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Summary 

Voltage gated sodium channels are essential for excitability of skeletal muscle fibres and 

neurones.  An increasing number of disabling or fatal paediatric neurological disorders linked 

to mutations of voltage gated sodium channel genes are recognised.  Muscle phenotypes 

include episodic paralysis, myotonia, neonatal hypotonia, respiratory compromise, 

laryngospasm/stridor, congenital myasthenia and myopathy. Recent evidence suggests a 

possible link between sodium channel dysfunction and sudden infant death. Increasingly 

recognised brain sodium channelopathy phenotypes include several epilepsy disorders and 

complex encephalopathies. 

Together these early onset muscle and brain phenotypes have a significant morbidity and an 

appreciable mortality rate but there have been significant advances in understanding the 

pathophysiological mechanisms underlying them and these have helped to identify effective 

targeted therapies. The availability of effective treatments underlines the importance of 

increasing clinical awareness and the need to achieve a precise genetic diagnosis.  

Here, we describe the expanded range of phenotypes of muscle and brain sodium 

channelopathies and the underlying knowledge regarding mechanisms of sodium channel 

dysfunction. We outline a diagnostic approach and review the available treatment options. 

Introduction  

Neurological sodium channelopathies are childhood onset disorders caused by mutations in 

genes that encode the alpha subunits of voltage gated sodium channels or their interacting 

beta subunits. All the voltage gated sodium channel isoforms expressed in either muscle or 

brain have a crucial role in tissue excitability. Their primary function is to generate and 

conduct action potentials. In general terms dysfunction of these channels leads to either a 
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reduction (loss of channel function) or increase (gain of channel function) in tissue 

excitability. 

Sodium channelopathies are often episodic disorders. This can pose a challenge to diagnosis 

which relies heavily on the clinical history or may rely on examination or investigations 

being performed when symptoms are present. These disorders are often disabling, sometimes 

fatal, and crucially they are often treatable if diagnosed. 

Amongst the skeletal muscle sodium channelopathies it is the recently described severe 

phenotypes that present in infancy and childhood which pose the biggest diagnostic challenge 

and consequent unmet clinical need for treatment. Amongst the brain sodium 

channelopathies, which are mostly severe early-onset epilepsies and epileptic 

encephalopathies, young children are increasingly diagnosed by generic next generation 

sequencing panels. However, adults and older adolescents who may have not been diagnosed 

in childhood and may not access the same genetic testing can remain undiagnosed without 

access to the correct treatment. 

Muscle and brain sodium channelopathies are rare but will typically present to general 

physicians. Here we review how clinical presentations are linked to genetic and 

pathomechanistic data.  We aim to raise awareness, guide diagnosis, promote effective 

treatment and hence potentially reduce avoidable morbidity and mortality.  

Skeletal muscle sodium channelopathies 

Causative gene and pathophysiology 

Skeletal muscle sodium channelopathies are caused by mutations in the SCN4A gene which 

impair the ability of skeletal muscle to contract or relax1. The characteristic clinical features 
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of autosomal dominant muscle sodium channelopathies are disabling attacks of either muscle 

paralysis or myotonia.  

Over the last 10 years there has been increasing recognition that infants and children have a 

much more diverse clinical presentation (see Table 1). We now recognise that dominant 

mutations in this gene can also cause neonatal hypotonia2, stridor3 and life-threatening 

apnoeas4,5. Recently described recessive mutations cause foetal akinesia, congenital 

myopathy6 and congenital myasthenia7. Furthermore, there is recent evidence that SCN4A 

mutations may increase the risk of sudden infant death8. 

The SCN4A gene encodes the alpha sub-unit of the skeletal muscle voltage-gated sodium 

channel Nav1.4. It is present throughout the sarcolemma but most densely distributed at the 

motor end plate. A motor nerve action potential promotes acetylcholine release from the 

nerve terminal which activates the post-synaptic acetylcholine receptors. This in turn 

stimulates opening of Nav1.4 and ultimately triggers propagation of a post-synaptic action 

potential which results in muscle contraction (see Fig 1).  

SCN4A mutations will create either a hyperexcitable membrane that results clinically in 

myotonia or an inexcitable membrane that produces variable forms of muscle weakness 

including periodic paralysis, congenital myasthenia or congenital myopathy. This review 

focuses on the clinical presentations of SCN4A mutations and highlights under-recognised 

paediatric presentations.  For a detailed review of the electrophysiological consequences of 

mutations responsible for each clinical presentation see1. 

Clinical presentations 

Skeletal muscle sodium channelopathies: autosomal dominant disorders 



5 
 

Myotonic presentations 

Myotonia is delayed muscle relaxation after forceful contraction and is often experienced as 

muscle cramp, which can be painful, or muscle stiffness. Typically, sodium channel related 

myotonia affects the face and hand muscles more than the legs. Some mutations result in a 

pure myotonic presentation (sodium channel myotonia)9 and others can be associated with 

myotonia and episodic muscle weakness (paramyotonia congenita)10,11. Extremes of 

temperature, particularly cold and exertion or rest after exertion may exacerbate myotonic 

symptoms. Muscle hypertrophy is frequent10. 

Common (although only recently recognised) additional features in children include, extra-

ocular myotonia causing strabismus or disturbed vision, contractures, toe walking, kyphosis, 

scoliosis, rotated glenohumeral joints and dysmorphic features4,12-15 (see Fig 2).  

Severe neonatal episodic laryngospasm 

Young children and infants with SCN4A mutations commonly experience bulbar and 

respiratory (including laryngeal) muscle myotonia of variable severity13. The most severe 

presentations have been termed severe neonatal episodic laryngospasm (SNEL)5,16. Infants  

experience abrupt onset of upper airway muscle myotonia (frequently causing stridor3 

although some events were silent)4 in combination with respiratory, and limb muscle 

myotonia. Variable combinations of life-threatening apnoea, hypoxia, cyanosis, bradycardia 

and loss of consciousness can occur16,17. Bulbar impairment may result in failure to thrive 

requiring NG or PEG feeding4. Symptoms are typically brief, seconds to minutes but can 

occur multiple times a day. This abrupt onset of recurrent, stereotyped limb stiffening with 

hypoxia and cyanosis is not infrequently confused with epilepsy (despite normal EEG) or 

hyperekplexia15,16. Diagnostic uncertainty may result in infants spending many months in 

ITU with ventilatory support. Fatalities have been reported including a posthumous 
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diagnosis4,5. However, in all cases described in which the diagnosis was made and treatment 

instigated with sodium channel antagonists there was a dramatic improvement enabling 

discharge from ITU18. The respiratory and bulbar symptoms reported in children span a 

spectrum of severity and there are examples improving with age even when only supportive 

treatment has been given, suggesting a natural evolution of the phenotype3,15,17.  

Periodic paralysis 

Mutations in SCN4A can cause either hyperkalaemic (HyperPP) or hypokalaemic periodic 

paralysis (HypoPP)19-21. 

HyperPP: Age of onset is typically in the first decade22 with attacks of flaccid muscle 

paralysis associated with high serum potassium levels that last minutes to hours, and can 

occur at any time of the day. Rest after exertion often precipitates symptoms (e.g. prolonged 

sitting at a school desk) cold temperature or ingestion of potassium rich foods. Myotonia may 

also occur but paralysis is the predominant symptom. 

HypoPP: Symptoms characteristically begin in the second decade. Patients experience attacks 

of flaccid muscle paralysis associated with low serum potassium levels typically lasting hours 

to days that frequently occur during the night or first thing on waking22. This can lead to 

school absenteeism13 as the child will struggle to ambulate in the morning. If symptoms have 

resolved by the afternoon they can be misinterpreted as school avoidance.  Triggers include 

rest after exertion and carbohydrate rich meals that stimulate insulin secretion and lower 

serum potassium.  

The severity of muscle weakness experienced in each attack of periodic paralysis of either 

form is variable and may range from mild impairment to complete paralysis; e.g. a child 

complaining of leg weakness may still be able to stand and walk but not run or climb stairs 



7 
 

which can prompt erroneous suspicion of functional neurological symptoms. Weakness may 

also only affect one limb e.g. the dominant hand after prolonged writing and this may be 

detrimental in exams. In severe attacks, quadraparesis occurs and facial and respiratory 

muscles, which are usually spared, may be affected especially in the very young23,24. 

Potassium levels may rise or fall during an attack but not necessarily outside the normal 

range and therefore caution is needed in the interpretation of a normal potassium level.  

Neonatal hypotonia 

We have described transient neonatal hypotonia with bulbar and respiratory impairment in 

individuals with paramyotonia congenita2 and hyperPP13. In each case symptoms self-

resolved within a few days. Neonatal hypotonia is very common with a myriad of causes but 

the knowledge that it can be a symptom of sodium channelopathy may prevent unnecessary 

investigation. In addition, it allows planning for appropriate facilities and expertise during 

labour for affected parents. 

Skeletal muscle channelopathies: autosomal recessive disorders 

Congenital myopathy and foetal hypokinesia 

The first series describing congenital myopathy caused by homozygous or compound 

heterozygous mutations in SCN4A reported 11 individuals from six families6. Seven of the 

affected cases experienced foetal hypokinesia and died in utero or within 24 hours of 

delivery. The surviving four demonstrated neonatal hypotonia, generalised muscle weakness 

including neck and facial weakness with delayed motor milestones and later spinal 

deformities. There were variable dysmorphic features and significant neonatal respiratory and 

bulbar weakness warranting ventilator support and PEG feeding. Improvement in muscle 

strength and function including bulbar and respiratory muscles was universal in the first 
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decade. Muscle biopsies were consistent with a congenital myopathy but without specific 

diagnostic features6. A second report of three brothers with compound heterozygous SCN4A 

mutations confirmed a very similar phenotype25. A much milder congenital myopathy 

without respiratory or bulbar compromise was subsequently reported in two brothers with 

compound heterozygous SCN4A mutations. Two sisters homozygous for one of the mutations 

seen in these brothers also displayed a much milder phenotype without any respiratory or 

persisting bulbar problems26.  

SCN4A mutations causing myopathy result in a loss of channel function but there is an 

evident spectrum of severity. In vitro studies correlate clinical severity with the degree of 

channel dysfunction e.g. homozygous complete loss of function is fatal6. 

Congenital myasthenia 

SCN4A related congenital myasthenia was first recognised in a woman who had experienced 

recurrent episodes of respiratory and bulbar paralysis since birth requiring ventilator support 

and resulting in cerebral anoxic injury7. She had delayed motor milestones, ptosis, 

ophthalmoplegia, and fatigable facial, truncal, and limb muscle weakness. Additional cases 

reported early onset muscle weakness with variable respiratory insufficiency, fatigability 

including ptosis, and ophthalmoplegia27-29. Pyridostigmine was generally unhelpful, but 

acetylcholine is not diminished in this form of myasthenia. Repetitive nerve stimulation at 

typical diagnostic frequency of 3Hz can be normal with higher frequency stimulation 

required to see a decrement in CMAP. Unlike other causes of myasthenia where the motor 

end plate potential is inadequate to depolarise Nav1.4 channels, the end plate potential is 

normal but there is a use dependent reduction in Nav1.4 channel availability with failure to 

transmit sustained post-synaptic action potentials7. 

Brain sodium channelopathies 
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Causative genes 

Mutations in the genes SCN1A, SCN2A, SCN3A, SCN8A, SCN10A and SCN1B have been 

associated with a spectrum of paroxysmal neurological disorders, primarily early-onset 

epileptic encephalopathies (EOEE) and other autosomal dominant epilepsy syndromes.  

EOEE is the most common phenotype, but other epilepsy phenotypes include genetic (often 

generalised) epilepsy with febrile seizure plus (GEFS+, mainly 

SCN1A/SCN1B/SCN8A/SCN9A), benign (familial) neonatal/infantile seizures (B(F)NIS, 

mainly SCN2A/SCN8A), and a small number of cases of familial focal epilepsy with variable 

foci (SCN3A) (see Table 1).  

Clinical Presentations 

Early-onset epileptic encephalopathies  

Mutations in sodium channel alpha subunits have been associated with severe EOEEs, 

including Ohtahara syndrome (OS), epilepsy of infancy with migrating focal seizures 

(EIMFS), early myoclonic epileptic encephalopathy (EMEE), West syndrome (WS), Lennox-

Gastaut syndrome (LGS), myoclonic-astatic epilepsy (MAE) and other unclassified severe 

epilepsy phenotypes. OS is characterized by an early onset of spasms, mainly in the neonatal 

period, intractable seizures, and a suppression-burst pattern on EEG30. EIMFS is 

characterised by intractable seizures, typically focal, beginning in the first six months of life 

with associated developmental plateau or regression; autonomic manifestations are common 

and seizures progress to become nearly continuous by age six to nine months31. WS is 

characterized by spasms, an EEG finding termed hypsarrhythmia, and arrest of psychomotor 

development32. LGS is defined by a triad of multiple drug-resistant seizure types, a specific 

interictal EEG pattern showing bursts of slow spike-wave (SSW) complexes or generalized 
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paroxysmal fast activity (GPFA) and intellectual disability33. MAE is characterised by a 

combination of myoclonic, atonic, and atypical absence seizures, with onset usually after age 

two years. 

Dysfunction of one sodium channel can lead to multiple phenotypes and conversely the same 

phenotype can be due to mutations in different sodium channel genes (see Table 2). 

SCN1A mutations cause a range of EOEE, including mostly Dravet Syndrome, but also OS, 

EIMFS, EMEE, WS, LGS and MAE34. A severe phenotype with early onset developmental 

and epileptic encephalopathy, profound impairment, and movement disorder has also been 

reported mostly associated with the recurrent missense mutation p.Thr226Met35.  

Epileptogenic mutations generally cause loss-of-function, whereas gain-of-function is 

associated with mutations causing familial hemiplegic migraine36.  

SCN2A mutations mainly cause disease with onset in the early developmental period37, but 

some have also been found to cause later-onset neurological diseases38,39, or a combination of 

both40. Mutations with a gain-of-function mechanism usually cause early onset seizures, 

whereas loss-of-function mutations tend to be associated with later onset seizures or 

neurodevelopmental phenotypes without epilepsy41-43 SCN2A mutations account for 

approximately 10% of individuals with Ohtahara syndrome and are a common cause of WS 

with a major recurring mutation (p.Arg853Gln)43. The largest series of SCN2A-related 

epilepsy reported so far suggested two distinct phenotypic subtypes. The first group was 

characterised by onset before age 3 months, missense mutations with gain-of-function effects, 

and included OS, B(F)NIS, EIMFS and unclassified encephalopathies. In contrast, the second 

group with onset later than 3 months of age tended to harbour loss-of-function mutations and 

included WS, LGS, MAE, and focal epilepsies with EEG features of electrical status 
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epilepticus during sleep (ESES)43. Epileptic encephalopathy with choreoathetoid movements 

has also been reported in association with SCN2A variants39.  

SCN8A-related EOEEs include OS, WS, DS and LGS. EOEE  appears to result from gain-of-

function mutations44, whereas a few loss-of-function mutations have been found in those with 

developmental delay, intellectual disability or autism, mainly without seizures45-48.  

Clinical features of SCN8A EOEEs include developmental impairment, seizure onset in the 

first 18 months of life, pyramidal and extrapyramidal signs, and intractable epilepsy with 

multiple seizure types49. More recently, a specific electroclinical phenotype has been 

described in SCN8A developmental and epileptic encephalopathies with progressive EEG 

background slowing and multifocal epileptiform abnormalities, prominent in the posterior 

quadrants50. 

SCN3A encodes the voltage-gated sodium channel Nav1.3 which is expressed at high levels 

during embryogenesis and early postnatal life, falling to near-undetectable levels by 

adulthood51,52. Described mutant Nav1.3 channels show altered biophysical properties 

including prominent gain-of-function52. SCN3A has been shown to have a prenatal role in 

cortical organization and neuronal migration, especially in speech and language areas, 

mirroring its enriched foetal expression53. Affected individuals may present with disrupted 

cerebral cortical folding (polymicrogyria) of the perisylvian cortex, prominent speech and 

oral motor dysfunction, and EOEE52,53.  

Heterozygous de novo missense mutations in SCN3A have been shown to cause EOEEs in 

four patients with intractable epilepsy with onset during infancy, and severe to profound 

developmental delay. Two of these cases, both with the variant p.Ile875Thr, had extensive 

bilateral polymicrogyria52. The security of SCN3A as an ‘epilepsy gene’, and its associated 

phenotypic spectrum, await reporting of further cases.   
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So far, biallelic mutations in SCN10A have been reported in four patients from three families. 

Two of these families were consanguineous, and showed progressive neuromuscular disease 

with hypotonia, progressive weakness, and dysphagia. All patients had seizures with variable 

age of onset and semiology, and severe cognitive impairment, or developmental regression 

following seizure onset. Seizures responded poorly to AEDs. Subsequent search of consortia 

datasets identified five further cases with compound heterozygous SCN10A mutations, two 

with clinical phenotypes of LGS and infantile spasms, respectively, and three with autism54. 

The SCN1B gene encodes the sodium channel beta-1 subunit, which is linked to voltage-

gated sodium channel alpha subunits and modulates a range of their functions55. Recessive 

mutations in SCN1B are reported in five children from three consanguineous families with 

EOEEs. Four of the five died in childhood. The seizure semiology varied but with refractory 

epilepsy in all cases. MRI was abnormal in four, with mostly brain atrophy. All patients had 

global developmental delay. Further features included spasticity and kyphoscoliosis56. 

The evolution of phenotypes in later life, including from adolescence onwards, is not fully 

defined for many of these conditions. The history of the early stages of the disease may help 

raise suspicion of an underlying sodium channelopathy, but, especially in later years, such a 

history may be lost, or not known to unrelated carers, which can complicate the diagnostic 

process. 

Dravet syndrome 

Dravet Syndrome (DS) is a severe epileptic encephalopathy with onset typically in the first 

year of life with prolonged, febrile and afebrile, generalized clonic or hemiclonic epileptic 

seizures in children with no overt pre-existing developmental problems. Other seizure types, 

including myoclonic, focal, and atypical absence seizures, appear between the ages of 1 and 4 

years. The main clinical features of DS include drug-resistant epilepsy, developmental 
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slowing, cognitive impairment, occurrence of status epilepticus, and an elevated risk of early 

mortality57.  Additional comorbidities that often develop by adulthood include dysphagia, 

cerebellar symptoms and gait disturbances. In at least 85% of cases, DS is caused by de novo 

SCN1A mutations58. The large majority of pathogenic SCN1A variants causing DS are 

dominant, but there has been a report of two consanguineous families in which heterozygotes 

remained healthy and only homozygotes developed DS or GEFS+59. Less frequently, DS, or 

a very similar phenotype, might be due to mutations in other genes: SCN2A, SCN1B, SCN8A, 

STXBP1, GABRA1, GABRG2, GABRB360.  

GEFS+ 

GEFS+ is a spectrum of familial autosomal dominant seizure disorders of varying severity 

including simple febrile seizures, which start in infancy and usually stop by the age of five 

years, and febrile seizures plus (FS+). FS+ involves febrile and other types of seizures, 

including those not related to fevers (afebrile seizures), that continue beyond childhood. 

Phenotypes within families affected by GEFS+ are extremely variable, including FS, FS+, 

epilepsies with generalised and/or focal seizures, myoclonic-astatic epilepsy (MAE), and DS. 

Of GEFS+ patients with known mutations, SCN1A accounts for the largest fraction, with 

mutations identified in 19% of families, followed by SCN1B mutation in up to 8%61. Patients 

with FS/FS+ and SCN1B mutations have later onset of FS compared to patients with 

mutations in SCN1A62. 

B(F)NIS 

 

B(F)NIS is an autosomal dominant self-limiting disorder in which afebrile seizures occur in 

clusters during the first year of life, without overt long-term neuropsychiatric sequelae. 

BFNIS is mostly caused by dominantly inherited SCN2A missense mutations63.   
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A recurrent heterozygous SCN8A missense mutation has been found in association with 

autosomal dominant benign familial infantile seizures (BFIS) and infantile convulsions and 

paroxysmal choreoathetosis (ICCA)64. 

Intellectual disability and/or autism spectrum disorder 

SCN2A mutations have also been found in patients with intellectual disability and/or autistic 

features without epilepsy42,65. The autism-associated SCN2A variants showed partial or 

complete loss-of-function in HEK cells and more than half were predicted to introduce a 

premature stop codon41. 

Loss-of-function mutations in SCN8A have been associated in two children with intellectual 

disability and developmental delay but no seizures47. Three individuals with autism are 

described with possibly/probably pathogenic compound heterozygous variants in SCN10A54.  

Other CNS phenotypes 

At least seven mutations in the SCN1A gene have been identified in people with familial 

hemiplegic migraine type 3 (FHM3), a severe monogenic subtype of migraine with aura, 

characterized by the presence of hemiparesis as part of the aura phase66. 

Mutations in SCN2A are an established  cause of neonatal epilepsy (benign infantile seizures) 

with late-onset episodic ataxia40, and schizophrenia67; although only a few cases have been 

reported so far. 

A heterozygous truncating mutation in SCN8A has been reported in a case with cerebellar 

atrophy, ataxia, and mental retardation46. A heterozygous missense SCN8A variant 

determining partial loss-of-function has been recently associated with autosomal dominant 

non-epileptic isolated upper limb myoclonus, without seizures or cognitive impairment48; 
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again only one family has been reported, so these findings do not yet provide robust evidence 

of causation. 

Assessment and Diagnosis 

The differing physiological consequences of muscle and brain sodium channel mutations can 

have significant implications for appropriate therapeutic choice (see Table 2) and exemplifies 

the importance of obtaining a genetic diagnosis from within a generic presentation. For 

example SCN4A related congenital myasthenia will not benefit from pyridostigmine and 

rapid genetic testing in SCN2A-related early onset epilepsy is crucial as its treatment is 

distinct from current guidelines for empiric neonatal seizure treatment42.  

Muscle and brain sodium channel disorders are diverse and include presentations 

characterised by either episodic or fixed symptoms. For the episodic presentations including 

many of the epilepsies and the periodic paralyses, general examination when asymptomatic is 

usually normal. In the myotonic disorders, in addition to the myotonia and muscle 

hypertrophy, contractures, scoliosis, strabismus and dysmorphic features (see Fig 2) should 

all be sought in children. In Dravet Syndrome while neurodevelopmental and neurological 

examination are typically normal at the age of seizure onset there is often subsequent 

developmental delay and there may also be ataxia, pyramidal signs, crouch gait, dysphagia 

and movement disorders observed during the course of the disease, which may obscure the 

underlying diagnosis. 

Even where there is permanent disability examination may not lead to a precise diagnosis e.g. 

fixed myopathy is a feature of SCN4A related congenital myopathy but the wider differential 

includes all causes of congenital myopathy. Similarly patients with SCN4A mutations may 

present with myasthenic symptoms but other genetic and autoimmune causes of myasthenia 

need to be considered. The mainstay of investigation lies in a particular focus on clinical 
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history combined with neurophysiologic assessment, EMG/NCS for muscle channelopathies 

and EEG for brain disorders. The specificity of the neurophysiology test chosen in muscle 

channelopathies varies with phenotype (see Table 3) and specialist tests not routinely 

available in every centre may be needed. CK and muscle biopsy are generally non-specific 

but can help to distinguish a peripheral from central disorder which for the SNEL 

presentations can be pivotal.  

Genetic testing in both muscle and brain channelopathies is usually diagnostic. The majority 

of mutations that account for the sodium channel epilepsies and the severe myotonia 

laryngospasm cases arise de novo and lack of family history should never deter from 

considering a genetic diagnosis. Mutations in the CLCN-1 gene cause the closely related 

skeletal muscle channelopathy myotonia congenita. It should be noted that the carrier 

frequency of these variants is relatively high in the general population but this myotonic 

disorder has not been associated with laryngospasm.and any variants should be interpreted 

with caution in infantile cases of apnoea and/or stridor.The importance of returning to the 

early clinical history for older adolescents and adults with epilepsy disorders cannot be 

overemphasised as it is the early history  that is characteristically the clue to a genetic 

aetiology68. In patients with an electroclinical phenotype of DS, SCN1A testing should be 

requested as the estimated likelihood of detecting a mutation in a typical DS case is 80-90%. 

Negative SCN1A analysis does not necessarily exclude the diagnosis, as it may be a false-

negative result 69 or clinical features may be associated with a mutation in another gene60, as 

the DS diagnosis itself is a clinical one. SCN1A testing is also recommended for GEFS+ 

phenotypes.  

For other EOEEs, gene panels or whole exome/genome sequencing (WES/WGS) analyses 

can lead to a diagnostic yield varying between 30% and 70%70. A recent study in adults with 

treatment-resistant epilepsy and intellectual disability using the same wide sequencing 
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approach had a similar diagnostic rate, highlighting a significant unmet clinical need in older 

patients71.   

For those with intellectual disability, autism and the other CNS phenotypes discussed, the 

role of sodium channel gene variants in producing the phenotype has not been fully 

determined and there is no current evidence of treatment implication or benefit. The clinical 

value in routine genetic testing of these genes for patients with these phenotypes is therefore 

not yet established and should be regarded with some caution. 

Treatment and prognosis  

Skeletal muscle sodium channelopathies  

Myotonic disorders and the periodic paralyses usually benefit significantly from 

pharmacological therapy. Sodium channel blockers, commonly mexiletine or lamotrigine 

tend to be first choice for myotonic symptoms with a combination of diuretics and carbonic 

anhydrase inhibitors for the periodic paralyses72-74. For the severe SNEL cases, treatment can 

be transformative. There is some in vitro evidence that in these cases the sodium channel 

blocker flecainide may be the most effective choice for the common SNEL mutation, 

G1306E75,76. Even in the recessive disorders there is some evidence of efficacy from similar 

therapies and the possibility of treatment should always be considered, even when the 

examination suggests fixed weakness7,77. A summary of pharmacological treatments is given 

in Table 3. All of the muscle sodium channelopathies are disabling but only SNEL and 

congenital myopathy have been shown to be life-limiting. In surviving infants prognosis in 

the episodic disorders is generally positive if treated appropriately. School absenteeism is a 

strong indication to treat pharmacologically as this can limit educational potential. The 

majority of patients remain ambulant and in full time employment but a significant minority 

develop a fixed proximal myopathy with requirement for walking aid and home 
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modifications. Cases of congenital myopathy and myasthenia are relatively few making 

prognosis speculative to some degree. A significant spectrum of severity has been 

demonstrated. Congenital myopathy has the highest mortality but the surviving cases tend to 

improve in the first decade and appear to be relatively stable thereafter. 

Potassium and cardiac monitoring during muscle paralysis 

Potassium levels can be significantly deranged in periodic paralysis, especially hypoPP and 

although the cardiac muscle itself is unaffected by the disease cardiac arrhythmia secondary 

to dyskalaemia can be significant. During acute attacks of hypoPP oral or IV potassium may 

be required. Caution must be taken however as potassium is held intramuscularly during an 

attack and will return to the plasma as the attack subsides. In combination with IV 

supplementation this can result in a rebound hyperkalaemia and iatrogenic mortality78. 

General anaesthetic considerations 

Propofol and non-depolarising anaesthetic agents appear effective and safe in muscle 

channelopathies79. A myotonic crisis can be precipitated by depolarising anaesthetics or 

suxamethonium, which can also provoke hyperkalaemia and fatal ventricular arrhythmia80 

and should be avoided. Muscle rigidity including the jaw can be profound, and intubation 

may become impossible 81. Emergency treatment is with IV sodium channel blockers e.g. 

lidocaine and correction of hyperkalaemia. 

Brain sodium channelopathies  

Attempts to secure adequate seizure control are particularly important, because it can also 

bring about improvement in cognitive function, even in patients who have shown decline 

over an extended period of time, decrease the risk of injury and of sudden unexpected death 

in epilepsy (SUDEP).  
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Dravet Syndrome 

First-line agents include valproate, clobazam and stiripentol82,83 with  supportive data for 

topiramate, levetiracetam, bromides, and the ketogenic diet84. Until recently, stiripentol was 

the only treatment for which a phase 3 randomized, placebo‐controlled, clinical trial had been 

performed in patients with DS82. More recently, a pharmaceutical‐grade formulation of 

purified cannabidiol in oil has been shown to be more efficacious but less tolerated than 

placebo in controlling some types of seizures in Dravet syndrome85. Other agents such as 

fenfluramine are promising therapies86. Sodium channel-blocking antiepileptic drugs such as 

carbamazepine and lamotrigine are generally contraindicated but should not be entirely 

excluded as in certain cases they can be of benefit87, although the reasons underlying varying 

treatment responses in Dravet syndrome have not been fully elucidated88. Non-

pharmacological treatment such as vagus nerve stimulation (VNS) can also be considered84.  

SCN2A-related disorders 

In parallel to the observed correlation between age of onset and functional consequence of the 

underlying mutation, the use of non-selective sodium channel blockers, such as phenytoin 

and carbamazepine, can be effective in children with early infantile epilepsies (<3 months). 

In contrast, they are rarely effective in epilepsies with later onset (≥3 months) and can induce 

seizure worsening43; therefore, non-sodium channel inhibiting AEDs should be used (e.g. 

levetiracetam, benzodiazepines, and valproate). There is limited evidence of efficacy of the 

ketogenic diet89 but no clinical trials have been performed. Prognosis associated with SCN2A 

disorders varies from benign outcome with often complete seizure freedom (i.e. in B(F)NIS) 

to refractory epilepsy with cognitive impairment and early death due to infections or status 

epilepticus43. 

SCN8A-related epilepsies 
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Most patients with SCN8A-related epilepsies have drug-resistant epilepsy. There is clinical 

evidence of the effectiveness of sodium channel blockers consistent with the activating 

effects of most SCN8A pathogenic variants90, the most effective being phenytoin, 

carbamazepine, and oxcarbazepine, usually at supra-therapeutic doses50. Ketogenic diet has 

been suggested to be effective in improving seizure control50, but there is no robust evidence 

from clinical trials. Prognosis in SCN8A EOEEs is generally poor with profound impairment 

and increased risk of premature mortality, although a more stable course or even 

improvement has been reported with age50. 

SCN3A, SCN10A and SCN1B related epilepsies 

In SCN3A-related EOEEs, there is preliminary evidence that phenytoin and lacosamide may 

offer a targeted treatment approach but more data are needed52.  

There are no data on potential treatments for SCN10A or SCN1B-related epilepsy, with the 

few EOEE patients recently described all having refractory epilepsy54,56. 

General considerations 

Symptoms in both muscle and brain sodium channelopathies are often “triggered” by other 

factors which can be modified by non-pharmacological means. Examples include avoiding 

elevated body temperatures (warm baths, exercise on hot days, untreated fever) in Dravet 

Syndrome, and foods precipitating high or low potassium levels in the periodic paralyses. 

Where applicable all patients should have a home rescue medication e.g. involving the use of 

buccal midazolam for seizure disorders or potassium supplements for hypokalaemic periodic 

paralysis, and should have a clear protocol to guide emergency management at their local 

hospital in case of seizure clusters, status epilepticus or severe dyskalaemia with 

quadraparesis. All patients should ideally have access to a multi-disciplinary specialist 
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service including the support of a clinical nurse specialist and, where appropriate, school 

liaison. 

Recurrence risk and testing of family members 

Most of the SNEL myotonia cases and EOEEs are the result of de novo events91, and thus, the 

risk to additional family members is thought to be low, a typical recurrence risk quoted for 

future pregnancies is <1%. However, a significant fraction of presumed de novo events is 

found to be gonadal or somatic mosaicism in unaffected or mildly affected parents92,93, and 

has been reported to occur with SCN1A and SCN2A variants making the recurrence risk for 

families with a child with an apparent de novo variant higher than the general population risk. 

Although the majority of EOEEs are sporadic, a WES study showed that up to 20% of 

genetically confirmed EOEEs are autosomal recessive with a subsequent recurrence risk for 

future siblings of 25%94. More recently, parental mosaicism has also been shown to be a 

more common phenomenon than expected, complicating risk counselling93. 

The risk of sudden death 

Sudden infant death 

We recently described rare heterozygous SCN4A mutations in cases of sudden infant death8. 

We provided evidence that the mutation may increase the risk of respiratory failure or 

laryngospasm when combined with other risk factors. There has been no systematic 

evaluation to assess if there is increased risk of death among infants born to parents affected 

by sodium channelopathies.  

Laryngospasm has also been postulated as a contributory mechanism to SUDEP. We recently 

identified a child with both EEG confirmed epilepsy and a myotonic SCN4A mutation who 

experienced apnoea during seizures95. We postulate the presence of the myotonia mutation 



22 
 

may increase the risk of apnoea and that laryngospasm may be a common mechanism in 

sudden death aetiology although this requires further research. 

Sudden unexpected death in epilepsy (SUDEP) 

Mortality in DS ranges from 3.7–17.5% with 15–61% deaths attributed to SUDEP and 25–

42% to status epilepticus96,97. Death most commonly occurs in childhood97. The DS-specific 

SUDEP rate has been estimated at 9.32/1000-person-years (CI 4.46–19.45), including both 

children and adults98. As SCN1A is also expressed in the heart, a predisposition to cardiac 

arrhythmias has been suggested as a potential contributing factor to the elevated risk of 

SUDEP99. SUDEP has been reported in approximately 10% of published SCN8A cases. 

However, a recent study has not confirmed an increased risk of SUDEP in SCN8A-related 

epilepsies when compared to other developmental and/or epileptic encephalopathies100. 

SUDEP has also been reported in a GEFS+ family carrying a pathogenic SCN1B variant101.  

More generally, a major risk factor for SUDEP is the presence and frequency of generalized 

tonic-clonic seizures (for example, people with three or more GTCS per year have a 15-fold 

increased risk of SUDEP), and seizures occurring from sleep may also increase the risk102. 

Therefore, independent of the aetiology of the epilepsy, it is important to actively manage 

epilepsy therapies to reduce seizure occurrences and to use nocturnal supervision, or other 

nocturnal precautions, to reduce SUDEP risk102. 

Future challenges 

Although sodium channelopathies are often very responsive to pharmacological treatment 

their rarity does pose a major challenge to conducting randomised controlled trials. This 

limits the ability to inform best practice and suggests more innovative trial design may be 

needed for the future103. In addition many of the treatments used are repurposed relatively 
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inexpensive drugs but if trial evidence of efficacy in a rare disease is provided this can leave 

them vulnerable to unintended disadvantages of orphan drug designation – namely significant 

price increases which in some cases has led to a lack of access for patients104. 

For the epilepsies, especially Dravet Syndrome treatment is often still a challenge. Stratifying 

pharmacological choice based on genetic aetiology and the removal of unhelpful drugs may 

often be the most effective practical step but it remains difficult to find a regime that renders 

DS patients completely seizure free. A major challenge lies in the development of new 

therapies with a current focus on gene based approaches. 

It is also of concern that at present we have no treatments at all for most of the associated co-

morbidities of DS e.g. intellectual disability, behavioural, sleep, feeding, or gait difficulties. 

Seizure control can help, but rarely does even seizure freedom (itself difficult to achieve) 

prevent these features, at least in adults.  We are yet to see if improved seizure control from 

an early age does prevent all these. 

Conclusions  

Skeletal muscle and brain sodium channelopathies are rare but treatable causes of significant 

childhood morbidity and mortality. Pharmacological therapies are readily available and often 

have a dramatic benefit which correlates with targeting therapy to the underlying pathological 

consequence of the mutation on channel function. Identifying the genetic mutation and its 

functional effect is crucial, and has important implications for treatment. The biggest 

challenge for reducing morbidity in young onset muscle sodium channelopathies is arguably 

a lack of awareness of the clinical presentation in infants and young children. For brain 

sodium channelopathies it is essential to not overlook the importance of a detailed early life 

history in patients being assessed as adolescents or adults. 
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Figure legends 

Fig 1: Diagrammatic representation of neuromuscular junction transmission and 

excitation-contraction coupling 

Fig 2: Clinical signs in children with sodium channel myotonia   
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A: Toe walking, eyelid myotonia and facial dysmorphism with short neck and hypertrophic 

neck and shoulder girdle muscles. B. Scoliosis, elbow and knee contractures, short neck and 

short stature C. Strabismus  

*permissions to reproduce some previously published photographs are pending 
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Gene Protein Clinical Phenotype Inheritance 

SCN4A Nav1.4 Myotonic phenotypes  

  Sodium channel myotonia and Paramyotonia congenita 

Severe neonatal episodic laryngospasm (SNEL) 

Autosomal dominant 

Autosomal dominant – majority de novo 

  Periodic paralyses  

  Hyperkalaemic periodic paralysis, Hypokalaemic periodic paralysis Autosomal dominant  

  Congenital phenotypes  

  Congenital myopathy (and/or foetal akinesia), Congenital myasthenia Autosomal recessive 

    

SCN1A Nav1.1 Epileptic encephalopathies  

  Dravet syndrome  At least 85% of cases de novo dominant SCN1A 

Autosomal recessive rare – two consanguineous 

families reported 

  Ohtahara syndrome, Epilepsy of infancy with migrating focal seizures, Early myoclonic epileptic encephalopathy, 

West syndrome, Lennox-Gastaut syndrome, Myoclonic-astatic epilepsy 

Autosomal dominant/de novo 

  Epilepsy syndromes  

  GEFS+ (Up to 19% of cases due to SCN1A mutations) Autosomal dominant/de novo 

  Other CNS syndromes  

  Familial hemiplegic migraine Autosomal dominant 

    

SCN2A Nav1.2 Epileptic encephalopathies  

  Dravet syndrome De novo  

  Onset typically before 3 months: Ohtahara syndrome, Epilepsy of infancy with migrating focal seizures, B(F)NIS Autosomal dominant/ de novo 

  Onset typically after 3 months: West syndrome, Lennox-Gastaut syndrome, Myoclonic-astatic epilepsy, focal 

epilepsies with EEG features of electrical status epilepticus during sleep  

Autosomal dominant/de novo 

  Epilepsy syndromes  

  B(F)NIS Autosomal dominant/de novo 

    

SCN8A Nav1.6 Epileptic encephalopathies  

  Dravet syndrome, Ohtahara syndrome, West syndrome, Lennox-Gastaut syndrome De novo 

  Epilepsy syndromes  

  Benign familial infantile seizures, Infantile convulsions and paroxysmal choreoathetosis Autosomal dominant/ de novo 

    

SCN10A Nav1.8 Epileptic encephalopathies  

  Dravet syndrome De novo 

    

SCN1B  Epileptic encephalopathies  

  Dravet syndrome De novo 

  Epilepsy syndromes  

  GEFS+ (up to 8% of cases due to SCN1B mutations) Autosomal dominant/de novo 

Table 1: Clinical phenotypes linked to mutations in skeletal muscle and brain sodium channel genes 
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 Needle EMG: Myotonia Motor NCS: CMAP Repetitive Nerve Stimulation Long Exercise Test 

Myotonia Present* Normal No data Negative or Positive 

Myotonia: SNEL Present* Normal No data Test not possible in 

an infant 

Hyperkalemic Periodic Paralysis Present Normal No data Positive* 

Hypokalaemic periodic paralysis Absent Normal No data Positive* 

Myopathy Absent Reduced* No decrement Negative 

Congenital myasthenia Absent Normal Stimulation dependent decrement 

in CMAP* (may require 10Hz 

stimulation frequency to 

demonstrate) 

Negative 

*denotes the single most useful neurophysiological test for each diagnosis  NCS: nerve conduction studies  CMAP: compound motor action potential 

Table 2: Neurophysiological investigations most pertinent for each skeletal muscle channelopathy phenotype 
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 Recommended pharmacological therapies 

Muscle sodium channelopathies  

Myotonia Sodium channel blockers: mexiletine*, lamotrigine*, flecainide, ranolazine, propafenone, 

carbamazepine 

SNEL Sodium channel blockers: Mexiletine, flecainide†, carbamazepine 

 

Hyperkalaemic periodic paralysis Potassium wasting diuretics: thiazides  

Carbonic anhydrase inhibitors: acetazolamide, dichlorphenamide*  

Salbutamol PRN 

Hypokalaemic periodic paralysis Potassium sparing diuretics: aldosterone antagonists, amiloride 

Carbonic anhydrase inhibitors: acetazolamide, dichlorphenamide* 

Oral potassium supplements PRN 

IV potassium if hypokalaemic induced ECG changes  

Neonatal hypotonia Usually none required and self-limiting but supplemental oxygen therapy and NG tube may be 

transiently needed 

Congenital myopathy Acetazolamide may benefit fluctuant symptoms in certain genotypes 

Congenital myasthenia Acetazolamide beneficial in one case 

Sodium channel epilepsies  

Dravet Syndrome First line: valproate, clobazam and stiripentol* 

Second line: topiramate, levetiracetam, bromides 

Others: Purified cannabidiol in oil*, fenfluramine 

Caution: sodium channel blocking agents frequently worsen seizures e.g. carbamazepine and 

lamotrigine 

SCN2A early epilepsies (onset 

<3months) 

Non-selective sodium channel blockers e.g. phenytoin and carbamazepine 

SCN2A epilepsies (onset >3months) Non-sodium channel inhibiting AEDs e.g., levetiracetam, benzodiazepines, and valproate 

Caution: Sodium channel blockers may worsen seizures 

SCN8A epilepsies Phenytoin, carbamazepine, and oxcarbazepine (supra-therapeutic doses may be required) 

SCN3A epilepsies Preliminary evidence for phenytoin and lacosamide 

*treatments for which there is RCT evidence available for efficacy †in vitro evidence to suggest best therapy for certain genotypes e.g. G1306E 

Table 3: Recommended pharmacological therapies for muscle and brain sodium channelopathies 
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Key Messages 

 There have been significant advances in understanding the mechanisms of muscle and brain diseases linked to dysfunction of voltage-

gated sodium channels 

 Biophysical sodium channel disruption leads to altered muscle or neuronal membrane excitability which often predicts the phenotype 

 Common pathophysiological mechanisms span muscle and neuronal membranes 

 The range of muscle and brain phenotypes is expanding, can be fatal, but are often treatable if diagnosed 

 Diagnosis may be complex but increasing awareness is important and aided by increased availability of next generation sequencing  

 Treatment with drugs that directly interact with the sodium channel or which modulate the ionic homeostatic environment are often 

effective in reducing morbidity and in some cases mortality 

 

 


