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Abstract: 50 

Chimpanzees possess a large number of behavioral and cultural traits among non-human species. 51 

The ‘disturbance hypothesis’ predicts that human impact depletes resources and disrupts social 52 

learning processes necessary for behavioral and cultural transmission. We used an unprecedented 53 

data set of 144 chimpanzee communities, with information on 31 behaviors, to show that 54 

chimpanzees inhabiting areas with high human impact have a mean probability of occurrence 55 

reduced by 88%, across all behaviors, compared to low impact areas. This behavioral diversity 56 

loss was evident irrespective of the grouping or categorization of behaviors. Therefore, human 57 

impact may not only be associated with the loss of populations and genetic diversity, but also 58 

affects how animals behave. Our results support the view that ‘culturally significant units’ should 59 

be integrated into wildlife conservation. 60 

Main Text: 61 

Many animals show population specific behavioral variation, with chimpanzees (Pan 62 

troglodytes) exhibiting exceptionally high levels of behavioral diversity(1, 2). This diversity has 63 

been documented in a variety of contexts, including communication, thermoregulation and 64 

extractive foraging (table S1). Chimpanzees are also proficient tool-users, using sticks, leaves 65 

and stones to access honey, insects, meat, nuts and algae (table S1). Many of these behaviors are 66 

inferred to be socially learned and therefore cultural(2),  although the influence of genetic and 67 

environmental variation cannot always be ruled out(3). Culture in chimpanzees is supported by 68 

the occurrence of local traditions irrespective of resource or tool abundance(1, 2), and controlled 69 

experiments demonstrating that naïve chimpanzees can socially learn new behaviors(4, 5). 70 
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Moreover, new behaviors, or variants, are regularly discovered when observing previously 71 

unstudied populations(5) (table S1).  72 

 73 

Cultural behaviors in great apes, notably chimpanzees(1) and orang-utans(7), are maintained by 74 

cultural processes including innovation, diffusion, and vertical and horizontal transmission(2, 8). 75 

These behaviors are vulnerable to environmental disturbance, in that if crucial conditions are 76 

modified, the overall rate of opportunities for social transmission may be reduced(8). This 77 

proposition, named the ‘disturbance hypothesis’, predicts that under anthropogenically disturbed 78 

conditions behavioral traditions in great apes may disappear not only with the complete 79 

extinction of a population, but also when the population remains, due to resource depletion or a 80 

breakdown in opportunities for social learning(8). Major elements of human impact include 81 

habitat loss, degradation and fragmentation, which reduce population size, gregariousness and 82 

long-distance dispersal, weakening behavioral transmission(8).  83 

 84 

In the current Anthropocene era, Earth’s biosphere is being heavily degraded by unsustainable 85 

resource use and high rates of biodiversity loss(9). This overexploitation is substantially 86 

impacting chimpanzees and their habitat, namely African tropical forests and savanna 87 

woodlands(10). All four chimpanzee subspecies are severely threatened by deforestation and 88 

poaching, caused by a rapidly growing human population(9–11). These factors have already led 89 

to major population declines, fragmentation and regional extirpations(11) and reduced genetic 90 

diversity(12). 91 

 92 
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The large behavioral diversity of chimpanzees coupled with rapid population decline makes 93 

investigation of the disturbance hypotheses timely: to what extent are chimpanzee behavioral and 94 

cultural diversity affected by habitat fragmentation and population loss resulting from human 95 

activities? To address this question, we applied a range of non-invasive techniques to collect a 96 

wide spectrum of environmental, social, demographic and behavioral information on previously 97 

unstudied chimpanzee communities, or communities not fully habituated to human observers, at 98 

46 locations (Fig. 1). The actual number of chimpanzee communities represented is likely to be 99 

higher, as individuals from more than one community may have been observed at a location. 100 

Therefore, we define a chimpanzee community as those individuals which occur at a specific 101 

geographic location, with associated observations on behaviors. With few exceptions, we 102 

collected data over a minimum of one annual cycle (observation period between 12-30 months at 103 

37 locations; observation period 1-10 months at 9 locations) in a systematic grid design (grid size 104 

range: 9-143 km
2
).  105 

 106 

We compiled presence and absence data on 31 known chimpanzee behaviors (table S1) from 107 

these 46 chimpanzee communities and complemented the data set with additional information 108 

about these same behaviors on another 106 chimpanzee communities from the published 109 

literature. In total, 144 unique chimpanzee communities comprised the full data set (Fig. 1, Data 110 

S1). We recorded observations on these behaviors via 1) extensive camera trapping; 2) fecal 111 

samples that provided evidence of ingestion of insects, algae and honey, resources often 112 

exploited with the aid of tools; 3) artifacts of tool use identified during reconnaissance, line and 113 

strip transect surveys. We selected behaviors that were detectable via indirect evidence (e.g., 114 

tools and artifacts) or direct evidence from camera traps, and that exhibit variation across 115 
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populations rather than being universal traits of chimpanzees(1, 2, 13) (table S1). Importantly, 116 

although we do not explicitly test for cultural transmission, we infer that much of chimpanzee 117 

behavioral diversity reflects cultural diversity owing to an accumulation of observational and 118 

experimental evidence(1, 4–6). Moreover, many behaviors included here have already been 119 

classified as cultural(1).  120 

 121 

Fig. 1 Locations of all 144 unique chimpanzee communities for which information on select 122 

behaviors was collected for this study. This includes 46 communities from the Pan African 123 

Programme (PanAf) and 106 communities for which information was also available from the 124 

published literature (non-PanAf). Of these, eight communities had both PanAf and non-PanAf 125 

data available. Habitat type represented as biomes modified from the Terrestrial Ecoregions of 126 

the World Map 2001. 127 

According to the disturbance hypothesis, potential behavioral diversity loss is expected to 128 

manifest across multiple chimpanzee generations, so human impact should be assessed over long 129 

time periods. We used the ‘human footprint’, a spatial composite layer integrating human impact 130 

over time by combining infrastructure, human population density, forest cover and remoteness, 131 
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to provide a geographically explicit variable quantifying the overall effect of humans on the 132 

environment with a 1km grid resolution(14). We used both Bayesian Regression (BR) and 133 

Maximum Likelihood (ML) mixed models to test the hypothesis that variation in human impact 134 

among chimpanzee populations predicts variation in the number of behaviors present(13). We 135 

controlled for observation effort in number of months, spatial autocorrelation, and chimpanzee 136 

subspecies in the analyses(13)(tables S2 to S6 and figs S1 to S5). 137 

 138 

Fig. 2. The probability of occurrence of a behavior per chimpanzee community decreases 139 

with human impact. Human impact negatively affects the probability of occurrence of 140 

behaviors (top left), irrespective of grouping behaviors by category (bottom left), or by tool use 141 
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and non-tool use behaviors (top and bottom right, respectively). The probability of occurrence 142 

across behaviors is depicted by 67%, 87%, 97% credibility intervals (green areas) of the mean 143 

predicted posterior distribution (dashed), plotted excluding random effects and for all subspecies 144 

combined. The area of the points corresponds to the respective number of chimpanzee 145 

communities constituting that data point (range: 1-36 communities). 146 

 147 

We found that chimpanzee communities located in areas with a high degree of human impact 148 

exhibited an 88% lower mean probability of occurrence, across all behaviors, compared to 149 

communities with the least human impact observed (Fig. 2, Estimate (mean of the posterior 150 

distribution) = -0.40, CI (95% credible interval) = [-0.73, -0.10], P =0.009). We found this effect 151 

irrespective of the grouping of behaviors, i.e., when behaviors were grouped into broader 152 

categories such as foraging for termites or thermoregulation (table S1, Estimate = -0.30, CI =[-153 

0.80, 0.139], P=0.006), or when considering non-tool use behaviors only (Estimate = -0.75, CI 154 

=[-1.77,0.03], P=0.018), or tool use behaviors only (Estimate = -0.37, CI =[-0.73, -0.01], P 155 

=0.018; Fig. 2 and tables S1 to S4). We assessed the reliability of our analyses by testing various 156 

subsets of the data and by removing a single behavior at a time, which showed that no single 157 

behavior was responsible for our results (figs S3 to S4; table S6). The control predictor 158 

‘subspecies’ showed highly overlapping effects, indicating minimal subspecies specific effects. 159 

As expected, the control variable observation months revealed a strong positive effect for all 160 

models (figs S1 and S2; tables S2 to S5). 161 

 162 
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Several potential mechanisms may explain the observed pattern. First, areas with high human 163 

impact generally have decreased chimpanzee density and abundance(11). As has been shown for 164 

humans(3, 15), population size can play a major role in maintaining cultural traits although this 165 

relationship is debated(16).  A similar mechanism may occur in declining chimpanzee 166 

populations(17). Second, chimpanzees may reduce the frequency of conspicuous behaviors as 167 

human impact increases(8). Third, climate change may play a role. For example, nut production 168 

is strongly dependent on weather conditions and a changing climate is causing greater inter-169 

annual variation in nut availability(18), stochastically increasing the potential loss in nut 170 

cracking behavior over time. Fourth, habitat degradation and resource depletion may lead to a 171 

lower carrying capacity of individuals, thereby reducing opportunities for social learning. This 172 

may eventually lead to the disappearance of the behavior. Most likely, a combination of these 173 

mechanisms interacts with environmental stability, demography and population connectedness, 174 

to create the overall loss of chimpanzee behavioral diversity associated with human impact.  175 

Some studies on chimpanzees living in human-dominated landscapes suggest that a reduction in 176 

behavioral diversity will eventually be partially compensated for by new inventions(10). 177 

Moreover, genetic and ecological variation are expected to continue to be important drivers of 178 

behavioral and cultural diversity(3). Chimpanzees do show adaptations to modified 179 

environments(10) and one may ask whether the processes of behavioral loss and innovation act 180 

on similar, or different, timescales, and at which point they might reach equilibrium(8).  181 

 182 

We are currently witnessing a decline in great ape populations at a rate of 2.5-6% per year due to 183 

human impact(11, 19). Our results suggest that chimpanzee populations are losing their 184 

characteristic sets of behavioral traits and that a number of not yet discovered behaviors may be 185 
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lost without having ever been described. Considerable effort is urgently needed to protect these 186 

populations if we are to fully understand the underlying mechanisms and drivers of their cultural 187 

diversification. As such, our findings support the concept of ‘culturally significant units’, 188 

whereby a more integrative approach to conservation is needed which considers behavioral 189 

diversity in addition to population size and trends for wildlife management(20, 21). Given our 190 

limited understanding of the potentially adaptive value of local traditions, we advocate using the 191 

precautionary principle of aiming for maximal protection of behavioral variation. We suggest 192 

that, for chimpanzees, specific interventions are needed to protect their natural resources and 193 

tool-use sites in order to maintain behavioral plasticity and safeguard their capacity for cultural 194 

evolution. Therefore, we anticipate the necessity for a new concept, ‘chimpanzee cultural 195 

heritage sites’, with which the behavioral and cultural diversity of this species might be 196 

recognized and protected. Such a concept could easily be extended to other species exhibiting a 197 

high degree of cultural variability, such as orang-utans(7) and whales(20). This proposition is in 198 

accordance with the Convention on Biological Diversity, as well as recent recommendations by 199 

the Convention on the Conservation of Migratory Species of Wild Animals, of the United 200 

Nations Environment Programme(22), which calls for the protection of physiological, genetic 201 

and behavioral diversity of culturally rich wildlife.  202 

 203 
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Materials and Methods 

 

Experimental Design 

 

In an effort to understand the ecological and evolutionary processes of behavioral and cultural 

diversification in chimpanzees, we launched the Pan African Programme: The Cultured 

Chimpanzee in 2010 (hereby referred to as the ‘PanAf’, http://panafrican.eva.mpg.de). Due to 

the extensive cost and time involved in the traditional approach of habituating chimpanzees to 

human observers for longitudinal behavioral studies, we used an alternative methodological 

approach, relying on a space-for-time substitution concept(36). This is based on the assumption 

that a temporal process, such as the loss of behaviors due to human impact, can also be 

investigated by studying different populations in a cross-sectional manner. At the time of 

sampling, chimpanzee communities are positioned at different locations on the behavioral loss 

trajectory as a function of the level of human impact they have experienced and should therefore 

show different sized sets of behavioral traits. We collected data via a uniform field protocol and 

gathered information on behaviors using camera traps (Bushnell Trophy cameras) as well as line 

(0- 144 km) and strip (0-51km) transects. Prior to setting up a PanAf site, we conducted a 

reconnaissance survey over a larger area (~100 km²) to identify a suitable research area with 

contiguous occurrence of chimpanzee signs (dung, feeding signs, nests, vocalizations and 

sightings). We then set a grid of cell size 1 by 1 km covering the study area. Grid size varied 

between 9-143km², depending on biome (rainforest vs savanna) and detected signs of 

chimpanzee presence. Within each cell of the grid we placed one camera at a location visited 

regularly by chimpanzees, such as a fruit tree, natural bridge across water, animal path, or tool-

using sites, such as those where the apes exploit nests of social insects, crack nuts, fish for algae, 

or a tree showing signs of accumulative stone throwing. We also installed additional cameras to 

http://panafrican.eva.mpg.de/
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target tool-using sites across the grid. Note that these cameras could be moved throughout the 

study period since chimpanzee tool-use behavior often targets seasonally available resources.  

In addition, we compiled information on chimpanzee behavioral diversity by screening the 

literature, including printed and electronic articles, doctoral theses(37, 38) and books(2, 39–46). 

First, we defined a list of behaviors to be considered. The key criterion for selection was 

detectability of behaviors by the PanAf methodology and behaviors that exhibit population 

variation (table S1). We downloaded publications using the key words “tool-use”, “tool” and the 

names of the specific behaviors defined, by first searching in Google Scholar and subsequently 

identifying more articles by following the reference lists of already compiled sources. This 

resulted in screening of approximately 450 publications from 1951 to 2017, but most of them 

after the 1980s.  

We considered behaviors as being present in a community if either direct or indirect evidence 

had been documented, irrespective of the frequency or number of observations. Indirect evidence 

is only possible for behaviors that leave behind observable traces in the dung (e.g. insect 

remains) or artefacts (e.g. tools). We classified the 31 behaviors as tool use or non-tool use based 

on the consensus in the literature and further grouped them according to their function or the 

targeted resource (table S1). Importantly, we recorded a behavior as absent for a specific 

community if no evidence was found by the PanAf or reported in the published literature.  

The combined effort of the PanAf and additional data compilation resulted in a total sample size 

of 144 chimpanzee communities spanning all four subspecies from 107 different research sites. 

Multiple communities could be present at a single site, such as neighboring chimpanzee 

communities (e.g., Taï) because a site was defined as communities occurring within 2.5 km of 

one another. Of these 144 communities, eight had both PanAf and published studies available 
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about the selected behaviors. A limitation of our study rests with the fact that we cannot be 

certain of whether our classification as a behavior as absent is true due to observational 

constraints. Therefore, the effect of observation effort is illustrated further with respect to the 

number of behaviors (figs S1 and S2). 

 

Statistical Analysis 

 

To investigate how the observed behavioral diversity in chimpanzee communities is influenced 

by human disturbance we used Bayesian Regression Models (BRM) with Bernoulli response 

distribution and logit link function. Our dataset comprised 31 combinations for 144 communities 

with the occurrence (yes/no) of a particular behavior within it. Due to the possibility that, for 

some behaviors, the resource or the necessary tool (e.g., rocks) was not available within the 

presumed territory of the community, we coded those cases as NA (‘not applicable’) and 

excluded them from the dataset. As the response variable, we used four different measures to 

account for behavioral diversity. First, we used the occurrence (yes / no) of a behavior per 

community; second, we categorized the behaviors into 13 categories (table S1) and used the 

occurrence of a category per community; third, we considered only the occurrence of tool-use 

behaviors, and fourth, we used the occurrence of non-tool use behavior. As fixed effects, we 

included a human footprint value for each community based on the coordinates at its center(13). 

We included as control effects the number of months the community was observed or surveyed, 

and the chimpanzee subspecies (Pan troglodytes verus/ ellioti/ schweinfurthii/ troglodytes). The 

effect of observation months is twofold. First, an increase in observation time is expected to 

increase the number of recorded behaviors, asymptoting at some point. However, increased 

observation effort also has a protective effect for chimpanzees(23). This suggests that the loss of 
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behaviors due to human impact may occur at a much lower rate in communities undergoing 

long-term observation (fig S1 and S2).  

We included the site and behavior as random effects into the model (Data S1). As random slopes 

we included the human footprint, the number of months of observation for the community and 

the chimpanzee subspecies within behavior, as well as the correlation parameters between the 

random intercepts and random slope terms(47, 48). We controlled for spatial autocorrelation by 

including a Gaussian process over longitude and latitude for each community(49) by using the 

function “gp” from the R package “brms”(51). Before running the models, we z-transformed the 

two numerical covariates to a mean of zero and a standard deviation of one(44).  

We additionally ran reduced models to account for variation in PanAf data quality. One model 

excluded four PanAf communities that comprised study durations shorter than 12 months and 

recorded no observations of the 31 chimpanzee behaviors targeted in this study and another 

excluded PanAf communities where camera trap video data were not yet fully cleaned. For 

another model we removed all long-term research sites from the dataset since these communities 

have a disproportionately large amount of observation effort (figs S1, S2 and S4).  

We fitted the models in R(50) by using the function ‘brm’ from the R- package “brms”(51), 

which runs 2,000 iterations by default over four MCMC chains, with a ‘warm-up’ period of 

1,000 iterations per chain resulting in 8,000 usable posterior samples(51). We are confident in 

the accuracy of the MCMC results because: (1) visual inspection showed stationarity and 

convergence to a common target, (2) all Rhat(52) values were below 1.01, and (3) there were no 

divergent transitions after warmup. As priors we used the default flat priors and in addition, we 

tested all models with a weakly informative and an informative prior for the human footprint 

predictor. As weak prior we chose a normal distribution with a mean of 0 and a standard 
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deviation of 1. Since human disturbance on wildlife is predicted to have mostly negative effects, 

we assumed a negative effect of the predictor human footprint on the occurrence probability of 

chimpanzee behavior; therefore, we chose as informative prior a normal distribution with a mean 

of -0.4 and a standard deviation of 0.3. As we assumed a positive effect of observation time we 

chose as informative prior a normal distribution with a mean of 0.4 and a standard deviation of 

0.3.  

Moreover, we also fitted Maximum Likelihood mixed models (MLM)(53) in order to verify our 

results with the commonly used statistical approach that provides P values. For calculation we 

used the function ‘glmer’ from the R package “lme4”(54). We used the same model structure as 

described above with binomial error distribution and logit link function. As our dataset was 

likely to show spatial autocorrelation, where the assumption of independent residuals might be 

violated, we aimed to include an autocorrelation term into the MLM’s for each community, to 

account for spatial autocorrelation in the data. However, the autocorrelation term was non-

significant and had a negative estimate; therefore we dropped it from the models. We checked 

the MLM’s for various model assumptions. First, we checked for overdispersion, and found 

slight underdispersion for some of the models (range: dispersion parameter=0.634-0.819, 

χ
2
=717.0-3571.3, df=1131-4401, P=1). Second, we checked for model stability by excluding 

each level of the random effects one at a time from the data and comparing the model estimates 

derived for these data with those derived from the full dataset. This indicated no influential cases 

existed. Third, we calculated Variance Inflation Factors (VIF(55)) using the function ‘vif’ of the 

R-package “car”(56) applied to a standard linear model excluding the random effects. The results 

did not indicate collinearity to be an issue (largest VIF=1.128). For the MLM’s we determined 

statistical significance of the full model by comparing its fit with that of the null model 
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comprising only the random effects, using a likelihood ratio test (LRT(57)), available as R 

function ‘anova’, package “stats”. The results revealed for all models a significant difference 

between the full and the null model (LRT: χ²=32.773-68.614, df=5, P<0.001). P-values for the 

individual effects were based on likelihood ratio tests comparing the full with their respective 

reduced models(47) (R function “drop1”). Additionally, effect sizes were calculated with the R-

package “piecewiseSEM” using the function ‘rsquared’(58). The effect sizes for the MLM’s 

measured as 'marginal' R
2
 ranging from 0.025 to 0.063 and as 'conditional' R

2
 (including fixed 

and random effects) ranging from 0.148 to 0.321. Since we found large standard deviations and 

correlation parameters of the random intercepts and slopes for the MLM’s, we ran additional 

models to the full dataset: one without the correlation parameter and one with random intercepts 

only (see also fig S3 to S5 and tables S2 to S6).  

Supplementary Text 

 

Mathematical Formulation of the Statistical Model 

 
Observed.YNi ∼Binomial(1,Yi) 

logit(Yi) = β0i+β1iFootprinti+β2iObsTimei+β3iSubspeciesi+GPi, 

β0i = β0 + β0Site i + β0Behavior i , 

β1i = β1 + β1Site i + β1Behavior i , 

β2i = β2 + β2Site i + β2Behavior i , 

β3i = β3 + β3Behavior i , 

 

[

𝛽0Site i

𝛽1Site i

𝛽2Site i

] ∼ MVN ([
0
0
0

] , SigmaSite ), 

SigmaSites = SSites RhoSites SSites, 

SSites ∼ [
𝜎0Site i 0 0

0 𝜎1Site i 0
0 0 σ2Site i

], 

 

[

𝛽0Behavior i

𝛽1Behavior i

𝛽2Behavior i

𝛽3Behavior i

] ∼ MVN ([

0
0
0
0

] , SigmaBehavior ), 
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SigmaBehavior = SBehavior RhoBehavior SBehavior, 

SBehavior ∼ [

𝜎0Behavior i 0 0 0
0 𝜎1Behavior i 0 0
0 0 σ2Behavior i 0
0 0 0 σ3Behavior i

] 

GP ~ MVN(0,k) 

klonglat i,longlat j = sdgp
2
 exp(- || longlat i - longlat j || / (2 lscale

2
), 

 

β0 ∼ student_t(3, 0, 10), 

β1 ∼ Flat or Normal(0,1) or Normal(-0.4,0.3), 

β2 ∼ Flat or Normal(0,1) or Normal(0.4,0.3), 

β3 ∼ Flat or Normal(0,1) or Normal(0,1), 

σ ∼ student_t(3, 0, 10), 

RhoSites ∼lkj_corr (1)  

RhoBehavior ∼lkj_corr (1) 

lscale ~ normal(0,1) 

sdgp ~ normal(0,1) 
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Fig. S1. 

The effect of observation time on the number of behaviors per chimpanzee community. 

Horizontal black lines represent medians, the boxes are the 25 and 75% quantiles, the vertical 

lines the 2.5and 97.5% quantiles Circles show aggregated data where sample size is proportional 

to the size of the circle. The number of communities per observation effort class is shown on the 

x-axis.  
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Fig. S2. 

The effect of observation time on the number of behaviors per chimpanzee community for 

above and below the mean human footprint values of the dataset. Horizontal black lines 

represent medians, the boxes are the 25 and 75% quantiles, the vertical lines the 2.5 and 97.5% 

quantiles. Circles show aggregated data where sample size is proportional to the size of the 

circle. The number of communities per observation effort class is shown on the x-axis. 
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Fig. S3. 

Model estimates for the predictor human footprint revealed when the full model for all 

behaviors is run by excluding one behavior at a time from the dataset. The estimates (dots) 

and confidence intervals (lines) for MLMs (black) and the estimate (mean of the posterior 

distribution) and the 95% credibility interval for the BRMs (green) for the predictor do not 

depend on any particular behavior being included in the model. 
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Fig. S4. 

Model estimates for the predictor human footprint revealed by applying MLMs and BRMs 

on the four different response variables and reduced datasets. The plots shows the estimates 

(dots) and confidence intervals (lines) for MLMs (brown) and the estimate (mean of the posterior 

distribution) and the 67%, 87%, 97% credibility intervals (green areas)for the BRMs (green).  
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Fig. S5. 

Model estimates for the predictor human footprint revealed by conducting MLMs and 

BRMs with different priors and different random effect structures. The plots shows the 

estimates (dots) and confidence intervals (lines) for MLMs (black) and the estimate (mean of the 

posterior distribution) and the 95% credibility interval for the BRMs (green).  
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Behavior Tool use Category Definition 

accumulative stone throwing yes communication 
repeated throwing of stones at a tree with 

accumulation of stones at the base and wound 

marks visible on the tree 

algae fishing yes foraging algae 
fish algae with plant part from bottom of water 

source 

algae scooping yes foraging algae 
scoop algae with plant part from surface of water 

source 

algae eating without tools no foraging algae collect algae from water with bare hands  

ant dipping yes foraging ants 
collect army ants (Dorylus spp.) from trail or nest 

using plant part  

ant eating unknown foraging ants ant remains in feces; tool-use cannot be inferred 

ant fishing yes foraging ants use plant part to obtain non-Dorylus spp. ants 

ant eating without tools no foraging ants eat ants with bare hands  

bathing no thermoregulation 
 immerse in pools of water to presumably cool 

down 

cave use no thermoregulation 
enter caves during the day for short or long period, 

presumably to aid cooling 

fruit cleaving yes foraging fruit pound fruit with a tool to fracture it 

ground nest no ground protection 
create overnight sleeping platform on the ground 

from foliage 

honey eating unknown foraging honey 
traces of honey, bees, or honeycomb in feces; tool-

use cannot be inferred  

honey extraction with tool yes foraging honey extract honey from beehives using a plant part 

honey extraction with toolset yes foraging honey 
extract honey from beehives using functionally 

different types of tools i.e., perforation and probing  

honey eating without tools no foraging honey eat honey with bare hands 

leaf clipping yes communication 
audible ripping with teeth or pressed lips and side-

to-side moving of detached leaves without 

ingesting them 

leaf cushion no ground protection 
sit on detached leaves placed on ground to without 

creating full sleeping platform 

leaf sponge yes water extraction 
use chewed wad of leaves as a sponge to soak up 

water and squeeze into mouth 

marrow pick yes 
foraging 

vertebrates 

pick brain matter or bone marrow using plant part 

moss sponge yes water extraction 
use chewed moss as a sponge to soak up water and 

squeeze into mouth 

nut cracking yes foraging nuts 
crack nuts using hammer and anvil from wood or 

stone 

pestle pounding yes foraging pith 
open crown of oil palm by pounding with palm 

frond petiole 

stone throwing yes communication 
directed throw at predators or intruders, including 

humans, to chase them off 

termite eating unknown foraging termites 
termite remains in feces; tool-use cannot be 

inferred  

termite fishing yes foraging termites extract termites from nest using plant part 

termite fishing toolset yes foraging termites 
extract termites from nest using functionally 

different types of tools 

termite eating without tools no foraging termites 
use hands to break open termite mounds; no tool-

use seen 

tool-assisted hunting yes 
foraging 

vertebrates 

use sticks to spear and kill small vertebrates  

USO digging yes foraging 
use sturdy plant part to dig up underground storage 

organs such as tubers 

water dipping yes water extraction 
chew on plant part to create a brush tip to soak-up 

water and ingest 

Table S1. 

Definitions of the 31 chimpanzee behaviors coded for all 144 chimpanzee communities(1,2, 24-

35). 
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  BRM       MLM 

Predictor E SD CI2.5 CI97.5 E SE CI2.5 CI97.5 χ² df P 

(Intercept) -3.613 0.431 -4.498 -2.827 -3.382 0.319 -4.117 -2.812 (1) (1) (1) 

Human footprint 
(2)

 -0.401 0.155 -0.725 -0.106 -0.307 0.115 -0.556 -0.074 6.900 1 0.009 

N month of observation
(2)

 0.972 0.281 0.418 1.524 0.820 0.109 0.589 1.031 47.401 1 <0.001 

Pan troglodytes ellioti -0.529 0.977 -2.739 1.137 0.194 0.493 -0.892 1.164 7.510 3 0.057 

Pan troglodytes schweinfurthii -0.963 0.629 -2.224 0.239 -0.252 0.314 -0.919 0.408 

Pan troglodytes troglodytes -0.399 0.796 -2.088 1.074 0.729 0.337 0.014 1.406 

(1): not shown because of not having a meaningful interpretation  

(2): predictors were z-transformed to a mean=0 and sd=1 

 

Table S2. 

Model results for the probability of behavioral occurrence per community. 
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  BRM       MLM           

Predictor E SD CI2.5 CI97.5 E SE CI2.5 CI97.5 χ² df P 

(Intercept) -2.539 0.784 -4.113 -1.013 -2.572 0.479 -3.543 -1.664 (1) (1) (1) 

Human footprint 
(2)

 -0.304 0.233 -0.802 0.129 -0.326 0.116 -0.589 -0.059 7.674 1 0.006 

N month of observation
(2)

 1.044 0.367 0.324 1.781 0.803 0.106 0.567 1.036 47.974 1 <0.001 

Pan troglodytes ellioti -2.004 2.026 -6.731 0.944 -0.474 0.506 -1.665 0.543 4.846 3 0.183 

Pan troglodytes schweinfurthii -1.809 1.132 -4.234 0.278 -0.690 0.317 -1.490 -0.070 

Pan troglodytes troglodytes -1.830 1.623 -5.348 1.016 -0.116 0.342 -0.884 0.646 

(1): not shown because of not having a meaningful interpretation  

(2): predictors were z-transformed to a mean=0 and sd=1 

 

Table S3. 

Model results for the probability of occurrence of a behavioral category per community. 
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  BRM       MLM           

Predictor E SD CI2.5 CI97.5 E SE CI2.5 CI97.5 χ² df P 

(Intercept) -4.099 0.894 -6.047 -2.508 -3.493 0.453 -4.713 -2.545 (1) (1) (1) 

Human footprint 
(2)

 -0.746 0.455 -1.770 0.032 -0.415 0.183 -0.926 0.004 5.620 1 0.018 

N month of observation
(2)

 1.153 0.621 -0.071 2.398 0.807 0.153 0.457 1.183 27.780 1 <0.001 

Pan troglodytes ellioti -12.619 12.820 -47.146 -0.339 -1.827 1.303 -13.665 -0.161 3.459 3 0.326 

Pan troglodytes schweinfurthii -1.989 1.966 -6.308 1.587 -0.618 0.530 -1.882 0.479 

Pan troglodytes troglodytes -1.281 1.758 -5.116 1.886 -0.281 0.593 -1.822 0.918 

(1): not shown because of not having a meaningful interpretation  

(2): predictors were z-transformed to a mean=0 and sd=1 

Table S4. 

Model results for the probability of occurrence of a non-tool use behavior per community. 
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  BRM       MLM           

Predictor E SD CI2.5 CI97.5 E SE CI2.5 CI97.5 χ² df P 

(Intercept) -3.398 0.51

1 

-4.450 -2.446 -3.101 0.327 -3.796 -2.480 (1) (1) (1) 

Human footprint 
(2)

 -0.370 0.18

4 

-0.734 -0.009 -0.274 0.114 -0.524 -0.032 5.553 1 0.018 

N month of observation
(2)

 0.892 0.28

0 

0.336 1.450 0.771 0.095 0.576 0.980 52.331 1 <0.001 

Pan troglodytes ellioti -1.172 1.39

9 

-4.470 0.950 -0.013 0.443 -1.002 0.759 13.392 3 0.004 

Pan troglodytes schweinfurthii -1.635 0.81

8 

-3.431 -0.168 -0.883 0.295 -1.500 -0.308 

Pan troglodytes troglodytes -1.497 1.25

3 

-4.287 0.668 0.312 0.310 -0.343 0.921 

(1): not shown because of not having a meaningful interpretation  

(2): predictors were z-transformed to a mean=0 and sd=1 

Table S5. 

Model results for the probability of occurrence of a tool use behavior per community. 
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  BRM       MLM             

Excluded behavior Estimate SD CI2.5 CI97.5 Estimate SE CI2.5 CI97.5 χ² df P 

Accumulative stone throwing -0.403 0.143 -0.690 -0.131 -0.302 0.116 -0.550 -0.064 6.539 1 0.011 

Algae eating without tools -0.362 0.147 -0.647 -0.076 -0.300 0.115 -0.548 -0.060 6.488 1 0.011 

Algae fishing -0.408 0.140 -0.680 -0.136 -0.309 0.114 -0.594 -0.083 6.973 1 0.008 

Algae scooping -0.399 0.140 -0.673 -0.125 -0.306 0.116 -0.576 -0.060 6.670 1 0.010 

Ant dipping -0.370 0.146 -0.654 -0.081 -0.309 0.113 -0.566 -0.065 7.184 1 0.007 

Ant eating -0.390 0.136 -0.664 -0.128 -0.274 0.112 -0.507 -0.045 5.757 1 0.016 

Ant eating without tools -0.359 0.154 -0.662 -0.054 -0.302 0.114 -0.569 -0.051 6.765 1 0.009 

Ant fishing -0.415 0.138 -0.685 -0.145 -0.312 0.115 -0.560 -0.078 7.062 1 0.008 

Bathing -0.391 0.142 -0.672 -0.111 -0.302 0.114 -0.557 -0.055 6.684 1 0.010 

Cave use -0.394 0.136 -0.671 -0.134 -0.296 0.115 -0.555 -0.051 6.319 1 0.012 

Fruit cleaving -0.375 0.153 -0.675 -0.076 -0.307 0.115 -0.564 -0.080 6.890 1 0.009 

Ground nest -0.418 0.150 -0.710 -0.121 -0.331 0.118 -0.583 -0.097 7.444 1 0.006 

Honey eating -0.310 0.150 -0.619 -0.031 -0.306 0.113 -0.559 -0.077 6.992 1 0.008 

Honey eating without tools -0.405 0.136 -0.677 -0.145 -0.305 0.113 -0.550 -0.063 6.909 1 0.009 

Honey extraction with tool -0.300 0.146 -0.597 -0.021 -0.310 0.112 -0.547 -0.061 7.399 1 0.007 

Honey extraction with toolset -0.355 0.155 -0.663 -0.057 -0.306 0.115 -0.553 -0.041 6.716 1 0.010 

Leaf clipping -0.324 0.155 -0.630 -0.032 -0.307 0.114 -0.568 -0.060 6.963 1 0.008 

Leaf cushion -0.244 0.137 -0.515 0.007 -0.302 0.113 -0.554 -0.075 6.777 1 0.009 

Leaf sponge -0.330 0.152 -0.630 -0.042 -0.305 0.114 -0.544 -0.048 6.825 1 0.009 

Marrow pick -0.403 0.136 -0.681 -0.142 -0.306 0.114 -0.593 -0.080 6.876 1 0.009 

Moss sponge -0.401 0.137 -0.663 -0.132 -0.302 0.116 -0.562 -0.071 6.465 1 0.011 

Nut cracking -0.338 0.175 -0.694 -0.015 -0.342 0.131 -0.619 -0.080 6.563 1 0.010 

Pestle pounding -0.391 0.150 -0.682 -0.092 -0.313 0.116 -0.559 -0.063 7.006 1 0.008 

Stone throwing -0.375 0.147 -0.664 -0.087 -0.302 0.113 -0.573 -0.064 6.857 1 0.009 

Termite eating -0.332 0.162 -0.653 -0.025 -0.328 0.116 -0.565 -0.102 7.653 1 0.006 

Termite eating without tools -0.346 0.156 -0.651 -0.048 -0.319 0.116 -0.570 -0.092 7.170 1 0.007 

Termite fishing -0.398 0.147 -0.683 -0.102 -0.325 0.118 -0.598 -0.073 7.291 1 0.007 

Termite fishing toolset -0.367 0.150 -0.661 -0.070 -0.302 0.115 -0.568 -0.067 6.551 1 0.010 

Tool-assisted hunting -0.340 0.153 -0.643 -0.046 -0.307 0.114 -0.571 -0.073 6.874 1 0.009 

USO digging -0.360 0.151 -0.657 -0.068 -0.307 0.115 -0.582 -0.070 6.854 1 0.009 

Water dipping -0.309 0.150 -0.615 -0.027 -0.305 0.114 -0.566 -0.066 6.938 1 0.008 

Table S6. 

Model results for the predictor human footprint revealed stable estimates, 95% credible intervals 

or confidence intervals, and significance (P< 0.05) when the full model based on single 

behaviors was run by excluding one behavior at a time. 

 

Data S1. (separate file) 

Data matrix with the list of all 144 chimpanzee communities and the presence of each behavior 

along with the sources of data and publications consulted. To our knowledge, the dataset is up to 

date as of December 2017. 

Data S2. (separate file) 

Model script and result output for the analyses of the full model using all behaviors in R. 




