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Abstract  

Background: CSF amyloid-1-42 (A42) reliably detects brain amyloidosis based on high 

concordance with plaque burden at autopsy and with amyloid PET ligand retention observed in 

several studies.  Low CSF A42 concentrations in normal aging and dementia are associated 

with the presence of fibrillary A across brain regions detected by amyloid PET imaging.  

Method: LC-MSMS reference method for A42, modified by adding A40 and A38 peptides 

to calibrators, was used for analysis of 1445 CSF samples from ADNIGO/2 participants.  

Seventy runs were completed using 2 different lots of calibrators.  For preparation of A42 

calibrators and controls spiking solution, reference A42 standard with certified concentration 

was obtained from EC-JRC-IRMM (Belgium).  A40 and A38 standards were purchased from 

rPeptide (USA).  A42 calibrators’ accuracy was established using CSF-based A42 Certified 

Reference Materials (CRM).   

Results:  CRM-adjusted A42 calibrator concentrations were calculated using regression 

equation Y (CRM-adjusted) = 0.89X (calibrators) + 32.6.  Control samples and CSF pools 

yielded imprecision ranging from 6.5 to 10.2% (A42) and 2.2 to 7.0% (A40). None of the CSF 

pools showed statistically significant differences in A42 concentrations across two different 

calibrator lots. Comparison of A42 with A42/A40 showed that the ratio improved 

concordance with concurrent [18F]-florbetapir PET as a measure of fibrillar A (n=766) from 

81% to 88%. 

Conclusions: Long term performance assessment substantiates the robustness of our modified 

LC-MSMS reference method for three A peptides. The potential for improved diagnostic 
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performance of the CSF ratio Aβ42/Aβ40 suggests that these two A peptides should be 

measured together and support the need for an Aβ40 CRM.  

Introduction 

The 42 amino acid form of Aβ, A42, is a well characterized biomarker for brain amyloidosis 

associated with Alzheimer’s disease (AD)(1).  Pathological changes of A42 are reflected in 

lowered concentration of this peptide in cerebrospinal fluid (CSF) and its deposition in amyloid 

plaques in the brain (2-5).  Concentrations of Ain CSF show high concordance with plaque 

burden at autopsy (6, 7) and with cortical amyloid ligand retention in positron emission 

tomography (PET) brain scans (8-11).   

Two shorter forms of Aβ, A40  and A38,  have  also been measured in CSF  by at least two 

different techniques: liquid chromatography with mass spectrometric detection or immunoassays 

(12-17). Similar to A42, they are produced from the catabolism of Aβ precursor protein by the 

concerted actions of -secretase (BACE1) and the -secretase protease complex (18).  One 

hypothesis posits that the concentration of A in the CSF depends not only on the 

pathophysiological Aβ status but also on the total amount of Aβ peptides present (19).  By 

normalizing to the concentration of the most abundant in the CSF A, the ratio removes the 

potential confound of differences in overall Aβ concentration and provides a better index of 

underlying Aβ-related pathology.  Recently, a number of studies have reported that adding the 

CSF A/A ratio to diagnostic tools might: 1) improve prediction accuracy of amyloid 

plaque burden in subjects with mild cognitive impairment (MCI), 2) improve discrimination of 

AD from other forms of dementia  and 3) increase the concordance between CSF and PET 

amyloidosis (8, 14, 19). 

We developed a liquid chromatography tandem mass spectrometry method (LC-MSMS) for 

analysis of Aβ 42 in CSF (20) which has been recognized as a reference method by the JCTLM 
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and assigned the Identification Number : C12RMP1. This method was modified by adding two 

Aβ peptides, i.e. A40 and A38 as additional calibrators, and used for analysis of 1445 samples 

of CSF obtained from participants of the ADNIGO/2 projects. One lot of in–house calibrators 

was analyzed against CRM-based calibration curve and the resulting linear regression equation 

was used to get final, accuracy-based concentrations of A42 for ADNI samples. 

In this paper we: 1) present overall performance of our modified method and unique data for 

calibrators lot-to-lot reproducibility, 2) describe value transfer from CRMs to calibrators, 3) 

discuss the results of Aβ peptides in CSF obtained from ADNIGO/2 participants, 4) discuss the 

utility of A42/A40 ratio for improved detection of amyloid plaque burden measured with PET 

and therefore improved diagnosis of AD. 

 

Materials and Methods 

ADNI study participant data 

CSF Aβ42, demographic, amyloid PET imaging and clinical diagnosis were obtained from the 

ADNI database (http://adniloni.usc.edu).    

The ADNI study, with 59 sites across the United States and Canada, is an ongoing collaborative 

longitudinal study, launched in 2004 as a public–private partnership, across several phases 

(ADNI1, ADNIGO, ADNI2, currently ADNI3). The primary goal of ADNI has been to test 

whether serial magnetic resonance imaging, PET, other biological markers, clinical and 

neuropsychological assessments can be combined to measure the progression of MCI and used 

for the early diagnosis of AD. The ADNI principal investigator is Michael Weiner, MD, at VA 

MC and UCSF. For current ADNI information, see www.adni-info.org. 

CSF samples obtained from ADNIGO/2 projects’ participants (n=1445; ADNI2 n=1089, 

ADNIGO n=151 and ADNI1 n=205  as a part of longitudinal studies) were collected, processed 

http://www.bipm.org/jctlm/search.do?sortBy=Analyte_Name&searchString=&analyteCategory=&matrixCategory=&countryCode=&uniqueNominationNumber=C12RMP1&status=P&type=isRMP&x=42&y=6
http://adniloni.usc.edu/
http://www.adni-info.org/
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according to ADNI2 Procedure Manual (https://adni.loni.usc.edu/wp-

content/uploads/2008/07/adni2-procedures-manual.pdf)  and stored at -80°C.  Only pristine 

aliquots, which underwent a single freeze-thaw cycle prior to assay, were used for analyses.  

Concurrent florbetapir amyloid PET results were available for 766 subjects (normal control (NC) 

n=149, MCI n=405, subjective memory complaints (SMC) n=87, AD n=125) (time interval of 

PET and LP + 3 months for 762 participants, and between 98 and 154 days for 4 participants).  

Florbetapir (FBP) images consisted of 4X5min frames acquired at 50-70min post-injection 

which were realigned, averaged, resliced to a common voxel size (1.5mm3), and smoothed to a 

common resolution of 8mm3 FWHM.  MPRAGE images that were acquired concurrently with 

the baseline florbetapir images were used as a structural template to define cortical composite 

regions (frontal, cingulate, temporal, parietal) and whole cerebellum (white+grey matter) in 

native space for each individual using Freesurfer (v5.3.0) as described previously (21). 

 The baseline cortical summary florbetapir standardized value uptake ratios (SUVRs) were 

calculated by averaging across Freesurfer-defined cortical composite regional SUVR means, and 

dividing by the Freesurfer-defined whole cerebellum.  An FBP positivity threshold of 1.11 was 

applied based on uptake in young, cognitively normal individuals (22) and which has also been 

autopsy-validated (23). 

 These studies were approved by the Institutional Review Boards, and written informed consent 

was obtained from all participants or authorized representatives at each site. 

 

Chemicals and reagents 

The method used for the current study is a modification of a previously validated LC-MSMS 

methodology (20).  Therefore, we only describe the changes which were made to the previous 

protocol, and summarize the current procedure (Supplemental Table 1).  

https://adni.loni.usc.edu/wp-content/uploads/2008/07/adni2-procedures-manual.pdf
https://adni.loni.usc.edu/wp-content/uploads/2008/07/adni2-procedures-manual.pdf


7 
 

Reference standard and CRMs for CSF A42 were obtained from EC-JRC-IRMM (Belgium). An 

assigned value for A concentration in the reference standard was  based on amino acid 

analysis (24). The concentration of A42 for three CSF-based CRMs (450, 720 and 1220pg/mL, 

uncertainty 70, 110 and 180pg/mL, respectively ) were obtained by  LC-MSMS reference 

methods (20, 25).  Two other Aβ peptides, A40 and A38 together with three internal 

standards, uniformly labelled with 15N, A A40 and A38, were purchased (rPeptide, USA). 

Two stock solutions of A (500ng/mL and 50ng/mL), for calibrators and quality control (QC) 

samples spiking solutions, were prepared by diluting the solution of reference standard with 

DMSO and using an analytical balance to correct their final concentrations. This manner of 

preparation was necessary to assure reproducibility of results across different lots of calibrators 

when CRMs were not yet available. Each spiking solution for calibrators and QC samples 

contained 3 peptides at appropriate concentrations.  Two different lots of calibrators were 

utilized for this project, #41717 (38 runs) and #92917 (32 runs).  

The concentration of internal standards, 1ng/mL, is lower than in the original protocol due to the 

more sensitive mass spectrometer used in this study. In addition to three QC samples prepared in 

surrogate matrix (artificial CSF with 4% of BSA, [aCSF/BSA], Supplemental Table 1), five pools 

of human CSF served as biological controls. Four were prepared from CSF leftovers of ADNI1 

subjects (pool 55, 56, 57, 58) and one from mixing residual CSF from discarded routine clinic 

patients at the hospital at the University of Pennsylvania (pool M). 

 

Sample preparation and chromatography with mass spectrometric detection 

There were no major changes in the sample preparation procedure (Supplemental Table 1) aside 

from reduction of volumes of some compounds. Since analysis of Apeptides was carried out on 

the more sensitive XEVO TQ-S mass spectrometer (Waters, USA), two changes were possible: 
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1) volume reduction of calibrators, QC and human CSF samples from 0.25 mL to 0.1 mL, and 2) 

injection volume decreased from 0.05mL to 0.025mL.  The mass spectrometer interfaced with an 

AQUITY ultra performance liquid chromatograph (Waters) with: sample manager, two pumps 

and column oven, as previously described (20). Ion transitions for the 6 analytes (3 peptides and 

internal standards) are listed in Supplemental Table 1.    

 

Study design 

Imprecision and accuracy data using the current method for analysis of three Aβ peptides were 

collected during 70 runs, and completed on 5 pairs of columns; trap and analytical (Supplemental 

Table 1).  

Eight samples were employed as QCs: three in surrogate matrix, aCSF/BSA, and five pools of 

human CSF. QC samples were analyzed in duplicate and six of them (3 in aCSF/BSA and 3 

pools) were included in each analytical run.  

The reference method for analysis of Aβ42 alone was modified for measurement of three Aβ 

peptides and re-validated by comparison with the reference method for analysis of A42 alone 

(n=79 samples) and with the Elecsys® -amyloid(1-42) immunoassay (Roche, Germany) 

(n=1439 samples). 

We used CSF-based CRM, recently introduced by EC-JRC-IRMM, to establish the accuracy of 

A42 concentrations in one, out of two lots of our in-house calibrators for the analysis of 

ADNIGO/2 samples. We applied the procedure of direct value transfer from CRM to in-house 

calibrators (26). Three CRMs, were used for calibration curve construction. Four pools of human 

CSF and three QC samples in aCSF/BSA were used for quality control assessments of these two 

runs in which the CRMs were used as calibrators. Seven A42 calibrators, with concentrations of 

A42 established by weight (CA) were analyzed against the CRM-based calibration curve and 
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relative concentrations (CR) of A42 for all calibrators obtained. Linear regression analysis of CA 

vs CR resulted in a line which represents the relation of the concentrations of A42 in the CRMs 

and calibrators. Target Aβ42 concentrations in our calibrators, CT, were calculated from the 

regression equation:  

                                                       CT = x CR b 

where: 

CT- target concentration 

 – the regression line slope 

CR – concentration of A42 obtained from CRM calibration curve  

 b - the regression line intercept.

The equation was also used for recalculation of A42 concentrations for ADNIGO/2 

participants. New values for the A42 cut off and concordance with FBP PET were obtained. 

 

Statistical analyses 

Data collected during this long term project were used for the following statistical analyses: 

- long term assessment of imprecision and accuracy of measured concentrations of A42, 

A40 and A38 in three QC samples prepared in aCSF/BSA and five pools of human 

CSF 

- unique comparison of A42 concentrations for three pools of human CSF analyzed using 

two different lots of in-house calibrators to evaluate lot-to-lot reproducibility 

- comparison of A42 concentrations obtained using the original reference method (A42 

alone) vs the modified method (three Apeptides) 
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- comparison of A42 concentrations obtained using the modified method vs A42 results 

obtained using Elecsys® -amyloid (1-42) immunoassay  

- assessment of the reference method stability over three years’ time period based on the 

A42 results for 46 pristine replicate aliquots analyzed in 2014 vs 2017. 

This paper describes for the first time concentrations of CSF Aβ peptides by LC-MSMS for  

ADNIGO/2 subjects.  An unpaired t-test was used to compare results between 5 clinically 

different groups of participants; NC, early MCI (EMCI), MCI, SMC and AD. These data were 

consequently used to examine agreement or disagreement with the reports that A42/A40 ratio 

improves concordance with amyloid PET and can improve the diagnosis of AD, by comparison 

of the concordance between FBP PET and CSF A42 concentration vs the ratio A42/A40 for 

ADNIGO/2 subjects. 

This is the first report of using CSF-based A42 CRMs for amyloid beta 42 concentration value 

transfer to in-house calibrators.  

 

Results 

Analytical method evaluation 

Imprecision and accuracy - for all three Aβ peptides inter-assay imprecision (%CV) for all but 

one control (10.2 %CV) was below 10% (Supplemental Table 2).  The mean imprecision for 

duplicate analyses of the CSF samples was 4.5% (A42), 3.0% (A40) and 3.6% (A38). 

 The accuracy for all 3 Aβ peptides for controls in aCSF/BSA was excellent, from 97.5% to 

103.1%.  

Lot-to lot reproducibility - three out of five pools of human CSF were analyzed using two 

different lots of in-house calibrators and based on this unique data we estimated between-lot 
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reproducibility.  No statistically significant differences in Aconcentrationswere obtained 

across two different lots of calibrators (p=0.767, 0.256 and 0.45 for each pool) (Figure 1).  

Method comparisons - the correlation between different methods was assessed by Deming 

regression (Microsoft R v 3.3.1 with Meth Comp v 1.22.2)(27).  Aconcentrations   

measured by the reference method (single analyte) and the modified reference method (triple 

analytes) showed a linear relationship with a correlation coefficient r2=0.96, a slope of 0.999 (y = 

0.999x + 13.46) and a mean error of 2.22% (n = 79) (Figure 2A).   

The Deming regression plot between an established, highly automated method,  Elecsys® -

amyloid(1-42) immunoassay (28) and our modified reference method showed also a linear 

relationship (y = 1.02x + 52.8) with r2 of 0.92 and mean error of  9.27% (n =1439) (Figure 2B). 

Method stability – Deming regression between two groups of results (from 2014 and 2017) 

showed great stability of our method over 3 years: correlation coefficient r2=0.93 and the mean 

error of 5% (Figure 3).  

Standards accuracy check against A42 CRMs –  For human CSF pools used to assess quality of 

the runs where in-house calibrators were analyzed against CRM-based calibration curve, 

accuracy was 96.1%-103.6%, and for the aCSF/BSA controls the mean accuracy was 94±3%. 

Linear regression analysis established a line y = 0.89x + 32.6, (Supplemental Figure 1); all 

calibrators’ concentration of A42 were recalculated to the new target values according to this 

equation. 

This equation was also used to recalculate A42 concentrations for ADNIGO/2 participants and 

these new values were used for assessment of the A42, A42/A40 ratio cut offs and 

concordance with FBP PET (Figure 4). 

 

Clinical utility of the method  
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CSF biomarkers for ADNIGO/2 samples, data overview 

The concentrations of A, Aand the ratio of A/A in all BASELINE CSF samples  

from ADNIGO/2 subjects are summarized in Table 1. The recalculated concentration values 

(CRM adjusted) for A42 for ADNIGO/2 participants will be uploaded on the ADNI website in 

the near future. 

Statistical analysis of our data revealed that concentrations of A are significantly lower in the 

AD (n=130), MCI (n=171) and EMCI (n=268) groups when compared with NC (n=177), as 

expected (p<0.0001, p<0.0001 and p<0.05, respectively). In addition, A42 concentrations are 

significantly lower in AD vs MCI, EMCI and SMC (n=95) (p<0.0001). The concentrations of 

Ain AD and MCI, but not in EMCI (p=0.389), are also significantly lower compared to NC 

(p<0.005, p<0.05). FurthermoreAconcentrations are significantly lower in AD vs EMCI 

and SMC (p<0.05 and p<0.005, respectively) but not vs MCI (p=0.232).  

The values of the A42/A40 ratio in AD and MCI but not in EMCI are significantly lower 

when compared with NC. In AD the ratio A42/A40 is significantly lower than the MCI, EMCI 

and SMC groups (p<0.0001). 

There was no difference between A Aand the A42/A40 ratios between subjects in the 

NC vs SMC  (p=0.601, 0.773 and 0.721, respectively), a finding consistent with a previous 

report using an automated immunoassay (11). 

 

Concordance between amyloid PET and concentration of ApeptidesinCSF  

The relationship between CSF biomarkers and cortical florbetapir SUVRs are shown in Figure 4. 

Based on this first-time analysis of data obtained from ADNIGO/2 participants by LC-MSMS 

reference method, concordance for Aand florbetapir-PET was 81% and for CSF 

AAratio the concordance increased to 88%. 
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Mixture Modeling analyses of A42 concentration and Aβ42/A40 ratio values provided the 

following cut-point values: pg/mL (A and  0.138 (A42/A40).  ROC analysis using 

amyloid PET as the standard of truth afforded cut-off values of 992.9pg/mL and 0.124 (A42 

and Aβ42/Aβ40, respectively) (Supplemental Figures 2-3).  

 Frequency distribution histogram plots of A42 concentration and the A42/A40 ratio for the 

766 participants of ADNIGO/2 with cortical A deposition, measured by florbetapir PET, are 

presented on Figure 5. These plots show two overlapping distributions, PET-positive and  PET-

negative amyloid deposition. The A42/A40 ratio clearly better separates PET (+) from PET (-) 

participants, than A42 alone. 

 

Discussion 

In this paper we describe the analytical and clinical performance of a modified reference 

procedure for the analysis of A peptides in CSF by LC-MSMS. We present data for distribution 

of A peptides and the A/Aratio for participants of ADNIGO/2 projects and based on 

statistical analyses we discuss the potential utility of the A/Aratio for improved 

diagnosis of AD. 

We also describe the procedure for using A42 CRMs for assignment of target values for A42 

concentrations for in-house calibrators. 

This analysis of three Aβ peptides in CSF was used for almost 5 months in 2017, employed 5 

pairs of columns, analytical and trapping, and two lots of in-house calibrators. Four batches of 

samples, calibrators and QCs were analyzed weekly and the entire system was continuously 

operated Monday-Friday without any need for in-between-run cleaning. This observation 

highlights the effectiveness of sample preparation and robustness of the entire system. 
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This long term project permitted collection of a large dataset and based on this we can report that 

this procedure has very good characteristics with respect to imprecision, accuracy and precision 

between duplicate measurements for all three Apeptides. Concentrations of Aobtained 

bythe modified method correlate very well with the results obtained using both, the reference 

method for Aalone (slope 0.999, r2 = 0.96),and  Elecsys® -amyloid (1-42) immunoassay 

(29) (slope 1.02, r2 = 0.92). There is an urgent need to harmonize the assays across different 

platforms and this finding demonstrates the feasibility for success in this effort.  Furthermore 

earlier studies documented the commutability of CSF-based reference materials (24, 30). 

Final assignment of accuracy-based values for one lot of our standards used in ADNIGO/2 

project, was performed using CSF-based A42 CRM.  The new values of A42 concentrations 

for ADNIGO/2 subjects were obtained and will be uploaded on LONI webpage in the near 

future.   

The availability of validated reference methods, CRMs for A42 in CSF and a practical effective 

procedure for target value assignment are key elements that underpin the prospect for successful 

global standardization of assays used for the measurement of CSF A42.   

In this paper for the first time we described the reproducibility data for Aconcentration in 

CSF pools analyzed with two different lots of in-house calibrators and showed lack of 

statistically significant differences between Aconcentrations across these two lots of 

calibrators. Since the stock solutions for Acalibrators were prepared using an analytical 

balance for weighing both, the primary standard material and diluent, and the final 

concentrations were corrected based on the obtained weight, we concluded that using the 

analytical balance is mandatory for sustaining reproducibility between different lots of 

calibrators. This observation is crucial at a time when the efforts on developing reference 

systems for CSF biomarker measurements are in progress (31-33).  
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Forty-six samples had two A42 concentration results; first from 2014 while we were analyzing 

baseline samples of ADNI1 subjects and the second from the current project, as a result of our 

decision to include replicate aliquots for these samples as part of longitudinal study. We used 

these data to assess long term method stability and the result of this evaluation is excellent (slope 

1.03, r2 = 0.93). Lack of difference between the results from 2014 vs 2017 additionally supports 

our documentation of lot-to-lot reproducibility.  

In the clinical section of this study we describe for the first time profiles of A peptides in CSF 

for 1445 participants of the ADNIGO/2 study and provide the incidence of Alzheimer’s 

pathologic change,  defined as decreased CSF A42 concentration, or positive amyloid PET 

imaging test (34) across the AD, MCI, EMCI, SMC and NC subgroups.  

The CSF levels of A for the AD and MCI group were also significantly lower compared to 

NC subjects, while there was no statistically significant difference in CSF Aconcentration 

between AD and MCI. Decreased CSF levels of Atogether with a discussion about the 

possible mechanisms of that change such as reduced neuronal numbers and/or viability were 

previously reported for AD and non-AD patients when compared to controls (35),  

frontotemporal dementia subjects (36), vascular dementia cases and dementia with Lewy bodies 

(37). In other studies that examined CSF levels of Ain AD and NC, no significant 

differences were found (38) or A concentrations in the AD-MCI group turned out to be 

significantly higher compared to the controls (15). Results are not consistent and more work is 

required on Apaying special attention to classification of subjects and taking into 

consideration developing Areference material and method standardization.  

As reported in previous studies the CSF A42/A40 ratio is a better predictor of brain amyloid 

deposition in prodromal AD than CSF A42 alone  and better differentiates AD dementia from 
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non-AD dementias (8, 14, 19, 35, 39). Based on our finding in 766 ADNIGO/2 participants of 

improved concordance with PET from 81% to 88% we can confirm these reports. Comparable 

concordance results were obtained using cutoffs based on ROC analysis (83% and 89% 

concordance values respectively).  Our method measures both peptides, A42 and A40 from 

the same sample minimizing methodological variability as a source of discordance between CSF 

and cortical amyloid. We suggest that these two peptides should be both measured and used for 

amyloid burden detection in the diagnosis of AD.  For our group of subjects the number of  cases 

with abnormal/low Aand normal PET (Figure 4A; lower left quadrant) was higher than the 

number of  cases with normal Aand abnormal PET (Figure 4A; upper right quadrant), 

consistent with previous reports (19). When A42/A40 ratio was used as a diagnostic tool the 

number of cases with abnormal/low Aand normal PET decreased by 43 % (42 cases were 

moved to lower right quadrant; normal A42 and normal PET) (Figure 4B), and the number of 

cases with normal Aand abnormal PET dropped by 32% (16 cases were moved to upper left 

quadrant; abnormal A42 and abnormal PET) (Figure 4B).  Thus using A42/A40 ratio 

improved diagnostic accuracy for 7.6% of participants.   An hypothesis-driven explanation that 

the concentration of A in the CSF depends not only on the amyloid status of a given subject 

but also on the total amount of the Apeptides present has been described elsewhere (40).  

In conclusion, the current study documents the long term analytical performance and 

substantiates the robustness of our modified LC-MSMS reference method. We highlighted the 

needs for: 1) use of an analytical balance to maintain reproducibility between different lots of 

calibrators, 2) developing CRMs for Aandsupporting the standardization process with the 

currently available three CRMs for A42 in CSF. From the clinical diagnostic perspective, these 
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results for ADNIGO/2 participants show that the A42/A40 ratio improves concordance with 

amyloid PET.  
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Table 1. The results of CSF biomarkers (A42, A40 and A42/A40) at BASELINE for  

ADNIGO/2 participants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MCI – mild cognitive impairment 

EMCI - early MCI 

SMC - subjective memory complaints 

AD – Alzheimer’s disease 
 

 

 

 

 

 

 

 
ADNIGO/2 
participants 

Aβ42  
(pg/mL) 

mean+SD 

Aβ40 
(pg/mL) 

mean+SD 

Aβ42/Aβ40 
 

mean+SD 

 
n 

Normal (NC) 
 

1303+573 8718+2555 0.149+0.05 177 

EMCI 
 

1167+566 8506+2518 0.138+0.05 268 

MCI 
 

 915+434 8176+2195 0.111+0.05 171 

AD 
 

 751+397 7841+2548 0.096+0.03 130 

SMC 
 

1342+581 8811+2488 0.151+0.05 95 

t-test values. Aβ42: p<0.0001, <0.0001 and <0.05 comparing NC to AD, MCI 
and EMCI respectively; p<0.0001 for AD vs MCI, EMCI and SMC. 
Aβ40: p<0.005, <0.05 and p=0.389 for NC vs AD, MCI and EMCI, respectively; 
p<0.05, <0.005 and p=0.232 for AD vs EMCI, SMC and MCI, respectively; 
Aβ42/Aβ40: p<0.0001, <0.0001, <0.05 for NC vs AD, MCI and EMCI, 
respectively; p<0.0001 for AD vs MCI, EMCI and SMC. 
For NC vs SMC, p=0.601, 0.773 and 0.721 for Aβ42, Aβ40 and Aβ42/Aβ40, 
respectively.  
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Figure Captions 

Figure 1. In-house calibrators lot-to-lot reproducibility of A42 concentration for 3 pooled CSFs 

(#57, 58 and M). 

For pools 57 and 58 twenty- seven runs were completed with lot #41717,  

and thirty-two with lot #92917, for pool M eighteen and fifteen, respectively. 

 

Figure 2. (A) Methods comparison of A42 concentration by modified method for simultaneous 

analysis of three abeta peptides vs reference method for analysis of A2 alone (n=79),  

and (B) A42 concentration by modified LC-MS-MS method for simultaneous analysis of three 

abeta peptides vs Elecsys immunoassay (n=1439). 

 

Figure 3. Comparison of A42 concentration by modified method for simultaneous analysis 

of three abeta peptides performed in 2017 and 2014 (n=46). 

 

Figure 4. Scatterplots of florbetapir amyloid PET and CSF A42 (A) and A42/A40 ratio (B). 

Vertical lines represent cutoff values for A42 (1096pg/mL) and A42/A40 ratio (0.138) 

determined by mixture-modeling (Supplemental Figure 2) .  Based on baseline A42 

concentration and concurrent florbetapir amyloid PET the concordance was 81%. When the CSF 

A42/A40 ratio was utilized we observed an increase of concordance to 88%. (light green – 

NC, dark green – SMC, light blue – EMCI,  dark blue – MCI, red – AD). 
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Figure 5. Frequency distribution histogram plots of A42 (A) and A42/A40 ratio (B) of 

ADNIGO/2 subjects with cortical amyloid beta deposition measured by florbetapir PET (n=766).  

The red curves are locally estimated scatterplot smoothing (LOESS) regression plots of the CSF 

Aβ42(A) or A42/A40(B) frequency distributions for participants whose florbetapir PET SUVR 

values were positive (>1.11) and the blue LOESS plots are for participants whose florbetapir 

PET SUVR values were negative (<1.11).  Visual inspection shows that the ratio better separates 

PET positive from PET negative subjects than A42 alone, a finding consistent with 

concordance improvement for the ratio. 

 

 

 

 

 

  

 


