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Impact Statement

This thesis is consisted from three projects. In the first project, our objective is to
develop a new method for comparing sampling design on network data by using
information theory. We make the case that different designs are more suitable for
different random network models. At the end of the day, a practitioner can use our
framework to associate sampling designs which are more informative for different
random networks. Regarding the theory of this section, we associate the problem
with the rationality behind the statistical interpretation of the reference priors. As
a consequence, we show that following the same assumptions of the reference pri-
ors, a framework for comparing sampling designs on network data can be derived.

Subsequently, in the second part of this thesis we use the previous Bayesian
algorithm to provide valid and generic ways to translate statements for partially
observed networks to fully observed networks and via versa. The most interesting
thing we want to investigate is to theoretically and practically understand what
information is required to enable us to use statements at the level of partially ob-
served networks and turn them into statements for fully observed networks that
they produced them. Our goal is to investigate to what extend a statement that we
can make for a partially observed network can be translated to a statement to a
fully observed network. We prove that in the general case the answer is that the
joint distribution of their features and the sampling designs is required in order to
create relevant statements.

In the third project, we adopt the statistical framework on robustness to pro-
vide tools to the modeler to evaluate how the quality of inference for a specific
feature of a random network model is degraded when the approximating model
is misspecified. We try to answer how sensitive could be the quality of an infer-
ence be when the data is not coming exactly from the true exchangeable model.
More specifically, we provide methodology to examine whether and how much



an approximating random network model is suitable for describing a true random
network model in terms of a specific feature. In terms of methodology, our main
challenge is to combine stochastic optimization and graph limits tools to explore
the model space.

Explicitly, the benefits inside academia, as described above is the development
of methodology which solves practical problems for practitioners regarding sam-
pling designs and robustness on random networks. To the best of our knowledge
the research around the first topic has not received much attention and around
the second topic is the first attempt when we deal with networks. The benefits
outside academia could occur to firms which are active with social, computer,
biological and information networks. Our frameworks can be used either to per-
form inference when a sampling design is applied to the generative mechanism
that produced the network date or to check and criticize how robust an attribute of
a generative model that produces network data is.



Abstract

This manuscript addresses three new practical methodologies for topics on Bayesian
analysis regarding sampling designs and robustness on network data:

• In the first part of this thesis we propose a general approach for comparing
sampling designs. The approach is based on the concept of data compres-
sion from information theory. The criterion for comparing sampling designs
is formulated so that the results prove to be robust with respect to some of
the most widely used loss functions for point estimation and prediction. The
rationale behind the proposed approach is to find sampling designs such that
preserve the largest amount of information possible from the original data
generating mechanism. The approach is inspired by the same principle as
the reference prior, with the difference that, for the proposed approach, the
argument of the optimization is the sampling design rather than the prior.
The information contained in the data generating mechanism can be en-
coded in a distribution defined either in parameter’s space (posterior distri-
bution) or in the space of observables (predictive distribution).

The results obtained in this part enable us to relate statements about a feature
of an observed subgraph and a feature of a full graph. It is proven that such
statements can not be connected by invoking conditional statements only; it
is necessary to specify a joint distribution for the random graph model and
the sampling design for all values of fully and partially observed random
network features. We use this rationale to formulate statements at the level
of the sampling graph that help to make non-trivial statements about the
full network. The joint distribution of the underlying network and the sam-
pling mechanism enable the statistician to relate both type of conditional
statements. Thus, for random network partially and fully observed features
joint distribution is considered and useful statements for practitioners are
provided.



• The second general theme of this thesis is robustness on networks. A method
for robustness on exchangeable random networks is developed. The ap-
proach is inspired by the concept of graphon approximation through a stochas-
tic block model. An exchangeable model is assumed to infer a feature of a
random networks with the objective to see how the quality of that inference
gets degraded if the model is slightly modified. Decision theory methods are
considered under model misspecification by quantifying stability of optimal
actions to perturbations to the approximating model within a well defined
neighborhood of model space. The approach is inspired by all recent de-
velopments across the context of robustness in recent research in the robust
control, macroeconomics and financial mathematics literature.

In all topics, simulation analysis is complemented with comprehensive exper-
imental studies, which show the benefits of our modeling and estimation methods.
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Chapter 1

Introduction

The purpose of the chapter is to provide enough context regarding network data
so that we can state what the contributions of the thesis are. The topics of this
thesis involve the study of models on network data. Network data is currently
receiving considerable attention from the mathematics, computer science and en-
gineering communities because of its relevance to real-world networks. In princi-
ple, network models enable us to draw inference from data, but for the results to
be defensible we must be able to quantify them and judge them. Many systems of
critical importance are commonly modeled as networks. Understanding networks
and anticipating weaknesses of different modeling approaches are vital task to nu-
merous applications. Here, we continue to explore three emerging topics at the
interface between random graph theory and network science and we aim at fa-
cilitating the transfer of ideas, insights and interdisciplinary approaches to tackle
three exciting problems in random graphs and real networks.

The thesis is structured as follows: In chapter 1, we first motivate the prob-
lems addressed in this thesis and 1) describe why network data and models are
important and statistician care about them 2) provide a taxonomy how people
use Bayesian inference on network data and why 3) present a detailed discus-
sion of the prominent challenges for performing Bayesian inference on networks
and finally 4) briefly mention our contribution. We describe the current state-
of-the-art for networks in this regard. Having mentioned the complexity of the
data above, all the three problems we consider in this thesis are practical and are
tackled with computational Bayesian methods which provide practitioners and
statisticians with tools flexible enough to overcome problems which are hard (or
even impossible) to be solved through analytical frameworks. Our review of the
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current challenges in network modeling is not exhaustive but we rather focus our
discussion on the three topics motivated above. In chapter 2 we present all the
random network model and their features we will use in this thesis. Having estab-
lished a framework and given the right context, we then proceed in chapters 3-5
which turn to our original contributions. Lastly, in chapter 6 we recap this thesis
by stating what we have learnt from this work, enumerating its limitations and
discussing potential extensions for the future.

1.1 Motivation

1.1.1 Networks
In many sciences there has been a conceptual shift away from the study of indi-
vidual entities and towards the analysis of entire systems-not least because of the
technological advances that enable us to collect the corresponding data. In every
system, these entities interact either directly or induced as a summary of their de-
pendencies. Networks give us a means to describe and analyze these interactions
between entities. In contrast to classical statistics, networks allow us to model
complex dependencies while assuming very little structure. For instance, there is
no natural ordering and thus no geometry inherited in a network as it is in time
series or spatial statistics.

More recently, starting perhaps in the early to mid 1990s, there has been an
explosion of interest in networks and network-based approaches to modeling and
analysis of complex systems. Much of the impetus for this growth derives from
work by researchers in two particular areas of science: statistical physics and com-
puter science. To the former can be attributed a seminal role in encouraging what
has now become a pervasive emphasis across the sciences on understanding how
the interacting behaviors of constituent parts of a whole system lead to collec-
tive behavior and systems-level properties or outcomes. Indeed the term complex
system was coined by statistical physicists, and a network-based perspective has
become central to the analysis of complex systems. To the latter can be attributed
much of the theory and methodology for conceptualizing, storing, manipulating,
and doing computations with networks and related data, particularly in ways that
enable efficient handling of the often massive quantities of such data. Moreover,
information networks (e.g, the World Wide Web) and related social media applica-
tions (e.g., Twitter), the development of which computer scientists have played a
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key role, are examples of some of the most studied of complex systems (arguably
reflecting our continued fascination with studying ourselves!).

More broadly, a network-based perspective recently has been found to be use-
ful in the study of complex systems across a diverse range of application areas.
These areas include computational biology [85, 92, 96] (e.g., studying systems
of interacting genes, proteins, chemical compounds, or organisms), engineering
[35, 66] (e.g., establishing how best to design and deploy a network of sensing de-
vices), finance [1, 73] (e.g., studying the interplay among, say, the world’s banks
as part of the global economy), marketing (e.g., assessing the extent to which
product adoption can be induced as a type of contagion), neuroscience [33, 54]
(e.g., exploring patterns of voltage dynamics in the brain associated with epileptic
seizures), political science [105] (e.g., studying how voting preferences in a group
evolve in the face of various internal and external forces), and public health [30]
(e.g., studying the spread of infectious disease in a population, and how best to
control that spread).

In general, two important contributing factors to the phenomenal growth of
interest in networks are (i) an increasing tendency towards a systems-level per-
spective in the sciences, away from the reductionism that characterized much of
the previous century, and (ii) an accompanying facility for high-throughput data
collection, storage, and management. The quintessential example is perhaps that
of the changes in biology over the past 10-20 years, during which the complete
mapping of the human genome, a triumph of computational biology in and of
itself, has now paved the way for fields like systems biology to be pursued aggres-
sively, wherein a detailed understanding is sought of how the components of the
human body, at the genetic level and higher, work together.

1.1.2 Motivating examples of networks in science
In order to better appreciate the nature of the statistical foundation emerging in the
analysis of network data, it is useful to have some initial sense of the contexts in
which networks arise, the scientific questions being asked, and the measurements
being taken. For convenience, and following [75], the presentation is organized
loosely into four classes of networks: technological, social, biological, and infor-
mational. These divisions are intended to be soft, and not hard, as many networks
can be said to fall into more than one category.
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Technological Networks

Figure 1.1: Technological Network.

Arguably the networks most familiar to us are those of a technological nature
(i.e., human constructions consciously created in a network form). Examples in-
clude communication networks (e.g., telephone networks or the Internet like in
figure 1.1), transportation networks (e.g., networks of roads or rails, or networks
of airline routes), and energy networks (e.g., networks for delivery of electricity
or gas, or electrical circuits). Consider the rather celebrated example of the Inter-
net, which is essentially a network of digital devices communicating over wired
and wireless connections via a set of communication protocols. Network-oriented
questions regarding the Internet tend to focus on those relating to its topology,
the traffic it carries, the interaction of the two, and in turn the interaction of those
with social and economic factors. For example, in regards to topology we may
ask: What does the Internet look like, how big is it and what are its structural
characteristics. In terms of traffic, questions include: How much traffic is flowing
across the network, how can I distinguish between normal and anomalous traffic
and does my network have the capacity to meet anticipated demands.

Social Networks
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Figure 1.2: Social Network.

Specific examples of social networks (figure 1.2) include networks of friend-
ships among school children, sexual contacts within a community, corporate al-
liances among businesses, email exchanges between individuals, co-authorship
on scientific articles, and trade agreements among nations. The study of such
networks is of particular interest to, and has traditionally been the province of,
researchers in social sciences like sociology, anthropology, and psychology, al-
though this interest is increasingly shared now by researchers in a number of other
areas, such as business and public health. The focus in these areas typically is on
social structure and the quantitative characterization and analysis of such struc-
tures. Questions of interest include: Who interacts with whom and what factors
influence the tendency to interact, which interactions are mutual, whether there
are friends of friends also friends, what social groups, if any, exist in the network,
who are the power brokers, who is central to the network and who is peripheral
and which actors are similar in the roles they play. In recent years, Internet has be-
gun to have a fascinating impact on the field of social network analysis, due both
to the potential for large-scale data acquisition and storage and the actual types of
social interactions facilitated by the Internet.

Biological Networks
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Figure 1.3: Biological Network

Networks are a natural and commonly used tool for representing the internal
workings of biological systems, at all different scales. For example, intra-cellular
networks of interest include those describing the regulatory behavior among genes,
the physical affinity for binding among proteins, the participation of metabolites
together in biochemical processes, and combinations thereof (figure 1.3). Simi-
larly, a well-known example of an inter-cellular network is a network of neurons.
On the other hand, networks describing interactions among complete organisms
include ecological networks, such as those describing predator-prey relationships,
and epidemiological networks, characterizing the spread of disease in a popula-
tion. Not surprisingly, the nature of the data collected on biological networks and
the manner in which they are analyzed and used vary widely with the nature of
the underlying biological system being studied and our ability to obtain relevant
measurements.
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Information Networks

Figure 1.4: Peer to Peer Network.

Of particular use in this modern information age, although by no means new,
are information networks (i.e., networks describing relationships among elements
of information). Standard examples include networks of citations between aca-
demic journals or chapters, networks of co-authorship on chapters, or networks
indicating semantic relationships (e.g., synonym, antonym, etc.) between words
or concepts. In addition, the Internet has helped spawn a number of well-known
classes of information networks. The preeminent example is the World Wide Web
(WWW), in which nodes typically are web pages and edges indicate the referenc-
ing of one page by another. Another class of Internet-related information networks
are peer-to-peer (i.e., P2P, figure 1.4), networks, in which nodes are typically In-
ternet users and links indicate the exchange of content (e.g., music or movies)
through an associated network protocol (e.g., Napster, Gnutella, KaZaa, etc.). As
an illustration of an information network, consider the network depicted in fig-
ure 1.4, which is an example of an important class of sub-networks of the WWW
called web-logs or simply blogs. Additionally, there is generally strong interest
in questions regarding the structure of such networks, including which nodes are
linked to many other nodes (e.g., Who are the most highly cited authors within the
mathematical sciences literature?), whether certain tightly inter-woven subgraphs
may be found (e.g., How does the content of web pages induce clustering on the
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WWW?), and the manner in which network size and structure change over time
(e.g., What are the dynamics of the lifetime of a scientific innovation?).

1.2 Brief review of network modeling
The review or survey in this section provides content for computational approaches
regarding network modeling. Network modeling applications is proved to be a
fertile ground for researchers in statistics to make advances. There has been a lot
of effort to provide models in network data. Some of them described explicitly
in the next chapter are Erdös-Rényi models [31, 32], Stochastic Block models
[8, 47, 77], Exponential Random Graph Models [34, 89], small world models
[111], preferential attachment models [13] and Latent space models [46]. Fitting
those models gave rise to computational challenges, like computing Bayes Fac-
tors, computing intractable integrals, scaling of models etc.. Here we present liter-
ature that combines Bayesian computational methods on networks. This literature
review includes articles in the modeling and the computational side regarding net-
work data and does not mean to be comprehensive.

In [4] the authors introduce a class of variance allocation models for pairwise
measurements: mixed membership stochastic blockmodels. These models com-
bine global parameters that instantiate dense patches of connectivity (blockmodel)
with local parameters that instantiate node-specific variability in the connections
(mixed membership). They develop a general variational inference algorithm for
fast approximate posterior inference. They demonstrate the advantages of mixed
membership stochastic blockmodels with applications to social networks and pro-
tein interaction networks. Moreover, modeling relational data is an important
problem for modern data analysis and machine learning. In [5], they propose a
Bayesian model that uses a hierarchy of probabilistic assumptions about the way
objects interact with one another in order to learn latent groups, their typical inter-
action patterns, and the degree of membership of objects to groups. Their model
explains the data using a small set of parameters that can be reliably estimated
with an efficient inference algorithm.

In the same spirit, in [67], an efficient MCMC algorithm is presented to cluster
the nodes of a network such that nodes with similar role in the network are clus-
tered together. This is known as block-modeling or block-clustering. The model
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is the stochastic blockmodel (SBM) with block parameters integrated out. The
resulting marginal distribution defines a posterior over the number of clusters and
cluster memberships. Sampling from this posterior is simpler than from the orig-
inal SBM as transdimensional MCMC can be avoided. The algorithm is based on
the allocation sampler. It requires a prior to be placed on the number of clusters,
thereby allowing the number of clusters to be directly estimated by the algorithm,
rather than being given as an input parameter.

Embedding dyadic data into a latent space has long been a popular approach
to modeling networks of all kinds. While clustering has been done using this ap-
proach for static networks, this chapter gives two methods of community detection
within dynamic network data, building upon the distance and projection models
previously proposed in the literature. In [95], the authors proposed approaches
capture the time-varying aspect of the data, can model directed or undirected
edges, inherently incorporate transitivity and account for each actor’s individual
propensity to form edges.

Many networks of scientific interest naturally decompose into clusters or com-
munities with comparatively fewer external than internal links; however, current
Bayesian models of network communities do not exert this intuitive notion of
communities. In [71], the authors formulate a non parametric Bayesian model for
community detection consistent with an intuitive definition of communities and
present a Markov chain Monte Carlo procedure for inferring the community struc-
ture. Similarly, in [104] introduce a Bayesian estimator of the underlying class
structure in the stochastic block model, when the number of classes is known.
The estimator is the posterior mode corresponding to a Dirichlet prior on the class
proportions, a generalized Bernoulli prior on the class labels, and a beta prior on
the edge probabilities.

Scientists have shown that network motifs are key building block of various
biological networks. Most of the existing exact methods for finding network mo-
tifs are inefficient simply due to the inherent complexity of this task. In recent
years, researchers are considering approximate methods that save computation by
sacrificing exact counting of the frequency of potential motifs. However, these
methods are also slow when one considers the motifs of larger size. In [93],
they propose two methods for approximate motif finding based on Markov Chain
Monte Carlo (MCMC) sampling. Both the methods are significantly faster than
the best of the existing methods, with comparable or better accuracy.
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Exponential random graph models are a class of widely used exponential fam-
ily models for social networks. The topological structure of an observed network
is modeled by the relative prevalence of a set of local sub-graph configurations
termed network statistics. One of the key tasks in the application of these mod-
els is which network statistics to include in the model. This can be thought of
as statistical model selection problem. This is a very challenging problem-the
posterior distribution for each model is often termed ”doubly intractable” since
computation of the likelihood is rarely available, but also, the evidence of the pos-
terior is, as usual, intractable. The contribution of [23] is the development of a
fully Bayesian model selection method based on a reversible jump Markov chain
Monte Carlo algorithm extension of their previous algorithms which estimates the
posterior probability for each competing model.

Usually we are dealing with situations where we have networks that we can
not fully observe. Thus, we have networks that we partially observe due to a
sampling mechanisms. Some of the most widely used sampling mechanisms that
propagate through a social network are defined in terms of tuning parameters. In
[6, 63] the authors are interested in the problem of optimizing these tuning param-
eters with the purpose of improving the inference of a population quantity, where
such quantity is a function of the network. In [7], this is done by formulating the
problem in terms of Decision Theory. The optimization procedure for different
sampling mechanisms is illustrated via simulations in the fashion of the ones used
for Bayesian clinical trials.

As we mentioned, there has been a lot of effort in modeling network data and
formulating network models. In addition to that there are computational chal-
lenges that arise from fitting these models. There are additional challenges that
need to be solved, as well. In this thesis, we are combining networks with com-
putational methods in order to approach and tackle three challenging problems.
MCMC (or variational Bayes) is required when the likelihood cannot be com-
puted analytically. This is why Bayesian probability and statistics fell out of favor
(and even view) for a long time. When most people think about ”classical” statis-
tics, they think about frequentist methods. But they came later, simply because at
the time, Bayesian methods that were realistic were very hard to fit without either
too many assumptions or computers. There are many things MCMC can offer.
Even if our integral is computable (and with modern methods and computers, it’s
easier to compute difficult integrals), if there is high dimensionality, it will take

10



a lot longer to compute an integral exactly than it will to use MCMC, with only
slight degradation in the solution if it’s done correctly. Indicative examples from
the literature are presented in the next subsection.

1.3 Contributions of the thesis and their context
As a first new method we compare Sampling Designs on random networks via in-
formation theory. This problem elaborate sampling techniques on networks. Most
of the times we can not observe the whole network but only part of it. Therefore
we have a partially observed network. There is a literature that deals with those
kinds of networks. This set of problems is new in research and it has not receive
as much attention as it should. The main reason why we deal with this problems is
that there are situations where the practitioner have some control in the sampling
process. We are interested in providing him/her with some insight about how to
make better decisions for his/her objectives, regarding the appropriate combina-
tion of the network models and the sampling designs. In chapter 3 we are dealing
with this problem and we resort to information theory tools to provide a principle
method to compare and consequentially to suggest suitable sampling designs for
different random network models.

The second problem we tackle, in chapter 4, is to provide useful statements for
random network features. We discuss about and why it is important to relate state-
ments about features of fully observed random networks and of partially observed
random networks. Approaches that invokes only conditional statements are not
effective because they do not combine the two levels of uncertainty regarding the
network model and the sampling design. They allow us to make only separate
statements. To be able to compute statements about the fully and partially ob-
served graph we relate the uncertainty of the model and the sampling design. The
theoretical results we provide are based on the algorithm of chapter 3 and can be
extended easily to coarsening data [45] following the same logic. The connection
between those statements is useful and helpful for practitioners in order to get and
insight how different features are related in different random networks and sam-
pling designs. We are able to answer questions like: How is community structure
related with the degree distribution of a random network when we have a partially
observed network and what can we say about the fully observed network (and via
versa)? All the above provide general guidelines of how to construct those state-
ments.
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The last problem we are dealing with, in chapter 5, is the development of a
framework for robustness on exchangeable networks based on [110]. Suppose we
have our model, we fit it to network data and perform inference with it. Though,
we do not take our parametric assumptions for granted. We put our assumptions
into question. Therefore, we are willing to check how the quality of inference
degrades if the model is misspecified. In order to achieve this, we combine recent
developments in robustness and exchangeable random network models.
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Chapter 2

Preliminaries and Definitions

In this chapter, we introduce the terminology and notation regarding network
data, which is will to be used in the rest of the thesis. In the first section net-
works and their properties are presented. In the second section random network
model, which are distributions over network data, and their features are presented.
Specifically, those features are properties of the distribution and not properties of
a realization of a network.

2.1 Networks and Properties
We define a graph (i.e., network) G = (V , E) as a tuple of the set of nodes V and
the set of edges E ⊆ V × V . We call the number of nodes n =| V | the size of
the graph and the density denotes the proportion of observed edges N over the
number of possible edges (assuming no loops):

deg(G) =
N

n(n− 1)/2
(2.1)

The density of a network lies between 0 and 1, with 0 being the empty network
of no edges and 1 if there is an edge between all pairs of nodes. Representing by
Aij ≥ 0 an edge between nodes i and j, we can describe the entire network using
its adjacency matrix A = (Aij) i, j = 1, . . . , n. We call a graph binary if two
nodes i and j are either connected (Aij = 1), or not (Aij = 0). Figure 2.1 illus-
trates how to turn a binary network into an adjacency matrix for a toy example.
We will see that adjacency matrices make generalizations of graphs easy and are
useful for the analyses of networks.
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Figure 2.1: Adjacency Matrix (a) to Network(b).

Figure 2.2: Example of a network characteristics. Average shortest path length is
the the average of all the shortest paths from one node to another. Diameter is the
largest path between two nodes of the network.
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Figure 2.3: Another example of network characteristics. Average degree is the
average of all nodes degrees of the network.

Each of the networks in the introduction can formally be described as a simple
graph. We group these networks by the nature of their relationships. A prominent
binary graph is a simple network where we assume in addition to Aij ∈ {0, 1}:
the relationships are symmetric (Aij = Aji,∀i, j); and there are no self-loops,
i.e., a node cannot connect to itself (Aii = 0,∀i). Friendship networks for in-
stance are often modeled as simple graphs. Networks where two nodes can have
more than one edge are called multi-edge networks; e.g., an email interaction net-
work. When the connections between nodes i and j are quantified with a weight
we call the network weighted; and networks where the relationships are not sym-
metric are called directed networks. For the scope of this thesis, we concentrate
on undirected networks without self-loops (i.e., A is symmetric and Aii = 0,∀i),
unless otherwise specified.

The degree di =
∑

i 6=j Aij denotes the number of connections of node i, as
illustrated in figures 2.2 and 2.3. The degree plays a central role for this work as
we will see later. In practice, scientists often analyze the degree sequence of an
observed network, which is a vector of all degrees sorted in non-decreasing order.
To discuss community structure, we partition nodes into groups (i.e., communi-
ties). The function g denotes the community assignment of the network such that
g(i) denotes the group of node i.

Awalk on a graph is a sequence of alternating nodes and edges (v0, e1, v1, e2, v2,

15



. . . , vl );where the edge ei+1 between nodes vi and vi+1 needs to be present in the
network for i = 0, . . . , l − 1. The length of this walk is said to be l. A cycle is
a walk of length at least three that starts and ends at the same node but does not
pass through any other node twice. A path is a walk without repeated nodes and
edges. The distance between two nodes is the length of the shortest path connect-
ing them where for weighted networks we calculate the sum of the weights. The
diameter (figure 2.2) of a graph is the longest distance between any two nodes in
the graph. A graph is called connected if there exists a walk from every node to
every other node. A component is a maximally connected subgraph; i.e., adding
any other node to this subgraph would break the connectedness. The component
of a graph that includes the largest number of nodes is called the largest compo-
nent. A graph where there is an edge between every two nodes is called complete
and a complete subgraph is called a clique. In regular graphs, every node has the
same degree.

2.2 Random Networks Models and Features
Random graph is the general term to refer to either probability distributions over
graphs or to a random process which generates them. The theory of random graphs
lies at the intersection between graph theory and probability theory. From a math-
ematical perspective, random graphs are used to answer questions about the prop-
erties of typical graphs. Its practical applications are found in all areas in which
complex networks need to be modeled - a large number of random graph models
are thus known, mirroring the diverse types of complex networks encountered in
different areas. For the rest of this thesis, in order to be consistent with notation,
we denote a random network by the symbol G and the network realization that is
produced with G(ω).

2.2.1 Random Network Features
Here we provide a brief description of all the features we are dealing with in
this thesis. More extensive reviews can be found in [53, 75, 112]. For sake of
simplicity we denote τ(G) every feature of random model G. Our main goal is to:

• Provide the intuition behind their usefulness

• Briefly, provide notation which is going to be consistent with the notation
in chapters 3-5
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• Make the reader understand what kind of questions do they answer

• Show how they are computed

Centrality

Figure 2.4: Examples of A) betweenness centrality, B) closeness centrality, C)
eigenvector centrality, D) degree centrality, E) harmonic Centrality and F) katz
centrality of the same graph. From dark blue to deep red are depicted the nodes in
increasing order of how cetralized they are.

Centrality indices are answers to the question: ”What characterizes an im-
portant vertex?”. The answer is given in terms of a real-valued function on the
vertices of a graph, where the values produced are expected to provide a ranking
which identifies the most important nodes.

The word ”importance” has a wide number of meanings, leading to many dif-
ferent definitions of centrality. Two categorization schemes have been proposed.
”Importance” can be conceived in relation to a type of flow or transfer across the
network. This allows centralities to be classified by the type of flow they consider
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important.”Importance” can alternatively be conceived as involvement in the co-
hesiveness of the network. This allows centralities to be classified based on how
they measure cohesiveness. Both of these approaches divide centralities in distinct
categories. Restricting consideration to this group allows for a soft characteriza-
tion which places centralities on a spectrum from walks of length one (degree
centrality) to infinite walks (eigenvalue centrality). The observation that many
centralities share this familial relationships perhaps explains the high rank corre-
lations between these indexes.

Degree

Figure 2.5: A graph with vertices labeled by degree

In graph theory, the degree of a vertex of a graph is the number of edges inci-
dent to the vertex, with loops counted twice. The degree of a vertex v is denoted
deg(v) or deg v. The maximum degree of a graph G, denoted by ∆(G), and the
minimum degree of a graph, denoted by δ(G), are the maximum and minimum
degree of its vertices. In the graph on the right, the maximum degree is 5 and the
minimum degree is 0.
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Subgraphs-Motifs

Figure 2.6: Different occurrences of a sub-graph in a graph. (M1-M4) are different
occurrences of sub-graph (b) in graph (a). For frequency concept F1, the set M1,
M2, M3, M4 represent all matches, so F1 = 4. For F2, one of the two set M1,
M4 or M2, M3 are possible matches, F2 = 2. Finally, for frequency concept F3,
merely one of the matches (M1 to M4) is allowed, therefore F3 = 1.

Network motifs are subgraphs that repeat themselves in a specific network or
even among various networks. Each of these subgraphs, defined by a particular
pattern of interactions between vertices, may reflect a framework in which partic-
ular functions are achieved efficiently. Indeed, motifs are of notable importance
largely because they may reflect functional properties. They have recently gath-
ered much attention as a useful concept to uncover structural design principles of
complex networks. Although network motifs may provide a deep insight into the
network’s functional abilities, their detection is computationally challenging.
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Degree distribution

Figure 2.7: Degree distribution of an undirected network

In the study of graphs and networks, the degree of a node in a network is
the number of connections it has to other nodes and the degree distribution is
the probability distribution of these degrees over the whole network. The degree
distribution P (k) of a network is then defined to be the fraction of nodes in the
network with degree k. Thus if there are n nodes in total in a network and nk of
them have degree k, we have P (k) = nk

n
.
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Assortativity

Figure 2.8: Scale-free networks for different degrees of assortativity: (a) A =
0 (uncorrelated network), (b) A = 0.26, (c) A = 0.43, where A indicates r (the
assortativity coefficient, as defined in this sub-section).

Assortativity, or assortative mixing is a preference for a network’s nodes
to attach to others that are similar in some way. Though the specific measure of
similarity may vary, network theorists often examine assortativity in terms of a
node’s degree. The addition of this characteristic to network models more closely
approximates the behaviors of many real world networks.

Correlations between nodes of similar degree are often found in the mixing
patterns of many observable networks. For instance, in social networks, nodes
tend to be connected with other nodes with similar degree values. This tendency
is referred to as assortative mixing, or assortativity [74]. On the other hand, tech-
nological and biological networks typically show disassortative mixing, or disas-
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sortativity, as high degree nodes tend to attach to low degree nodes.

Distance

Figure 2.9: Distance

The distance between two vertices in a graph is the number of edges in a
shortest path (also called a graph geodesic) connecting them. This is also known
as the geodesic distance. Notice that there may be more than one shortest path
between two vertices. If there is no path connecting the two vertices, i.e., if they
belong to different connected components, then conventionally the distance is de-
fined as infinite.

In the case of a directed graph the distance d(u, v) between two vertices u and
v is defined as the length of a shortest directed path from u to v consisting of arcs,
provided at least one such path exists. Notice that, in contrast with the case of
undirected graphs, d(u, v) does not necessarily coincide with d(v, u), and it might
be the case that one is defined while the other is not.
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Modularity

Figure 2.10: Sample Network corresponding to the Adjacency matrix with 10
nodes, 12 edges. Network partitions that maximize Q. Maximum Q=0.4896

The Modularity was designed to measure the strength of division of a net-
work into modules (also called groups, clusters or communities). Networks with
high modularity have dense connections between the nodes within modules but
sparse connections between nodes in different modules. Modularity is often used
in optimization methods for detecting community structure in networks.

Let us consider a graph with n nodes and m links (edges) such that the graph
can be partitioned into two communities using a membership variable s. If a node
v belongs to community 1, sv = 1, or if v belongs to community 2, sv = −1. Let
the adjacency matrix for the network be represented by A, where Avw = 0 means
there is no edge (no interaction) between nodes v and w and Avw = 1 means
there is an edge between the two. Also for simplicity we consider an undirected
network. Thus Avw = Awv. (It is important to note that multiple edges may exist
between two nodes, but here we assess the simplest case).

The modularity, often denoted by Qs, is then defined as the fraction of edges
that fall within group 1 or 2, minus the expected number of edges within groups
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1 and 2 for a random graph with the same node degree distribution as the given
network.

2.2.2 Random Network Models
Here we provide an intuition of the usefulness of the random network models
models and we show how we calculate their likelihoods.

Erdös-Rényi

Figure 2.11: Erdös-Rényi Network.

For the model of Erdös − Rényi, [31, 32, 36] , all graphs on a fixed ver-
tex set with a fixed number of edges are equally likely; in the model introduced
by Gilbert, each edge has a fixed probability of being present or absent, inde-
pendently of the other edges. All graphs with n nodes and M edges have equal
probability of:

pM(1− p)(
n
2)−M . (2.2)

In the model G(n, p), a graph is constructed by connecting nodes randomly.
Each edge is included in the graph with probability p independent from every
other edge. The expected degree of G(n, p) = (n − 1)p. The parameter p in this
model can be thought of as a weighting function; as p increases from 0 to 1, the
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model becomes more and more likely to include graphs with more edges and less
and less likely to include graphs with fewer edges. In particular, the case p = 0.5
corresponds to the case where all 2(n2) graphs on n vertices are chosen with equal
probability.

Barabási Albert

Figure 2.12: Barabási Albert Network.

The Barabási − Albert (BA) model [13] is an algorithm for generating ran-
dom scale-free networks using a preferential attachment mechanism. Several nat-
ural and human-made systems, including the Internet, the world wide web, cita-
tion networks, and some social networks are thought to be approximately scale-
free and certainly contain few nodes (called hubs) with unusually high degree as
compared to the other nodes of the network.

The network begins with an initial connected network of m0 nodes. New
nodes are added to the network one at a time. Each new node is connected to
m ≤ m0 existing nodes with a probability that is proportional to the number of
links that the existing nodes already have. Formally, the probability pi that the
new node is connected to node i is pi = ki∑

j kj
, where ki is the degree of node i

and the sum is made over all pre-existing nodes j (i.e. the denominator results in
twice the current number of edges in the network). Heavily linked nodes (”hubs”)
tend to quickly accumulate even more links, while nodes with only a few links
are unlikely to be chosen as the destination for a new link. The new nodes have a
”preference” to attach themselves to the already heavily linked nodes. This algo-
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rithm computationally provides as with the likelihood of the model.

Watts-Strogatz

Figure 2.13: Watts-Strogatz Network.

The Watts− Strogatz model [111] is a random graph generation model that
produces graphs with small-world properties, including short average path lengths
and high clustering.

Given the desired number of nodes N , the mean degree K (assumed to be an
even integer), and a special parameter β , satisfying 0 ≤ β ≤ 1 and N � K �
lnN � 1, the model constructs an undirected graph with N nodes and NK

2
edges

in the following way:

Construct a regular ring lattice, a graph with N nodes each connected to K
neighbors, K

2
on each side. That is, if the nodes are labeled n0 . . . nN−1, there is

an edge (ni, nj) if and only if 0 < |i−j|mod
(
N − 1− K

2

)
≤ K

2
. For every node

ni = n0, . . . , nN−1 take every edge connecting ni to its K/2 rightmost neighbors,
that is every edge (ni, nj mod N) with ni < nj ≤ ni + K/2, and rewire it with
probability β . Rewiring is done by replacing (ni, nj mod N) with (ni, nk) where
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k is chosen uniformly at random from all possible nodes while avoiding self-loops
(k 6= i) and link duplication (there is no edge (ni, nk′) with k′ = k at this point
in the algorithm). This algorithm computationally provides as with the likelihood
model.

Stochastic Block Model

Figure 2.14: Stochastic Block Model

The stochastic block model is a generative model for random graphs. This
model tends to produce graphs containing communities, subsets characterized by
being connected with one another with particular edge densities. For example,
edges may be more common within communities than between communities.

A SBM with K blocks on n nodes is defined as follows. A vector of la-
tent labels C = (C1, . . . , Cn) is generated with Ci taking integer values from
[K] = {1, . . . , K} governed by a multinomial distribution with parameters P =
(π1, π2, . . . , πK). GivenCi = α, Cj = b, an adjacency matrixA is generated with:

Ai,j | (Ci = α,Cj = b) ∼ Bernoulli(Pα,b), i 6= j. (2.3)

We consider a symmetric A with zero diagonal entries corresponding to an undi-
rected graph, although our arguments generalize easily to directed graphs. Let P
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is a K × K symmetric matrix describing the connectivities within and between
blocks. We denote the model parameters θ = (π, P ) and let ΘK be the parameter
space of a K-block model,

ΘK = {θ | π ∈ (0, 1)K ,
K∑
α=1

πα = 1, P ∈ (0, 1)K×K} (2.4)

We assume θ∗ ∈ ΘK and P ∗ has no identical columns, meaning the underlying
model has K blocks and it is identifiable in the sense that it cannot be further
collapsed to a smaller model. c = (c1,×, cn) ∈ [K

′
]n represents another set of

labels under a K ′-block model with K ′ not necessarily equaling K. g(A; θ) is the
likelihood function describing the distribution of A with parameter θ ∈ ΘK′ and
can be written as the sum of the complete likelihood function f(c, A; θ) associated
with the labels c ∈ [K

′
]n:

g(A; θ) =
∑

c∈[K′ ]n

f(c, A; θ), (2.5)

where f(c, A; θ) takes the form:

f(c, A; θ) = (
K

′∏
α=1

πnα(c)
α )(

K
′∏

α=1

K
′∏

b=1

P
Oα,b(c)

α,b (1− Pα,b)na,b(c)−Oa,b(c))1/2 (2.6)

with count statistics:

nα(c) =
n∑
i=1

1(ci == α), (2.7)

nα,b(c) =
n∑
i=1

∑
j 6=i

1(ci == α, cj == b), (2.8)

Oa,b(c) =
n∑
i=1

∑
j 6=i

1(ci == α, cj == b)Ai,j, (2.9)

g and f are invariant with respect to a permutation on the block labels, τ :
[K

′
] → [K

′
], and its corresponding permutations on the node labels c and the

parameters θ.
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Latent Space models

Figure 2.15: Latent Space Model

In latent variable models [46] the entries of the adjacency matrix are depen-
dent on a set of unobserved or latent variables. Observed variables assumed to be
conditionally independent given latent variables. Adjacency matrix A is invari-
ant to row and column permutations. Although, Aldous-Hoover theorem implies
existence of a latent variable model of form Aij = h(θ, zi, zj, εij) for iid latent
variables zi and some function h, latent variable models allow for both for homo-
geneity (most nodes or nodes among clusters have the same number of connec-
tions) and heterogeneity (most nodes have not the same number of connections)
of nodes in social networks. This mean. Each node (actor) has a latent variable zi.
Probability of forming edge between two nodes is independent of all other node
pairs given values of latent variables.

p(A | Z, θ) =
∏
6=

p(Aij | zi, zj, θ) (2.10)

The log likelihood of α, β and the zis for the latent space model is as follows:

ηi,j = logodds(Ai,j = 1 | zi, zj, xi,j, α, β) = α + β′xi,j− | zi − zj | .

where ηi,j = α + β
′
xi,j− | zi − zj |.
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Ideally latent variables should provide an interpretable representation (contin-
uous) latent space model. The motivation behind them are homophily or assorta-
tive mixing. Probability of edge between two nodes increases as characteristics of
the nodes become more similar. They represent nodes in an unobserved (latent)
space of characteristics or social space. Small distance between 2 nodes in latent
space means high probability of edge between nodes. Furthermore they induce
transitivity: observation of edges (i, j) and (j, k) suggests that i and k are not too
far apart in latent space which is more likely to also have an edge. The (continu-
ous) latent space model (LSM) were proposed by [37]. Specifically, each node has
a latent position zi ∈ Rd, the Probabilities of forming edges depend on distances
between latent positions and they define pairwise affinities ψi,j = θ− || zi−zj ||2.
The practitioner sample node positions in latent space zi ∼ Gaussian(0,kI) com-
pute affinities between all pairs of nodes ψi,j = θ− || zi− zj ||2 and sample edges
between all pairs of nodes P (Aij = 1 | ψij) = σ(ψij).

Advantages of latent space model are that they are visual and interpretable spa-
tial representation of networks and models homophily (assortative mixing) well
via transitivity. The disadvantages of latent space model include the following:
the statistician has to fix the dimension beforehand without knowing a priori what
the actual dimension is. Moreover, they can not model disassortative mixing (peo-
ple preferring to associate with people with different characteristics).
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Chapter 3

Comparing Sampling Designs on
Random Networks via Information
Theory

In this chapter, we propose a general approach for comparing sampling designs on
networks. Our approach is based on the concept of data compression from infor-
mation theory. The criterion for comparing sampling designs is formulated so that
the results prove to be robust with respect to some of the most widely used loss
functions for point estimation and prediction. The rationale behind the proposed
approach is to find sampling designs such that preserve the largest amount of in-
formation possible from the original data generating mechanism. Our approach is
inspired by the same principle as the reference prior, with the difference that, for
the proposed approach, the argument of the optimization is the sampling design
rather than the prior. The information contained in the data generating mechanism
can be encoded in a distribution defined either in parameter’s space (posterior dis-
tribution) or in the space of observables (predictive distribution). In our simulation
studies we consider both cases.

For applications involving network data, such as epidemiology, it is often the
case that practitioners can only observe the network partially via a sampling de-
sign. Examples in Epidemiology include case studies, when practitioners recruit
individuals from a hard-to-reach population with the aim to infer the prevalence of
HIV in that population. Respondent-Driven Sampling (RDS) is a design that takes
advantage of the social network structure to solve this problem. Under the as-
sumption that the random graph (statistical network) model adopted by the statis-
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tician is reasonable for the application at hand, consider the scenario where there
are multiple sampling designs that could be adopted: RDS with different tunning
parameters, Snowball sampling with different allocation schemes for the seeds.
To determine which option of data collection is the most suitable, we could resort
to a decision theory approach [63]. Another, low level intuitive example involves
the following setting: A statistician wants to send a network data set which is
an output of an MCMC. This MCMC samples large network data e.g. graphical
models (probabilistic models for which a graph expresses the conditional depen-
dence structure between random variables). Do the statistician have to store all of
them? For memory issues he/she can compress them and the price to pay is the
information he lose. Which one is the best way to store those messages, in order
to maximize the amount of information he will send? In this chapter we propose
an alternative: to compare sampling designs on networks in terms of the amount
of information preserved. The motivation behind this set of ideas is to provide
a principled procedure for ranking the set of possible designs that proves to be
robust to different choices for the loss function.

The approach we propose is based on two information theory concepts: data
compression and decompression. More precisely: sampling is modeled as a pro-
cess that compresses information regarding the probabilistic model that generates
the full network, while computing the posterior is modeled as a process that de-
compresses that information. The procedure for comparing sampling designs on
networks proposed in this chapter is based on the previous idea and on the ratio-
nale behind the computation of a reference prior. The core idea can be phrased as
follows: instead of performing optimization with respect the prior, which would
ensure a maximum gain of information, we optimize with respect to the sampling
mechanism, which would ensure a maximum amount of preserved information.
This construction implies a distance or a divergence between probability distri-
butions. Thus, information theory enable us to compare, in a principled way,
sampling designs on random network models.

The literature of sampling designs has evolved from discussing sampling de-
signs on networks as algorithms ([44] and [107]) to approaches where: i) some
sources of uncertainty are modelled explicitly ([38], [12]) and ii) likelihood and
fully Bayesian approaches ([63]). The literature dealing with the comparison of
sampling mechanisms includes simulation studies based on heuristic arguments
([21]) and the approach by [14], which is based on ideas from Bayesian experi-
mental design [61] and [26]. Our work borrows ideas from the computation of the
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reference prior [18] and the concept of data compression, both of which rely on
information theory.

The main contribution of our chapter can be phrased as follows: Current ap-
proaches involve evaluating different sampling designs with respect to a loss func-
tion ([61] and [26]). Whilst this can work well, the choice of sampling design is
sensitive to the choice of loss function. Here, we propose methodology for rank-
ing sampling mechanisms on networks such that the top designs in the ranking
tend to produce posteriors that preserve more information about the data generat-
ing mechanism. The ranking of sampling designs is obtained without the need to
specify a loss function . We make the case that the rankings of sampling designs
implied by our approach are reasonably consistent with rankings implied by the
most widely used loss functions for estimation and prediction.

The chapter proceeds as follows: In Section 3.1, we describe settings of the
problem, we formulate them and give notation and definitions of networks, ran-
dom networks and sampling designs. Furthermore, we present information theory
tools that are useful in the next sections. Then, in section 3.2, we focus in our main
purpose of this chapter which is how we use and compare sampling mechanisms
using information theory in order to compress and decompress random networks.
Conceptually and computationally, our methodology is presented. In section 3.3,
for many random network models data analysis that gives experimental results
involving compression, decompression and model misspecification is conducted
showing the results of our approach. Finally, in section 3.4, we present with more
details the future work involving overlapping research areas.

3.1 Preliminaries

3.1.1 Random graphs
We define a network as a pair G(ω) = (V , E), where V denotes the set of nodes,
and E the set of edges E ⊆ V × V . Let N denote |V|, the number of nodes and let
ei,j denote the element of E connecting nodes i and j, 1 ≤ i, j ≤ N . A network
is called simple if at most one edge exists between each pair of nodes and no self-
loops are allowed. We denote by AG(ω) the adjacency matrix of G(ω); for simple
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graphs, the entries of this matrix can be defined as follows:

AG(ω)(i, j) =

{
1 if ei,j ∈ E ,
0 otherwise,

for 1 ≤ i, j ≤ N . A network is called undirected if the corresponding adjacency
matrix is symmetric.

A random network (or random graph model) is a probability model on the
space of adjacency matrices. In this chapter we consider random network models
in the space of simple undirected networks, i.e., a distribution on the space of bi-
nary symmetric adjacency matrices. We use G(τ(G)) to denote a specific feature
of the random network, with τ(·) the process of extracting a specific feature from
a network (e.g. degree distribution, modularity).

The random graph models we will use to illustrate our method include, as
already described in chapter 2:

• The Stochastic Block model, where the partition of the nodes set {1, . . . , N}
into disjoint subsetsC1, . . . , Cb is called communities and for the symmetric
b× b matrix P of edge probabilities we have:

Pr {AG(i, j) = 1 | i ∈ Cu, j ∈ Cv} = Pu,v, Pu,v ∈ (0, 1)

• The Latent Space model with Euclidean distance, [110], which is a particu-
lar case of latent position models where each node has an associated latent
position. Nodes with nearby latent positions are likely to form ties. The
parameterization of P (Ai,j | zi, zj, xi,j, θ) is the logistic regression model in
which the probability of a tie depends on the Euclidean distance between zi
and zj , as well as on observed covariates xi,j that measure characteristics of
the dyad,

ηi,j = logodds(Ai,j = 1 | zi, zj, xi,j, α, β) = α + β′xi,j− | zi − zj | .

3.1.2 Sampling Designs
Sampling Designs on Networks

Here, we introduce sampling designs on one realization network, explain why
they are useful and provide some examples. In sampling, we are typically inter-
ested in using field point data to derive inferences, we need enough samples to be

34



confident that they approximate the target population. In the case of calibrating a
laboratory device, we might only need two measurements, each at opposite ends
of the measurement scale. This illustrates the point that sample size is closely
related to the inherent variability in the data. The number of samples required
increases with increasing variability. Also, the more samples we have, the greater
the confidence level we can achieve. For example, sampling at an 85 percent con-
fidence level is less intensive than sampling at a 95 percent confidence level.

In this section, we consider the conceptual and computational theory of net-
work sampling. There is a substantial literature on network sampling designs. Our
development here follows [101], [102], [103] and [2]. Let denote a network with n
nodes. Note that in most network samples, the unit of sampling is the node, while
the unit of analysis is typically the dyad. Let G(ω) be the n × n binary matrix
indicating if the corresponding element of the adjacency matrix was sampled or
not. The value of the i, jth element is 0 if the (i, j) ordered pair was not sampled
and 1 if the element was sampled.

Under many sampling designs the set of sampled dyads is determined by the
set of sampled nodes. The sampled network a binary n-vector indicating a subset
of the nodes, where the ith element is 1 if the ith node is part of the set, and is 0
otherwise. For example, consider an undirected network where the set of observed
dyads are those that are incident on at least one of the sampled nodes. A primary
example of this is where people are sampled and surveyed to determine all their
edges.

Computational complexity makes network analysis task difficult for very large
graphs. By network analysis task here we refer to:
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Figure 3.1: Estimation of network characteristics by sampling vertices (or edges)
from the original networks.

Figure 3.2: Study of the connectivity structure of networks and investigation of
the behavior of processes overlaid on the networks.
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Figure 3.3: Study of local topologies and their distributions to understand local
phenomenon.

• The study of the node/edge properties in networks e.g., Investigate the cor-
relation between attributes and local structure, estimate node activity to
model network evolution and predict future links (what is the probability
that u and v will be connected in future?) and identify hidden links. For this
task, statisticians estimate network characteristics by sampling vertices (or
edges) from the original networks, population is the entire vertex set (for
vertex sampling) and the entire edge set (for edge sampling) and sampling
is usually with replacement (figure 3.1).

• The study of the connectivity structure of networks and investigate the be-
havior of processes overlaid on the networks e.g., estimate centrality and
distance measures in communication and citation networks, identify com-
munities in social networks and study robustness of physical networks against
attacks. For this task, from network we sample a subgraph with k nodes
which preserves the value of key network characteristics of the network,
such as degree distribution, diameter, centrality, and community structure
through modularity. Note that here, the sampled network is smaller, so there
is a scaling effect on some of the statistics; for instance, average degree of
the sampled network is smaller and statisticians consider the population of
all subgraph of size k (figure 3.2).

• The study of local topologies and their distributions to understand local
phenomenon e.g., discovering network motifs in biological networks and
counting triangles to detect Web (i.e., hyper link) spams. Now, statisti-
cians sample sub-structure of interest and find frequent induced subgraph
(network motif) and sample sub-structure for solving other tasks, such as
counting, modeling, and making inferences (figure 3.3).
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Best time complexities for various tasks are vertex count O(n), edge count
O(m), centrality metrics O(mn), Community Detection using Girvan-Newman
Algorithm O(m2n), triangle (motif) counting O(m1.41) etc.

More specifically, with sampling on networks we can sample a set of ver-
tices (or edges) and estimate nodal or edge properties of the original network
e.g., average degree and degree distribution. Instead of analyzing the whole net-
work, we can sample a small subnetwork similar to the original network. The
goal here is to maintain global structural characteristics as much as possible e.g.,
degree distribution, clustering coefficient, community structure though modular-
ity etc. Finally we can also sample local substructures from the networks to es-
timate their relative frequencies or counts e.g., sampling triangles, or network
motifs. Types of sampling designs on networks include: snowball sampling, strat-
ified sampling, Breadth-First Search (BFS), or Depth-First Search (DFS), Forest
Fire (FF), Random walk techniques (exploration with replacement) and Respodent
Driven Sampling. In this thesis, we distinguish sampling designs in ignorable and
non-ignorable (appendix) and use as an example of ignorable sampling designs
snowball sampling and RDS for non-ignorable sampling designs.

We introduce further notation to the next section where we generalize what is
considered for a network realization to a distribution or networks.

Sampling designs on Random Networks

In contrast with before, the variability is in the network. We are dealing with
a population of networks which are generated by a random network model or a
random network mechanism. Let G denote a random network and let I denote a
sampling design that propagates through the network. A realization of I(G)(ω)
implies a partition of the network realization G(ω) into GINC(ω) and GEXC(ω),
which denote, respectively, the observed and unobserved parts of the random net-
work realization. To keep the notation simple, we write GINC and GEXC when
referring to all the realizations; for describing computations and presenting defi-
nitions, this is all that is needed. In analogous manner, all the realizations of the
adjacency matrices AG can be written as AGINC and its completion AGEXC .

In order to perform computations, we need to define GINC and GEXC with more
detail: GINC is given by a set of n nodes {1, 2, . . . , n} and a set of edges and non-
edges between these n nodes. For N specified, the maximum allowed size for an
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imputed network, GEXC is given by a set of nodes {n + 1, n + 2, . . . , N}, where
n ≤ N and a set of edges for an adjacency matrix AG with N nodes, such that: (i)
the edges incident to at least one node in {n+1, n+2, . . . , N}, are not included in
GINC , (ii) each of the connected components of the network G obtained by adding
the edges of GEXC to GINC has a non-empty intersection with {1, 2, . . . , n}. We
will use the notation GEXC ∼ GINC to denote the fact that a specific GEXC serves
to complete a specific GINC to form an adjacency matrix.

To perform Bayesian inference, it is necessary to specify the likelihood cor-
rectly. The concept of ignorability [87] helps on this task by providing criteria
for deciding if the uncertainty due to the sampling mechanism needs to be mod-
eled explicitly in the likelihood (Appendix). In this chapter, we use one ignorable
sampling design, called snowball and one non-ignorable sampling design, called
Respondent Driven Design (RDS).

More specifically, in snowball design we follow the algorithm 1:

Algorithm 1 Snowball Design

• Select l individuals (seeds) at random.

• Observe all dyads involving the selected individuals.

• Identify r individuals (referrals) reported to have at least one relation with
the initial sample

• Observe all dyads involving the newly selected individuals.

• Repeat the last three steps either k times (waves) or until all recruited
nodes are collected.

and RDS design algorithm 2:
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Decompression,
Decoding information

Channel
Capacity

Compression,
Encoding informationInput: Message

Figure 3.4: This is an schematic description of the data compression process
(source [68]).

Algorithm 2 RDS Design

• Select l individuals (seeds) at random.

• Observe all dyads involving the selected individuals.

• Identify r individuals (referrals) reported to have at least one relation with
the initial sample.

• Observe all dyads involving the newly selected individuals.

• Repeat the last three steps k times (waves) or until all recruited nodes are
collected..

• Observe the only the degrees, both from observed and unobserved part of
the network, of each observed node only for the last wave.

3.1.3 Information Theory
The problem of data compression [68] can be stated as follows: A message is
generated by a probability distribution p(·), defined over a sample spaceX , and, to
be transmitted, it is mapped into a space of lower dimension (traditionally {0, 1}).
After the message has been transmitted, it is mapped back to the original space.
This process may entail a loss of information. The action of mapping the message
to a low dimensional space is called compression, while the action of mapping
the message back to the original space is known as decompression. This process
is illustrated in Figure 3.4. Usually, the problem of data compression involves a
loss of information during transmission; this loss is quantified in what is known as
the channel capacity. In this chapter we will assume that any loss of information
occurs during compression and none during transmission.

To measure the loss of information incurred during data compression, it is
necessary to have either a divergence or a metric between the distribution that
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generated the message p(·) an the distribution implied by the decompression. In
this chapter, the Hellinger distance will play that role. The Hellinger distance
belongs to the family of f -divergence.

3.2 Methodology

3.2.1 General Concepts
In this section, we present methodology for comparing sampling designs on net-
works. Given a set of potential sampling designs {I1, I2, . . . , Ik} to be applied
to a random graph model, we want to produce a ranking of these designs. The
ranking should be such that designs with higher positions in the ranking tend to
lead to posteriors that preserve more information about the probabilistic mecha-
nism that generates the data. The criterion to make the comparison is based on the
following rationale: the process of applying a sampling mechanism and inferring
the random graph model via computing a posterior distribution, can be cast as a
problem of data compression. The optimal design is the one that minimizes the
loss of information. This is under the assumption that the full network is a real-
ization of a random graph model correctly specified.

Let θ the vector parameter of random network model p(G | θ). In order to
illustrate the main ideas, we first assume that θ is specified. The next step is to
apply the sampling design I to G(τ(G)) to get the compressed network realization
GINC(τ(G)) which implies posterior distribution p(θ | GINC(τ(G))). This pro-
cess is illustrated in Figure 3.5. First, the network model p(G | θ) generates G
and then the sampling mechanism is applied to produce a compressed version of
the full network; this process is denoted by g(GINC | I,G). Given the observed
(compressed) network, the posterior distribution p(θ | GINC) and the posterior
predictive p(τ(G) | GINC) can be computed. The next step is to compute the
Hellinger distance between the prior predictive and the posterior predictive im-
plied by GINC(τ(G)), i.e.,

H(p(τ(G) | θ), p(τ(G) | GINC)).

By averaging over the uncertainty of p(G | θ), we obtain the average of those
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p(τ(G) | GINC)p(θ | GINC)g(GINC | I,G)p(I | G)p(G | θ)θ
fixedp(τ(G) | θ)

Figure 3.5: Illustration of how to cast the process of performing Bayesian infer-
ence from a partially observed network as a data compression process assuming θ
is fixed but unknown.

distances:

ψF(I, θ, τ(·)) =
∑
GINC

∑
GEXC∼GINC

H(p(τ(GINC),GEXC | θ), p(τ(GINC),GEXC | GINC)).

(3.1)
This will be the score associated to the amount of information preserved by the
design.

Now, in Figure 3.5 we proceed to explain how to compare {I1, I2, . . . , Ik}.
The distribution specified by θ entails a predictive distribution p(τ(G) | θ). The
model for the full network p(G | θ) in conjunction with the sampling mechanism
that propagates through the network p(I | G) produce the observed part of the
network GINC through a deterministic mapping h(·; ·). The observed data serves
as input for the procedure that computes the posterior p(θ | GINC); this posterior
entails a posterior predictive distribution p(τ(G) | GINC). In the same spirit as
in Bayesian experimental design approaches, we incorporate uncertainty on θ by
assuming that it was sampled from the prior p(·). The uncertainty induced by p(·)
propagates trough the process described in Figure 3.5. All the uncertainty is in the
prior, assuming the prior is specified in that way that is capturing where the true
value of the parameter is living, so when we use the Bayesian experimental design
we get a reasonable answer. Then we proceed following decision theory tools. To
compute the score under this setup, we need to average the Hellinger distances

ψ(I, p(·), τ(·)) =

∫
θ∈Θ

ψF(I, θ, τ(·))p(θ)dθ (3.2)

As in section 2.2, τ(·) denotes the operation of extracting a specific feature
from a network (e.g. degree distribution, modularity) and p(τ(G)) is the distribu-
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p(τ(G) | GINC)p(θ | GINC)g(GINC | I,G)p(I | G)p(G | θ)θ

f(θ)

p(τ(G) | θ)

Figure 3.6: Illustration of how to cast the process of performing Bayesian infer-
ence from a partially observed network as a data compression process when θ is
not specified in the space of observables.

tion for the feature implied by the prior predictive. This process is described in
Figure 3.6.

The previous strategy enables the statistician to compare designs in terms of
distances between predictive distributions. If the statistician requires to conduct
the comparison of sampling designs in the space of parameters, then an interesting
challenge arises: we still need to introduce a probabilistic distribution for θ, since
its value is unknown. This distribution cannot be the prior, since it is the distri-
bution for which information should be preserved and it will be unknown to the
practitioner when fitting the random graph model. We view the prior distribution
as a tool for decompressing information. Simply, if the prior is misspecified, e.g.
the statistician setup a prior which completely misses out where the true value is
located then the results are misleading. To protect himself from that case that is
when a distribution of the statistician prior belief’s is considered which is differ-
ent from the distribution where the parameters live. This process is illustrated in
Figure 3.7. The only difference with respect to the process described in Figure 3.5
is that θ is a realization from a random variable with distribution given by f(·).
Moreover, in figure 3.7 the main difference with respect to the process described in
figure 3.6 is that the distributions to be compared are defined on parameter space,
rather than on the space of observables. Using features instead of full networks
obtained from the predictive will make the computation of the scores feasible.

The idea of using such distributions for the prior and the idea of comparing
designs based on the predictive distribution of a feature can be combined, so the
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p(θ)p(θ | GINC)g(GINC | I,G)p(I | G)p(G | θ)f(θ)

Figure 3.7: Illustration of how to cast the process of performing Bayesian infer-
ence from a partially observed network as a data compression process when θ is
not specified in the space of parameters.

score is computed in terms of the Hellinger distance between predictive distribu-
tions, i.e.,

H(p(τ(G)), p(τ(G) | GINC)),

where τ(·) denotes the operation of extracting a specific feature from a network
(e.g. degree distribution, modularity) and p(τ(G)) is the predictive distribution for
the feature implied by this prior distributions.

3.2.2 Bayesian Computation
We obtain samples of the posterior distribution p(θ,GEXC | GINC) via a Gibbs
sampler scheme based on the full conditionals

p(θ | GINC,GEXC) and p(GEXC | GINC, θ).

Once enough posterior samples θ(i) from the posterior have been obtained, we
compute either

H(f(θ), p(θ | GINC)),

or
H(p(τ(G)), p(τ(G) | GINC)),

for which we need to perform the additional step of sampling from the predictive
distribution.

3.2.3 Consistency of F-divergence with Decision theory
F-divergences are a general class of divergences (indexed by convex functions
f) that include the KL divergence and Hellinger distance as special cases. The
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f-divergence between two probability distributions P and Q is characterized by
non-negativity, monotonicity and joint convexity. So, by considering the class of
all f-divergences every divergence behave in the same monotonic way and each
divergence gives the same ranking.

3.3 Simulation Studies

3.3.1 Simulation Set Up
To investigate the behavior of the proposed approach, we conducted a simulation
study. The objective of the simulation is to assess if the ranking of the sampling
designs implied by our approach is compatible with the rankings implied by an
array of widely used loss functions (Table 3.3). The regimes of the simulation
study are given by: the random graph model, the corresponding vector of parame-
ters (Table 3.1), the functional form of the sampling design, the tuning parameters
(Table 3.2) and the sample size. To infer the stochastic block model parameters
we use [57] approach, not using gibbs sampling since we need Reversible Jump
MCMC, by using the same notation for number of blocks (K), and inclusion
probabilities (λ, ε). To infer the latent space model parameters, using logit, we
use a bivariate normal distribution for the covariance matrix for the latent posi-
tions with mean (0, 0) and a covariance matrix with dependencies. Moreover, the
second defined prior distributions in subsection 3.2.1. used here for intercept and
regression coefficient are both one dimensional normal distributions. The graph
features τ(G) we considered were: the number of communities of SBM and the
regression coefficient α from LSM. When we implement our method we consider
1000 samples of the desired parameters from the desirable prior distributions and
100 networks given the value of the parameters.

As discussed in Section 3.2, our approach associates a score to each design.
Such score is given by the mean of the Hellinger distances between the desirable
prior distributions and the posterior. The mean is computed with respect to the
ground truth distribution.

3.3.2 Empirical Results

We explore the performance of our method when the loss of information is
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Random Graph Model Parameter Specification Features
SBM K=10, λ = 0.9, ε = 0.1, N = 100 K
LSM α = 0.5, β = 1, Cov. matrix=[(0,0), (1,1), 0.3] and N = 100 α

Table 3.1: Random graph models, parameter vectors and graph features consid-
ered for setting up simulation regimes.

Sampling Design Tuning Parameters
Snowball (l,r,k)= (2, 2, 2), (3, 3, 2), (3, 2, 3)
Respondent-Driven Sampling (l,r,k)= (2, 2, 2), (3, 3, 2), (3, 2, 3)

Table 3.2: Sampling designs on networks and tuning parameters considered for
setting up simulation regimes.

Loss Function Expression Type of Inference
Hellinger Distance H(p(τ(G)), p(τ(G) | GINC)) Point Prediction
Quadratic Loss L(θ, θ̂) = (θ − θ̂)2 Point Estimation and Prediction
Absolute Loss L(θ, θ̂) = |θ − θ̂| Point Estimation and Prediction

Table 3.3: Loss functions considered to compute rankings of sampling designs
based on expected loss.
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measured, both in the space of parameters and the space of graph features τ(G).
For computing the posterior p(θ | GINC), we consider the two possibilities out-
lined in Section 3.2 (Figures 3.6 and 3.7). All posterior samples for random net-
work parameters were obtained via MCMC with a burn-in of 5000 samples and
1000 posterior samples.

We present the results in table 3.4 and figures 3.8 and 3.9 in terms of Hellinger
distances distributions means [18], and the expected loss ([7]). Both simulation
studies present empirical evidence why our approach could resembles decision
theory methods ([61] and [26]) and generally the type of f -divergence function
on information theory, provides evidence that our method produces robust (with
respect to the choice of the loss function) and reasonable rankings of sampling
designs by comparing the rankings. We observed that the results derived from
both perspectives are compatible even if they rely on different assumptions.

3.4 Discussion
As far as we know, our methodology is the first attempt for comparing sampling
designs on networks based on information theory. Sampling on networks is im-
portant for certain inferential problems. Often we get to choose how we sample
them, we need criteria for choosing a good sampling design. Existing methods
exist based on minimizing loss functions; but these can be sensitive to choice
of loss. In this chapter, we present a new criterion, based on information-loss,
which is more reliable. The main advantage of our method is that it provides the
statistician with a conceptual framework that enables him/her to compare sam-
pling designs without the need to specify the inference beforehand, and therefore,
the loss function. The results suggest that the ranking obtained from our method
is reasonable when compared to rankings implied by the most widely used loss
functions.

The proposed approach follows a frequentist perspective in the following sense:
the second defined prior distribution in subsection 3.2.1 is treated as a fixed but
unknown component of the data generating mechanism. The computation of the
posterior is employed as a device to retrieve the ground truth. Finally, the eval-
uations of our approach in Section 3.3 are all frequentist measures of performance.

We want to emphasize that, while we used the MCMC schemes proposed by
[63] to compute the posterior for the graph parameters, this does not have to be
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Model Feature SD MHD MSE
(P.P.)

MAE
(P.P.)

MSE
(P.)

MAE
(P.)

SBM K S
(2,2,2)

0.4432 82.917 9.238 79.297 9.137

SBM K S
(3,3,2)

0.2934 37.081 6.153 36.028 6.253

SBM K S
(3,2,3)

0.1122 16.721 4.065 15.729 4.153

SBM K RDS
(2,2,2)

0.2752 33.291 5.812 32.876 5.974

SBM K RDS
(3,3,2)

0.2192 20.917 5.249 20.385 5.298

SBM K RDS
(3,2,3)

0.1974 21.021 5.397 21.746 5.464

LSM α S
(2,2,2)

0.3982 70.002 8.085 68.682 7.901

LSM α S
(3,3,2)

0.2464 32.997 5.064 31.827 5.003

LSM α S
(3,2,3)

0.1334 13.723 3.032 12.829 3.237

LSM α RDS
(2,2,2)

0.2381 31.769 5.902 30.076 5.902

LSM α RDS
(3,3,2)

0.1527 18.177 3.979 16.994 3.007

LSM α RDS
(3,2,3)

0.1401 18.922 4.092 17.375 3.394

Table 3.4: Means of Hellinger Distances Distribution (MHD) and means of Pre-
dictive Posterior (P.P), for point prediction, and Posterior (P.) Quadratic and Ab-
solute Mean Distribution (MSE and MAE), for point estimation, for six different
sampling designs in the settings of number of communities in SBM (K) and re-
gression coefficient in latent space model (α).
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the case and other approaches can be used to perform that computation.

The limitations of the approach in its current form include: i) All our exper-
iments are obtained by using Hellinger distance to compare distributions. Other
choices from f -divergence family tool, like the Kullback-Leibler divergence, could
have been used instead. Though, all the well-known corresponding f(t) func-
tions from the f -divergence family (Kullback-Leibler, Total variation distance,
x2-divergence) behave the same in terms of monotinicity. ii) Compared to a deci-
sion theory approach, we have less conceptual tools for dealing with model mis-
spesification. The work by [110] provides a framework for evaluating how the
comparison of sampling designs would suffer under a decision theory approach
([61] and [26]).

Future work includes: i) To take into account additional sources of uncertainty
such as missing and coarsening data. By doing this, we will need to incorporate
the concept of channel capacity in our formulation. Our approach can be applied
either for comparing mechanisms for coarsening data [45] and mapping methods
(e.g. Isomap) on networks by optimizing regarding those mechanisms or mapping
methods, respectively, instead of sampling designs. ii) To investigate the behavior
of our method under model misspecification.

49



Figure 3.8: Upper: The lower the value of the mean of the Hellinger distance
distribution the better for a sampling designs to be recruited regarding K, which
is the number of the communities. Middle: The lower the value of the mean of
the expected squared loss distribution of the predictive distribution, EK(K− K̂)2,
the better for a sampling designs to be recruited regarding community number.
Down: The lower the value of the mean of the expected absolute loss distribution
of the predictive distribution, EK(| K − K̂ |), the better for a sampling designs
to be recruited regarding communities. U100 means we sample the all 100 nodes
and the Hellinger distance is essentially 0.
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Figure 3.9: Upper: The lower the value of the mean of the Hellinger distance
distribution the better for a sampling designs to be recruited regarding α, which
is the regression coefficient. Middle: The lower the value of the mean of the
expected squared loss distribution of the predictive distribution, Eα(α − α̂)2, the
better for a sampling designs to be recruited regarding the regression coefficient.
Down: The lower the value of the mean of the expected absolute loss distribution
of the predictive distribution, Eα(| α − α̂ |), the better for a sampling designs to
be recruited regarding the regression coefficient.
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Chapter 4

Inference on network parameters
and features involving sampling
mechanisms

In this chapter we investigate to what extent a statement that we can make for a
partially observed network can be translated regarding a statement to a fully ob-
served network and via versa. There has been a previous effort in [9] where the
authors make statements using conditional distributions. Their reasoning leads to
wide-ranging and challenging problems [9]. Here, we prove that it is not always
possible to connect such statements for all values of fully and partially observed
random network features for inference purposes. In this chapter, we examine how
those statements should be connected. We make the case that this problem should
be formulated in terms of joint distribution of the underlying network and the
sampling design. The statements allow them to constrain features and establish-
ing some desirable features for either the fully or the partially observed random
network.

Usually, with random graph models we are interested in performing inferences
on a specific feature. For instance, assume that we have an Erdös-Rényi network
model. Giant components are a prominent feature of the Erdös-Rényi model of
random graphs, in which each possible edge connecting pairs of a given set of
n vertices is present, independently of the other edges. According to the coupon
collector’s problem [86], Θ(n log n) edges are needed in order to have high prob-
ability that the whole random network is connected. We are interested in the fol-
lowing problem: if we observe a random network that has a highly connected (in
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some sense) giant vertex set of value α, can we infer that whole network has a sim-
ilarly highly connected giant vertex set of value β(α)? To address problems like,
this we provide statements which involve original and observed random network
models and a sampling design, in order to perform inference in their parameters
or features. Ideally, those statements will be both meaningful and applicable for
practitioners on networks.

Recent related literature covers a wide range of topics. More specifically, in
[78], the author specify a randomized algorithm that, given a very large network,
extracts a random subnetwork. The aim of the author is to examine what can we
learn about the input network from a single subsample. That is why they derive
laws of large numbers for the sampler output, by relating randomized subsam-
pling to distributional invariance, by assuming the sample has been generated by
a specific algorithm. In [114], the authors propose a new sequential importance
sampling method for sampling networks with a given degree sequence. These
samples can be used to approximate closely the null distributions of a number of
test statistics involved in such networks and provide an accurate estimate of the
total number of networks with given vertex degrees. In [115], the authors study
the problem of how to estimate the degree distribution a true underlying network
from its sampled network and show that this problem can be formulated as an in-
verse problem. Overall, their results show that the true degree distributions from
both homogeneous and inhomogeneous networks can be recovered with substan-
tially greater accuracy than reflected in the empirical degree distribution resulting
from the original sampling. In [28], they describe how analysts can reconstruct
topological features of networks that are partially revealed by diffusion processes.
The framework is general and applies to network data that arise from a variety of
missing-data mechanisms. In [97], they examine the following problem: given an
incomplete network, which b nodes should be probed to bring the largest number
of new nodes into the observed network? Many graph-mining tasks require having
observed a considerable amount of the network. In [91], they address the problem
of missing data in information networks. Specifically, given only a fraction of the
complete network, their goal is to estimate the properties of the complete network.

This chapter is the idea of relating features of partially and fully observed net-
works respectively with the sampling method developed in chapter 3. We envis-
age an arbitrary random network model for the network we can not fully observe
and devise a probability model for observed sampled network. Our contributions
include: i) We show that generally statements that relate all values of a certain
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random network model feature can not hold. Our aim is to prove that there is not
an analytical solution for statements on how we can estimate a feature of interest
of all random network model. Therefore, we propose more general statements,
based on a Bayesian numerical solution to perform inference on features, which
holds in every case of uncertainty regarding random network model, sampling de-
sign and network features. Analytical solutions might exist by constraining the
model (e.g. for certain random network models). ii) We provide a tool to prac-
titioners to check whether they are able to tweak either parameters or features of
the fully observed random network models through a sampling mechanism to in-
fluence and affect other parameters or features of the partially observed network
or the opposite. For this, the joint distribution of a certain feature regimes for the
fully observed random network and a feature regimes for the partially observed
random network is necessary.

The chapter proceeds as follows: In section 4.1, we give notation and defini-
tions of networks, random networks and sampling designs and present statements
that combine fully and partially observed features for one random network. In sec-
tion 4.2, we prove symbolically that those kind of statements does not hold. Thus,
we prove that generally it is enough to adopt our proposed statements, which
are presented in section 4.3, in order to infer them by an numerical procedure.
Conceptually and computationally, our methodology is presented. In section 4.4,
for many random network models, data analysis that gives experimental results is
conducted, showing the results of our approach. Finally, in section 4.5, we present
with more details the future work involving overlapping research areas.

4.1 Preliminaries
We define a network G = (V,E) as a tuple of the set of N nodes V and the set of
edges E ⊆ V × V . Moreover, we denote by AGij the N ×N adjacency matrix of
G with elements {i, j}. A random network is a probability model on the space of
adjacency matrices. On this chapter we consider random network models in the
space of binary symmetric adjacency matrices. To simplify the notation we are
using the same letter for a network and a random network network, G. In case we
need to distinguish them we use G(ω) as a realization.

Given G(ω), a realization of the random network model, let I denote a sam-
pling design that propagates through the network. A realization of GINC implies a
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partition the network realization G(ω) into GINC(ω) and GEXC(ω), which denote,
respectively, the observed and unobserved parts of the random network realiza-
tion. In analogous manner, all the adjacency matrix realizations AG can be written
as AGINC and its completion AGEXC .

4.2 Potential Statements
Here we adopt the notation in [9]. Given a random network model, or a network
which is an instance of this random network model, that has a certain feature of in-
terest and a sampling design how likely is the produced observed random network
to has this or another feature? More specifically, we want to infer the following
function β():

Statement: if G has a feature of value δ, then we can infer that GINC has a
similar feature of value β(δ).

Likewise, given a partially observed random network model which was pro-
duced by a sampling design, how likely is to be produced by a random network
which has another or the same feature? More specifically, like before we want to
infer function φ():

Statement: if we observe GINC has a feature value δ∗, then we can infer that
G has a similar feature value φ(δ∗).

Some examples of the last two statements involve:

• If a certain partially observed random network has a highly connected giant
vertex set of value α, then can we infer that the fully observed random
network has a similarly highly connected giant vertex set of value β(α)?

• If a certain partially observed random network has average degree n or say
13, then can we infer that the fully observed random network has a similarly
average degree value β(n)?

If there were monotone invertible functions β or φ connecting those features
and maps one to the other, then we are able to infer the one feature from the other.
In that case, we say that those features are related. If there is no such monotone,
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invertible functions then those features are not related and you can not retrieve
the feature from the other. The logic described above proposed in [9], the authors
provided a digression to prove this inference assertion. More specifically, suppose
G(ω) is conditional (a known realization network) to a random network G. The
authors claimed that if we have the following statement:

Statement: if G(ω) has property F ∗, we claim with probability≥ p that GINC ,
which was produced from a suitable sampling design I , has feature Q.

or:

Statement: if G has feature Q∗, we claim with probability ≥ p that GINC ,
which was produced from a suitable sampling design I , has feature Q.

How can we restate this as an inference procedure of the format:

Statement: if GINC , which was produced from a suitable sampling design I ,
does not have feature Q then with probability ≥ p∗, G does not have feature Q∗.

While in [9], the authors try to make statements in terms of confidence inter-
vals, we formulate our in terms of posterior and predictive posterior probabilities
in terms of parameters and features of the partially and fully observed networks,
respectively. So, we model through predictive posterior the uncertainty of the un-
derlying network combined with the uncertainty of sampling design.

We will show, through this assertion, that in some cases β(δ) and δ (or φ(δ∗)
and δ∗) are not related for every combination of random network model, its param-
eters or features and sampling design in such statements. Therefore, we propose
another more general statements than [9] but we are not dealing with cases where
β(δ) and δ are not related. In the following subsections we are going to give coun-
terexamples for some well know random networks to show that there are features
that G and GINC are not related.

4.3 Collapsing Potential Statements
Here, we will show via a counterexample the way to combine/relate the statements
proposed by [9] can not be that general. This logic can be stated in the following
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format:
(G ∈ A ∧ GINC ∈ B)⇒ (¬GINC ∈ B ⇒ ¬G ∈ A) (4.1)

which means that G is an event A with some features and GINC is and event B
with some other features.

The reasoning why this logic collapses is based on a counterexample which
covers the first implication but not the second. The intuition behind this counterex-
ample lies behind the simple fact that we can not infer one conditional p(B | A)
just from the following conditional p(A | B). The joint distribution p(A,B) of
the features of fully and partially observed random networks, which we will use in
section 4.4, is needed through the Bayes theorem. From Bayes theorem we know
that:

p(B | A) =
p(A,B)

p(A)
=
p(A | B)× p(B)

p(A)
(4.2)

and

p(A | B) =
p(A,B)

p(B)
=
p(B | A)× p(A)

p(B)
(4.3)

The information that an event occurs is based on the other event occurring and
consequently on the joint distribution of the two events. The only case that we
can have valid connected statements from the previous cases, where the function
of A,B of the quotient p(B)

p(A)
is known through a very strong assumption, e.g. it is

constant.

Counterexample: Suppose A is a sure event. Then if we have that GINC
comes with probability greater than p of the times. Then the probability of B has
happened given A has happen is greater than p. This fulfills the premise. If B
does not happen then A does not happen. But here if B does not happen it can not
happen that A does not happen because A covers the whole space. So that means
the second implication breaks so the whole statement breaks.

Concrete examples of particular random network models include:

• Small World, G always happens, RDS: Assume a small world graph where
G has always one connected component. For I we select a link tracing de-
sign, with large sample size and large number of seeds, and B is the number
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of connected components of GINC . GINC does not have one connected com-
ponent with high probability. By design the second implications breaks.

• SBM, GINC always happens, Snowball: Assume a stochastic block model
where two blocks one of which is quite dense and we can control the prob-
ability for interblocks. For I we select snowball such that it has one seed
and that seed is always in the same dense block. GINC will always have one
connected component. Since we can control the interconnected probability,
G can not have more than one connected component with high probability.
By design the second implications breaks.

If we want to combine these statements and go back and forth we have to relate
the uncertainty of the population of the underlying network and the uncertainty we
have through the sampling mechanism. One type of statements is conditional on
the full random graph and use the uncertainty of sampling networks to be indica-
tive regarding a feature of the observed graph. For the other type of uncertainty we
have the partially observed random network and we would like to perform infer-
ence about features in the space of possible fully random networks. Of course, the
practitioner can have separately conditional statements. Though, in case his/her
objective is to use one statement of one level to learn something about a statement
in a different level and via versa he/she needs to relate the uncertainties of under-
lying networks and sampling design.

In case we want to find such relationships we have to escape from the above
constraints. Finding other similar conditions or analytical β() functions are prob-
lems for further research. As a general approach to find relationships between G
and GINC we follow the numerical procedures in chapter 3.

4.4 Proposed statements for Inference
Here, we suggest a more general type of statements, than the aforementioned
logic, that holds for every source of uncertainty concerning every random network
model, sampling design and feature and can be computed numerically, in the space
of observables, through figures 4.1 and 4.2.
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p(τ(G) | GINC)p(θ | GINC)g(GINC | I,G)p(I | G)p(G | θ)θ
fixedp(τ(G) | θ)

Figure 4.1: Getting from fully observed random network feature to statements
about partially observed network parameter or feature given a sampling design I
(the same holds for a sampling mechanism on edges as well).

Figure 4.2: Getting from partially observed random network feature to statements
about fully observed network parameter or feature given a sampling design I (the
same holds for a corrupting mechanism on edges as well).

Statement: if G(ω) has propertyW , we claim with probability≥ p that GINC ,
which was produced from a suitable sampling design I , has feature Q.

or:

Statement: if G has feature Q∗, we claim with probability ≥ p that GINC ,
which was produced from a suitable sampling design I , has feature Q.
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Is it possible to restate it as an inference procedure of the format:

Statement: if GINC , which was produced from a suitable sampling design I ,
does not have feature Q then with p∗, G does not have feature Q∗∗.

We can state the inference in positive terms, so we negate the features and
restate as follows.

If we wish to justify a statement of the format:

Statement: if GINC , which was produced from a suitable sampling design I ,
has feature P , we claim with probability ≥ p that G has feature P ∗.

then we need to prove a theorem of the format:

Statement: if G has not feature P ∗, then with ≥ p probability GINC ,, which
was produced from a suitable sampling design I , does not have feature P ∗∗.

Those statements can be helpful in the context of providing a practitioner with
the intuition of how two features are related when a sampling design is involved.
From [75] and more particularly from [99], it is proven that a subnetwork of a
scale-free model is not necessarily scale free, so the power exponent is distorted
through some sampling mechanisms. On the other hand, from [31] we know that
below the threshold of 1

n
, the largest component of the graph includes no more

than a factor times log(n) of the nodes. Above the threshold of 1
n

, a giant com-
ponent emerges, which is the largest component that contains a nontrivial fraction
of all nodes. The giant component grows in size until the threshold of logn

n
, at

which point the network becomes connected. This is illustrated in figure 4.3 for
50 nodes and in figure 4.4 for 500 nodes and is in the heart of what we want to
achieve. Sometimes, we can not related features of partially and fully observed
network data when the random network model and the sampling design are mis-
matched. Our main goal is to leverage the theoretical results of collapsing the
logic in [9] in order to encapsulate the all the information in order the practitioner
to learn as much as he can about the features he/she is interested in.
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Figure 4.3: d is the degree density. (a) A first component with more than two
nodes: a random network on 50 nodes with d = 0.01. (b) Emergence of cycles:
a random network on 50 nodes with d = 0.03. (c) Emergence of a giant com-
ponent: a random network on 50 nodes with d = 0.05 and (d) Emergence of
connectedness: a random network on 50 nodes with d = 0.10.

Figure 4.4: The transition starts at 0.002 and ends at 0.01 after which threshold
we have one giant component and the network is connected.
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We consider the case when both partially and fully observed random networks
are related through a sampling mechanism. Given that the way we formulate the
statements we can investigate whether they are useful via joint distribution. The
joint distribution implied by the full random graph network and the sampling de-
sign distribution, can provide a principle tool for constraining information of the
one feature that can be translated in constraining information in another feature.
The point behind the following logic is that it can inform practitioners whether
and how two features are connected and quantify their association.The joint dis-
tribution is used as a bridge between those two (or more) features and shows how
they work together.

Making statements using joint distributions for different types of features in
the levels of partially and fully observed networks sometimes is very hard. We
are aware that for some combinations of features in those two levels it is hard to
convey information concerning the relationship between those two features. Some
choices of features might be completely non-sense. The above statements are very
general and might not be useful for some particular applications. They do not pro-
vide a meaningful answer in many cases, since the values of Q∗ and Q∗∗ might
be very different. That is why we need to investigate these statements through
simulation studies.

We assume the following setup: we have the joint distributions of a certain
feature interval Q for the fully observed random network and a feature interval W
for the partially observed random network, respectively. Either the fully observed
network or the partially observed network was given with the sampling design.

Statement: if G has featureQ∗ ∈ Q, we claim with probability≥ p that GINC ,
which was produced from a suitable sampling design I , has feature W ∗ ∈ W .

It is possible to restate it as an inference procedure of the format:

Statement: if GINC , which was produced from a suitable sampling design I ,
does not have feature W ∗ ∈ W then with probability p, G does not have feature
Q∗ ∈ Q.

We can state the inference in positive terms, so we negate the features and
restate as follows.

63



If we wish to justify a statement of the format:

Statement: if GINC , which was produced from a suitable sampling design I ,
has feature P , we claim with probability ≥ p that G has feature P ∗.

then we need to prove a theorem of the format:

Statement: if G has not feature P ∗, then with ≥ p probability GINC ,, which
was produced from a suitable sampling design I , does not have feature P .

As we have stated in order to get those statements the joint distribution of
the features of fully and partially observed network is required. From this dis-
tribution which is the connection between the uncertainties of the fully observed
network and the partially observed network’s features we can derive both types of
the above statements. In that way, we can calibrate either Q∗ or W ∗ to constrain
them respectively and get valid and useful relationships between features.

To provide solutions to each one of the above statements we use the algorithms
that was created in [6] and used in [7] for both ignorable and non-ignorable sam-
pling designs.

4.5 Simulations
We investigate how a feature of the partially observed random network is con-
nected with a feature of fully observed random network via a sampling design. In
this section, we consider the Erdös-Rényi model [31, 32] and degree and cluster-
ing coefficient for transitivity. In Erdös-Rényi model the degree and the transi-
tivity are the same. We will perform two simple cases creating statements about
features regarding their conditional distributions (proposed statements in previ-
ous section) first and then the features joint distribution. With those simulations
we want to show that there are cases where we can use the conditionals instead
of joint distribution because they provide the same information (so the quotient
of P (A)

P (B)
is constant), in addition with the well known examples such as: i) sub-

networks of scale free distributions are not necessarily scale free ii) Erdös-Rényi
phase transition described in section 4.3.

Figures 4.5 and 4.6 are interpreted as follows: The left subfigure is always
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Random Network Model Features Sampling Design
Erdös-Rényi model Degree Density and Transitivity Ignorable-Snowball design I

Table 4.1: Random graph model, features and Snowball sampling design I =
S(2, 3, 3) with N=100 nodes considered for setting up simulation regimes.

illustrating the joint distribution of having a network model and applying to it a
sampling design. It is used to extract all the statements concerning joint distri-
butions and their negations. On the other hand, every right subfigure show how
the joint distribution of having a partially observed network and ”guessing” the
true ground truth model which generated it (without knowing it beforehand). Us-
ing both subfigures we can obtain the statements about the conditionals and their
negations.

For the degree and transitivity in the setting of table 4.1 and the conditional
distributions we have the following statements:

Statement: if G has degree Q∗ ∈ [0.188, 0.216], we claim with probability
90% that GINC , which was produced from a snowball design with I = (2, 3, 3),
has transitivity W ∗ ∈ [0.2015, 0.2025].

Is it possible to restate it as an inference procedure in figure (as in figure 4.5
right):
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Figure 4.5: Illustration of statements connecting the Degrees and Transitivity val-
ues in a random network through an Ignorable Sampling Design I = S(2, 3, 3).

Statement: if GINC , which was produced from a snowball design with I =
(2, 3, 3), does not have transitivity of W ∗ ∈ [0.2015, 0.2025] then with 90%, G
does not have degree Q∗ ∈ [0.189, 0.213].

For the degree and transitivity in the setting of table 4.5 (left) and the joint
distribution we have the following statements:

Statement: if G has degree Q∗ ∈ [0.188, 0.216], we claim with probability
90% that GINC , which was produced from a snowball design with I = (2, 3, 3),
has transitivity W ∗ ∈ [0.2015, 0.2025].

It is possible to restate it as an inference procedure in figure 4.5 (left):

Statement: if GINC , which was produced from a snowball design with I =
(2, 3, 3), does not have transitivity W ∗ ∈ [0.2015, 0.2025] then with 90%, G does
not have degree Q∗ ∈ [0.188, 0.216].

Moreover, in this section we will perform two more simple calculations creat-
ing statements about table 4.2.

For the degree and transitivity in the setting of table 4.2 and the conditional
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Random Network Model Features Sampling Design
Erdös-Rényi model Degree Density and Transitivity Non-Ignorable-RDS design I

Table 4.2: Random graph model, features and sampling design I = RDS(2, 3, 3)
with N=100 nodes considered for setting up simulation regimes.

distributions (figure 4.6) we have the following statements:

Statement: if G has degree Q∗ ∈ [0.188, 0.216], we claim with probability
90% that GINC , which was produced from I = RDS(2, 3, 3), has transitivity
W ∗ ∈ [0.201038, 0.202726].

Is it possible to restate it as an inference procedure in figure (as in figure 4.6
right):

Figure 4.6: Illustration of statements connecting the Degrees and Transitiv-
ity values in a random network through an Non Ingorable Sampling Design
I = RDS(2, 3, 3).

Statement: if GINC , which was produced from a suitable non-ignorable sam-
pling design I = RDS(2, 3, 3), does not have transitivity ofW ∗ ∈ [0.201038, 0.202726]
then with 90%, G does not have degree Q∗ ∈ [0.188, 0.215].
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For the degree and transitivity in the setting of figure 4.6 (left) and the joint
distribution we have the following statements:

Statement: if G has degree Q∗ ∈ [0.188, 0.216], we claim with probability
90% that GINC , which was produced from a suitable non-ignorable sampling de-
sign I = RDS(2, 3, 3), has transitivity W ∗ ∈ [0.201038, 0.202726].

It is possible to restate it as an inference procedure in figure 4.6 (left):

Statement: if GINC , which was produced from a suitable non-ignorable sam-
pling design I = RDS(2, 3, 3), does not have transitivityW ∗ ∈ [0.201038, 0.202726]
then with 90%, G does not have degree Q∗ ∈ [0.1188, 0.216].

The proposed statements for inference are confirmed in this section. We can
easily see, from all two examples, that the values of the features of the fully and
the partially observed networks are connected when we consider both the condi-
tional distributions of the network model and the sampling design and their joint
distribution, something that was expected to be shown. The way we can use a
statement of partially observed network and translate it to a statement of fully ob-
served network depends on the joint distribution of the underlying network and the
sampling mechanism. The only case that relaxes this assumption is extra assump-
tions on the function of the quotient P (A)

P (B)
(e.g. to be constant). If the practitioner

only have the conditionals this is the only reliable way to connect those state-
ments. Generally, we can not retrieve/extrapolate the results because of the part
of information not encoded in the conditionals. The same can be performed with
every combination of: a) random network model, b) a couple of their features and
c) any sampling design.

4.6 Discussion
We conclude, through the assertion in section 4.1, that generally for G and GINC
random networks we can not make the following conditional statements of the
form:

• if G has a feature of size δ, then we can infer that GINC has a similarly
feature of value β(δ), or
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• if we observe GINC has a feature of value δ∗, then we can infer that G has a
feature of value φ(δ∗).

The question that arises naturally is how useful are the statements of the suggested
logic for all random networks. An approach for tackling this question needs to
take into account the following sources of uncertainty:

• Random Network Model

• Sampling Mechanisms.

• Probability of the statement (the only factor that we can certainly state that
when it decreases the range of values of features will not increase).

• Features

The results confirm our initial intuition that for different random network models,
different features can behave differently regarding the sampling designs. In order
to connect such statements the joint distribution of both the random networks and
the sampling design is required, except the case where the conditional distribu-
tions are identical. It is reasonable to say that there are cases that those statements
are insightful and others that are not.

One more direction for future work involves data coarsening. Data coarsen-
ing is a statistical framework for statistical data including cases such as rounded,
heaped, censored, partially categorized and missing data [45]. The type of incom-
pleteness that is most commonly studied is missing data are the cases where the
data are either perfectly known or entirely unknown. Though, in common situa-
tions, data are neither entirely missing nor perfectly present. Instead, we observe
only a subset of the complete-data sample space of G where the unobservable data
lie and we refer to this kind of incomplete data as coarse data.
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Chapter 5

Robustness on Exchangeable
networks

In this chapter, we propose an approach for robustness on exchangeable random
networks. We assume an exchangeable model for performing inference on a fea-
ture of a random network. The problem is to assess how the quality of that in-
ference gets degraded if the model is slightly modified. In that way, we are able
to check, for an assumed network model which we can fit, how bad can a spe-
cific inference for that feature be. We consider decision making methods under
model misspecification by quantifying stability of optimal actions to perturbations
to the approximating/assumed/working model (the model that used to fit the data)
within a neighborhood in model space. This neighborhood is consisted by a ball
in a model space with radius defined by an information (Kullback-Leibler) diver-
gence around the graphon of the assumed model. Our approach is inspired by
recent developments in the context of robustness and recent works in the robust
control, macroeconomics and financial mathematics literature and more specifi-
cally is based on the concept of graphon approximation through a stochastic block
model.

This chapter presents a new method in robust decision making in random net-
work models from approximate statistical models. We adopt Bayesian inference
on networks and particularly we focus on inferences that can be phrased in terms
of decision theory. One examples of inference includes point estimation for a spe-
cific feature. The setup is the following: how model misspecification degrades
the quality of the inference. In order to achieve that, we cast this problem in the
framework of [110] in network context. To be clear and consistent with the con-
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text there are two models we are interested in throughout this thesis: the model
that generates the data, which we called either the true or the generative model and
the model we use to fit the data which we call either approximating or working
or assumed model. For simplicity, we will use either the word approximating or
assumed model.

As a trivial illustration consider the following two motivational examples: The
first example involves different departments of a university where co-authorship
chapters are published. For the most medical departments the researchers collab-
orate with epidemiologists/statisticians. Considering the statistical department,
there are many pure statisticians authors and coauthors from the people of differ-
ent departments. As a result, some people of the departments are more productive
than others and some of the statisticians are more proactive than others so we can
have different connection nodes (edges going to medical, gastronomic, pharma-
cology from statistical department etc). To fit a model, describing the structure of
those relationships, makes sense because some statisticians are assigned to these
departments, such as many statistician potentially will connect with different de-
partment with different probabilities. In higher level; this can be interpreted as a
stochastic block model (exchangeable random network model) but some assump-
tions can be into question. Can the average density of this network be formulated
by a simple model? The second example is associated with epidemiology (ex-
ample in [6]). Practitioners want to learn about the population of Drug abusers
or sex workers and we want to perform inference in the prevalence of HIV. They
can setup a model for the network and they can have a lot of interest in the de-
gree distribution. The quality of interest (prevalence of HIV) depends on how
well they can learn the degree distribution. If they assume again an exchangeable
random network model for describing the underlying network and if they know
the model that generated the data they can ask how much harm there is by using
the assumed model in the estimation of degree distribution and answer how much
harm is done?

The approach we propose is based on three main different statistical concepts:
robustness approach presented by [110], graphon approximation and stochastic
optimization. First, we use the approximation the true/generated exchangeable
random network representation that produces/generated the data by a parametric
model in order to handle it easier. Then we propose another approximating ex-
changeable network model that it is easier to fit to the true data. We want to see
how much harm is the last approximating model doing to the data when it comes
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to a specific inference in a network feature. The core idea is to construct a neigh-
borhood in model space, find the worst case scenario for the inference. The main
challenge will be in terms casting and implementing this theory to random net-
works.

The literature of exchangeability of infinite binary arrays - which encompasses
networks - is very well understood: see for example [10, 11, 48], [59, 60] and
[51]. Of particular relevance here is the work of [29] (but see also [79]), which
details the connections between exchangeability of random graphs and the no-
tion of graph limits developed in [62]. In [80], [5] and [57] the authors describe
methods of how to approximate network limits (graphons with a stochastic block
model. As an extend in [81] the authors present the network histogram, a version
of which we are will use in this chapter. Last, in the literature the scientific theory
behind robustness is well established and being used from the early 80s (e.g. [16])
until the 1990s and 2000s when computational advances and hierarchical models
broadly outpaced the complexity of data sets being considered by statisticians.
In more recent times, very high-dimensional data are becoming common, the so
called big data era, whose size and complexities prohibit application of fully spec-
ified carefully crafted models. In the chapter of [110] the theory is recapped and
extended.

The main contribution of our chapter can be phrased as follows: we provide
a methodology to examine whether and how much an approximating random net-
work model is suitable for describing a true random network model in terms of a
specific feature. We want to see whether a model we are using for inference is use-
ful and can describe the data of the generating model. Recent literature, provides
a bridge between graph limits called graphons, in model space, with stochastic
block models for exchangeable random network model. Our main challenge that
we encounter is that we connect tools like stochastic optimization and graph limits
to explore the model space. Suppose we have a SBM for prediction which is used
to code the community structure. We might have an application with communities
with some unambiguity on how data are generated. We are putting the assump-
tions into question. For instance, when our assumptions are not clear then in that
setup maybe something that generated the data is something like a block model
but not exactly. We want to infer the number of communities or a feature of com-
munity e.g. state that statisticians assume a model for this applied problem and
they perform this inference. How sensitive could be the quality of that inference
if the data did not come exactly from a SBM but something else that is approxi-
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mated by a way we do not know? What would be the harm if the model was not
coming from SBM? Here, we answer these questions by looking in the inference
of the exchangeable random network models feature (e.g. number of blocks) by
stating it as a decision theory problem. In order to perform all the above we make
a key assumption: the model that generates the data is in the neighborhood of the
model used to fit the data.

The chapter proceeds as follows: In Section 5.2, we describe settings of the
problem, we formulate them and give notation and definitions of exchangeable
networks, exchangeable random networks, graphons and model space. Then, in
section 5.3, we focus in our main purpose of this chapter which is how to use and
apply current tools on random networks to see how robust a random network is re-
garding the inference of a specific feature. Conceptually and computationally, our
methodology is presented. In section 5.4, for random network models data anal-
ysis that gives experimental results involving graphons, stochastic block models,
simulated annealing,robustness and model misspecification is conducted showing
the results of our approach. Finally, in section 5.5, we present with more details
the future work involving overlapping research areas.

5.1 Preliminaries

5.1.1 Robustness
Robust Bayesian analysis investigates the robustness of answers from a Bayesian
analysis to uncertainty about the precise details of the analysis, e.g. the misspecifi-
cation of the prior. People in robust optimization deal with optimization problems
in which a certain measure of robustness is sought against uncertainty that can be
represented as deterministic variability in the value of the parameters of the prob-
lem itself and/or its solution. Bayesian robustness and robust optimization are the
predecessors of [110] who presents an overview of recent natural developments in
the area. Related to this, approximate probabilistic inference techniques that are
misspecified by design have emerged as important tools for applied statisticians
tackling complex inference problems.

Sometimes the generative model for data is not contained in the family of the
models that used to fit the data and statisticians are interested in performing infer-
ence on those data. What is the impact of model misspecification on the quality of

74



inference? We assume that the object of specific inference is in terms of specific
feature and we suspect and want to rule out the possibility that possible model
misspecification may affect out capability of inferring that feature. By robustness
we focus on inference that we are interested a priori. We are not entering the dis-
cussion of a model trying to capture every feature of the random network model in
a satisfactory way(e.g. diagnostics). For example, suppose that the practitioner is
interested in the mean of a distribution and he assumes a very well simple model
for the tail. It is explaining very well the tails but is complex? Was it worth it? He
has better fit in the tails but worse in the mean in which he is interested in.

In [110] and their discussants [16, 43, 65] review recent Bayesian decision
theory research based on a local-minimax approach. They assume a prior and
likelihood are specified, but then consider decisions that are minimax over all dis-
tributions within a given (small) Kullback-Leibler divergence from the posterior.
They describe methods for estimating the sensitivity of a model with respect to
the loss function by analyzing the effect of local perturbations in neighborhoods
centered at the approximating model (in a Bayesian context this would be the pos-
terior distribution). These neighborhoods are defined using the Kullback-Leibler
divergence. This approach provides a bridge between the two dominant paradigms
in decision theory: Walds minimax [106, 108] and Savages expected loss crite-
rion. Two key features of this framework are that the solution is analytical, and
it unifies other well known methods in Statistics such as predictive tempering,
power likelihoods and Gibbs posteriors. It also offers an interesting solution to
the Ellsberg paradox. Another application of their work is in the area of compu-
tational decision theory where the statistician only has access to the model via a
finite set of samples. In this context, the methods can be used at very little extra
computational cost. Moreover, they consider non parametric extensions to the ap-
proximating reference model. In particular, they look at the Pòlya tree process,
the Dirichlet process and bootstrap procedures. Again using the Kullback-Leibler
divergence, it is possible to characterize random samples of these non parametric
models with respect to the base model, and therefore understand the effect of local
perturbations on the distribution of loss of the approximating model. A series of
diagnostic plots and summary statistics are presented. These complete the frame-
work of post-hoc assessment of model stability and allow the user to understand
why the model might be sensitive to misspecification. Graphical displays are an
essential part of statistical analyses, indeed the point of departure for any serious
data analysis. Their use in model exploration in the context of decision theory,
however, is not common. They borrow some ideas from finance and econometrics
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as a basis of exploratory decision-system plots.

Our approach is focused in robustness regarding the misspecification of the
likelihood whereas there are other approaches like the misspecification of the prior
which we are not dealing with. Authors in [16] provide a thorough review while
[110] consider this in a decision focused manner. Approaches based on tilted
likelihoods, which we focus and use in this chapter, can be found in [42, 69] and
mainly in [110], the theory of whom we are using, among others. Specifically, in
our case, in robustness the quality of that inference is encoded by a loss function.
In order to do that a neighborhood, Γ, of the model space (M) is constructed,
which is given by a sphere-ball with a center, G∗ and radius C. The center is the
approximating model and the topology of the space is defined by some distance.
Then exploration and exploitation of the space to find the worst case scenario,
which is given by the maximum expected loss function in that neighborhood, is
conducted. Usually practitioners resort to information theory to define the space
of the potential exchangeable random networks that could fit the data. For that rea-
son, every move in the space of potential models is performed by using Kullback-
Leibler divergence or either metric spaces (e.g. l1). Moreover, decision theory
helps practitioners to check how much impact has a potential model in that space
regarding a specific feature (e.g. density, degree distribution in networks etc).
More specifically, after the move is performed, is common, squared Expected
Loss of a feature of the exchangeable random network model to check how this
model is behaving is used to show how well is characterizing the true data, in
terms of that feature.

5.1.2 Exchangeable Random Networks and Graphons
There are two types of exchangeability network models. The first one concerns
a node exchangeable random graph (exchangeable random graph) is a random
graph on labeled nodes such that any (fixed) permutation of the labels yields a
random graph with the same distribution. This is natural if the labels are just la-
bels without intrinsic significance. An example is a stochastic block model. The
second type of exchangeability is the edge exchangeable random graphs which
were introduced in [27]. An equivalent model, using somewhat different formula-
tions, was given by [22] and [24]. The idea is that we have a fixed (labelled) vertex
set, and add a sequence of edges (regarded as pairs of vertices). Repetitions are
allowed, so we construct a multigraph. The sequence of edges is supposed to be
exchangeable. By De Finettis theorem, this is equivalent to the following:
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Let V be a finite or infinite set, and let µ be a deterministic or random proba-
bility measure on the edges of the complete graph on V .

• Given µ, take N i.i.d. edges with distribution µ.

• Delete all isolated vertices.

There are some similarities with vertex exchangeable random graphs with a dis-
crete type space N , but this type of exchangeability is quite different. An example
is: let (qi) be a probability distribution on N . For each edge, just pick its two
endpoints independently with this distribution. Thus µ(ij) = qiqj .

For this chapter when we refer to exchangeable models for networks, we refer
to node exchangeability. More specifically, a common feature shared by many
network models is that of invariance to the relabeling of the network units, or
(finite) exchangeability, whereby isomorphic graphs have the same probabilities,
and are therefore regarded as statistically equivalent. Exchangeability (from De
Finetti’s theorem) is a basic form of probabilistic invariance, but also a natural and
convenient simplifying assumption to impose when formalizing statistical models
for random networks. Examples of popular network models which rely on ex-
changeability include many exponential random graph models [98], the stochastic
block model, latent space models [84], to name a few.

Figure 5.1: Example of graphon representations ([5]).

Graphons (figure 5.1) arise as the fundamental objects in two areas: as the
defining objects of exchangeable random graph models and as a natural notion
of limit for sequences of dense graphs. Specifically, a graphon is a symmetric
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measurable function f : [0, 1]2 → [0, 1] which integrates to 1. Usually a graphon
is understood as defining an exchangeable random graph model according to the
following scheme: Each vertex j of the graph is assigned an independent random
value uj ∼ U [0, 1]. Edge (i, j) is independently included in the graph with prob-
ability f(ui, uj). A random graph model is an exchangeable random graph model
if and only if it can be defined in terms of a graphon in this way.

The simplest example of a graphon is f(x, y) ≡ p for some constant p ∈ [0, 1].
In this case the associated exchangeable random graph model is the Erdös-Rényi
model that includes each edge independently with probability p. The Erdös-Rényi
model can be generalized by Stochastic Block Model: Divide the unit square into
K ×K block, not necessarily of equal size. Let f equal plm on the l,m th block.
In this chapter, we are considering undirected random networks, so symmetric
graphons.

5.1.3 Simulated Annealing
Simulated annealing (SA) is a probabilistic optimization technique for approx-
imating the global optimum of a given function. Therefore, rescaling partially
avoids the trapping attraction of local maximum. Given a temperature parameter
T > 0, a sample θT1 , θ

T
2 , . . . is generated from the distribution:

π(θ) ∝ exp(h(θ)/T ) (5.1)

and can be used to come up with an approximate maximum of h. As T decreases
toward 0, the values simulated from this distribution become concentrated in a
narrower and narrower neighborhood of the local maxima of h.

Algorithm 3 Simulated Annealing

1. Simulate ζ from the distribution of π(θ).

2. Accept θi+1 = with probability ρi = exp(∆hi/Ti)∧1 where ∆h = h(ζ)−
h(θi) for i = 0 . . . I , I the number of iterations and

θi =

{
ζ with probability ρ = exp(∆h/T ) ∧ 1

0 with probability 1− ρ

3. Update Ti to Ti+1.
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Therefore, if h(ζ) ≥ h(θ0), ζ is accepted with probability 1; that is, θ0 is
always changed into ζ . On the other hand, if h(ζ) ≤ h(θ0), ζ is still be accepted
with probability p 6= 0 and θ0 is then changed into ζ . This property allows the
algorithm to escape the attraction of θ0 if θ0 is a local maximum of h, with a
probability which depends on the choice of the scale T , compared with the range
of the distribution of π.

5.2 Methodology
We cast the ideas proposed by [110] in the context of network data, mentioned
above, on how to perform the computations and implementations on network. We
do not provide additional theoretical results from those in [110] but a computa-
tional tool for robustness on exchangeable network models. Specifically, the final
outcome we propose presents the robustness of the exchangeable random network
model which is given by using stochastic optimization algorithms in the space of
non parametric models in order to find the worst possible model that maximize
the expected loss function in the model space. The main challenges are to use
simulated annealing as optimization algorithm, use graphons as non parametric
models and define the model space and the radius of the space. Algorithm 4,
below, describe explicitly all the steps we follow:

Algorithm 4 Algorithm for Robustness

1. Get the graphon of the generating model and the approximated model.

2. Discretize the graphon, by using an n× n grid, get a SBMs and compute
the KL between them in order to find the radius C of the sphere which
includes all the exchangeable random network models (fulfilling the as-
sumption made).

3. Sample the ball to get an appropriate value of the parameter T of the
simulated annealing.

4. The function h of the simulated annealing is the expected loss of a specific
feature .

5. Move inside the ball using the perturbing and rescaling moves and find the
maximum expected loss of that specific feature using simulated annealing.

Firstly, in order to to be consistent with [110] we define the space of the
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Figure 5.2: Space of Models

exchangeable random network models the approximating model, the generating
model and how we compute the radius of the ball. The space of models we are
dealing in this chapter is the space of all graphons of the exchangeable random
network models, here denoted by M. The Kullback-Leibler divergence defines
the space where the modified models are located. The model which generates
the data is denoted by G and the approximating model G∗. The radius C of the
sphere that contains all the exchangeable models of our interest, as in [110], is
defined by the Kullback-Leibler between the true and the approximating model.
Kullback-Leibler is a premetric and generates a topology on the space of proba-
bility distributions. So we define the closed ball with center G∗ and radius C such
that:

Γ(G∗) = {G : KL(G∗,G) ≤ C} (5.2)

Usually, one important example of a neighborhood defined byC is the ε-contamination
neighborhood from [15] formed by the mixture model,

Γ = {Gcurrent = (1− ε)G∗ + εq, q ∈ Q}, (5.3)

where ε is the perceived contamination error, which in our case is provided by two
moves, in G∗ and Q is a class of contaminant distributions - perturbed versions of
graphons (figure 5.2).
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The next challenge is to explore and exploit that space. For any approximat-
ing exchangeable network model, assumed by the statistician/practitioner to fit the
data (e.g. Erdös-Rényi or Stochastic Block Model), initially, we find its graphon
(e.g. flat Erdös-Rényi, piecewise constant for Stochastic Block Model) and dis-
cretized it like in [5, 57, 80] by splitting the unit square in a large number (n2

of equal squared blocks. In order to move into the sphere we need to shuffle
and to change the heights of the grid. The grid is fixed, with as we mentioned
n × n equal cells, which give the approximated SBM of a graphon. We follow
two moves, which are described below, are the perturbing move and the rescaling
move:

• In order to perturb the discretized graphon and move in the neighbors mod-
els inside the ball that are defined by KL between the approximate model
and the perturbed models like in [2], we use a simplex like below:

{K ∈ R : K1,1 + · · ·+Kn,n = α,Ki,j ≥ 0, i, j = 0, . . . , n} (5.4)

Initially, parameter α above is 1 but changes its value less than 1 due to the
second move. By changing the probabilities of Ki, we perturb each current
model every time. (assumptions: same sized squares, graphon is symmetric
and simplex). For this:

Draw n2 independent random samples y1,1, . . . , yn,n from Gamma distribu-
tions each with density:

Gamma(αi,j, 1) =
y
αi,j−1
i,j e−yi,j

Γ(αi,j)
(5.5)

where , αi,j which denotes the counts in each cell, and then set

Ki,j =
yi,j∑n
i,j=1 yi,j

(5.6)

If yi,j are independent Gamma(αi,j, 1), for i, j = 1, . . . , n then:

(K1,1, . . . , Kn,n) =

(
y1,1∑n
i,j=1 yi,j

, . . . ,
yn,n∑n
i,j=1 yi,j

)
∼ Dirichlet(α1,1, . . . , αn,n) .

(5.7)

• Scaling the graphon: E.g. for the Erdös-Rényi model the initial graphon
(the one which has equal degree density and be flat) is going to be equally
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Figure 5.3: Exploring and exploiting the Models in the sphere. The red trajectory
inside a subspace A illustrates the perturbing move which is created by changing
the heights of two cells of the Stochastic Block Model. With the blue line, the
rescaling move is illustrated, jumping to another subspace B of the sphere.

to one. Then to get the desired surface we multiply the SBM heights that
approximate the graphon with ρ. When we scale it, it is no longer a graphon,
it is a scaled graphon. In our case ρ is randomized with 1 ± δ, where δ has
a small value that varies.

Those two moves show we how different we are with respect to a constant and
to scaling. The adjustment of the heights are coming from those two moves. We
perturb a certain number of times and then we rescale and check if we the next
model is included in the KL ball. Those two moves need to be inside the ball and
satisfy d(W1,W2) < C (distance metric e.g L2 or L∞ getting moves within this
ball, for the computations).

The Kullback-Leibler between the graphon approximations of the two random
graph models needs to be approximated:

KL(p || q) =

∫ ∞
−∞

∫ ∞
−∞

p(x, y)log
p(x, y)

q(x, y)
dxdy (5.8)
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Figure 5.4: Latent positions projected in x,y-axis.

conditional on the latent positions.

One computational problem that arises in network data is regarding the entries
of the adjacency matrix associated with u1 and u2 and the entries associated with
u1 and u3 in figure 5.4. This happens because the latent positions (u1, u2) and
(u1, u3) are dependent as they have the coordinate u1 in common. It follows that
the events of having an 0 or 1 on entries of a network adjacency matrix associated
with those latent positions are dependent if we do not condition on the values of
these latent positions. In that way, we average out these dependencies. The same
happens with (u1, u3) and (u4, u3) because of u3. However, this is not occurring
with points (u1, u2) and (u4, u3) which are independent, since they do not have a
coordinate in common (figure 5.4).
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Algorithm 5 MC algorithm for approximating Kullback-Leibler

1. Draw a uniform and then draw a point pattern correspond to that uniform,
by reflecting the points of x-axis to y-axis. This gives us a coordinate of
point.

2. Since that grid is fixed essentially we count, take those points that they are
occupied by the point pattern get the KLi for those in the upper triangle
and then add them.

3. Repeat 1 and 2 several times to get KL1, . . . , KLn.

4. Average all KL results that we got and get an approximation of KL.

Algorithm 5 gets into account the dependence and integrated them out. When
we average of all of this we get an approximation and we take into account the
dependencies due to the point pattern because we have incorporated them in all
simulation.The MC algorithm 5 gives an average of Kullback-Leibler divergences
over their dependencies which is a good approximation. It preserves the structure
and averages out where the possible latent positions are falling. Because we sam-
ple from those uniforms over and over again, the latent positions are not taken into
account by averaging out.

We need to define an expected loss function (objective function), for a specific
inference (predict the present of certain edges, density of the graph etc), which we
will maximize with respect of expected loss by using Simulated annealing. This
has to applied to Erdös-Rényi and Stochastic Block Model. Here Squared loss
function is used:

E[(τ̂(G)− τ(G))2] = E[(τ̂(G)− E[τ̂(G)])2] + (E[τ̂(G)]− τ(G))2 =

= V (τ̂(G)) + (E[τ̂(G)]− τ(G))2 (5.9)

The expected value has to be sample many times the realizations of networks
of the surface. τ(G) is true value of the current model feature and τ̂(G) is estimator
of that feature.
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Algorithm 6 Selecting T parameter for Simulated Annealing

1. Sample the sphere regarding the expected losses of the feature, combined
with values of the sphere boundaries and approximated model G∗.

2. Find the median of those samples.

3. Give T0 this value.

Another challenge is to propose a method how to select the initial value of
parameter T from the simulated annealing, the stochastic optimization technique
we use. This value has to be calibrated according to the values of the Expected
Losses of the feature. We select T0 by algorithm 6. T0 and the losses have to be in
the same scale and in order to select T0 we sample randomly the sphere.

5.3 Simulation Studies
This section is divided into two subsections. The objective of the first subsec-
tion is to show that the simulated annealing is reliable and the objective of the
second section is to present actual results. For both subsections we consider the
following: we have the true network model and the approximating exchangeable
random network model. We fit the graphon to the generating model and sample
the graphon to see what is the best approximation using a SBM, with certain num-
ber of blocks. That KL gives us an intuition of the size of the ball, by the radius
C. To investigate the behavior of the proposed approach, we conducted three sim-
ulation studies. The objective of the simulations is to examine how harmful is
the approximating exchangeable random network model when we use it to fit the
data by the generating model for inferring a specific feature. The regimes of the
simulation study are given by: the random graph model, the corresponding vector
of parameters (Table 5.1) and the sample size.

To infer the generating model we use [80] approach. The graph features we
considered were: the density of the networks and number of communities for an
Erdös-Rényi model and two Stochastic Block Models. The first Stochastic Block
Model (SBM1) is selected a random Stochastic Block Model after 100 iterations
of moves of Erdös-Rényi simulations. To infer second Stochastic Block Model
(SBM2) parameters we use [58] approach, by using the same notation for num-
ber of blocks (K), and inclusion probabilities (λ, ε). When we implement our
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Approximating Exchangeable RGN Parameter Specification Features
ER K=1, N = 100 (fig. 5) Blocks and Density
SBM1 Point of ER after 100 moves (fig. 6) Blocks and Density
SBM2 λ = 0.5, ε = 0.5, N = 100 Blocks and Density

Table 5.1: Approximating Exchangeable Random graph models, parameter vec-
tors and graph features considered for setting up simulation regimes.

method we consider 1000 samples of the desired parameters θi from the models
inside the sphere and 100 networks instances given the value of the parameters.

5.3.1 Variability of Stochastic Optimization process and data
sets

Our goal is to check whether the proposed approach reaches the worst case sce-
nario (maximum expected loss). In other words, we want to investigate how dif-
ferent are the models from the actual worst case scenarios. For that reason, we
explore the space of the balls by exhausting as many as possible models explor-
ing the ball. The three settings mentioned above are considered. We examine the
variability of the simulated annealing by running it 10 times and extracting the
mean and the variance compared with the ground truth. This ground truth comes
from a brute force algorithm which considers 1.000.000.000 models in the balls.
In each setting the variability of the stochastic optimization process is conditional
to the data. That is why we repeat this procedure for each of these different three
settings considering the variability of the data sets, as well.

Approximating Exchangeable RGN for Density Brute Force Mean Variance
ER 7.65817e-7 7.65828e-7 9.1742e-17
SBM1 7.65817e-7 7.65831e-7 9.1765e-17
SBM2 0.000929188 0.000929213 8.9826e-8

Table 5.2: Expected loss of worst case scenario with brute force (ground truth)
compared with the mean of expected loss of the worst case scenario for the density
of the three different models providing the variance of Expected loss of worst case
scenario
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Approximating Exchangeable RGN for Blocks Brute Force Mean Variance
ER 50.2342 50.2748 0.00281
SBM1 48.9342 48.8281 0.00301
SBM2 1826.2342 1827.1977 1.28392

Table 5.3: Expected loss of worst case scenario with brute force (ground truth)
compared with the mean of expected loss of the worst case scenario for the number
of blocks of the three different models providing the variance of expected loss of
worst case scenario.

As expected theoretically, Tables 5.2 and 5.3 confirm the reliability of our
approach since the expected losses of the exhausting method is almost the same
with the mean of the expected losses of our approach. The calculated variances
are insignificant with very small values.

5.3.2 Results
Here, we present and illustrate the results of the proposed method for each one
of the three different settings. As discussed in Section 3, our approach associates
a score in each case. Such score is given by the maximum expected loss given
by the inference to the feature, while exploring and exploiting the sphere-ball.
Figures 5.5, 5.6 and 5.7 are the approximating models which are located in the
center of the ball.
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Figure 5.5: Erdös-Rényi model, 20 × 20 cells.

Figure 5.6: Stochastic Block model, 20× 20 cells, after applying the moves. This
stochastic block model is used as an approximating model SBM1 for the second
experimental design, as well.
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Figure 5.7: True approximation of the graphon represented by a Stochastic Block
model.

Figure 5.8: (a) Values of frequencies (Expected Loss (model)-Expected
Loss(center model))/Expected Loss(center model) for the density. (b) Values of
frequencies for the scaled distribution between 0 and 1 in x-axis.
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Approximating RNM (G∗) Radius C A B
ER 0.921 1.87 1.98
SBM1 0.887 1.56 1.75
SBM2 1.192 9.43 14.87

Table 5.5: Results for three models. Radius C given by Kullback-Leibler
divergence is given and the maximum expected loss for one Erdös-Rényi
model and two different Stochastic block models are presented. The fist two
model are reasonable to be fitted but the last Stochastic block model is very
robust in terms of inference for Density and Number of Communities.

Figure 5.9: (a) Values of frequencies (Expected Loss (model)-Expected
Loss(center model))/Expected Loss(center model) for the community blocks. (b)
Values of frequencies for the scaled distribution between 0 and 1 in x-axis. The
gap in the right figures are due to the nature of the random networks and their
features.

In figure 5.8 and 5.9 we criticize the approximating models regarding their
density and community blocks. The first two models behave well and capture
well the interested features regarding the true data. This can be shown by the
fact that the mass of the distribution is centered and compact in low values

90



so all the models and the approximating models do not differentiate too much
regarding those features in that ball C. On the other hand, the third model
does not behave well. This can be shown by the fact that its values are
dispersed and the majority of the models in the ball are completely different.
A slight perturbation in the model might end up with a huge perturbation
in expected value quantities A and B as defined in table 5.4. Finally, all the
results are shown in table 5.5, confirming the above criticism.

5.4 Discussion

In this chapter, we present a new principle approach for robustness for in-
ferences on exchangeable random network models, based on graphons. To
the best of our knowledge, this is one of the first efforts, in the literature,
graphons are used to deal with practical problems. The main advantage of
our method is that it provides the statistician with a conceptual framework
that enables him/her to check whether an specific inference of an approxi-
mating model is robust with respect to model misspecification regarding the
generating model. The results suggest that our method gives reasonable an-
swers when we compare different kind of SBMs to examine how well they are
performing.

Three limitations of our work are the following: The first limitation is
that we do not provide a general way to represent a flexible way to perturb
non-exchangeable models. Here, we used the power of graphons. Graphon
are able to give us a general way to perturb them. If we fit a SBM approxi-
mation of a graphon in non-exchangeable random network model there might
be a misspecification on the model. Until now, there is no way to charac-
terize this misspecification. Therefore, to perform a similar method for non
exchangeable models we need a way to define and to move to the space of
models that take into account non-exchangeability. Secondly, we are deal-
ing with the biasness of estimators combining network models and network
realizations for specific features e.g. the average distance. We need good
estimators to calculate the generating model specific feature of the random
network vs the properties of the network in order to estimate the expected
loss. Otherwise, there might be a misspecification on the model. Finally, the
third limitation is that we do provide a methodology to express and perturb
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the graphon and the model we are interested in explicitly with an analytical
expression. In contrast, we resort to computational and approximation ap-
proaches which come with a (small) error.

For future work we propose the following three directions: The first two
have to do with the limitations mentioned above. First, we need to find
estimators that can be useful to connect random networks with networks in
terms of features and properties, respectively. The second direction is ex-
tending our method to non-exchangeable models. One way is to define and
use a very flexible and hard to interpret family of models and compute the
distance with the approximating model [72]. Since, there are not such non
exchangeable models we have to resort to another space e.g. to move from
a parametric space to a non-parametric space, maybe observable space and
then apply [72] techniques. The last direction is to develop a method that
can be applied to networks and (non) exchangeable random network models
adopting the robustness setting in [82].

For the last two directions, one challenge is that the neighborhood is
centered at the model we try to fit and specify and we assume it is correct.
We are provided by the size of the neighborhood, in which we are going to
find the worst case scenario. One of the challenges is what should this size of
this ball be? In [110], the authors do not provide any answer. If we have a
goodness of fit of Bayesian Models, how reasonable is my model? Combining
the logic of [72] can provide us with a sense of how far is the data generating
mechanism from the model we want to use in the first place and interpret.
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Chapter 6

Summary, discussion, and
future work

Here we provide a summary of the contributions of the thesis (Chapters 3-5).
We then present a brief discussion of these and other prominent challenges
in network modeling, along with possible avenues for future work (thereby
extending Chapter 3-5).

6.1 Summary of our contributions

In this thesis, we contributed to the field of statistical inference for net-
works by proposing Bayesian methods to improve our understanding of some
widely used network models regarding their behavior of their features. We
developed three different framework that enables us to investigate different
practical aspects of network models.

In chapter 3, our objective was to develop a new method for comparing
sampling design on network data by using information theory. We make the
case that different designs are more suitable for different random network
models. At the end of the day, a practitioner can use our framework to select
sampling designs which are more informative for the random networks of his
choice. Regarding the theory of this section, we associated the problem with
the rationality behind the statistical interpretation of the reference priors. As
a consequence, it is showed that following the same assumptions of the ref-
erence priors, a framework for comparing sampling designs on network data
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can be derived. We examined the usefulness of this approach by simulation
studies and the results indicate that the ranking of many different sampling
designs is consistent with decision theory approach without the need of spec-
ifying a loss function [7].

Subsequently, in the second part of this thesis we used the Bayesian al-
gorithm regarding sampling designs from section 3 to infer reasonable state-
ments that combine both random networks, their features and sampling de-
signs. More specifically, we provided valid and generic ways to translate
statements for partially observed networks to fully observed networks and
via versa. The most interesting thing we want to investigate is to theoret-
ically and practically understand what information is required to enable us
to use statements at the level of partially observed networks and turn them
into statements for fully observed networks that they produced them. In
the same spirit other coarsening techniques [45] can be used. In that con-
text our goal was to investigate to what extend a statement that we can
make for a partially observed network can be translated to a statement to
a fully observed network. We proved that in the general case the answer
is that the joint distribution of their features and the sampling designs is
required in order to create relevant statements. In the simulation studies
we used Erdös-Rényi model, degree and transitivity which leaded us with
two detailed and intuitive examples of how two features are related when
a sampling design is involved. We encountered a case in which conditional
distributions regarding network data feature and sampling designs provided
enough information, compared with other cases in the literature, to build
such statements confirming our point.

In the third project, we adopted the statistical framework of [110] to
provide tools to the modeler to evaluate how the quality of inference for a
specific feature of a random network model is degraded when the approx-
imating model is misspecified. We tried to answer how sensitive could be
the quality of an inference be when the data is not coming exactly from
the true exchangeable model. More specifically, we provided methodology to
examine whether and how much an approximating random network model
is suitable for describing a true random network model in terms of a spe-
cific feature. In terms of methodology, our main challenge was to combine
stochastic optimization and graph limits tools to explore the model space. To
test the effectiveness of our approach we performed simulation studies that
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show how harmful is the fact that a model is not coming from the true model.

6.2 Discussion

Outlining what we have learned in light of theory, experiments and simulation
studies we can state the following:

• The proposed approach in chapter 3 which is based on information
theory provides a ranking of sampling design which is consistent with
the results that are obtained with some of the most important loss
function for estimation and prediction in Bayesian inference.

• In chapter 4, we provided the practitioners with the theory concerning
how to develop and connect statements which involves uncertainty on
random network models, features and sampling designs (inline with
coarsening data in [45]). Those statements concern the features of fully
and partially observed networks and provide the practitioner with the
intuition of how those features are related and whether they provide
useful information when working with those networks.

• We casted the paper of [110] on robustness for exchangeable random
network models. The main advantage of our method is that it provides
the statistician with a conceptual framework that enables him/her to
check whether an specific inference of an approximating model is rea-
sonable regarding the generating model. The results suggest that our
method gives reasonable answers when we compare different kind of
SBMs to examine how well they are performing.

6.3 Extension and future work

6.3.1 Network models with higher dimensionality

In our case the curse of dimensionality is reflected in chapters 3-4. The
MCMC algorithm we use is slow but can be easily scaled out (appendix).
Though, new faster algorithms based on other MCMC implementations or
variational methods can be constructed. Generally, the curse of dimension-
ality is a big issue in many computational problems. Due to technological
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advances we are able to collect data that are increasingly large and diverse
in structure. To fully exploit these rich data, there is a strong need for net-
work models to catch up in their dimensionality, and for us to derive the
asymptotic properties of these models such that we can deliver statistical
guarantees. In contrast to classical statistics, the observations may neither
be identical nor independent; and there is no natural ordering inherited in
the data and no means of geometry, as is the case for time series or spatial
statistics. As a result, a key challenge here is to introduce high-dimensional
models that reflect the unique structure inherited in networks.

6.3.2 Imperfectly observed networks

Broad topics around imperfectly-observed networks have been studied from
many different viewpoints e.g. an overview can be gleaned from the talks
at the workshop [113]. However, there is no probability model involved;
different algorithms are compared experimentally by taking a real-world net-
work, randomly deleting a proportion of edges to create a synthetic observed
graph, and comparing the algorithms effectiveness in predicting the deleted
edges. Clearly, their research area of identifying specific useful expressions,
correlations and connections regarding the features of partially and observed
networks is fruitful. Three possible future direction are:

• Construct faster computational algorithms.

• Propose computational algorithms for specific circumstances (e.g. par-
ticular feature) looking for informative ways at a level of underlying
network.

• Investigate for analytical solutions when possible.

6.3.3 Exchangeability on Networks

A fundamental question in modern network statistical science is how we can
escape exchangeability. A reasonable and desirable property of generative
models for networks is that they should not depend on the order in which
we observe data, i.e., that our models are exchangeable. Network data, pre-
sented as a (random) adjacency matrix, requires joint exchangeability, so row
and column identities in the matrix are jointly preserved under permutations
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of the data.

Exchangeability as a requirement leads to representation theorems. For
exchangeable sequences, de Finettis theorem implies that they can be rep-
resented by an underlying i.i.d. mixture of random variables. From this
perspective, exchangeability for network data implies the existence of a la-
tent variable generative model, and furthermore that in such a model, edges
are conditionally independent. That is, exchangeability of a network model
implies that we are in the regime of dense networks. This is problematic
because most real-world networks, in fact, are sparse (vertices have constant
or very slowing-growing degree; graphs have O(n) edges).

Most of the models discussed in our walking tour fall within the jointly
exchangeable framework of Aldous-Hoover. This would seem to imply that
all generative models for networks are misspecified, despite their many suc-
cessful practical applications. One solution to this fundamental problem is
to abandon exchangeability in favor of alternative properties, or to attempt
to escape the Aldous-Hoover representation entirely. While networks enable
us to model complex dependencies between entities, the lack of techniques
to model non exchangeable network models makes the results unreliable.

Here we can do not consider exchangeable models. The ball is constructed
in a required way. Other constructions apart/alternatives from the graphon
construction. For example, in [25] they consider exchangeable random mea-
sures. How this ball is going to be built for theoretical and computational-
probably scalable-reasons? Another direction is find alternative ways to de-
termine the radius.

Supplementary material for Chapter 3

Scalability

Procedures in figures 3.5, 3.6 and 3.7 are scalable in terms of samples we are
collecting either from the fixed parameter or from ground truth distribution.
The algorithms are computationally expensive even for random matrices with
100 nodes. Figure 6.1 shows how samples can be combined together taking
into advantage the map-reduce scheme to decrease the time of the computa-
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Figure 6.1: Parallelizing Figures 3.2, 3.3 and 3.4, using a cluster with N units
in Map phase.

tions.

Moves for Non-Ignorable designs

Let VINC and VEXC the set nodes of GINC and its complement. Denote by AH
the submatrix of AG (the adjacency matrix for G) obtained by taking only
the rows associated to elements of VINC. We denote by bO the number of
zeros in submatrix of AG obtained by taking the rows associated to VINC and
the columns associated to VEXC. Denote by jI the number of edges included
in GINC.

To sample from p(θ,GEXC | GINC) we implemented a Metropolis step
based on a mixture of four kernels.

The first kernel corresponds to a proposal where a vertex v ∈ VINC is
picked uniformly at random, and all the edges connecting it to elements of
VEXC are re-wired, so the number of neighbors of v belonging to VEXC remains
constant. The Metropolis ratio implied by these choices has the form

H(t) =
p(I | GINC, G(t)

EXC)

p(I | GINC, G(t−1)
EXC)

(6.1)

where p(I | GINC, G()
EXC) is the value of that results from using the im-

putation of the network implied by G
()
EXC . Note that, this move keeps the
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number of edges constant, therefore the terms corresponding to the Erdös-
Rényi probability mass function cancel out. Clearly, the move that reverses
the proposed one implies picking the same v ∈ VINC. By conditioning on this
event, the proposal becomes a uniform over the subsets of VEXC that have as
many elements as v has neighbors in VEXC. This last statement implies that
the terms corresponding to the proposal also cancel out.

The second and third kernels should be seen as dual: the second kernel
corresponds to the proposal where an edge connecting to vertices (v, w) ∈
VINC × VINC is chosen uniformly at random and then substituted by two
edges, each of them connecting a different element of {v, w} with an element
of VEXC (not necessarily the same one) picked uniformly at random. The third
kernel allows for the opposite move: it takes two vertices (v, w) ∈ VINC×VINC
such that, each of them has at least one edge connecting it to an element of
VEXC, then, two of such edges are chosen (one incident to v and one incident
to w) uniformly at random and then replaced by an edge connecting v and

w. Let h
()
I be the number of edges of the form (v, w) ∈ VINC × VINC that

are in the current version of the network due to imputation (i.e., these edges
were not observed). The Metropolis ratio corresponding to the second kernel
is of the form

Figure 6.2: We arrange the unobserved data with the information we have
from the observed data.
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Figure 6.3: We add two nodes that link the observed and unobserved nodes
and connect the two observed nodes.

Figure 6.4: We remove one edge from two observed nodes and we connect
those two nodes with another two unobserved nodes

100



Figure 6.5: We have two observed nodes connected with two unobserved and
we rewire them.

H(t) =
α

1− α
× p(I | GINC, G(t)

EXC)

p(I | GINC, G(t−1)
EXC)

×
h

(t)
I

(
b
(t)
O
2

)
(n(n−1)

2
− ji − h(t)

I + 1)
(

(n(N−n)−b(t)O +2)
2

)
(6.2)

while the Metropolis ratio for the third kernel is given by

H(t) =
1− α
α
× p(I | GINC, G(t)

EXC)

p(I | GINC, G(t−1)
EXC)

×
(n(n−1)

2
− ji − h(t)

I )
(

(n(N−n)−b(t)O )
2

)
(h

(t)
I + 1)

(
b
(t)
O +2

2

)
(6.3)

The fourth kernel corresponds to the proposal where the submatrix of
AG with rows and columns associated to VEXC is imputed using independent
draws from a Bernoulli with probability of success α. This proposal implies
the Metropolis ratio
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Random Graph Model Parameter Specification Features
Erdös-Rényi θ = 0.2, N = 100 θ and Trans.

Table 6.1: Random graph models, parameter vectors and graph features
considered for setting up simulation regimes.

H(t) =
p(I | GINC, G(t)

EXC)

p(I | GINC, G(t−1)
EXC)

(6.4)

since the terms corresponding to the proposal and those corresponding
to the random graph distribution (given α) cancel out.

Erdös-Rényi model

Here, we use another, more simpler, random graph model to illustrate
our method:
• The Erdös-Rényi model:

Pr {AG(i, j) = 1} = p, p ∈ (0, 1)

The graph features τ(G) we considered were: density and transitivity for
Erdös-Rényi:

Ignorability

To perform Bayesian inference, it is necessary to specify the likelihood cor-
rectly. The concept of ignorability [?, ]]Rubin helps on this task by providing
criteria for deciding if the uncertainty due to the sampling mechanism needs
to be modeled explicitly in the likelihood. Let p(G) denote the distribution
of the full network data. We follow the convention by [?, ]]Rubin and write
the joint distribution of (G, I) as

p(G, I, η) = p(G)p(I | G, η), (6.5)

where η represents the vector of tuning parameters of the sampling mech-
anism, which can be specified by the statistician.
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A sampling design I is ignorable if:

p(I | G, η) = p(I | GINC, η), (6.6)

where η are the parameters for the sampling design and the full data τ are
distinct.

If a sampling design is ignorable, then the term corresponding to the
distribution of I is omitted from the likelihood:

p(G | θ) ∝
∫
GEXC

p(GINC,GEXC | θ)dGEXC. (6.7)

A sample mechanism that does not fulfill the definition above is called non-
ignorable. A consequence of a sampling design being non-ignorable is that
the likelihood is not constant with respect to missing data, and therefore, it
has to be imputed in a way that reflects the changes in the values for the
likelihood:

p(G | θ) ∝
∫
GEXC

p(I | GINC,GEXC)p(GINC,GEXC | θ)dGEXC. (6.8)

In the first case the part p(I | GINC,GEXC) becomes constant with respect to
GEXC.
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Figure 6.6: Upper: Comparison of sampling designs regarding the mean of
the Hellinger distance distribution regarding degree density and transitivity.
Middle: Comparison of sampling designs regarding the mean of the expected
squared loss distribution of the predictive distribution, Eθ(θ− θ̂)2 where θ is
the either the degree density or the transitivity. Down: Comparison of sam-
pling designs regarding the mean of the expected absolute loss distribution
of the predictive distribution, Eθ(| θ − θ̂ |) where θ is the either the degree
density or the transitivity. 104



Model Feature SD MHD MSE
(P.P.)

MAE
(P.P.)

MSE
(P.)

MAE
(P.)

ER θ S
(2,2,2)

0.0212 0.0306 0.0766 0.0308 0.1758

ER θ S
(3,3,2)

0.0095 0.0193 0.0403 0.0189 0.1372

ER θ S
(3,2,3)

0.0040 0.0072 0.0274 0.0071 0.0845

ER θ RDS
(2,2,2)

0.0099 0.0048 0.1498 0.0021 0.0449

ER θ RDS
(3,3,2)

0.0097 0.0031 0.0865 0.0007 0.0261

ER θ RDS
(3,2,3)

0.0098 0.0032 0.0935 0.0017 0.0409

ER Trans. S
(2,2,2)

0.0215 0.0314 0.0743 - -

ER Trans. S
(3,3,2)

0.0093 0.0188 0.0416 - -

ER Trans. S
(3,2,3)

0.0041 0.0073 0.0272 - -

ER Trans. RDS
(2,2,2)

0.0099 0.0048 0.1502 - -

ER Trans. RDS
(3,3,2)

0.0093 0.0032 0.0878 - -

ER Trans. RDS
(3,2,3)

0.0095 0.0038 0.0965 - -

Table 6.2: Means of Hellinger Distances Distribution (MHD) and means of
Predictive Posterior (P.P), for point prediction, and Posterior (P.) Quadratic
and Absolute Mean Distribution (MSE and MAE), for point estimation, for
six different sampling designs in the settings of degree density and transitivity
on Erdös-Rényi model.
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