequence over the computable numbers. Recall, the machine failed to compute 
the diagonal sequence because eventually it was fed its own D.N. as an input. 
Machine D runs through the natural numbers testing whether each is a 
satisfactory D.N.; for each natural number which is a satisfactory D.N., its 
sequence will be computed, corresponding to its place n on the list of 
computable sequences, up to its n-th digit. The instructions for H were thus 
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to copy the outputs of other machines. The problem is that this sequence is 
not, in fact, computable. H eventually will stop printing when it is fed its own 
D.N. When computing its own n-th digit its instructions are: ‘print the same 
as H’—that is, print the digit you are supposed to print. Absent some extra 
instruction, this cannot be followed. It has ‘got into a circle’, as Wittgenstein 
puts it. 
 
This reference is quite cryptic. However, the subsequent remark elucidates 
this: 
 

A variant of Cantor’s diagonal proof: Let 𝑁 = 𝐹(𝑘, 𝑛) be the form of 
the law for the development of decimal fractions. 𝑁 is the n-th decimal 
place of the k-th development. The diagonal law then is: 𝑁 = 𝐹(𝑛, 𝑛) =
𝐷𝑒𝑓. 𝐹′(𝑛). 
To prove that F′(n) cannot be one of the rules 𝐹(𝑘, 𝑛).  Assume it is 
the 100th. Then the formulation rule of 
 

𝐹′(1) runs 𝐹(1, 1) 
of  

𝐹′(2) 𝐹(2, 2) etc. 
 

But the rule for the formation of the 100th place of 𝐹′(𝑛) will run 
𝐹(100, 100);  that is, it tells us only that the hundredth place is 
supposed to be equal to itself, and so for 𝑛 = 100 it is not a rule.  
The rule of the game runs “Do the same as…”—and in the special case 
it becomes “Do the same as you are doing (RPP 1, §1097). 

 
The original remark in MS 135 contained an extra sentence, which was later 
deleted: 
 

I have namely always had the feeling that the Cantor proof did two 
things, while appearing to do only one (MS 135, 60).23 

 
Wittgenstein is here giving his own rendition of a diagonal proof. This 
requires some spelling out. He defines a general rule [𝑁 = 𝐹(𝑘, 𝑛)] that tells us 
how to generate a list of decimal expansions. This would look something like 
this: 
 
 
 
                                     
23 See Floyd (2012, 36) for the history of the remark. I have followed her translation here.  
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 n1 n2 n3 n4 … 

k1 8 2 1 5  

k2 1 4 6 6  

k3 3 3 3 7  

k4 9 1 2 1  

…      
 
On this diagram, for instance, our rule tell us that for 𝐹(2,4), 𝑁 = 6. The 
positive diagonal sequence is accordingly defined as 𝐹(𝑛, 𝑛) [𝑑𝑓. 𝐹′(𝑛)]: take 
the n-th input from the k-th row where 𝑘 = 𝑛, as I have highlighted. 
 
Now, Wittgenstein wants to show that 𝐹′(𝑛) cannot be one of the rules for 
𝐹(𝑘, 𝑛). That is, the diagonal sequence cannot appear as any k-th row. He 
shows this by reductio. Assume that 𝐹′(𝑛)  is the 100th expansion, i.e. 
𝐹(100, 𝑛) = 𝐹′(𝑛). The rule for 𝐹(100, 𝑛) is thus: generate the n-th digit at 
every n-th place of 𝐹′(𝑛):   
 
 

 … n98 n99 n100 … 

… … … … …  

k98 … 1 2 2  

k99 … 3 4 9  

k100 … 1 4 ?  

…      
 
The rule ceases to be informative when 𝑛 = 100. The rule says: take your own 
digit. There is no such digit though as the outputs for 𝐹′(𝑛) are defined by 
the outputs of other rules. In this exact position, the instructions are to take 
an output that is as yet undefined. As Wittgenstein rightly puts it, the 
general rule says ‘do the same as...’ but at this position it says ‘do the same as 
you are doing’. The rule becomes circular. In the same way, I could 
comfortably play a game of chess (as black) by only copying the moves of my 



 42 

opponent, but if I tried to play by only copying my own moves I would not be 
able to open. The rule cannot accommodate play when used in this way.   
 
The resonance with Turing’s diagonal is striking. Of course, this is no 
accident. This is plainly a reconstruction of Turing’s first proof. This is quite 
an achievement, given the clarity and brevity of Wittgenstein’s rendition. He 
has, in a matter of lines, isolated exactly what ‘goes wrong’ in Turing’s 
application of the diagonal and indeed any diagonal procedure of this form.  
 
I want to compare Wittgenstein’s comments here and those in RFM II. First, 
note the resemblance between both the behaviour of H and Wittgenstein’s 
diagonal rule, and the ‘𝑎!"-carpets’ I mentioned earlier. Wittgenstein’s finitism 
forced an interpretation of any diagonal sequence in RFM as successively 
longer, but always finite, outputs based on computations up to the n-th 
numeral of the n-th sequence in an expansion. This is exactly the behaviour 
exhibited in H, and subsequently Wittgenstein’s diagonal. Here, there is no 
reification or manipulation of infinite extensions. 
 
Further, it is clear that Turing’s proof realises Wittgenstein’s pursuit in RFM 
for an intensional diagonal application—that is, a diagonal procedure that 
does not rely on positing infinite extensions but can be interpreted only in 
terms of rules. I showed in §1 how Wittgenstein was experimenting with the 
possibility of such a diagonal procedure, but his remarks were not especially 
felicitous. Wittgenstein could not see how a diagonal rule could show 
anything: we already know from its construction that it is of higher order 
than the rules to generate a given expansion, so we know already it will not 
appear there (cf. RFM II, §34). In 1938, Wittgenstein did not see clearly how 
to cash this fact out in terms of a proof. 
 
Compare this to the 1947 remark. Here, Wittgenstein employs the fact that 
the rule for computing a diagonal sequence is of a different kind to the rule for 
computing a system of expansions. His aim is to show that the positive 
diagonal rule is different from any on a given list. We assume it appears on 
the list and show this leads to a circle because the diagonal rule is felicitous 
only in certain positions. Wittgenstein concludes: 
 

I have namely always had the feeling that the Cantor proof did two 
things, while appearing to do only one (MS 135, 60).  

 
We should correct this by deleting ‘always’. From what I have shown, it is 
clear that Wittgenstein did not understand that there was a felicitous non-



 43 

extensional interpretation of Cantor’s proof in 1938. Sometime between 1938 
and 1947 though, probably resulting from conversations with Watson and 
Turing himself24, Wittgenstein was able to formulate an alternative approach 
to the diagonal procedure. He was hence able to infer that Cantor’s proof 
shows two things. First, the diagonal method shows that a given diagonal 
extension is different from the extensions in a given list because it must differ 
with all of them by at least one place. Second, and more interestingly for 
Wittgenstein, it shows us something about rules. The method shows that the 
rule for computing a positive diagonal sequence cannot appear as a rule for 
computing an expansion in certain systems. This shows that some rules, 
although everywhere defined, surprisingly make sense only in certain 
positions.  
 
I take this final part as key. I interpret this thought as similar to a key insight 
from Computable Numbers: the fact that definability is not identical with, and 
does not entail, computability. One striking result from the first proof of 
Computable Numbers is the apparent dissonance uncovered by completely 
(and constructively) defining a sequence that is not computable. Failing to 
heed this distinction is what accounted for the faulty reasoning in Turing’s 
interlocutor, who claims the computable numbers are non-denumerable. Even 
though we can define the instructions for computing each digit of the diagonal 
sequence, it is not computable. This is true of any description number 
encoding the solution to an undecidable problem.  
 
It seems Wittgenstein, after abstracting from Turing’s proof, has concluded 
this fact more generally as a feature of certain rules: they are only informative 
in certain positions. Even though, prima facie, a rule seems to ‘reach to 
infinity’, it is sometimes the case that we cannot follow it. Not all scenarios 
are circumscribed by the rule—that is, attempting to follow it results in 
receiving nonsensical commands. A rule may be everywhere defined, yet there 
can be some positions where we cannot follow it. This is an interesting feature 
of certain rules, and our ability to follow them. 
 
It is clear now why Wittgenstein’s disdain for Cantor’s proof regarding 
uncountability is not replicated for Turing’s. The application of the diagonal 
procedure in the latter case was in no way ‘puffed up’. That is, Turing does 
not confer meaning upon his calculus by means of confused verbal expression. 
In fact, Turing heeds Wittgenstein’s advice in RFM II: he starts with a basic, 
intuitive notion of computable and constructs a calculus to represent it. He 

                                     
24 Given the reference to Watson in RPP 1 §1096. 
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then constructs a proof in this calculus that informs us on the intuitive 
concept. Turing lets his “calculation illumine the meaning of the expression in 
words”; thus, “the calculation sheds a brilliant light on the verbal expression” 
(RFM II, §7). Turing’s formulation aligns exactly with Wittgenstein’s core 
philosophy of mathematics. It embodies his tenet that mathematics is merely 
a calculus that we invent in order to reason about intuitive concepts. 
Granted, Turing in this case does not explicitly use his results to reason about 
extra-mathematical propositions as Wittgenstein might have hoped. This can 
easily be done by extending Turing’s results to claim, say, that there is no 
computer program which will determine for an arbitrary computer program 
and an input whether that program will ever finish running—this problem is 
often called ‘the Halting problem’ and its unsolvability is derivable from 
Turing’s results. Turing’s method captures exactly how Wittgenstein pictured 
doing mathematics. Further, his calculi—Turing machines—being models to 
capture the intuitive notion of an algorithm, encapsulate Wittgenstein’s 
notion of a mathematical calculus. Recall, Wittgenstein thought that:  
 

Mathematics is always a machine, a calculus. The calculus does not 
describe anything. [...] The calculus is an abacus, a calculator, a 
calculating machine (WVC, 106). 

 
It seems Turing’s paper embodies this first thought quite literally. The 
activity of a Turing machine i.e. a step-by-step mechanical manipulation of 
signs, is precisely how Wittgenstein describes mathematical calculation.  
 
Of course, Turing’s diagonal procedure also avoids the other pitfalls 
Wittgenstein associates with Cantor’s proof. Turing’s formalism does not 
require a choice between logics (e.g. classical, intuitionistic etc.). His proofs do 
not require us to posit infinite extensions in the way Wittgenstein resisted, 
and there is no recourse to higher-order infinities. As such, Turing’s proof 
omits the ‘hocus pocus’ that Wittgenstein critiqued in Cantor. 
 

2.3 Floyd’s Account 
 
Floyd (2012) reconstructs Wittgenstein’s diagonal remark in rigorous detail. 
Floyd is keen to highlight the generality of Wittgenstein’s argumentation. 
Wittgenstein has not given an application of the diagonal procedure, but the 
“general form of diagonal argumentation” (2012, 36). This is because 
Wittgenstein has formulated his diagonal in terms of abstract rules, so its 
specific inputs do not affect the proof. Read in this light, we can say that 
Turing’s proof is an ex ante token of Wittgenstein’s general proof. H is a 
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machine manifesting the rule 𝐹(𝑛, 𝑛). The machine halts when its instruction 
is ‘do the same as you are doing’. For this reason, Floyd later coined a 
nickname for H—‘The Do-What-You-Do Machine’ (2017, 130).  
 
My reconstruction of the diagonal remark is similar to Floyd’s. To my 
knowledge she was the first to bridge the gap between Wittgenstein and 
Turing via this remark. I agree with Floyd’s reconstruction of the diagonal 
entirely. However, there are a few minor amendments required for her 
subsequent conclusions to be convincing.  
 
First, Floyd is keen on establishing mutual influence between Turing and 
Wittgenstein, but does not explicitly connect this remark back to 
Wittgenstein’s problems in RFM II. I think that the contrast between 
Wittgenstein’s approach to the diagonal between 1938 to 1947 is as good an 
example as any of Turing influencing Wittgenstein. Wittgenstein was highly 
suspicious of the diagonal method, even when applied only with reference to 
rules. He was unconvinced that it had any meaningful application in RFM II. 
By reading Turing, however, he was able to derive meaning from an 
alternative diagonal procedure that chimed with his prevailing philosophy of 
mathematics. From this, he drew meaningful conclusions regarding features of 
certain rules and our ability to follow them. This marks a notable turn in 
Wittgenstein’s philosophy of mathematics. I will return shortly to the 
question of influence.  
 
Second, there are some misleading technical errors in Floyd’s account that 
misrepresent the generality of Wittgenstein’s achievement. For instance, 
Floyd claims: 
 

[Wittgenstein’s diagonal argument] had a legacy. Wittgenstein was 
later credited by Kreisel with “a very neat way of putting the point” of 
Gödel’s use of the diagonal argument to prove the incompleteness of 
arithmetic, in terms of the empty command, “Write what you write” 
(2012, 36). 

 
This is not quite right. In brief25, Gödel identifies a proof predicate, call it 
𝑃𝑟𝑜𝑣(𝑎 𝑏), which is true iff 𝑎 is the number of a proof of the formula with 
number 𝑏 . 26  We also have 𝑠(𝑎, 𝑏) : a function symbol for the (primitive 
                                     
25 For now, I will only give an outline of the first theorem. This involves appeal to notions 
such as primitive recursiveness, which I will not explicate until §3.  
26 ‘Number’ here means ‘Gödel number’, that being the unique natural number that is 
assigned to each expression and each sequence of expressions within a formal system (similar 
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recursive) function that maps each ordered pair given by (the code of) 
a formula 𝑎  with one free variable and a number 𝑏  to the (code of 
the) sentence that results from substituting the free variable in (the formula 
coded by) 𝑎 with the numeral of 𝑏 . Consider the matrix: 
 

(∃𝑦) 𝑃𝑟𝑜𝑣[𝑦, 𝑠(0,0)] (∃𝑦) 𝑃𝑟𝑜𝑣[𝑦, 𝑠(0,1)] (∃𝑦) 𝑃𝑟𝑜𝑣 𝑦, 𝑠 0,2 …
(∃𝑦) 𝑃𝑟𝑜𝑣[𝑦, 𝑠(1,0)] (∃𝑦) 𝑃𝑟𝑜𝑣[𝑦, 𝑠(1,1)] (∃𝑦) 𝑃𝑟𝑜𝑣 𝑦, 𝑠 1,2 …

… … …
 

 
The (positive) diagonal sequence is:  
 

(∃𝑦) 𝑃𝑟𝑜𝑣[𝑦, 𝑠(0,0)], (∃𝑦) 𝑃𝑟𝑜𝑣[𝑦, 𝑠(1,1)], (∃𝑦) 𝑃𝑟𝑜𝑣[𝑦, 𝑠(2,2)]… 
 
From it, we can define a diagonal formula (∃𝑦) 𝑃𝑟𝑜𝑣[𝑦, 𝑠(𝑥, 𝑥)] and an anti-
diagonal formula ¬(∃𝑦) 𝑃𝑟𝑜𝑣[𝑦, 𝑠(𝑥, 𝑥)]. Let m be the code of the latter. Then 
we have the following true identity: 
 

𝑠 𝑚, 𝑚 = ⌜¬(∃𝑦) 𝑃𝑟𝑜𝑣[𝑦, 𝑠(𝑚, 𝑚)] ⌝  
 
This is because 𝑠(𝑚, 𝑚)  is—by definition—the code of the result of 
substituting, in the formula whose code is m (i.e. ¬(∃𝑦) 𝑃𝑟𝑜𝑣[𝑦, 𝑠(𝑥, 𝑥)]), the 
free variable with the numeral of m. Therefore, since ¬(∃𝑦) 𝑃𝑟𝑜𝑣[𝑦, 𝑠(𝑚, 𝑚)] 
says of the formula coded by 𝑠(𝑚, 𝑚) that is not provable, it says so of itself.  
 
This establishes undecidability because neither this sentence nor its negation 
is provable in the systems Gödel considers. 27 If the sentence were provable, 
the system would be inconsistent because we could derive its negation. If it 
were disprovable, the system would be ω-inconsistent because 
(∃𝑦) 𝑃𝑟𝑜𝑣[𝑦, 𝑠(𝑚, 𝑚)] would be provable yet there is no natural number n that 
will satisfy 𝑃𝑟𝑜𝑣[𝑛, 𝑠(𝑚, 𝑚)]. 28 Therefore, assuming the system in which we 
construct the sentence is ω-consistent, it cannot also be complete. 
 
In discussing the 𝑃𝑟𝑜𝑣(𝑎 𝑏) predicate, Kreisel footnotes: 

                                                                                                       
in kind to Turing’s D.N’s for machines). For each code 𝜙, its numeral is denoted ⌜𝜙⌝. For any 
number p, its numeral (p) is 0 followed by p-many strokes i.e. 1 = 0′, 2 = 0′′, etc. 
27 Systems must be recursively axiomatisable and have a certain amount of expressive power. 
The weakest system usually considered is Robsinson arithmetic (denoted as Q)—a fragment 
of Peano Arithmetic. These incompleteness results apply to any extension of Q presuming it 
is recursively axiomatisable and ω-consistent.  
28 If there were such an n, we could prove the original sentence and the system would be 
simply inconsistent.  
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A very neat way of putting the point is due to Prof. Wittgenstein: 
Suppose we have a sequence of rules for writing down rows of 0 and 1, 
suppose the pth rule, the diagonal definition, say: write 0 at the 
nth place (of the pth row) if and only if the nth rule tells you to write 1 
(at the nth place of the nth row); and write 1 if and only if the nth rule 
tells you to write 0. Then, for the pth place, the pth rule says: write 
nothing! (1950, 281n). 

 
This is quite a neat way of putting Gödel’s proof. Gödel has isolated a 
sentence within systems that their rules cannot prove: if we try to derive a 
Gödel sentence, the rules say ‘write nothing’. This also shows that 
Wittgenstein’s variant diagonals were not restricted to his manuscripts: he 
was discussing them with, amongst others, Kreisel.  
 
Notice though, this is not the same as Wittgenstein’s rendition of Turing’s 
diagonal, which computes the positive diagonal sequence. Kreisel goes on to 
quote this diagonal—the one which says ‘write what you write’—but not as an 
explication of Gödel’s diagonal application. Floyd’s claim gives the impression 
that Wittgenstein has identified a common diagonal form present in Turing 
and Gödel’s proofs. Although these proofs are obviously highly related, 
Floyd’s presentation here is misleading. Gödel and Turing’s diagonal 
arguments take different forms: the former identifies a sentence (via an anti-
diagonal sequence) that says of itself that it is not provable; the latter 
involves attempting to compute a positive diagonal sequence before reaching 
an unfollowable instruction.   
 

2.3.1 The Path to Computable Numbers 
 
Floyd claims that Wittgenstein was instrumental in the inception of the 
content and ideas behind Computable Numbers.29 I cannot find any convincing 
evidence for this:  
 
Turing went up to Cambridge in 1931 to read for the mathematical tripos 
(Hodges 2014, 78). After graduating, he was then elected a fellow in 1935 
(2014, 121). In the spring of 1935, he attended lectures by Max Newman on 

                                     
29 I attended a lecture by Floyd in Kirchberg (2018) in which she went as far to claim that 
“without his study of philosophy with Wittgenstein...Turing would not have designed the 
Turing Machine”. Unfortunately I cannot find this claim replicated in publication. 
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the foundations of mathematics. These marked Turing’s entry into 
mathematical logic, running through the Hilbertian problems, Russell’s 
logicism, finishing with proofs of Gödel’s theorems (2014, 116-117). By the 
early summer of that year, lying down on Grantchester meadows during a 
long run, Turing saw the answer to Hilbert’s Entscheidungsproblem (2014, 
123). In his lectures, Newman phrased the problem in terms of a “mechanical 
process”; it was reflecting on this that led Turing to envisage machines (ibid.). 
 
Typically for him, Turing worked entirely on his own, not once discussing the 
idea for his machines even with Newman (Hodges 2014, 139). He shared a few 
words with Braithwaite on Gödel’s theorems at King’s high table, asked 
Watson about the nature of Cantor’s diagonal, and briefly explained the idea 
of the universal machine to his close friend David Champernowne. This was 
all. His work then consumed him until April 1936, when he handed a draft 
typescript to Newman (ibid.).  
 
Wittgenstein had been back in Cambridge since 1929 (Monk 1991, 255). He 
had realised that there were fundamental problems in the Tractatus and was 
now advancing his new method for philosophy. In the early thirties, 
Wittgenstein was thinking intensely about mathematics and its foundations. 
During Turing’s undergraduate years Wittgenstein gave two series of lectures 
in Cambridge (1932-33) entitled simply ‘Philosophy’ and ‘Philosophy for 
Mathematicians’ (Monk 1991, 328). The latter consisted in uprooting even the 
most commonly held assumptions in mathematics, one of these being that 
mathematics had any foundation in logic (ibid.). In the next academic year 
1933-34, Wittgenstein cancelled the lectures and instead dictated them to his 
favourite five students. Their notes were collated and bound, and then 
distributed amongst students (Monk 1991, 336). These have been known since 
as The Blue Book. 
 
Now, one might expect that Turing had attended ‘Philosophy for 
Mathematicians’—it had undergraduate mathematicians as its target 
audience. There is no evidence that he did. Nor is there evidence that Turing 
ever read The Blue Book. Given this, I find the chances of Wittgenstein 
having had any influence on the content of Computable Numbers very slim. 
The two did not meet formally until after the publication of Computable 
Numbers in 1937, when Watson introduced them. From the above evidence, it 
would seem unlikely that Wittgenstein influenced Turing’s paper.  
 
Let’s analyse Floyd’s argument. Floyd’s first piece of evidence is that in 1933, 
Turing acquired a copy of Russell’s famous Introduction to Mathematical 
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Philosophy (1919). In the final chapter ‘Mathematics and Logic’, Russell 
mentions Wittgenstein and his early work on notion of tautology, saying: 
 

The importance of “tautology” for a definition of mathematics was 
pointed out to me by my former pupil Ludwig Wittgenstein, who was 
working on the problem. I do not know whether he has solved it, or 
even whether he is alive of dead (1919, 206). 

 
Floyd argues that the notion of tautology would not have escaped Turing 
here: 
 

Turing would import the use of a tautology-like construction into the 
heart of his argumentation in ‘On Computable Numbers’. Turing would 
thus vindicate Russell’s suggestion, drawn from Wittgenstein in 1918, 
that appeal to the laws of contradiction, excluded middle, and 
bivalence are no longer sufficient as a basis for an analysis of logic, 
whereas the idea of an empty, senseless, repetitive remark ‘saying the 
same thing over again’ (tauto- logoi) is (2017, 114). 

 
What Floyd is suggesting is that this one-sentence snippet had some causal 
effect on the diagonalisation argument in Computable Numbers. ‘Saying the 
same thing over again’ here is an allusion to Turing’s machine H, which 
comes across an empty rule—the ‘Do-What-You-Do Machine’. In his proof, 
Floyd argues: 
 

[Turing] adapts Wittgenstein’s notion of a tautology, central to the 
philosophy of logic at Cambridge since the Tractatus (ibid.). 

 
This analogy between Wittgenstein’s characterisation of tautology in the 
Tractatus-era and Turing’s machine H is not especially cogent. Granted, 
Wittgenstein describes tautologies as empty: “they say nothing”—“they lack 
sense” (TLP 4.461). This is because the rule will always return true regardless 
of the way the world is. But machine H is not empty in this way. It better 
befits an analogy with a ‘truth teller’: a sentence that says of itself that it is 
true. It may either be true or false, but as nothing determines its truth-value 
we have no way of settling the matter. 
 
Floyd is claiming that Turing has ‘vindicated’ Wittgenstein’s notion that 
appeal to the laws of contradiction and excluded middle are now insufficient. 
Turing does not argue this anywhere nor even mention these concepts. The 
paper is consistent with the notion in that Turing machines are neutral 
between formal systems—they do not require a choice between logics—but 
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there are obviously independent motivations for this aside from anything 
Turing knew about Wittgenstein. In any case, Floyd claims that these 
thoughts are drawn from one sentence of Russell which was read two years 
before Turing had the idea for Computable Numbers. This is not plausible. 
 
Floyd continues:  
 

But why would Turing have been reading Russell at all? Two possible 
answers present themselves (2017, 114). 

 
The first may be gleaned from Turing’s annotated copy of Littlewood’s 
Elements of the Theory of Real Functions (1926). In his preface, [...] 
conceding some readers might be interested in the foundations of 
mathematics, he recommended that the reader consult Russell’s 
Introduction to Mathematical Philosophy [...] So it is plausible to 
suppose that Turing turn toward logic in the spring of 1933, during his 
second undergraduate year (ibid.).  

 
There is a second possible answer as to why Turing would have been 
reading Russell in the spring of 1933. Wittgenstein’s course 
“Philosophy for Mathematicians” was given 1932-1933 (Turing’s second 
undergraduate year) [...] It may have influenced Turing (directly or 
indirectly), drawing him toward logic and foundations of mathematics. 
(2017, 115). 

 
This, I think, is a false dichotomy. Turing reading Russell requires no 
substantive ‘reason’ whatsoever. Russell was one of the most famous 
mathematician-philosophers of the day, if not ever. His work was renowned 
worldwide, and of course Russell would have been well known and often 
discussed in the Cambridge mathematics faculty of Turing’s time. It would be 
surprising if Turing had not read Russell. This is not convincing evidence of 
Wittgenstein influencing the ideas in Computable Numbers. 
 
There is also no evidence that Turing attended ‘Philosophy for 
Mathematicians’. Even if he did, Floyd’s argument would require that Turing 
read Russell due to Wittgenstein’s influence then, taking particular note of 
the ideas surrounding Wittgenstein’s one-sentence mention in the 
Introduction, working these ideas into the heart of Computable Numbers to 
vindicate Wittgenstein’s earlier views on logic and mathematics. Hopefully it 
is evident that this is far-fetched. Floyd’s contention that Turing’s “basic 
move was to utilise...the method of a ‘language game’” remains quite 
unsupported (2017, 109). The notion of a language game was introduced in 
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‘Philosophy’, but does not appear at all in ‘Philosophy for mathematicians’ 
(cf. AWL). There is no plausible way Turing would have heard of language 
games before Computable Numbers. They do appear in the Blue Book, of 
course, but there is no reasonable basis on which to argue that Turing had 
read this. Wittgenstein’s influence on Computable Numbers goes no further 
than in the indirect sense in which Wittgenstein may have contributed to a 
culture of thinking about logic at Cambridge, which Turing later entered. 
Whilst Floyd is clear on what Wittgenstein is supposed to have added to 
Computable Numbers, her evidence is very slim and ultimately unconvincing.  
 

2.4 Taking Stock 
 
Before moving forward to the final section, where the focus will shift towards 
the Church-Turing thesis, it is worth recapitulating what I have shown so far. 
I have so far given my arguments for a) and b) in my introduction, and some 
of my arguments for c): 
 

a) Wittgenstein read, understood and engaged with Computable Numbers. 
b) Wittgenstein’s remarks on this topic are highly perceptive and have 

pedagogical value, shedding light on Turing’s work. 
c) Wittgenstein was highly supportive of Turing’s work as it was 

indicative of Wittgenstein’s prevailing approach to logic and 
mathematics.  

 
I hope that a) is evident now. Wittgenstein makes a clear reference to 
Computable Numbers in the 1947 remark (RPP I, §1096). He was not only 
aware of the paper, but gave it careful study, particularly its first proof and 
the application of the diagonal procedure. Wittgenstein ran through its 
argument and reframed it in his own terms—as a game. He used Turing’s 
proof as a prop out of which he derived new remarks on the nature of a rule, 
and our ability to follow them.  
 
Following from a), I have also argued for the qualitative judgement about 
Wittgenstein’s remarks in b). In (RPP I, §1097), Wittgenstein reconstructs 
the general form of the diagonal application in Turing’s proof. His rendition 
does justice to Turing’s proof; I have shown that Turing’s machine H is a 
token of Wittgenstein’s general diagonal rule 𝐹′(𝑛). In a matter of lines, 
Wittgenstein diagnosed what goes wrong when computing the positive 
diagonal sequence across the computable numbers. The brevity and clarity of 
the remark surely have pedagogical value relative to the complexity of 
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Turing’s paper. Further, by Kreisel’s admission, it seems Wittgenstein made a 
point of discussing this diagonal proof elsewhere. He also had an equally 
simple rendition of the form of diagonal argumentation in Gödel’s first 
incompleteness theorem.  
 
This in itself supports my claim in c). Wittgenstein was not dismissive of 
Turing’s work but enthusiastic. This much is clear from the fact he was still 
thinking about it a decade after the publication of Computable Numbers. 
What is more, Wittgenstein thought that Turing’s work proved valuable not 
only in itself, but as an application to his own philosophy. He learnt from 
Turing that bare instructions are not enough to fully describe a rule; we also 
need contextual facts vis-à-vis our position in the game, as it were. It also 
seems that Wittgenstein changed his stance on the diagonal technique after 
reading Turing. I showed that in 1938 Wittgenstein explored the diagonal 
technique understood in only anti-extensional terms. He struggled to see how 
the technique could be informative in this way and was doubtful in 1938 that 
any use could be got from the diagonal technique. Sometime before 1947, 
Wittgenstein realised the impact that Turing’s proof had on this prospect. He 
subsequently changed the spirit of his approach to the diagonal method, 
claiming he thought it showed two things while appearing to do only one. 
 
I cannot be sure of when exactly Wittgenstein’s change of heart towards the 
diagonal technique occurred; it was quite possibly a long time before 1947. It 
is somewhat surprising that these ideas are not fully formed in 1938, given his 
discussions with Turing and Watson. It seems Wittgenstein was still 
developing his approach, which was only realised in text by 1947. In any case, 
there is a clear change in mood between the arguments laid out in RFM II, in 
which the diagonal technique is met wholly with hostility, and the 1947 
remarks, where Wittgenstein, abstracting from Turing, draws enthusiastic 
conclusions from it.   
 
Turing’s results are, in many ways, indicative of Wittgenstein’s prevailing 
philosophy of mathematics. Turing’s proof avoids having to posit infinite 
extensions, and reflects Wittgenstein’s tenet that rules are essential to 
mathematics. Further, the Turing machine captures the abacus-, machine-like 
nature of calculation that Wittgenstein championed, portraying mathematics 
as a mere algorithmic manipulation of signs.  
 
However, this fact is purely circumstantial. That is, I want to resist the 
suggestion that Wittgenstein directly influenced any of the ideas in 
Computable Numbers. We must not understand Wittgenstein’s endorsement 
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of Turing’s proofs as being somehow triggered by the recognition of his own 
contribution. Computable Numbers is overtly original; its methods are highly 
general, and palatable to a broad mathematical audience—even Wittgenstein. 
The fact that Wittgenstein found them useful for his own purposes is a 
testament to the generality of Turing’s methods. It is not indicative that the 
ideas originated from Wittgenstein himself.  
 
In §3 I will give further evidence for c) by offering an interpretation of the 
first claim in RPP I §1096—‘Turing’s ‘Machines’. These machines are humans 
who calculate’. I take this as a clear endorsement of the Church-Turing thesis, 
in particular Turing’s rendition, once it is spelled out and placed in its 
historical context. I will then present an argument for: 
 

d) Adopting a Wittgensteinian approach to Turing’s proofs enables us to 
answer live problems in the modern literature on computability.  
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3 Computability—Wittgenstein and the Church-
Turing Thesis 

 

3.1 Humans Who Calculate 
 
The Church-Turing thesis (hereafter CTT) has been heavily discussed in the 
literature on computability and is relevant even in on-going scholarship. I 
have two principal objectives in this section: 
 
After giving a landscape of the thesis and the relevant debates, I will first 
argue that Wittgenstein himself endorsed Turing’s rendition of the CTT.  I 
will do so in opposition to arguments from Stuart Shanker, who claims that 
Wittgenstein objected to Turing’s conception of the CTT and found it steeped 
in linguistic confusion. This is incorrect. Shanker’s evidence turns heavily on 
Wittgenstein’s comments on mechanism. Conflating the CTT with arguments 
concerning mechanism is a common fallacy. Wittgenstein’s remarks on the 
CTT are perceptive and endorse Turing’s own exposition.  
 
Second, I will look at the status of the CTT moving forward. As mentioned, 
there are still several live debates related to the CTT. These typically study 
its truth and provability, or analyse exactly what type of claim the CTT 
actually is (a definition, consequence of induction, etc.). I hope to put at least 
some of these questions to bed. As far as I know, Wittgenstein himself never 
contributed to these debates substantively—evidence of Wittgenstein’s 
attitude towards the CTT is reducible to just one sentence in the Nachlass. 
However, adopting a Wittgensteinian approach to the CTT yields interesting 
results. This, I will argue, gives a clear picture of the CTT and its status 
today. I will use this approach to give a case for the universal truth of the 
CTT. If I am correct, the Wittgensteinian approach to mathematics sheds 
light on modern debate on computability. The finale to this paper is thus a 
hymn to Wittgenstein scholarship, and a humble justification of a continued 
interest in his work.  
 

3.1.1 The CTT at a Glance 
 
There is no unique formulation of the CTT. It is testified in various ways 
throughout the literature. This is in part historical: it has been updated along 
with developments in recursion theory. 
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The thesis is a claim of equivalence between a cluster of informal concepts and 
a cluster of formal concepts. The informal concepts broadly fall under effective 
calculability. This is a notion inherited from Hilbert. As previously mentioned, 
a function is effectively calculable if there is some finite, definite method for 
its calculation i.e. an algorithm (intuitively understood). Definite here is 
understood as a step-by-step process in which every step is capable of being 
followed mindlessly. J.B. Rosser characterises an effective method quite neatly 
as a “method each step of which is precisely predetermined and which is 
certain to produce the answer in a finite number of steps” (1939, 225). 
 
I will call the cluster of formal concepts formal computability, which (we now 
know) are all equivalent to recursiveness. The CTT began as simply CT—
Church’s thesis. Church proposed it as a definition of effective calculability, 
by identifying the notion with recursive functions of positive integers (1936, 
100). He then parenthetically adds: “or a λ-definable function of positive 
integers”, which is Church’s formalism, equivalent to recursiveness (ibid.).30   
 
Thus, the original CT equates effective calculability on the one side, and 
recursiveness and λ-definability on the other. Recall, late 1936 saw the 
publication of Computable Numbers and the introduction of Turing-
computability. This added a further formal notion to the equivalence, and 
turned the CT into the CTT.  
 
The CTT underpins all of the results showing that the Entscheidungsproblem 
has no solution. This should be fairly apparent. The Entscheidungsproblem 
demanded an effective procedure by which one could decide whether or not 
any given statement of Hilbert’s restricted predicate calculus was provable. To 
show this is not possible, both Church and Turing designed formalisms that 
they argued could model any effective procedure, and proved that there is no 
procedure in the formalisms solving the Entscheidungsproblem. Therefore, 
there is no effective procedure to solve the Entscheidungsproblem. Of course, 
the proofs depend on whether these formalisms successfully capture all 
possible effective procedures.  
 
Before moving on, I shall give a brief account of recursiveness. A basic grasp 
of recursiveness (and how it captures effective calculability) is essential to 
understanding the effect that Turing-computability had on the CTT.  

                                     
30 This was proved by Stephen Kleene (with the help of Church and Rosser) cf. Kleene 
(1936). 
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3.1.2 Recursiveness 
 
There are several ways of presenting recursiveness; for continuity, I will again 
broadly follow Boolos et al. (2007, Ch7). The recursive (general recursive, or 
recursively computable) functions are a class of functions (partial and total) 
from finite tuples of natural numbers that return one natural number. The 
class of recursive functions arrived as an extension of the primitive recursive 
functions. These were the functions Gödel employed in his incompleteness 
proofs in 1931. As before, let’s adopt a notation such that the numeral for any 
integer n is 0 followed by n strokes: 1 = 0′, 2 = 0′′, and so on. The basic 
functions are defined as follows: 
 

(I) 𝑇ℎ𝑒 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑠 𝑥 = 𝑥′ 
(II) 𝑇ℎ𝑒 𝑍𝑒𝑟𝑜 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑧 𝑥 = 0 
(III) 𝑇ℎ𝑒 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦/𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠: 𝑖𝑑!

!(𝑥1, … , 𝑥!, … 𝑥!) = 𝑥! 
 
I take the first two definitions as self-explanatory. The identity functions are 
those that return the i-th argument of any n-ary projection. More primitive 
recursive functions can be defined by certain operations on the above basic 
functions; the operators are: 
 

(IV) 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛:  
 

ℎ(𝑥1, … , 𝑥!) = 𝑓(𝑔1(𝑥1, … , 𝑥!)), … , 𝑔!(𝑥1, … , 𝑥!)) 
 

(V) 𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑜𝑛: 
 

ℎ(𝑥1, … , 𝑥!, 0) = 𝑓(𝑥1, … , 𝑥!),   
ℎ(𝑥1, … , 𝑥!, 𝑦′) = 𝑔(𝑥1, … , 𝑥!, 𝑦, ℎ(𝑥1, … , 𝑥!, 𝑦)) 

 
Composition is sometimes called substitution. We can abbreviate this to 
ℎ = 𝐶𝑛[𝑓, 𝑔1, … , 𝑔!]. For example, 𝐶𝑛[𝑠, 𝑧]  is the function h where ℎ 𝑥 =
𝑠(𝑧(𝑥)) = 𝑠(0) = 1. We can abbreviate primitive recursion to ℎ = Pr [𝑓, 𝑔]. Put 
simply, these operations are templates for defining functions in terms of other 
functions.  
 
A function is primitive recursive if it can be defined from the functions (I)-
(III) by zero or more successive applications of schemas (IV) and (V). 
 
For example, the addition function is primitive recursive. We can define 
addition by the following pair of equations: 
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𝑥 + 0 = 𝑥 
𝑥 + 𝑦′ = (𝑥 + 𝑦)′ 

 
These we can express as: 
 

𝑠𝑢𝑚(𝑥, 0) = 𝑥 
𝑠𝑢𝑚(𝑥, 𝑦′) = 𝑠𝑢𝑚(𝑥, 𝑦)′ 

 
We can express these in terms of (I)-(V) as follows: 
 

𝑠𝑢𝑚(𝑥, 0) = 𝑖𝑑1
1(𝑥) 

𝑠𝑢𝑚(𝑥, 𝑠(𝑦)) = 𝐶𝑛[𝑠, 𝑖𝑑3
3](𝑥, 𝑦, 𝑠𝑢𝑚(𝑥, 𝑦)) 

 
That abbreviates to: 
 

𝑠𝑢𝑚 = Pr [𝑖𝑑1
1, 𝐶𝑛[𝑠, 𝑖𝑑3

3]]  
 
Clearly, all primitive recursive functions are effectively computable. The basic 
functions can be computed in one simple step: applying the successor function 
involves adding a stroke, applying the zero function only requires writing a 
zero, and the identity function requires counting to some i-th argument and 
returning it. Further, schemas (IV) and (V) preserve effective calculability. 
For composition, if functions f and 𝑔! are effectively calculable then so is h. To 
compute ℎ(𝑥1, … , 𝑥!)  will take the number of steps needed to compute 
𝑦1 = 𝑔1(𝑥1, … , 𝑥!)  plus the number of steps needed to compute 𝑦2 =
𝑔2(𝑥1, … , 𝑥!), and so on, plus the number of steps that compute 𝑓(𝑦1, … , 𝑦!). 
There is thus a finite, definite list of instructions that can be given to 
compute any application of composition. Likewise, ℎ = Pr [𝑓, 𝑔]  will be 
effectively calculable if f and g are. ℎ(𝑥, 𝑦) can be computed in the same 
number of steps as required to compute 𝑧0 = 𝑓 𝑥 = ℎ(𝑥, 0) plus the number 
required to compute 𝑧1 = 𝑔(𝑥, 0, 𝑧0) = ℎ(𝑥, 1)  and so on to 𝑧! = 𝑔(𝑥, 𝑦 −
1, 𝑧!−1) = ℎ(𝑥, 𝑦). 
 
Adding one further operation to the primitive recursive functions, which are 
total, yields the (general) recursive functions, which can also be partial. For a 
function f of 𝑛 + 1 arguments, minimisation gives a total or partial function h: 
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(VI) 𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑎𝑡𝑖𝑜𝑛: 
 

ℎ 𝑥1, … , 𝑥! =
𝑦, if 𝑓 𝑥1, … , 𝑥!, 𝑦 = 0  and for all 𝑡 < 𝑦 

                         𝑓 𝑥1, … , 𝑥!, 𝑡 is defined and ≠ 0 
  𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, if there is no such 𝑦.

 

 
To abbreviate, we say that ℎ = 𝑀𝑛[𝑓] . Intuitively, this searches for the 
smallest argument that causes f to return 0; if there is no such argument this 
continues indefinitely. This will be effectively calculable if f is. If f is partial, it 
is intuitively effectively calculable if there is a finite list of definite 
instructions such that when they are applied to any x in the domain of f, they 
will eventually arrive at the value 𝑓(𝑥). If applied to an x not in the domain 
of f, the procedure will continue infinitely with no result. The same goes for 
many-place functions. Writing x for 𝑥1, … , 𝑥! , we would compute ℎ(𝑥) by 
successively calculating 𝑓(𝑥, 0), 𝑓(𝑥, 1), 𝑓(𝑥, 2), … stopping if we reach a y such 
that 𝑓(𝑥, 𝑦) = 0. If x is in the domain of h there will be such a y. If it is not, 
then this process will continue infinitely.  
 
The recursive functions are those that can be defined by zero or more 
applications of the operations (IV)-(VI) on the basic functions (I)-(III). These 
are all demonstrably effectively calculable: the basic functions are intuitively 
effectively calculable and applications of any of the operations preserve 
effective calculability. The substantive claim in the CT is that the recursive 
functions (and λ-definability) capture all effectively calculable functions. I will 
assess this claim in detail shortly.  
 

3.1.3 Turing-computability and the CTT 
 
I have so far given a sketch of the CT until it became the CTT. Importantly, 
Computable Numbers did more for recursion theory than simply add another 
formal notion to the bandwagon. As it stood, there were problems with the 
CT and it was not entirely convincing. Gödel found the proposal of defining 
effective calculability in terms of λ-definability “thoroughly unsatisfactory” 
(Davis 1982, 9). Gödel did not find the λ-calculus a natural counterpart to 
effective calculability. He was more inclined to accept recursiveness as a 
formal counterpart, but still only as a heuristic.  
 
Church does defend his CT, but the arguments are curious. Church first 
appeals to the empirical fact that thitherto for every effectively calculable 
function of positive integers, there was an algorithm for the calculation of its 
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value (1936a, 100). Conversely, every recursive algorithm that inputs and 
outputs natural numbers is clearly effectively calculable. Although true, this is 
a curious argument for a mathematical definition, which is how Church 
framed his CT. A definition is an analytic statement; once drawn, this 
precludes the possibility of an effectively calculable function being found for 
which there is no algorithm, or vice versa. If there is no algorithm for it, then 
it is not effectively calculable—by definition. This objection can be avoided if, 
instead of a definition, we state the CT as a conjecture—a claim of the 
equivalence of extension of two classes. This, in fact, is how the CT is often 
read.  
 
Regardless, Church’s rendition of the CT still leaves room for doubt. Gödel, 
notably, was still unconvinced by the thesis even after an equivalence had 
been proved between recursiveness and λ-definability (Davis 1965, 40). He was 
not convinced that he had identified the most general form of recursiveness 
(ibid.). Even though recursiveness seemed to match effective calculability 
intuitively, he was not convinced that all possible recursion fell into this 
category. Furthermore, he still had issue with declaring an equivalence 
between an informal concept and a formal one. Recall, Gödel envisaged any 
equivalence between recursiveness and effective calculability to be only a 
heuristic. He thought that no equivalence could be stated “without first 
showing that “the generally accepted properties” of the notion of effective 
calculability necessarily lead to this class” (Davis 1982, 13). 
 
As it stood, there was a theoretical gap in the CT. There was no strong 
connection between the relevant notions, only the evidence that they 
intuitively seemed to share extensions. This fell short of the rigour required 
for such an important development.  
 
It was only after reading Turing that Gödel fully endorsed the (now) CTT. 
Turing’s rendition of the CTT equates effective computability to Turing-
computability, which is also mathematically equivalent to recursiveness in the 
sense that the class of recursive (partial) functions coincides with that of the 
Turing-computable functions. This managed to bridge the theoretical gap 
between effective procedures and formal computability—for Gödel at least. 
Turing did this by characterising the latter notion in terms of the former, 
thereby ensuring that the generally accepted properties of effective 
calculability led to Turing-computability. Turing machines are explicitly 
justified in §9 of Computable Numbers by reference to their analogy with 
human calculators.  
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Turing reflects on what is essential to human calculation. His machines are 
limited in calculative power in the same way as humans, other than those 
related to sluggishness. The machines are built in analogy to human 
calculation: a human computer's behaviour is determined by the symbols she 
observes and her “state of mind” at that moment (CN, 136). We may imagine 
a human running her calculations with a pen across a one-dimensional tape 
(divided into squares, like child’s arithmetic book), rather than the traditional 
two-dimensions of lines on paper (CN, 135). We know that human computers 
may observe only finitely many distinguishable symbols at once; there is some 
upper bound B to how many symbols may be observed (CN, 136). Observing 
more requires successive observations. The number of ‘states of mind’ required 
in a procedure must also be finite. We may imagine the behaviour of a human 
calculator being broken down into the simplest of steps. Each step involves 
some change of the physical system consisting of the human and her tape 
(ibid.). All changes may be split up into steps of this kind, where one symbol 
is changed at a time. 
 
In analogy to these essential features of human calculation, Turing defines his 
machines. To each state of mind corresponds an m-configuration. Where the 
human observes squares, the machine scans. All moves on the machine are 
determined by its m-configuration and the symbols it scans. Turing machines 
are thus idealised human calculators. Any sequence calculable by a human can 
be broken down into these simple steps. Correspondingly, a machine can be 
described which allegedly will compute any sequence calculable by a human 
calculator. This would mean that a human calculator cannot out-compute a 
Turing machine. Conversely, Turing machines are limited such that they can 
only complete the most basic of operations at any stage. Therefore, they can 
only compute sequences theoretically calculable by a human (ignoring 
constraints on sluggishness or time). That is, their computing power is no 
stronger than an idealised human’s. So it goes.  
 
Turing tried to bridge the gap between the elements of the CT by giving an 
insight into the central features of effective calculability as a human 
enterprise. Hereafter, I will call Turing’s justification of his machines qua 
abstract human calculators the Turing analysis. 
 
Even Gödel would accept that the difficulties of the CT had been overcome 
by the CTT. In an address to the Princeton Bicentennial Conference, Gödel 
credited Turing with having “for the first time succeeded in giving an absolute 
definition of an interesting epistemological notion” (1946, 84). Turing had 
shown the connection between effective calculability and the notion of 
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recursiveness. Accordingly, the ‘generally accepted properties’ of the informal 
notion of effective calculability could be mapped with sharpness and clarity 
via Turing machines onto their formal counterpart. Further, Gödel credits 
Turing with having given a thorough analysis of “mechanical procedure” or 
“algorithm” (1964 Postscriptum to 1934, 72). This proved invaluable to 
generalising his incompleteness results as it gave a “precise and 
unquestionably adequate definition of the general concept of formal system” 
(op. cit., 71). It meant that the existence of undecidable propositions could be 
proved for every consistent, effectively axiomatisable formal system containing 
a certain amount of finitary arithmetic (ibid.). 
 

3.1.4 Wittgenstein’s Analysis 
 
The above considerations are crucial to understanding Wittgenstein’s response 
to the CTT. So far I have given a reconstruction of Wittgenstein’s 1947 
remarks on Computable Numbers in some detail. However, I have thus far 
neglected the first substantive claim of the remarks: 
 

 Turing’s ‘Machines’. These machines are humans who calculate (RPP 
1, §1096).  

 
This is for good reason: the remark is self-standing and distinct from 
Wittgenstein’s analysis of Turing’s application of the diagonal procedure. I 
will analyse it here. This remark shows Wittgenstein’s understanding of what 
a Turing machine actually is—it is therefore a direct comment on the CTT.  
 
Now, this remark (or any other reference to the CTT) is not replicated 
anywhere else in the Wittgenstein Nachlass. Further, it is characteristically 
pithy and almost certainly written as an epigram. As such, we should be 
cautious about inferring too much from the remark. Having said this, the 
remark is highly perceptive and seems to go right to the heart of the 
developments in recursion theory and computability in the 30s.  
 
Read at face value, Wittgenstein’s remark simply notices what is quite explicit 
about Turing machines (given the Turing analysis)—that they are modelled 
on idealised abstract human computers. Turing himself would repeat this 
point: “A man provided with paper, pencil, and rubber, and subject to strict 
discipline, is in effect a universal machine.” (1948, 416). 
 



 62 

It is striking, though, that Wittgenstein picks this as his sole characterisation 
of Turing’s machines. It is precisely this feature of Turing machines that 
allegedly allows the formalism to convincingly capture effective calculability as 
formal computability, thus proving results related to the 
Entscheidungsproblem. Jack Copeland puts the point well:  
 

[I]t was not some deficiency of imagination that led Turing to model 
his logical computing machines on what could be achieved by a human 
computer. The purpose...demanded it (2000, 11-12).  

 
Wittgenstein identifies Turing’s precise philosophical move that aimed to 
connect effective calculability and formal computability. It was this move that 
put Gödel’s worries to rest, allowing him to accept a formal analysis of an 
informal notion. Only a direct model of human calculation could successfully 
capture all of the essential characteristics of effective calculability. Before 
Turing, there was an equation of two classes of extensions between which 
there was no explicit connection other than a lack of evidence for falsification 
and a weak intuitive appeal. Turing’s machines qua abstract human 
calculators gave a non-ad hoc philosophical argument that (purportedly) led 
from the most essential characteristics of calculation to a formal notion 
equivalent to recursiveness. That Wittgenstein should identify this feature of 
Turing’s machines (and only this feature) shows a remarkable depth of 
understanding. Such a remark can only be read as an endorsement of the 
CTT—Wittgenstein is affirming the very aspect of Turing’s machines which 
accounts for the supposed convincingness of the CTT: that they are abstract 
humans.  
 
There is no hint of objection. Rather, this philosophical move manifests the 
motto Wittgenstein would later advocate in RFM II: in 1936, the Princeton 
group were focussing their efforts solely on the formal side of the equivalence 
in the CTT whilst Turing did what was required to tackle the 
Entscheidungsproblem—“take a wider look round” (RFM II, §6).  
 
This further endorses my contention that Wittgenstein took an active interest 
in Turing’s work. Alongside the remark on Turing’s application of the 
diagonal process, this remark on the CTT occurs over ten years after the 
publication of Computable Numbers. Similarly to Wittgenstein’s diagonal 
remark, this comment draws out what is essential in Turing’s work. This 
remark, once fully worked out, identifies the breakthrough idea in Turing’s 
logic. It was his step outside of mathematics to analyse what effective 
calculability really meant that led to a galvanised CTT. 
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Wilfried Sieg puts my point quite neatly: the opening line of Sieg (1994) 
quotes the humans who calculate remark. He then begins: 
 

Wittgenstein’s terse remark captures the feature of Turing’s analysis of 
calculability that makes it epistemologically relevant (1994, 71). 
 

I would echo this sentiment. Sieg uses the remark chiefly as a gobbet to 
introduce his discussion of Turing and mathematical experience. Its 
employment as such should serve as further evidence to my defence of the 
pedagogical value of Wittgenstein’s remarks on Turing.  
 

3.1.5 Shanker, Wittgenstein and Mechanism 
 
As Wittgenstein affirmed the very premise that separates the CT from the 
CTT, I have argued that this shows Wittgenstein’s endorsement of the CTT. 
However, I did also point out the epigrammatic nature of this, the only 
reference in the Nachlass to the CTT. As such, I will not labour my argument 
beyond the scope of the evidence available. Clearly one sentence cannot give 
sufficient substance for a knock-down argument as to Wittgenstein’s approach 
to the CTT. 
 
On this score, I would like to offer criticism against Stuart Shanker (1987b, 
1998): he takes the humans who calculate remark as a full-blown objection to 
the CTT. Interestingly, both Floyd (2012) and Sieg (1994) note their 
opposition to Shanker’s interpretation, but neither offers any sustained critical 
analysis of it. To be sure, if correct, his arguments pose a major problem for 
the thesis I am proposing.  It also directly contradicts Sieg’s reading, for which 
Floyd expresses sympathy (2012, 27). Shanker’s interpretation pictures 
Wittgenstein and Turing at odds on the fundamental contention of 
Computable Numbers. This patently contradicts the kernel of my agenda.  
 
Shanker’s argument turns on Wittgenstein’s famous opposition to the 
Mechanist thesis—the proposition that machines can or could think. Turing 
famously endorsed the Mechanist thesis. Shanker argues that Turing derived 
this from his computability results:  
 

One of the central points that Turing made in his 1947 ‘Lecture to the 
London Mathematical Society’ was that the Mechanist Thesis is not 
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just licensed by, but is in fact entailed by his 1936 development of CT 
(1998, 1). 

 
Shanker lays this against Wittgenstein’s refutation of the Mechanist thesis. He 
correctly draws out Wittgenstein’s approach: saying of a machine that it 
‘thinks’ would transgress the rules of logical grammar. It betrays what we 
mean when we use the word ‘think’: 
 

‘A machine thinks (perceives, wishes)’ seems somehow nonsensical. It is 
as though we had asked ‘Has the number 3 a colour? (BB, 47).31 

 
On this basis he argues that for Wittgenstein, Computable Numbers represents 
“a misguided attempt to integrate independent issues in mathematical logic 
and the philosophy of mind” (1998, 3): 
 

Wittgenstein objects that the mathematical and philosophical strands 
in ‘On Computable Numbers’ are not just independent of one another 
but, indeed, that the epistemological argument misrepresents the 
mathematical content (1998, 4). 

 
Shanker fleshes out his argument by reference to a passage where 
Wittgenstein reflects on calculating machines in RFM V: 
 

Does a calculating machine calculate? Imagine that a calculating 
machine had come into existence by accident; now someone 
accidentally presses its knobs (or an animal walks over it) and it 
calculates the product 25×20. I want to say: it is essential to 
mathematics that its signs are also employed in mufti. It is the use 
outside mathematics, and so the meaning of the signs, that makes the 
sign-game into mathematics. (§2) 

 
The point here, for Shanker, is that a ‘calculating machine’ does not, in fact, 
calculate. What we call ‘calculating’ requires a host of normative concepts. 
We do not calculate simply because it makes interesting patterns. 
Mathematical signs are employed in mufti to reason about everyday 
propositions.  
 
Shanker argues that these normative conditions are not applicable to Turing 
machines (them being ‘calculating machines’). Thus, for him Wittgenstein’s 
humans who calculate remark argues that Turing machines are not calculating 

                                     
31 See also (PG, 105).  
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machines at all. Wittgenstein argues that “if calculating looks to us like the 
action of a machine, it is the human being doing the calculation that is the 
machine” (RFM IV, §20). 
 
Shanker argues that Turing’s conception of mechanical calculation requires 
that “the rules of calculation have been broken into a series of meaningless 
sub-rules, each of which is devoid of cognitive content, and for that reason are 
such that a ‘machine could carry it out’” (1998, 10). This is Turing’s fallacy. 
Machines cannot calculate precisely because they act mechanically. To divide 
steps into meaningless sub-rules devoid of cognitive content is to violate the 
grammar of calculation. To Wittgenstein (and Shanker), meaningless rule is 
an oxymoron because rules must be followed normatively. Turing’s CTT 
hence makes a conflation between following a mechanical ‘rule’, and following 
a rule mechanically. Machines follow mechanical processes, but this cannot be 
said to be rule-following because if each step is devoid of cognitive content 
then the essential normativity of calculation is lost. Conversely, humans may 
follow certain rules mechanically i.e. without thinking, but this does not 
involve merely following a mechanical process like a machine: a human may at 
any stage justify her actions by reference to the rule (1998, 31). 
 
This feeds into Wittgenstein’s alleged contention that Computable Numbers is 
a hybrid paper, confusing mathematical and epistemological concepts: 
 

The crux of Wittgenstein’s response to Turing’s interpretation of the 
epistemological significance of his mechanical version of CT is that the 
only way Turing could synthesise these disparate elements was by 
investing his machines with cognitive abilities ab initio: that is, by 
assuming the very premise which he subsequently undertook to defend. 
(1998, 32). 

 
In other words, Turing’s paper is steeped in confusion because his conclusions 
require that his machines calculate: they are, of course, intended as a model of 
calculation. However, Wittgenstein has shown that Turing’s notion of 
algorithm precludes bona fide calculation because calculation is an essentially 
normative enterprise. Turing defines algorithms in terms of meaningless sub-
rules devoid of cognitive content; the only way to bridge this gap was for 
Turing to inadvertently bestow cognitive abilities onto his machines, making 
them not calculating machines but humans who calculate. It was this 
characteristic that Turing went onto defend (via the Mechanist thesis) which 
he claimed was entailed by his formulation of the CTT. Thus, Wittgenstein’s 
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remark that Turing’s machines are really humans who calculate in fact shows 
that Turing’s CTT-cum-Mechanist-thesis begs the question.  
 

3.1.6 Critique of Shanker 
 
Recalling my remark about the lack of evidence on this debate (and my 
subsequent caution about over-interpretation), I would emphasise at this 
point that the above interpretation of Wittgenstein’s approach to the CTT is 
based entirely on the sentence: ‘Turing’s ‘Machines’: these are humans who 
calculate’. The other quoted passages serve only as reference for 
Wittgenstein’s opposition to the Mechanist thesis.  
  
As it happens, Shanker’s argument turns on fallacy. If we are careful about 
picking apart what the CTT entails and what it does not, this becomes clear. 
Overstating the scope of the CTT is highly common in the literature; 
Copeland labels this the Church-Turing fallacy (1998, 133). Usually this 
involves overstating the scope of Turing-computability.  
 
It seems that Shanker has committed such a fallacy (although not one 
Copeland identifies). The claim Shanker makes is that Turing thought the 
CTT, a claim stating an equivalence between idealised human calculation and 
Turing-computability, entails that real machines can think. Shanker 
repeatedly claims that Turing himself was to “insist” this point in his 1947 
‘Lecture to the London Mathematical Society’ (1998, 14). Despite its 
frequency, Shanker rehearses this claim without citation or quotation. Nor 
does he explain how such an argument would actually work—the possibility of 
machine thinking certainly does not trivially follow from the CTT.  
 
I cannot find any such claim in Turing’s lecture. This is hardly surprising: it 
would be fallacy.  
   
Shanker’s chapter includes a lengthy discussion of Gödel’s response to deriving 
mechanism from the CTT. This seems misplaced to me. There are two senses 
in which ‘mechanism’ can be interpreted. Shanker uses it to denote an 
endorsement of the proposition that machines can/could think. Let’s call this 
mechanism1. There is another sense, which I take as the standard usage, 
which I shall dub mechanism2; this is the proposition that human thought is 
entirely mechanical, or reducible to mechanical procedures i.e. that the 
extension of thought is a subset of mechanical calculation. There is yet 
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another: let’s call it mechanism3—the claim that human cognitive capacities 
are bound by those of a Turing machine. 
 
To be sure, these are not equivalent claims. Mechanism2 may well imply 
mechanism1: if human thought is totally reducible to mechanical procedures, 
logically a machine qua mechanical device could mimic this. However, 
mechanism1 need not entail mechanism2. One could consistently claim that 
machines can sufficiently resemble humans to warrant describing their 
behaviour as ‘thinking’ without limiting all human thought to mechanical 
procedures. That is, a machine could satisfy the sufficient conditions for 
(mechanical) thinking without all human thought being restricted to this. 
While Mechanism2 does entail mechanism3, the converse does not hold: it 
could be that humans and machines ‘do things’ differently (i.e. 
mechanically/non-mechanically) but that our results are limited by those 
obtainable by a Turing machine. Of course, mechanism3 does not entail 
mechanism1 either or vice versa. 
 
Importantly, mechanism2 is not entailed whatsoever by the CTT. If the CTT 
is true, when a human is calculating mechanically i.e. following a definite 
procedure, she cannot out-compute a Turing machine. A further premise could 
be added—that all human cognitive ability is mechanical—which might lead 
one to think that humans are totally Turing-computable, but this is not 
entailed by the CTT, which claims nothing about a human’s faculty for non-
mechanical behaviour. 
 
Gödel’s famously resisted mechanism2 by denying this additional premise. To 
his postscript on Turing’s notion of algorithm Gödel added:  
 

[N]ote that the question of whether there exist finite non-mechanical 
procedures not equivalent with any algorithm, has nothing whatsoever 
to do with the adequacy of the definition of “formal system” and of 
“mechanical procedure” (1964 Postscriptum to 1934, 72).  
 

Mechanism3 does not follow either from the CTT. Again, if humans are 
capable of non-mechanical behaviour (which is not under the purview of the 
CTT), it might be possible to obtain results not obtainable by a Turing 
machine. Gödel, again, took this tack towards mechanism3. He took from 
Turing’s work (and his own) the following disjunction: 
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The human mind…infinitely surpasses the powers of any finite machine, 
or else there exist absolutely unsolvable diophantine problems (1995, 
310).  

However, Wang reports that Gödel found the second disjunct implausible, 
following Hilbert’s famous motto that in mathematics there can be no 
Ignorabimus (Wang 1974, 324-325). Gödel thought it would be irrational for 
humans to set themselves questions that are unanswerable, and thus the 
human mind must surpass the scope of what is performable by Turing 
machines (ibid.).  

Shanker states accordingly that “Gödel was persuaded to accept CT on the 
basis of Turing’s Thesis…[but] he repudiated the consequences which Turing 
was to draw” (1998, 19). However, so far Shanker has only introduced the 
Mechanist thesis as a claim about mechanism1. Gödel is interested in refuting 
mechanism2 and mechanism3. He does not mention mechanism in the sense 
Shanker is discussing. Shanker is unclear about whether Turing is supposed to 
derive mechanism1, mechanism2, or mechanism3 from the CTT.  
 
Although Turing himself endorsed mechanism1 as Shanker claims, he never 
claimed to derive that belief from the CTT. Mechanism1 bears no relation to 
the CTT; it is a question for the philosophy of mind. In fact, Turing wanted 
to avoid philosophical discussion of mechanism1 altogether—the whole reason 
Turing devised the now-famous Turing test was to replace the question of 
whether machines can think with a more definite counterpart: can a machine 
pass the imitation game? (1950, 433-434). 
 
In Turing’s 1947 ‘Lecture to the London Mathematical Society’ he does 
endorse mechanism1 (as Shanker claims) (1947, 393-394). However, there is no 
mention of the CTT, let alone a claim that mechanism1 is entailed by the 
CTT. There is also no reference to the ideas of mechanism2 , nor mechanism3. 
So, not only is it unclear what Shanker means when he argues that Turing 
‘insisted’ mechanism was entailed by the CTT, there is also no evidence for 
any of the possible interpretations.   
   
Now to Shanker’s claim that Wittgenstein found Computable Numbers a 
misguided hybrid that attempted unsuccessfully to fuse two disparate issues 
from mathematics and the philosophy of mind. I am not certain what 
evidence Shanker is using to support this claim. It seems to be a corollary of 
his exposition of Wittgenstein’s humans who calculate remark. This 
interpretation reads Wittgenstein’s remark as something like: ‘Turing’s 
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machines are really humans who calculate, not machines’. According to 
Wittgenstein, machines cannot calculate. In order that his machines do, 
Turing has question-beggingly invested cognitive abilities into his machines. 
Turing’s supposedly seamless analysis is thus confused, and fails to merge the 
psychological with the mathematical. Without assuming the point Turing is 
trying to defend via the Mechanist thesis, his machines do not in fact 
‘calculate’ and thus cannot be the executors of algorithms (and counterpart of 
effective calculability), as he requires.  
 
However, I do not think this is what Wittgenstein had in mind, nor is it a 
convincing criticism of Turing. Turing deliberately models his machines on 
human calculation; this is the entire point. Turing does not fall into a vicious 
circle by investing his machines with cognitive abilities. Shanker erroneously 
claims that the notion of mechanical calculation requires a given calculation 
to be broken down into meaningless sub-rules and the notion of an algorithm 
demands that each step is devoid of cognitive content, so a machine could 
carry it out (cf. 1998, 10).  
 
This is not correct. Granted, Turing’s notion of algorithm requires that steps 
amount to “simple operations” so elementary that “it is not easy to imagine 
them further divided” (CN, 136). This does not entail an omission of all 
cognitive content. The requirement, inherited from Hilbert, is that effective 
procedures involve a definite method. This means instructions must involve 
no ambiguity such that insight or reflection is required to follow them. This is 
why only one simple operation is performed at any step. Demanding 
absolutely no cognitive ability to follow an algorithm is too high a 
requirement—after all, the procedure for computing a recursive function 
presumably requires some cognitive ability from the agent, we just limit this 
complexity to ensure steps are definite. So, pace Shanker, Turing’s machines 
are not required to follow meaningless sub-rules. They can quite consistently 
display a certain level of cognitive ability without departing from their 
algorithmic function. Obviously carrying out an algorithm requires some 
ability to recognise, interpret and print relevant symbols.  
 
Turing’s machines do not, of course, ‘calculate’ to Wittgenstein’s standard as 
explicated by Shanker. But this is a misnomer: Wittgenstein’s targets when he 
talks of calculating machines are real machines. His point is that mere sign 
manipulation is not sufficient for calculation; we are also required to use these 
normatively to reason. However, Turing machines need not adhere to any 
preconceptions of what real machines are capable of. Turing machines are not 
machines per se, but merely sets of mathematical signs. The only reason 
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machines are used as the paradigm in the first place is because they are a neat 
intuitive trope for ‘mechanical’ calculation. The results of Computable 
Numbers could be replicated with no mention of machines.32 Turing machines 
are not especially designed to capture machine calculation, rather human 
calculation.  
 
Wittgenstein understood this. He was under no illusion that his arguments 
concerning ‘calculating machines’ applied to Turing machines. This is why 
there is no hint of objection. Note Wittgenstein’s careful use of inverted 
commas when mentioning Turing’s ‘Machines’ (RPP 1, §1096). Of course, if 
we built physical machines that resembled Turing machines, these would not 
calculate according to Wittgenstein. However, insisting this clearly misses the 
point. Computable Numbers is about real machines no more than in the trivial 
sense in which Orwell’s Animal Farm is about livestock.   
 
The question of whether real machines ‘calculate’ or ‘think’ to satisfy 
Wittgenstein’s conception of these terms is entirely separate. On this score, 
Shanker is absolutely right: Turing and Wittgenstein were certainly at odds 
when it came to the question of mechanism1. However, this dispute is not 
under discussion here. Such concerns are irrelevant to the CTT. Shanker’s 
error is to derive import from Turing and Wittgenstein’s arguments on 
mechanism1 to inform their arguments concerning mathematics and the CTT. 
This is the fallacy in Shanker’s argument. Discussion of mechanism1 needs to 
be separated from mechanism2 and mechanism3, which in turn must be 
distinguished from the CTT.  
 
Wittgenstein’s humans who calculate remark successfully identifies the 
defining feature of Turing’s rendition of the CTT, and what contributed to its 
plausibility. Taking heed of Wittgenstein’s remark aids an understanding of 
the constitutive features of Turing machines: their plausibility as a formal 
analysis of effective calculability due to their being modelled on human 
calculation.  
 

3.2 The Status of the CTT Moving Forward 
 
So far I have given a landscape of the CTT, and what it would mean for it to 
be true. First and foremost, Turing’s results draw limits on humans who 

                                     
32 This was actually done by Emil Post: he independently considered an idealised human 
‘worker’ which is mathematically equivalent to a Turing machine; see Post (1936).  



 71 

calculate following a definite method. This point is crucial to understanding 
the purpose of the CTT and, a fortiori, what a Turing machine is. 
Wittgenstein understood that it was the Turing analysis that was the sine qua 
non of Turing machines. This point follows from an understanding of the 
difference between the CT and the CTT—Turing did not simply develop 
another formal notion to boot. He gave the results epistemological substance. 
 
I have shown that the Turing analysis was enough to convince Gödel of the 
absolute truth of the CTT. I have not yet committed to the status of the 
CTT myself. There are several issues that first require picking apart. 
 
In some sense, the CTT has a clear status nowadays: there is a near-consensus 
in the mathematical community over the truth of the CTT. Having said this, 
it is less clear what this actually amounts to. What kind of a statement is it 
(definition, consequence of induction, etc.)? Is it true beyond doubt? If so, is 
it provable, or indeed proved? On these questions there is less clarity. I hope 
to put some of these issues to bed. I will do so by appeal to the 
Wittgensteinian notion of family resemblance. This, of course, turns on an 
interpretation of the ordinary language at play in the CTT i.e. 
‘computability’, ‘effective calculability’ etc. I will follow Wittgenstein’s tack in 
the Lectures and scrutinise the use of ordinary language in mathematics with 
the aim of ‘dispelling the fog’. I will give a case for the CTT as a 
mathematical claim that has been established now beyond doubt.  
 
There are several striking issues at play that I think a successful case for the 
CTT must accommodate, the most important of these being the protean 
historical reception of the CTT.  
 
After its inception in 1936 there was an overriding consensus that the CTT 
was true, but not provable. The main reasons for this I have already covered 
in the previous subsection: it seems doubtful that an equivalence can be 
shown between an informal notion (for which no strict bounds are drawn) and 
a sharp formal notion delimited in its scope. The problem was not, of course, 
a fear that there exists a recursive function that is not effectively calculable. 
We can see by induction that all of the functions under the formal notions are 
effectively calculable. The worry was that some new phenomenon might arise 
that we intuitively describe as effectively calculable but which is not captured 
by the formal notions. A typical response to the status of the CTT was thus: 
  

While we cannot prove Church’s thesis, since its role is to delimit 
precisely an hitherto vaguely conceived totality, we require evidence 
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that it cannot conflict with the intuitive notion which it is supposed to 
complete (Kleene 1971, 318). 

  
That is, the thesis is a working hypothesis, requiring evidence that every 
function contained in the intuitive notion is recursive. 
 
Prima facie, this seems a pretty reasonable reception. Of course, any claim 
that the CTT is provable requires a decent account of proof. If we have in 
mind formal proofs—a sequence of sentences within a formal system that 
jointly entail a theorem via the axioms and rules of inference—then the 
prospect of proving the CTT seems slim. For example, it seems unlikely that 
we could establish the CTT within ZF. To do this would require a translation 
of effective calculability into set-theoretic terms. We would create some 
predicate for effective calculability alongside axioms governing its use. From 
here, we could go about deducing the CTT line-by-line using the axioms and 
rules of inference. However, this only starts a regress. Presumably the same 
problem of informality will likewise apply to this new characterisation of 
effective calculability. Axioms need to be self-evident, yet it is the 
characterisation of the intuitive notions that is dubious in the first place. A 
justification of the translation of effective calculability into set-theoretic terms 
cannot come from within ZF itself, so the situation seems unchanged. 
 
This does not yet rule out the possibility of an informal proof of the CTT, 
whatever the conception of that may be. On this score, it seems Kleeneness is 
not next to Gödelness. I have shown that in his response to Church’s CT, 
Gödel found the equivalence unsatisfactory. However, he did suggest that 
effective calculability might be stated as a set of axioms to include all its 
accepted properties, and “do something on that basis” (Davis 1982, 9). If 
effective calculability could be convincingly axiomatised, this would give the 
blueprint for a proof. Gödel’s approach on the question of proof is quite 
unclear, but this suggests that, unlike Kleene, Gödel thought it at least 
possible that the CTT could be proved. If a plausible set of axioms were 
found to capture all of the general properties of effective calculability, then a 
proof of the CTT, maybe even a formal one, is surely possible. The problem, 
at least for Kleene et al., was whether such an axiomatisation is possible. 
  
Later, the idea that the CTT might be provable started to gain traction. 
Robin Gandy argued in (1988) that the CTT had been proved by Turing. He 
argues that the Turing analysis showed how effective calculable functions 
cannot surpass the capability of a Turing machine. As such, Turing had 
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demonstrated an equivalence between the concepts, rather than defined one. 
Thus, he labelled the CTT Turing’s theorem in contrast to Church’s thesis. 
  
Shortly thereafter Elliott Mendelson (1990) published a reappraisal of the 
CTT against the traditional grain, also arguing that the CTT is provable. He 
argues that we are more than happy in other circumstances to accept rigorous 
proofs involving intuitive concepts, and there is no reason not to extend this 
to the CTT. He also attacks the suggestion that effectively calculable is vague. 
He argues that the concepts and assumptions supporting the notions on the 
formal side of the CTT are no less vague than the informal side. The former 
are simply more familiar and understood in terms of their connection to other 
parts of logic and mathematics: “functions are defined in terms of sets, but 
the concept of set is no clearer than that of function” (1990, 232). As to my 
point above, Mendelson claims: 
  

[T]he notion of effectively computable function could have been 
incorporated into an axiomatic presentation of classical mathematics, 
but the acceptance of CT[T] made this unnecessary (ibid.). 

  
Both Gandy and Mendelson claim that the CTT follows from the Turing 
analysis. This is why for them the CTT is provable and proved.  
 
This cannot be the whole story though.  
 
Importantly, neither Gandy nor Mendelson mention that even after Turing’s 
paper, there was still (some) dissent as to the truth of the CTT. The 
objections stand in stark tension with their claims of proof. The objections 
most often cited are due to Jean Porte (1960) and László Kalmár (1959), who 
argue in opposite directions. I will summarise them briefly: 
  
Porte’s objection is roughly that some recursive functions are not humanly 
computable, requiring capacities that go beyond not only one human but also 
those of the entire future human race. It is easy to identify recursive functions 
that grow so quickly that the number of steps required to compute them 
exceeds the number of electrons in the universe. 𝑔 𝑥 = 1010001000! would be 
an example (1080 being roughly the number of atoms in the universe). Such 
functions, Porte argues, can hardly be considered computable. Of course, the 
response to this is obvious: effective calculability and human computability are 
not equivalent. Effective calculability is a concept analogous to idealised 
mechanical calculation, so bounds on human limits vis-à-vis time constraints 
or resources do not affect the effective calculability of a function. The only 
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requirement regarding the number of steps in an effective method is that it be 
finite; so long as the number of steps is fewer than ℵ0  then there is no 
compromise on effective calculability. 
  
Kalmár, conversely, argues that there are effective methods that are not 
recursive. He says that the improper minimalisation of some recursive 
functions is non-recursive.33 This is true. He contends that there is nonetheless 
a method by which to calculate a given value of the improper minimalisation 
[𝑓′(𝑝)] in a finite number of steps. That is: 
  

Calculate in succession the values 𝑓′(𝑝, 0) , 𝑓′(𝑝, 1) , 𝑓′(𝑝, 2) ,… and 
simultaneously try to prove by all correct means that none of them 
equals 0, until we find either a (least) natural number q for 
which 𝑓 𝑝, 𝑞 = 0 or a proof of the proposition stating that no natural 
number y with 𝑓 𝑝, 𝑞 = 0  exists; and consider in the first case this q, 
in the second case 0 as result of the calculation (1959, 76–77). 

  
The problem with this is that a ‘step’ in his ‘algorithm’ may require a proof, 
or at least the ability to detect one. The method is not definite in the sense 
that a human could follow it without ingenuity. Better still, it may be that 
there is no proof, in which case the procedure may not terminate. Kalmár 
regards as effective calculable: 
 

[A]ny arithmetical function, the value of which can be effectively 
calculated for any given arguments in a finite number of steps, 
irrespective how these steps are and how they depend on the 
arguments for which the function value is to be calculated (1959, 73).  

 
This clearly departs from the more stringent mechanical requirements present 
in the CTT as stated, for which each step must involve no creativity.   
 
Nowadays, the arguments from Porte and Kalmár are fairly easy to dismiss. 
Both arguments are swiftly undermined in Mendelson (1963), so he was 
definitely aware of them when he claimed the CTT has been proved. I raise 
these objections because they must be accommodated in any account claiming 
proof of the CTT. If the CTT has been demonstrated—that is, “leads me to 
say: it must be like this” (RFM III, §30)—then why is there such clear room 
for doubt? 

                                     
33 This is a function 𝑓′ on a function 𝑓 that returns the least natural number y such that 
𝑓 𝑥, 𝑦 = 0 if there is such a y, or 0 if there is no such y. 
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Of course, in practice, the mathematical community may doubt bona fide 
proofs. Many proofs are difficult and for whatever reason are not immediately 
recognisable as proofs. However, the above objections are not similar to those 
contained in the Hopeless Papers ‘refuting’ Cantor’s proof: Porte and Kalmár 
do not misunderstand the calculus. Rather, these objections are sincere 
disagreements over the use and scope of the concept effective computability 
from first-rate scholars. Nothing can be proved about all effectively calculable 
functions if the extension of this class is disputed. Further, Church and 
Turing have no grounds to claim theirs is the correct interpretation of 
computable—the terminology is publicly owned, as it were.  The dispute over 
the terminology serves as evidence for the type of approach to the CTT that 
Kleene et al. have in mind, whereby we cannot equate a vague intuitive 
notion with a sharp formal one. 
  
All of this is not to say that Gandy and Mendelson are wrong to claim the 
CTT is provable or proved. Rather, we require an account for the above. The 
objections cannot merely be parried, as they turn on the ambiguity and 
disagreement over the informal concepts involved, which was the reason for 
tentativeness in the first place. If the Turing analysis proved that effective 
calculability is equivalent to recursiveness, then there seems little room for 
objections based on a pre-existing conception of effective calculability which 
recursiveness does not capture. These at least require explanation.  
 

3.2.1 Shapiro  
 
To my knowledge, the only account that goes some way to accommodating 
the CTT’s historical reception is due to Stewart Shapiro (2006, 2013). 
  
Shapiro’s basic idea is to appeal to Waismann’s notion of the ‘open texture of 
language’. This notion is introduced in a response he gave to crude 
phenomenalism in 1945. Empirical concepts, says Waismann, are open 
textured in that they always carry the possibility of indeterminacy—our 
language can never delimit an empirical concept in all directions. For 
instance: 
  

The notion of gold seems to be defined with absolute precision, say by 
the spectrum of gold with its characteristic lines. Now what would you 
say if a substance was discovered that looked like gold, satisfied all the 
chemical tests for gold, whilst it emitted a new sort of radiation? ‘But 
such things do not happen.’ Quite so; but they might happen, and that 



 76 

is enough to show that we can never exclude altogether the possibility 
of some unforeseen situation arising in which we shall have to modify 
our definition. Try as we may, no concept is limited in such a way that 
there is no room for any doubt. We introduce a concept and limit it in 
some directions; for instance we define gold in contrast to some other 
metals such as alloys. This suffices for our present needs, and we do 
not probe any farther. We tend to overlook the fact that there are 
always other directions in which the concept has not been defined [...] 
we could easily imagine conditions which would necessitate new 
limitations. In short, it is not possible to define a concept like gold with 
absolute precision; i.e., in such a way that every nook and cranny is 
blocked against entry of doubt. That is what is meant by the open 
texture of a concept (Waismann 1968, 42). 

  
It is via open texture that languages change and evolve alongside, say, 
scientific developments. New phenomena appear which seem to fall under a 
certain concept, yet betray essential conditions of that concept. This forces a 
debate as to whether to update the concept to accommodate (or exclude) this 
new phenomenon. Another example Waismann uses is that of Einstein. The 
main tenets of the theory of relativity violated what was meant by the word 
‘simultaneous’. It’s not that Einstein found some new underlying meaning in 
the original word. Rather, some results sufficiently warranted an application 
of the word, but to do so required a change in the application of 
‘simultaneous’ thereafter. Intuitive notions are sharpened or relaxed over time, 
giving language an essential open texture. 
  
Waismann applies this notion only to empirical concepts. He argues 
definitively that it should not apply to areas such as mathematics, which has 
a closed texture: 
  

In a formalized system the use of each symbol is governed by a definite 
number of rules, and further, all the rules of inference and procedure 
can be stated completely (1968, 51). 

  
Shapiro’s contribution is to deny this last part: he argues that, in fact, 
concepts in mathematics are susceptible to open texture. He uses as example 
the dialogue on Euler’s theorem from Imre Lakatos’ Proofs and Refutations 
(1976) (2006, 435-439): 
 
A teacher puts Euler’s theorem on the board: Consider any polyhedron. Let V 
be the number of vertices, E the number of edges, and F the number of faces. 
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Then V − E + F = 2. The teacher then proves this, but the exceptional 
students provide a barrage of counterexamples. They identify unforeseen (and 
weird) polyhedra for which the proof does not work, such as ‘picture frames’—
a cube with a cube-shaped hole in one of its faces—or the ‘star polyhedron’ 
where faces protrude from each other. Some argue that spheres and tori 
qualify as polyhedra (where V − E + F = 1). 
  
The point is that there will always be hidden lemmas in the proof, stemming 
from the open texture of the intuitive concepts at stake. That Waismann was 
wrong, and Shapiro correct, regarding the application of open texture to 
mathematics should be clear to us immediately—I have already discussed at 
length what seems to be a clear-cut case of open texture in mathematics: 
Cantor’s proof(s) of the uncountability of ℝ. Prior to Cantor, the concept 
infinity did not include parameters to distinguish between transfinite 
cardinalities. Then Cantor produced results which concerned the concept 
infinity, but violated its grammar—we had no tools to describe results ‘greater 
than’ infinity. The concept of infinity required updating, set-theoretically, in 
order for us to comprehend and explain Cantor’s proof. The concept was duly 
sharpened, allowing for distinctions including that between 2ℵ0 and ℵ0. 
  
Regarding the CTT, Shapiro’s claim is that in the 30s, and for sometime 
thereafter, computability and effective calculability were subject to open 
texture. No bounds had been drawn on their application as a pre-theoretic 
notion. However, the work of Turing, Church, etc. and the subsequent 
acceptance of the CTT sharpened these concepts. For instance, the Turing 
analysis makes it clear exactly which features of the pre-theoretic notions are 
to be isolated. Thus, in a sort of self-fulfilling prophecy, the CTT becomes 
established as fact because it sharpens the relevant pre-theoretic notions such 
that they have a determinate meaning. This separates effective calculability 
from, say, human computability (pace Porte). What we are left with today 
are concepts “about as sharp as anything gets in mathematics...there is not 
much room for open-texture anymore” (2006, 451). 
 

3.2.2 Critical Notice of Shapiro 
 
Shapiro’s analysis of the state of play nowadays seems to point in the right 
direction. The crucial advantage of this approach, for me, is that it gives an 
account of the various changes in the CTT’s reception across the literature. 
Using open texture, we can accommodate all of the attitudes to the CTT so 
far considered. For Church and his contemporaries, it was true that they were 
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working with an intuitive cluster of concepts rather than a single notion of 
calculability. This certainly carried the possibility of indeterminacy. Under a 
similar guise, Porte and Kalmár’s objections turned on identifying concepts 
from that cluster, thereby included under the concept computable, but not the 
subject of the mathematical results of Church or Turing. However, these 
concepts have since been sharpened through continual discussion and 
development in the mathematical community. That is why, looking back now, 
these objections seem so trivially flawed. We now possess the tools with which 
to examine the intuitive notions with absolute precision, and so concepts 
which were once being sharpened by open texture are no longer susceptible to 
it. 
 
As it stands, however, I find Shapiro’s account ultimately unconvincing. 
 
Open texture, for Waismann at least, is an essential feature of language. 
Thus, concepts can never lose their open texture. The reason he uses gold as 
an example is because this, on the face of it, seems to be rigorously defined in 
all directions. Even concepts such as gold display open texture. The entire 
purpose of introducing the notion rides on this feature. This is perhaps why 
Waismann does not consider mathematical concepts under its purview; the 
immediate consequence of extending open texture to mathematics is that even 
some of the most perspicuous proofs become subject to doubt. If mathematics 
has an open texture, we cannot be definite in our treatment of sets or 
polyhedra because we cannot accommodate for future developments which call 
into question our current results. 
 
Of course, Shapiro is perfectly welcome to depart from Waismann and declare 
that open texture can be lost. He does not argue for this though, or explain 
how this might work. He claims that terms like ‘computability’ have lost their 
open texture by sharpening through informal rigour. I do not see on what 
authority Shapiro can claim this. Consider hypercomputation—computation 
that is Turing-uncomputable. If this were realised, given the close connection 
between digital computing and the mathematical notion of computability, and 
the fact that we talk in both cases of ‘computing’ or ‘computation’, the 
discovered process might intuitively be described as ‘computable’. However, 
currently we have no parameters for treating such a process as computable. 
As such, capturing this phenomenon linguistically would require that we 
update what we mean by ‘computable’, and reassess and adjust the CTT. 
Now, the possibility of hypercomputation is unlikely and highly 
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controversial. 34  It is nevertheless possible. Even Martin Davis, who has 
disparagingly dubbed hypercomputation a ‘myth’, admits he cannot 
absolutely exclude its possibility (2004, 206). It would require an overhaul of 
modern scientific knowledge and capability, but is no more far-fetched than 
naturally occurring radioactive gold. It is certainly conceivable that we may in 
the future encounter some procedure clearly apt for being described as 
computable or calculable, but which our current rules for the application of 
these concepts cannot accommodate.  
 
I find that Shapiro misses the point of open texture. Its most salient 
ingredient is that it cannot be lost. Waismann has noticed an interesting 
internal feature of empirical language—the scope of its application is under 
persistent re-evaluation. Without this, open texture only highlights the (I 
think) less salient fact that not all concepts that we use have sharp 
extensions.  
 
Shapiro’s goal is to establish that the CTT has been proved, on his informal 
Lakotosian picture. However, his analysis of the open texture of computability 
actually directs us away from the provability of the CTT, rather than towards 
it. Accepting that computability is susceptible to open texture introduces 
doubt about its universal truth. Shapiro’s account is a useful benchmark for 
taking account of the CTT’s historical reception, but is ultimately 
unconvincing. I therefore agree with the spirit but not the letter of Shapiro’s 
picture. 
 

3.2.3 A Wittgensteinian Way Out 
 
The chief problem with Shapiro’s account is that it does not, and given 
Waismann’s analysis arguably cannot, accommodate a sharpening of the 
informal concepts effective computability or calculability such that they are no 
longer subject to open texture. For this reason, his claim that the CTT has 
been established beyond doubt, let alone proved, is unsuccessful.  
 
Having said this, given my earlier exposition, there are clear advantages to an 
account which views effective computability as a once-blunt notion that has 
been sharpened as a result of mathematical discourse. This would give a 
convincing story for the initial trepidation as to the CTT’s universal truth, 
and the alleged refutations, whilst consistently claiming that nowadays the 
CTT is established beyond doubt. All this requires is a notion similar to open 
                                     
34 Copeland is its primary advocate, having coined the word.  



 80 

texture, but with a convincing, non-ad hoc argument for how the process can 
end. To this end, I will make two claims. First, that Waismann adapted the 
notion of open texture directly from Wittgenstein. Second, that an analysis of 
computability derived from the original source yields the successful account 
required to make a case for the indubitable truth of the CTT. 
 
Open texture is a direct continuation on Wittgenstein’s notion of family 
resemblance in all but name. Better, it is a label for the type of activity seen 
in language games that overtly host family-resemblance concepts. It should 
not be too surprising that Waismann’s notion originated with Wittgenstein. 
The two were close collaborators from the late 1920s through the 1930s. What 
is more, Waismann’s role in their collaboration was typically as Wittgenstein’s 
amanuensis, drawing out Wittgenstein’s thoughts and expressing them clearly 
to a wider philosophical community.35 Because of this, much of Waismann’s 
work can be seen as an extension of Wittgenstein’s. 
 
The most developed introduction of family resemblance is in the 
Investigations, derived from remarks dating to 1936 from MS 152. 
Wittgenstein asks what is common to the proceedings that we call ‘games’. 
We have ‘card games’, ‘board games’, ‘Olympic games’ etc. Passing from 
analysis of one type of game to another, we see similarities, but many core 
features drop off and new ones appear. No single feature common to all games 
can be isolated. We see a “complicated network of similarities overlapping and 
criss-crossing” (PI §66). No feature is common to all, but many features are 
common to many. A cluster of concepts is connected by a cluster of features. 
Wittgenstein claims there is no better way to characterise this than ‘family 
resemblance’: 
 

[F]or the various resemblances between members of a family a build, 
features, colour of eyes, gait, temperament, and so on and so forth a 
overlap and criss-cross in the same way.—And I shall say: ‘games’ form 
a family (PI §67). 

 
Scanning a family photograph one sees similarities crop up here and there. 
Each member of the photograph can be instantly recognised as a member of 
the family by reference to features shared by others: ‘Dawn’s children all have 
that smile’, ‘All the boys are giants’, ‘Tom’s got Grandad’s chin’. There is a 

                                     
35 The two were to co-author a book of this nature entitled Logik, Sprache, Philosophie—a 
presentation of Wittgenstein’s prevailing ideas that was never completed. 
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nexus of commonalities displayed across the board, yet nothing common to 
all. 
 
The point of Wittgenstein’s analogy is that this is how we use and define 
concepts in language. In this way, concepts are not “closed by a boundary” 
(PI §68). Concepts are not rigidly limited: there is no boundary for being a 
game, no precise rule for what counts as a game and what does not. We could 
draw one, but none has been drawn. The way we use the concept has no 
boundaries. That is, “it is not everywhere bounded by rules” (ibid.). And so it 
is for most concepts according to Wittgenstein. Ordinary usage rarely requires 
a sharply defined concept, but when it does we can sharpen them: 
 

I say: “We are eating at 1 o’clock” and that is correct even though we 
do not lift our spoons simultaneously at the strike of 1. [...] You can 
play a game quite well by just making rules as they are required (MS 
152, 77).36  

 
Once the purpose of the family resemblance analogy is understood, the 
connection to open texture should become clear. The way we use ordinary-
language concepts does not draw rigid boundaries on their application. An 
analysis of the use of a concept across the board gives a picture (albeit with 
blurred edges) characterising that concept. This is not delimited in all 
directions because a feature of a concept across applications need not be 
manifested in its every application. We do not draw rigid boundaries 
specifying when something falls under the extension of that concept.  
 
Not only are these ideas similar, but it seems Waismann actually derived open 
texture directly from Wittgenstein. It is safe to assume Waismann would have 
read MS 152; Waismann was very familiar with Wittgenstein’s work in the 
30s. If there is any doubt, compare the following passages. The first is 
Waismann’s second example demonstrating what he means by open texture. 
The second is a remark from MS 152 directly following the exposition of 
family resemblance that I have considered: 
 

[S]uppose I say ‘There is my friend over there’. What if on drawing 
closer in order to shake hands with him he suddenly disappeared? 
‘Therefore it was not my friend but some delusion or other.’ But 
suppose a few seconds later I saw him again, could grasp his hand, etc. 
What then? ‘Therefore my friend was nevertheless there and his 

                                     
36 All quotations from MS 152 are my own translations.  
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disappearance was some delusion or other.’ But imagine after a while 
he disappeared again, or seemed to disappear—what shall I say now? 
Have we rules ready for all imaginable possibilities? (1968, 41). 

 
I say: “there is a chair there”. But what if I approach it in order to 
pick it up and it disappears into thin air?—“so it wasn’t a chair at all 
but some illusion.”—But a few seconds later we see it again and touch 
it etc. So, there was a chair there after all and the disappearance was 
an illusion. And in an hour it disappears again, or so it seems, and so 
on. What should we say now? Do we have rules for such cases? Are we 
going to say that we do not know what the word “chair” means since 
we are not equipped with rules for its application in all imaginable 
cases” (MS 152, 79). 

 
Needless to say, despite the nine-year gap, Waismann reproduces 
Wittgenstein’s remark virtually verbatim. 37  Waismann’s notion of open 
texture blatantly arose from close study of Wittgenstein, particularly MS 152.  
 
Now, Shapiro was on the right track. However, his employment of open 
texture does not work as he had hoped. I will argue that taking stock from the 
original Wittgensteinian picture will give a clearer analysis of the CTT and its 
status today. 
 
Shapiro’s contribution to the debate is to apply Waismann’s notion to 
mathematics. To be more precise, Shapiro claims that the ordinary language 
employed in mathematics is subject to open texture (e.g. ‘polyhedron’, 
‘computable’). He likens this to how number shows open texture: 
 

Are complex numbers numbers? Surely. But this was once 
controversial. If it is a matter of proof or of simple definition, why 
should there ever have been controversy? (2006, 434). 

 
Wittgenstein had already foreshadowed this exact application in MS 152. 
Wittgenstein introduces family resemblance using this exact example: 
 

And likewise the types of number, for example, form a family. Why do 
we call something a number? Well, because it has a direct affinity with 
something else that has hitherto been called a number. And we expand 

                                     
37 Aside from Wittgenstein’s (perhaps characteristic) choice to use an inanimate object as the 
example, rather than a friend. 
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our notion as if we were spinning, twisting fibre on fibre. And the 
strength of the thread comes not from the fact that a single fibre runs 
through its entire length, rather that many fibres cross over one 
another (MS 152, 74) (cf. PI §67). 

 
The problem is that Shapiro throws the baby out with the bathwater. His 
account requires that open texture can be lost. However, Waismann’s concept 
is posited specifically as an internal, essential feature of language. Thus, open 
texture ‘lacks the institution of an end’, as Wittgenstein might put it (cf. 
RFM II, §45). Shapiro fails to account for how ordinary language in 
mathematics might lose its open texture. Therefore, he has no grounds to 
declare that computability nowadays is no longer susceptible to it. This, 
however, is not a problem for a picture given in terms of family resemblance.  
 
The substantive difference between open texture and family resemblance is a 
methodological one. Waismann’s notion is framed as a necessary condition: 
open texture is an essential feature of empirical concepts so they must be 
enduringly susceptible to it. Concepts subject to open texture can never be 
rigid. Conversely, Wittgenstein’s notion is an empirical claim. Family 
resemblance is not description of how language must be, but how it is. Family 
resemblance is a feature of language as used by us. This much is emphasised 
in Wittgenstein’s example of games as displaying family resemblance. He is 
disparaging about rhetoric such as: “[games] must have something in common, 
or they would not be called ‘games’” (PI §66). His motto is: “don't think, but 
look!” (ibid.). We derive the notion of family resemblance by looking at how 
we use language.  
 
Family resemblance is not an internal feature of language. Rather, it is a 
description of how we use certain concepts. For this reason, we are not forced 
to concede that we can never delimit a concept in all directions—quite the 
opposite. Wittgenstein argues this for the case of number: 
  

I can give the concept of number rigid boundaries [...], that is, use the 
word “number” for a rigidly bounded concept; but I can also use it so 
that the extension of the concept is not closed by a boundary (PI §68). 

 
That number is characterised by a cluster of concepts is not necessary. This is 
just how we use it. This is advantageous in mathematics, of course. Having a 
porous concept allows us to accommodate new developments in mathematics. 
For example, at some point number had to be updated to accommodate the 
first use of complex numbers in mathematics. We want to say imaginary 
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numbers are numbers due to their clear analogy with non-imaginary numbers. 
Drawing boundaries on numbers would have inhibited this type of 
accommodation. We can draw a boundary, but none has so far been drawn. 
 
Mathematicians ostensibly draw boundaries at times, as required. Take 
recursiveness: there is no allowance for borderline cases here. Recursive 
functions can only be defined in terms of the basic functions and applications 
of the operations that I outlined. Either a sequence of signs satisfies the 
meticulously specified conditions, or else it is not recursive. The conditions 
leave no possibility of indeterminacy. The concept is everywhere 
circumscribed by rules. Thus, this concept is delimited in all directions. Its 
edges are sharp. 
 
Mathematical concepts patently can be closed. The point is: they often are 
not. This gives a much clearer picture of how concepts are used in 
mathematics. Mathematical concepts are not slaves to open texture as 
explicated by Shapiro. Rather, some ordinary-language concepts like number 
are used with blurred edges as suits their purpose. However, concepts can be 
made rigid by drawing precise boundaries. 
  
It is paramount, however, to understand how these boundaries are drawn. 
When drawing boundaries upon concepts that display family resemblance, we 
are susceptible to confusion. This point harks back to my discussion of 
sharpening mathematical concepts in RFM II and the Lectures. I emphasised 
earlier that the direction of fixing meaning is all-important. The calculus must 
inform the use of language, not the other way around. With Cantor’s proof, 
confusion ensues when we try to use our ordinary-language concepts to confer 
meaning upon his results. Rather, the sharpening of indeterminate 
mathematical concepts must come from the calculus.  
 
This, of course, was exactly why Wittgenstein had no objection to Turing’s 
results, as I showed in §2. Turing’s proofs do not clumsily describe a calculus 
in terms of pre-theoretic concepts. Turing presents his results, then the 
Turing analysis links these results back to our intuitive concept of 
computability. The calculus can be attached to effective computability, 
illuminating certain limitations on that concept. The Turing analysis shows 
that the properties of his chosen calculus necessarily lead back to the pre-
theoretic concept. The result, therefore, casts “a brilliant light over the verbal 
expression” (RFM II, §7). He gave substance to a previously vaguely 
understood notion. After Turing, the intuitive notion was given a paradigm 
through which it could be sharpened. It gave sense and a counterpart to the 
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notion of a ‘finite, definite method’ and thereby to the internal features of 
effective calculability.   
 
My analysis of the CTT nowadays therefore runs as follows. The concepts 
computability and effective calculability had blurred edges in the 1930s. These 
terms picked out a cluster of intimately connected concepts, which included, 
for example, humanly calculable. There were no strict rules for the boundaries 
of these notions, but rather a family resemblance. The concept was not sharp 
because, until then, it had no need to be. There was not yet a rigid framework 
by which to sharpen the notions, and through which to understand them. No 
light had been shed on them. Hilbert’s programme, and his framing of the 
Entscheidungsproblem, gave some clues as to which features a formal 
framework should embody. That is, to capture effective calculability, sense 
had to be given to the concept of ‘finite, definite procedure’. These 
requirements, however, could not be understood rigidly. 
 
Turing and Church, in 1936, then proved influential results concerning a 
subset of this cluster of concepts. The results required a subsequent 
sharpening of the intuitive concept, eliminating some of its uses. Their formal 
results jointly gave a paradigm for the notion of a finite, definite method. 
Importantly, the Turing analysis provided a sharp specification of which 
features these results concerned, and which they did not. Turing thus 
sharpened the informal notion by drawing its boundaries. As such, there was 
now no worry that further instances of effective calculability may be found 
which could not be captured by the formal frameworks: the Turing analysis 
demonstrated how the general properties of this informal notion necessarily 
led to his formal framework, and vice versa. As it was then shown how 
bearing the properties of computability necessarily led to falling under the 
concept of Turing-computability, the CTT was thereby demonstrated.  
 
Gradually, the terms ‘effective computability’ and ‘calculability’ came to be 
understood in terms of the mathematical results; the notions were thus 
publicly sharpened and there is no longer room for future effectively calculable 
solutions which are not recursive. This sharpening did not sink in for some 
time after the publication of the proofs, which explains the initial doubt and 
few objections. The subsequent sharpening is what led Mendelson and Gandy 
to declare the CTT a theorem. That the CTT was demonstrated beyond 
doubt satisfied them sufficiently to label it a proof. I will not follow here: I 
have neither the space nor the inclination to offer a decent account of proof, 
as this requires. However, I contend that the CTT has been demonstrated as 
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clearly as any other claim in mathematics, albeit informally. Whether there 
could be a satisfactory formal proof of the CTT is a moot point.  
 
Of course, there may be future phenomena, say, the realisation of 
hypercomputation, which have sufficient analogy to computability that we 
might update these concepts so as to include the new phenomena. However, 
the point here is that we are no longer left with ‘blurred edges’—that is, 
without rules. The boundaries have now been drawn; hypercomputational 
procedures, if realised, would not be effectively calculable. Granted, if we 
extended our concept of computability, the language of the CTT would have 
to be updated to include caveats. This would not affect its claim though. The 
validity of existing number-theoretic proofs was not undermined upon the 
introduction of complex numbers into mathematics, even though many were 
originally stated as proofs about ‘all’ numbers. The content of the CTT is 
secure, but the language with which we express it may change. 
 
To be sure, this argument would not save Shapiro’s account. Unlike mine, his 
account suggests that there may always be future phenomena for which we 
have no rules. As such, the content of the CTT is not secure. As he has given 
no adequate explanation of how the open texture of computability may cease, 
we cannot on this account declare that the CTT has been established beyond 
doubt, let alone proved as he claims. My Wittgensteinian analysis gives a far 
stronger case for the CTT and its status today. 
 

3.2.4 Final Remarks 
 
This concludes the arguments for my core claims a)-d). This section began by 
providing further support for my claim that Wittgenstein endorsed Turing’s 
work—c). A correct analysis of the humans who calculate remark shows that 
Wittgenstein not only endorsed Turing’s rendition of the CTT, but that he 
understood the intricacies of the thesis. The fact that Turing machines are 
explicit models of human calculators is exactly why Turing’s account is often 
lauded as so convincing. Hence, once spelled out, Wittgenstein’s remark 
recognises Turing’s account as the sort Gödel called for: a bridging argument 
that connects both sides of the CTT. Pace Shanker, Wittgenstein did not 
object to the CTT. This interpretation relies on fallacies related to mechanism 
and the CTT. The CTT may well inform debates on mechanism alongside 
other premises, but these considerations are not entailed by the CTT 
whatsoever.  
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In the latter half of this section I have argued for a Wittgensteinian 
interpretation of computability. This concept for some time clearly displayed 
a good deal of Wittgenstein’s notion of family resemblance. As such, initially 
the CTT was susceptible to doubt. I contend that Turing then successfully 
sharpened this notion via his analysis. He determined a class of functions that 
necessarily corresponded to a specific conception of computability. He 
demonstrated that all computable functions understood in his way were 
necessarily Turing-computable. After these influential results the common 
understanding of the relative intuitive notions sharpened in turn. I contend 
that there is now no doubt as to the truth of the CTT. The key advantage of 
this approach is that it accommodates the initial doubt over the status of the 
CTT. Should we wish to update our understanding of computable function in 
the future, we are not left without rules for demarcation. This would not 
invalidate the content of the CTT as currently understood; we would simply 
need to update the language that we use to express it. 
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Conclusions 
 
I began with the following claims: 
 
a) Wittgenstein read, understood and engaged with Computable Numbers.  
b) Wittgenstein’s remarks on this topic are highly perceptive and have 
pedagogical value, shedding light on Turing’s work.  
c) Wittgenstein was highly supportive of Turing’s work as it was indicative of 
Wittgenstein’s prevailing approach to mathematics.  
d) Adopting a Wittgensteinian approach to Turing’s proofs enables us to 
answer live problems in the modern literature on computability. 
 
My chief aim was to debunk the default assumption that Wittgenstein would 
not have cared about, understood, or even heard of Turing’s early work on 
computability. Instead, I have depicted Wittgenstein as an engaged and 
engaging reader of Turing. He took diligent care to reproduce Turing’s results 
in his own style. What he found was that Turing’s proofs chimed 
harmoniously with his own approach to mathematics at that time. Further, 
Turing’s proofs were general enough so as to be adapted to draw conclusions 
relevant to Wittgenstein’s own programme vis-à-vis rules. This followed from 
a new intensional approach to Cantor’s diagonal argument, with which I 
showed Wittgenstein previously struggled. The endorsement of Turing’s work 
extended to his rendition of the CTT qua its being a model of human 
calculation. Along the way I have caveated this picture in various ways to 
separate it from other accounts. Notably, I have offered objections to Floyd’s 
argument that Wittgenstein influenced the contents of Computable Numbers, 
Shanker’s interpretation of Wittgenstein’s approach to the CTT, and 
Shapiro’s arguments for the provability of the CTT by appeal to open 
texture. I finished by offering a case for the truth of the CTT by interpreting 
computability in terms of family resemblance.  
 
Despite initial appearances, the Wittgensteinian approach to mathematics is 
clearly useful to answering philosophical questions about computability. I 
hope this might serve as a justification, albeit modest, of its relevance to 
modern scholarship. I would speculate that Wittgenstein’s work may have an 
even broader impact on computability theory than presented here. As a non-
mathematician by trade, it is tempting to overlook Wittgenstein’s approach 
when it comes to more technical inquiries. However, if Wittgenstein showed 
anything in the Lectures, it was that the most pernicious confusions, even in 
the most technical fields of mathematics, usually supervene upon the misuse 
of ordinary language.  
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