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Abstract—Non-cooperative communications, where a receiver
can automatically distinguish and classify transmitted signal
formats prior to detection, are desirable for low-cost and low-
latency systems. This work focuses on the deep learning enabled
blind classification of multi-carrier signals covering their or-
thogonal and non-orthogonal varieties. We define Type-I signals
with large feature diversity and Type-II signals with strong
feature similarity. We evaluate time-domain and frequency-
domain convolutional neural network (CNN) models with wire-
less channel/hardware impairments. Experimental systems are
designed and tested, using software defined radio (SDR) devices,
operated for different signal formats in line-of-sight and non-
line-of-sight communication link scenarios. Testing, using four
different time-domain CNN models, showed the pre-trained CNN
models to have limited efficiency and utility due to the mismatch
between the analytical/simulation and practical/real-world envi-
ronments. Transfer learning, which is an approach to fine-tune
learnt signal features, is applied based on measured over-the-air
time-domain signal samples. Experimental results indicate that
transfer learning based CNN can efficiently distinguish different
signal formats for Type-I in both line-of-sight and non-line-of-
sight scenarios relative to the non-transfer-learning approaches.
Type-II signals are not identified correctly in the experiment
even with the transfer learning assistance leading to potential
applications in secure communications.

Index Terms—Non-cooperative, signal classification, deep
learning, conventional neural network (CNN), transfer learning,
non-orthogonal, SEFDM, waveform, software defined radio,
secure communication.

I. INTRODUCTION

In legacy systems, to facilitate successful communications,
both transmitter and receiver should cooperatively work on
the basis of mutually-known protocols. This is at the cost
of extra control overhead, time delay and inaccuracy due to
the time-variant wireless channels. Therefore, non-cooperative
communications are preferred in low-power low-latency com-
munication scenarios, where a receiver can automatically
distinguish signal formats.

Recent pioneering work in [1] considered the use of deep
learning to extract signal features and practically revealed the
possibility of using convolutional neural network (CNN) for
single-carrier modulation classification. This motivated other
research teams to investigate similar techniques for multi-
carrier signals such as orthogonal frequency division multi-
plexing (OFDM) [2], [3]. Due to the orthogonal sub-carrier
packing feature, OFDM signals avoid internal signal interfer-
ence leading to robust and accurate classification. However,
for non-orthogonal signals such as frequency-domain spec-

trally efficient frequency division multiplexing (SEFDM) [4]
and time-domain faster than Nyquist (FTN) [5], sub-carriers or
time samples are packed closer and non-orthogonally resulting
in self-created interference. This intrinsic signal interference
causes ambiguity and would significantly affect signal classi-
fication accuracy. This work will focus on the spectrally ef-
ficient SEFDM, since its flexible sub-carrier packing strategy
[6] makes it well suited for non-cooperative communications.

Conventional CNN models are trained in this work using
emulation data and later are tested on over-the-air data in
practical software defined radio (SDR) devices. The trained
CNN models work well in simulation but this might not be
true for practical applications, since the training data and the
real world data would have different environment features.
Transfer learning [7] is an approach to speed up training via
fine-tuning pre-trained models. Instead of making tremendous
efforts on training a single neural network to deal with multi-
task problems, transfer learning extracts learnt knowledge
from a source task and then applies it to a target task with
fast fine-tuning according to the target task environment. This
strategy is fit for precision signal classification in condition-
variant over-the-air signal communications.

This work will firstly study the features of non-orthogonal
multi-carrier SEFDM signals. Then eight CNN models are
trained off-line with the extensive considerations of analytical
channel/hardware impairments. Moreover, an environment de-
pendent transfer learning strategy is applied to the pre-trained
CNN models. Finally, over-the-air signal transmissions in both
line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios
are conducted with signal classifications using the trained
CNN models and the transfer learning strategy.

The main contributions of this work are as the following.
• First time study on non-orthogonal multi-carrier signals

classification using deep learning.
• Extensive investigations on non-orthogonal signal diver-

sity and similarity.
• Over-the-air non-orthogonal signals classification.

II. FEATURES IN NON-ORTHOGONAL SIGNALS

The SEFDM signal saves spectral resources [6] when
compared with OFDM due to its non-orthogonal sub-carrier
packing. The basic mathematical format of SEFDM signals is

Xk =
1√
N

N∑
n=1

sn exp

(
j2πnkα

N

)
, (1)



where α = ∆f ·T is the bandwidth compression factor, which
determines the sub-carrier packing characteristics. The system
is OFDM when α = 1 while α < 1 indicates SEFDM signals.
Parameters N,n, k are the number of sub-carriers, sub-carrier
index and time sample index, respectively.
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Fig. 1. Signal feature diversity and similarity visualization by mod-
ulating the same QPSK data. (a) Type-I signals. (b) Type-II signals.

The time samples for OFDM and SEFDM of variable
bandwidth compression factors are illustrated in Fig. 1 where
two types of signals are defined in the following. The number
in the bracket of each item indicates bandwidth compression
factors.

• Type− I: OFDM-QPSK, SEFDM-QPSK(0.9),
SEFDM-QPSK(0.8), SEFDM-QPSK(0.7)

• Type− II: OFDM-QPSK, SEFDM-QPSK(0.95),
SEFDM-QPSK(0.9), SEFDM-QPSK(0.85), SEFDM-
QPSK(0.8), SEFDM-QPSK(0.75), SEFDM-QPSK(0.7)

Fig. 1(a) shows clearly the feature diversity among different
SEFDM signals but with increasing similarity when signals
have closer bandwidth compression factors in Fig. 1(b). Thus,
classification of the Type-II signals is more challenging.

III. NEURAL NETWORK MODELLING

This work focuses on indoor communication scenarios,
which have simple and relatively stable channel conditions
after communication devices deployment, but with different
channels for devices at different locations. In addition, indoor
people movement would cause minor Doppler spread effect.
All the impairments will be considered in the neural network
(NN) modelling.

A. Dataset Generation

Work in [8] provides RadioML dataset, which aims at
single-carrier modulation classifications. However, for multi-
carrier SEFDM and OFDM signals, new datasets have to be
generated. In this work, to make neural network modelling
convincing, we generate random SEFDM/OFDM samples for
both training dataset and testing dataset according to the
parameters in Table I. Since multi-carrier IoT signals prefer

low order modulation formats for simplicity reasons, this work
therefore focuses on QPSK modulation symbols.

Table I: Signal specifications

Parameter Signal
Sampling frequency (kHz) 200
IFFT sample length 2048
Oversampling factor 8
No. of data sub-carriers 256
Bandwidth compression factor α 1,0.95,0.9,0.85,0.8,0.75,0.7
Modulation scheme QPSK

Table II: Channel/hardware specifications

Parameter Channel/Hardware
RF center frequency (MHz) 900
Simulation Es/N0 range (dB) -20 ∼ +50
Path delay (s) [0 9e-6 1.7e-5]
Path relative power (dB) [0 -2 -10]
Maximum Doppler frequency (Hz) 4
K-factor 4
Frequency offset (PPM) 2
Omni-directional antenna gain (dBi) 2

We emulate the analytical channel/hardware model in Table
II partially following the work of [1], [8], in which an
indoor wireless channel power delay profile (PDP) is defined.
However, in our experiment, considering realistic indoor office
environment, a time-variant wireless channel is configured
with a greater maximum Doppler frequency of 4 Hz. In terms
of hardware, this work uses the low-cost Analog Devices SDR
PLUTO [9], which is supported by Matlab. Therefore, hard-
ware related impairments have to be reconfigured based on
the PLUTO devices. According to [10], a calibrated oscillator
has a frequency offset of 2 parts per million (PPM), which
will be emulated in the off-line neural network training.

Fig. 2. CNN classifier neural network layer architecture.

B. Convolutional Neural Network
For the purpose of results reproducibility, the trained CNN

layer architecture is presented in Fig. 2, in which seven NN



layers are stacked for feature extractions. Each of the first six
NN layers is made up of four sub-layers, which are presented
in the grey NN structure module. In the last NN layer, the
MaxPool layer is replaced by the AveragePool layer. The
classification is realized by a full connection layer and a
SoftMax layer with cross-entropy loss function update. The
dimension of each layer is presented in the left-side column.
To avoid overfitting in the neural network training, a 50%
dropout ratio is set. The maximum number of epochs is limited
to 30 and the mini-batch size is 128. To learn comprehensively
from the dataset, a learning rate of 0.01 is configured.

Table III: Training/validation datasets for time-domain CNN
models.

Model Training/validation datasets
time-CNN-1 Type-I
time-CNN-2 Type-I, channel/hardware model, Es/N0=20 dB
time-CNN-3 Type-II
time-CNN-4 Type-II, channel/hardware model, Es/N0=20 dB

Table IV: Training/validation datasets for frequency-domain
CNN models.

Model Training/validation datasets
fre-CNN-1 Fourier transform (time-CNN-1 datasets)
fre-CNN-2 Fourier transform (time-CNN-2 datasets)
fre-CNN-3 Fourier transform (time-CNN-3 datasets)
fre-CNN-4 Fourier transform (time-CNN-4 datasets)

We designed four time-domain training/validation datasets
for Type-I and Type-II signals as presented in Table III.
The datasets for time-CNN-1 and time-CNN-3 only consider
signal intrinsic features while the other two datasets for time-
CNN-2 and time-CNN-4 consider signal features, analytical
channel/hardware impairments and additive white Gaussian
noise (AWGN). In addition, we investigate the frequency-
domain responses using fast Fourier transform (FFT) with the
datasets presented in Table IV.

To separate SEFDM/OFDM symbols from time samples
and QPSK symbols, a concept of frame is used here. In this
case, one frame indicates one SEFDM/OFDM symbol. Each
frame has 2048 time samples with the oversampling factor of
eight. The receiver would receive frames with a random time
delay relative to ideal frame reception and would randomly
truncate 1024 consecutive time samples out of the 2048
samples. The training/testing would operate on the truncated
1024 samples and thus without synchronization requirement.
The block diagrams of the employed training and testing
strategies are illustrated in Fig. 3. It is noted that the Es/N0
information will not be used to train the CNN models.

Training is operated on an Intel(R) Xeon(R) Silver 4114
CPU (2 processors). In this work, following the information
provided by Table III and Table IV, we generate 2200 frames
for each signal class, in which 2000 frames are reserved
for training and 200 frames are for validation. Thus, the

Table V: Testing datasets for time- frequency-domain CNN
models.

Model Testing datasets
time-CNN-1,2 Type-I, channel/hardware model,

Es/N0= -20:50 dB
fre-CNN-1,2 Fourier transform (time-CNN-1,2 datasets)

time-CNN-3,4 Type-II, channel/hardware model,
Es/N0= -20:50 dB

fre-CNN-3,4 Fourier transform (time-CNN-3,4 datasets)

Fig. 3. Methodology of training and testing.

percentages of data for training and validation are around 91%
and 9%, respectively. In addition, a separate dataset following
the information provided by Table V, consisting of 800 frames
for each signal class, is used for the neural network testing.
For example, for Type-I signals, there are 8000 frames for
training, 800 frames for validation and 3200 frames for testing.
For Type-II signals, there are 14000 frames for training, 1400
frames for validation and 5600 frames for testing.
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Fig. 4. Simulation signal classification accuracy for SEFDM signals.

In Fig. 4, it is clearly seen in Type-I signals that the
time-CNN-2 model, which is trained based on signals and
the analytical channel/hardware model, achieves the highest



accuracy. Unlike the time-CNN-2 model, time-CNN-1 is
modelled using clean signals where carrier frequency offset,
phase offset, time delay spread, Doppler spread, AWGN and
any other channel/hardware related impairments are ignored at
the training stage. This model would be vulnerable for testing
in time-variant wireless channel environments resulting in
reduced accuracy. However, for the frequency-domain CNN-
1 and CNN-2 models show significantly decreased accuracy.
It is inferred that for non-orthogonal signals, training on
original time samples in deep learning CNN would gain
higher accuracy than that of its frequency-domain responses.
For Type-II signals in Fig. 4, due to higher signal feature
similarity, the accuracy levels for both time-domain and
frequency-domain CNN-3 and CNN-4 are worse than those
in Type-I signals. It indicates that the signal feature similarity
dominates the classification accuracy in Type-II signals rather
than channel/hardware condition mismatches. But the time-
domain CNN models still outperform their frequency-domain
counterparts. Therefore, in the following experiment, only the
time-domain neural network training methodology is applied.

IV. EXPERIMENT DESIGN AND RESULTS

The experiment evaluates the pre-trained time-domain CNN
models on software defined radio devices PLUTO for both
LOS and NLOS channel scenarios in an indoor office with
random people movement. Matlab software is installed and
used in a personal computer (PC). Therefore, the CNN train-
ing and transfer learning are both within the PC but in the
SDR device. The off-line CNN training is a one-time operation
and the transfer learning is only activated when a device is
re-located in a new environment.

Fig. 5. PLUTO experiment. (a) Line-of-sight. (b) Non-line-of-sight.

A. Line-of-Sight Scenario

Two PLUTO devices are placed next to each other with 30
cm distance as demonstrated in Fig. 5(a). In addition, they
are surrounded by two desktop hosts, which would introduce
signal reflections. Therefore, there would be a main signal
path that directly links the Tx antenna and Rx antenna with
additional reflected signal paths. We generate 800 frames for
each signal class at the Tx device for both Type-I and Type-II

signals. The Rx device receives the over-the-air signals at ran-
dom intervals and it truncates time samples for classification.
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Fig. 6. Classification accuracy in the line-of-sight channel.

Results are shown in Fig. 6. First, similar to the results
observed in Fig. 4, Type-I signal classification has higher ac-
curacy than that in Type-II signals. Second, in Type-I signals,
the CNN-2 model, trained with analytical channel/hardware
impairments, shows a higher accuracy level than the pure
signal trained CNN-1 model of no impairments. This agrees
with the simulation results obtained from Fig. 4. For the Type-
II signals, the pure signals trained CNN-3 outperforms the
CNN-4 with impairments training. This result contradicts with
the simulation results in Fig. 4. It is inferred that the mutual
effect of signal similarity in Type-II signals and inaccurate
channel/hardware impairments modelling has greater effect on
classification accuracy than that for Type-I signals.

Transfer learning is applied for fine-tuning pre-trained
neural networks. Training the entire neural network is time
consuming and unrealistic for practical scenarios since a
wireless channel would change frequently. Therefore, in this
work only the last two layers of Fig. 2, concerned with
extraction of channel features, are replaced; namely the full
connection layer and SoftMax layer. In this case, the entire
transfer learning would be faster. The receiver side PLUTO
will collect 50 frames per signal class for re-training the
last two layers. Practical results reveal that transfer learning
greatly improves classification accuracy. For Type-I signals,
the CNN-1 and CNN-2 models reach almost 100% accuracy.
For Type-II signals, both CNN models are improved by up to
35% accuracy, but are still influenced strongly by the signal
similarity. In a similar representation to that of [1], confusion
matrices for CNN-1 are illustrated in Fig. 7, showing an
evident accuracy improvement via the use of transfer learning.

B. Non-Line-of-Sight Scenario

Signal communications in NLOS are set up in Fig. 5 via
placing obstacles between the transmitter and receiver. Results
in Fig. 8 reveal that the classification accuracy levels for Type-
I signals are still higher than those of Type-II signals even
with obstacles blocking signal propagation. Applying transfer
learning, the accuracy is further improved by up to 57%.
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Fig. 8. Classification accuracy in the non-line-of-sight channel.

Table VI summarizes the numerical classification accuracy
results for the different CNN models, communication scenar-
ios and system testbeds.

Table VI: Classification accuracy for LOS and NLOS channels

Model LOS NLOS
Direct Transfer learning Direct Transfer learning

CNN-1 84.75% 98.63% 86.13% 90.31%
CNN-2 94.56% 99.63% 92.25% 96.19%
CNN-3 50.71% 67.50% 56.43% 70.75%
CNN-4 43.64% 59.00% 43.50% 68.11%

V. CONCLUSION

This work deals with an intelligent signal classification
task for non-orthogonal SEFDM signals in both simulation
and over-the-air experiments. Unlike interference-free single-
carrier and orthogonal multi-carrier OFDM signals, the sub-
carriers within SEFDM are non-orthogonally packed lead-
ing to higher spectral efficiency at the cost of self-created
interference. Therefore, classifying different SEFDM signals
would be more challenging. Simulation results verify that
the time-domain convolutional neural network (CNN) models
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Fig. 9. Confusion matrix visualization. Type-II signal classification

outperform their frequency-domain models in classification
accuracy. Experimental work with practical over-the-air test-
ing is conducted using software defined radio devices in LOS
and NLOS scenarios for various CNN models. A transfer
learning strategy is applied to fine-tune the pre-trained models,
showing classification accuracy ranged from 60% to nearly
100% with an improvement up to 57%. In summary, the
feature-diversity dominant Type-I signals are suitable for non-
cooperative communications while the feature-similarity dom-
inant Type-II signals are potential for secure communications.
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