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Computational psychiatry is an emerging field that examines phenomena in mental illness using 

formal techniques from computational neuroscience, mathematical psychology and machine 

learning (1–6). These techniques can be used in a theory-driven manner to gain insight into 

neural or cognitive processes and in a data-driven way to identify predictive and explanatory 

relationships in complex datasets. The approaches complement each other: theory-driven 

models can be used to infer mechanisms, and the resulting measurements can be used in data-

driven approaches for prediction. Recent computational studies have successfully described 

and measured novel mechanisms in a range of disorders (7–11), have framed disorders in new 

and informative ways (12) and have identified predictors of treatment response (13,14). These 

methods hold the potential to improve identification of relevant clinical variables, and could be 

superior to classification based on traditional behavioral or neural data alone (15–18). However, 

these promising results have been slow to influence clinical practice or to improve patient 

outcomes. 

In February 2019 a workshop was convened at the Banbury Centre at Cold Spring Harbor, NY. 

The purpose of the meeting was to identify key developments required in the practice and 

infrastructure of computational psychiatry research to accelerate its ability to address real world 

clinical problems in the near future. This report provides a summary of the conclusions of the 

meeting. At its core are suggestions to improve the measurement properties of computational 

assays through a rapid, iterative process that leverages coordinated waves of online and clinical 

testing, followed by deployment of the assays in innovative study designs to address clinically 

relevant questions. We particularly focus on theory-driven tasks but, where possible, the 

potential of data-driven approaches is highlighted. Finally, the report suggests that for the 

promise of computational psychiatry to be realized, the research environment must be 

developed to encourage large-scale, collaborative, interdisciplinary consortia. Given the focus of 

the report on questions of effective research practice in computational psychiatry, it is assumed 

that readers have some familiarity with the field. While we provide brief summaries and 
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examples of the concepts covered in the paper (Table 1, Figure 1), readers new to the field may 

find papers on the issue of clinical translation (3) or the general approaches used (1,2,5,15,16) 

useful to review beforehand.  

We first summarize the need for computational assays with improved measurement properties 

and describe an iterative optimization and validation procedure by which such assays may be 

developed and deployed in clinically informative studies. We then consider broader adaptations 

to the research environment that may accelerate the translation of these techniques. 

Computational assays for clinical applications – what 

is missing from current research practice? 

Measurement 

A key application of computational assays is the estimation of behavioral and cognitive variables 

that underlie clinical observations and measurements. Theory-driven approaches rely 

extensively on generative models i.e., formal descriptions of the underlying neural and mental 

processes that are believed to generate observations (see 19 for an example). Fitting 

generative models to observations has a number of advantages. First, it may allow identification 

and measurement of processes not easily captured by traditional analysis (20), second 

generative models may improve the validity and reliability by which a process is measured. For 

instance, generative models can incorporate processes that tie different features (e.g. reaction 

time and choice) and modalities (e.g. behavior and physiology) together in a holistic manner 

(21–24). They also allow artificial data to be simulated and therefore a degree of measurement 

optimization to occur in silico before the assay is deployed in practice (see Table 1 for details). 

However, these features do not by themselves guarantee that computational assays provide 
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reliable and valid measures of underlying processes. Rather, the measurement properties of an 

assay must be assessed and iteratively optimized (see Table 1 for a summary of computation-

specific and general metrics of reliability and validity). Though there are notable exceptions (25–

28) the issue of measurement in computational psychiatry has not yet attracted due attention. A 

principled and efficient process of assay development that optimizes measurement properties 

from the outset is a key outcome of the framework described below. 

Deployment                                                

Beyond questions of measurement, a second crucial factor in translating computational assays 

to clinical application is the deployment of the assays in studies that are able to address 

clinically useful questions. While cross-sectional designs can assess associations between 

symptoms and computational processes, they provide relatively limited information on the 

clinical utility of assays. Alternative study designs which test whether an assay provides 

predictive information useful to clinical decision-making, or the causal relationships between 

computationally measured processes and symptoms are likely to be especially important here. 

Data-driven techniques are particularly well suited to deployment in predictive studies. 

Developmental pipeline for clinically useful 

computational assays 

Here we outline a potential framework by which promising computational assays may be 

efficiently developed, validated and deployed to address clinically important questions (Figure 

1). We note that the initial identification of candidate assays, informed by prior clinical, pre-

clinical (including animal studies) and theoretical work, is crucial to this process. Rather than 
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describe this initial identification stage, which has been a central concern of computational 

psychiatry (29,30), we focus on how promising assays may most efficiently be developed.  

Establishing and optimizing the measurement 

characteristics of novel assays 

Step 1: Assay optimization 

First, the measurement factors of the assay required to address a clinical question are selected 

and the structure of the assay altered to optimize these. Table 1 outlines important metrics. The 

selected factors may include both specific computational properties such as parameter 

identifiability (see Table 1) as well as practical features of an assay (e.g. duration to complete, 

complexity) and clinical validity (e.g. correlation with symptoms or treatment response). An 

“objective function”, a mathematical formulation that combines task metrics to produce an 

overall measure of performance, may be constructed to reflect the specific priorities of a 

research project including factors to maximize (e.g. sensitivity to manipulations of key task 

variables, compliance) and minimize (e.g. task duration). The assay may then be optimized by 

iterative testing either in silico, using high-throughput online data collection (31) or in more 

deeply phenotyped clinical populations. Here, optimization occurs by systematically varying 

aspects of the assay’s configuration (e.g., number of trials per condition, timing of stimulus 

presentation, reward incentives) in order to maximize the objective function. In some cases, this 

may also include hand-designed qualitative changes (e.g. to improve the task instructions 

used).Optimization of data-driven approaches may follow a similar trajectory with, for example, 

the data features being passed to a classifier that is optimized in terms of the predictive validity 

or the practicality of collecting the data. In effect, this step entails an expanded, recursive 
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piloting phase during which the measurement properties of an assay are leveraged to improve 

its performance. 

Step 2:  Latent structure validation 

Although individual model parameters may underlie specific neurocognitive processes, many 

clinically relevant processes are likely to consist of a latent (not directly observable) structure of 

relations between multiple parameters (15,32). A useful step is therefore to describe this 

structure by collecting data from a range of assays within a single population of participants. 

Data-driven techniques such as clustering or theory-driven techniques such as generative 

modelling approaches can be used to determine the latent structure of the assays. Identified 

latent structures can be fed back to step 1 to inform the further development of assays, with the 

best performing (in terms of the metrics described in Table 1) being deployed as described 

below. 

Deployment: Establishing the potential of assays as 

predictors, targets and mediators 

Next, the potential clinical utility of assays is tested in proof-of-concept studies examining the 

predictive ability of the assay and/or the causal relationship between the process measured by 

the assay and clinically important outcomes such as symptoms. 

Step 3a: Clinical prediction and covariation 

Longitudinal observational studies may be used to assess whether an assay covaries with 

mental state changes or traits of interest and whether it has predictive validity, for example by 

predicting response to treatment (13). The ability of cohort studies to map the development of 

psychiatric symptoms may be enhanced by innovative study designs such as longitudinal yet 
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brief “natural challenge” studies (33) which make use of cohorts likely to encounter precipitative 

events expected to result in a change in psychiatric status (e.g., patients starting a new 

treatment). 

Prediction will typically involve a combination of theory-driven and data-driven analysis, with 

data-driven analyses used to establish the most powerful predictors (13,34) and to address 

issues of dimensionality reduction as described for latent structure validation above.  

Step 3b: Causality and treatment targets 

A second route by which computational assays may impact clinical practice is if the process 

measured by the assay constitutes a viable treatment target. That is, treatments may be 

developed specifically to alter the computationally defined process. This question hinges 

crucially on the causal relationship between the measured process and clinically relevant 

outcomes such as symptoms or functioning. Causality is most efficiently addressed using 

experimental medicine designs which manipulate the computationally measured, process and 

then assess the consequences of the manipulation on intermediate or clinical outcomes (where 

this is not possible, quasi-experimental designs may also be useful (35)). Potential 

manipulations may involve pharmacological, brain stimulation, cognitive or psychotherapeutic 

techniques, the key issue being the ability of the intervention to engage and alter the 

computationally measured process. 

Step 4: Clinical efficacy 

Regardless of whether the goal of using a computational assay is to predict a clinical outcome 

or to guide the development of a novel treatment, the efficacy of computationally informed 

approaches must ultimately be assessed in clinical trials. Such trials may, for example, 

randomly assign patients to be treated according to a predictive algorithm or standard 

treatment, or to receive a computationally informed intervention vs. a control.  
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In summary, these four steps describe a general pipeline of clinical computational assay 

optimization designed to yield reliable and valid assays that are deployed in clinically informative 

study designs. 

Evolution of the research environment 

Computational assays can be applied to pre-existing datasets (36–38), and the sharing of 

datasets and analytic procedures is clearly of great importance. However,  the process of 

computational assay development and deployment outlined above requires substantial 

structural resources well beyond those of individual laboratories. At the very least, this includes 

shared core infrastructure, particularly in the domain of information technology. It will 

necessitate common data structures, including meta-data relevant to measures, models and 

populations, and common ascertainment procedures across sites that enable individual labs to 

collect high-quality behavioral and clinical data and, where relevant, physiological or biological 

data in a universal format (39). Curation of the data will be required to ensure that it is findable, 

accessible, interoperable and reusable from the outset. Due to rising concerns about data 

security on the one hand and the need to provide scientists access to data on the other, the 

secure storage and aggregation of data across sites using a platform which itself may support 

data analysis, is likely to be essential (40). 

Finally, the complexity of the human mind, the diversity of processes of clinical relevance and 

the range of computational theories and interventions represent a formidable intellectual 

challenge. It calls for a pooling of expertise and perspectives in appropriately designed 

multidisciplinary consortia distributed across laboratories that have a common goal and share 

data and expertise. Although it is beyond the scope of this paper to specify the nature and 
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scope of such consortia, they are likely to benefit from the inclusion of, at least, expert clinicians, 

experimentalists and theoreticians. 

Conclusion 

If computational methods are to deliver real advances for patients, we must ensure our 

approaches are reliable, robust, and address clinically meaningful questions. In this opinion 

paper we outline processes to improve the measurement properties and deployment of 

computational assays and highlight the importance of interdisciplinary collaboration. 
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Table 1: Key Metrics of Reliability and Validity Relevant to Computational Measures (see also 

41 for a summary) 

Specific Computational Measures of Reliability 

Parameter recovery, 

identifiability and sensitive 

range 

Parameter recovery is a process of validating 

parameterized generative models of behavior and/or neural 

data. It is performed in silico. A range of different parameter 

values are selected. These parameters are then used in the 

generative model to create synthetic data (at a realistic level 

of observation noise) which is passed back into the 

parameter estimation process; finally the recovered 

parameters are compared with the originals. The absolute 

difference between recovered and original parameters 

provides a measure of the ability of a task to estimate model 

parameters (if we can assume participant data can be 

described using a specific model), with smaller values being 

preferred. Parameter identifiability is a similar metric 

describing the degree to which model parameters exert 

distinct effects on the data and thus the degree to which 

differences in data can be confidently attributed to specific 

parameters. Parameter recovery and identifiability will 

generally not be constant over all parameter values (e.g. a 

very low “inverse temperature parameter”, which will lead a 

model to frequently make random choices, will impair the 

recovery/identifiability of the other parameters of the model) 

and thus it is often useful to define the sensitive range of 

the parameters—the range of values over which parameter 

recovery and identifiability are achievable. 

Model recovery Model recovery assesses the degree to which a particular 

task can discriminate between different classes of 

generative models. This is achieved in silico by generating 

synthetic data using different models and then testing 

whether the process of model selection (see below) 

identifies the correct generative model. As for parameter 

recovery/identifiability, this can depend sensitively on the 

ranges of parameters used to generate the synthetic data. 
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Model selection Where more than one model may be used to describe 

subject data, a process of model selection is used to select 

the “best” model. This process typically assesses the 

balance between the “fit” of the model (the degree to which 

the model can explain the data) and model complexity (i.e. 

its representational richness or flexibility to fit data in 

general). If two models explain the data similarly well, the 

simpler is preferred (Occam’s razor). Taking into account 

the fit/complexity trade-off is important since models with 

higher complexity (e.g. with more parameters) will have 

higher accuracy than simpler models but may be capturing 

measurement-specific noise (“overfitting”). Model selection 

may also concern the qualitative ability of the model to 

recapitulate some important features of the data. While 

many computational studies select a single, best model for 

all participants and compare model parameters between 

participants, it is also possible to assess whether 

participants differ in the model which best describes their 

data. The finding that data from different participants are 

best described by different models may in itself be 

interesting and may be described using an hierarchical 

model in which a higher level selects between separate 

lower level models (note that, in the absence of a single 

model used across all participants, between subject 

comparison of model parameters is not straightforward). 

Common Measures of Reliability 

Test-retest The degree to which the measures of individuals within a 

group maintain a consistent relationship across time is 

assessed by test-retest reliability. Test-retest performance 

is a critical metric for tasks which are required to measure 

stable, trait-like, within-subject, processes, and for studies 

using correlational or longitudinal designs. 

Split-half/interrater reliability Other forms of reliability such as split half reliability or 

interrater reliability estimate measurement variability and 

may be useful in certain computational tasks.  
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Common Measures of Validity 

Clinical validity Evidence for the clinical validity of a measure is provided 

by associations between it and clinically important outcomes 

such as symptom scores, treatment response or illness 

course. 

Convergent/divergent 

validity 

The degree to which a measure of a construct correlates 

with other measures of the same construct (convergent 

validity) and differs from measures of other constructs 

(divergent validity). These metrics therefore provide an 

assessment of how certain we can be that we are 

measuring an underlying construct (convergent validity) 

and the degree to which our measure provides the 

same/different information to alternative measures 

(divergent validity). Questions of convergent and divergent 

validity have largely been overlooked in computational 

psychiatry. As a result, it is not clear, for example, whether 

learning rates for positive outcomes in the plethora of 

available reward learning tasks measure the same thing. 

Face and ecological validity This reflects the degree to which a measurement appears to 

subjectively measure a process (face validity) and the 

degree to which it captures real life processes (ecological 

validity). Computational approaches are able to 

decompose the components of complex processes and may 

therefore facilitate the development of more ecologically 

valid measures of complex real-life interactions. 

Practical Characteristics of the Measure 

Measure duration, 

complexity and cost 

These summarise key practical costs of a measure which 

are essential when considering how it may be optimised for 

a particular study or population. 

Translational Relevance of the Measure 
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Cross species translational 

potential of the task 

Depending on the specific question being addressed, the 

potential for a behavioral measure to be deployed in non-

human species may be relevant for measurement selection. 

For example, validation of the ability of a computational 

assay to infer physiological mechanisms may require a 

degree of experimental control that cannot be achieved in 

humans. 
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Figure 1: A suggested Process by which Computational Measures may be Optimized for 

Deployment in Clinical Studies. The stages illustrated here develop the sequential “roadmap” 

outlined by Paulus and colleagues (3) who framed this process using the metaphor of drug 

development. Here we provide more detail on how each stage may be realized (see section 

Establishing and Optimizing the Characteristics of Novel Assays) and, in this figure, describe 

examples of studies that develop a hypothetical computational task (text in italics) through 

stages which are similar to phase 1-3 of Paulus and colleagues’ roadmap. 

  

  

 


