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Active inference under visuo-
proprioceptive conflict: Simulation 
and empirical results
Jakub Limanowski* & Karl friston

It has been suggested that the brain controls hand movements via internal models that rely on visual 
and proprioceptive cues about the state of the hand. In active inference formulations of such models, 
the relative influence of each modality on action and perception is determined by how precise (reliable) 
it is expected to be. The ‘top-down’ affordance of expected precision to a particular sensory modality is 
associated with attention. Here, we asked whether increasing attention to (i.e., the precision of) vision 
or proprioception would enhance performance in a hand-target phase matching task, in which visual 
and proprioceptive cues about hand posture were incongruent. We show that in a simple simulated 
agent—based on predictive coding formulations of active inference—increasing the expected precision 
of vision or proprioception improved task performance (target matching with the seen or felt hand, 
respectively) under visuo-proprioceptive conflict. Moreover, we show that this formulation captured the 
behaviour and self-reported attentional allocation of human participants performing the same task in a 
virtual reality environment. Together, our results show that selective attention can balance the impact 
of (conflicting) visual and proprioceptive cues on action—rendering attention a key mechanism for a 
flexible body representation for action.

Controlling the body’s actions in a constantly changing environment is one of the most important tasks of the 
human brain. The brain solves the complex computational problems inherent in this task by using internal prob-
abilistic (Bayes-optimal) models1–6. These models allow the brain to flexibly estimate the state of the body and the 
consequences of its movement, despite noise and conduction delays in the sensorimotor apparatus, via iterative 
updating by sensory prediction errors from multiple sources. The state of the hand, in particular, can be informed 
by vision and proprioception. Here, the brain makes use of an optimal integration of visual and proprioceptive 
signals, where the relative influence of each modality—on the final ‘multisensory’ estimate—is determined by its 
relative reliability or precision, depending on the current context6–15.

These processes can be investigated under an experimentally induced conflict between visual and proprio-
ceptive information. The underlying rationale here is that incongruent visuo-proprioceptive cues about hand 
position or posture have to be integrated (provided the incongruence stays within reasonable limits), because the 
brain’s body model entails a strong prior belief that information from both modalities is generated by one and the 
same external cause; namely, one’s hand. Thus, a partial recalibration of one’s unseen hand position towards the 
position of a (fake or mirror-displaced) hand seen in an incongruent position has been interpreted as suggesting 
an (attempted) resolution of visuo-proprioceptive conflict to maintain a prior body representation16–23.

Importantly, spatial or temporal perturbations can be introduced to visual movement feedback during 
action—by displacing the seen hand position in space or time, using video recordings or virtual reality. Such 
experiments suggest that people are surprisingly good at adapting their movements to these kinds of pertur-
bations; i.e., they adjust to novel visuo-motor mappings by means of visuo-proprioceptive recalibration or 
adaptation9,10,24–26. During motor tasks involving the resolution of a visuo-proprioceptive conflict, one typically 
observes increased activity in visual and multisensory brain areas27–30. The remapping required for this resolution 
is thought to be augmented by attenuation of proprioceptive cues10,24,26,31. The conclusion generally drawn from 
these results is that visuo-proprioceptive recalibration (or visuo-motor adaptation) relies on temporarily adjust-
ing the weighting of conflicting visual and proprioceptive information to enable adaptive action under specific 
prior beliefs about one’s ‘body model’.
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The above findings and their interpretation can in principle be accommodated within a hierarchical predic-
tive coding formulation of active inference as a form of Bayes-optimal motor control, in which proprioceptive 
as well as visual prediction errors can update higher-level beliefs about the state of the body and thus influence 
action32–34. Hierarchical predictive coding rests on a probabilistic mapping from unobservable causes (hidden 
states) to observable consequences (sensory states), as described by a hierarchical generative model, where each 
level of the model encodes conditional expectations (‘beliefs’) about states of the world that best explains states 
of affairs encoded at lower levels (i.e., sensory input). The causes of sensations are inferred via model inver-
sion, where the model’s beliefs are updated to accommodate or ‘explain away’ ascending prediction error (a.k.a. 
Bayesian filtering or predictive coding35–37). Active inference extends hierarchical predictive coding from the 
sensory to the motor domain, in that the agent is now able to fulfil its model predictions via action38. In brief, 
movement occurs because high-level multi- or amodal beliefs about state transitions predict proprioceptive and 
exteroceptive (visual) states that would ensue if a particular movement (e.g. a grasp) was performed. Prediction 
error is then suppressed throughout the motor hierarchy3,39, ultimately by spinal reflex arcs that enact the pre-
dicted movement. This also implicitly minimises exteroceptive prediction error; e.g. the predicted visual action 
consequences34,40–42. Crucially, all ascending prediction errors are precision-weighted based on model predictions 
(where precision corresponds to the inverse variance), so that a prediction error that is expected to be more pre-
cise has a stronger impact on belief updating. The ‘top-down’ affordance of precision has been associated with 
attention43–45.

This suggests a fundamental implication of attention for behaviour, as action should be more strongly 
informed by prediction errors ‘selected’ by attention. In other words, the impact of visual or proprioceptive pre-
diction errors on multisensory beliefs driving action should not only depend on factors like sensory noise, but 
may also be regulated via the ‘top-down’ affordance of precision; i.e., by directing the focus of selective attention 
towards one or the other modality.

Here, we used a predictive coding scheme6,38 to test this assumption. We simulated behaviour (i.e., prototyp-
ical grasping movements) under active inference, in a simple hand-target phase matching task (Fig. 1) during 
which conflicting visual or proprioceptive cues had to be prioritized. Crucially, we included a condition in which 
proprioception had to be adjusted to maintain visual task performance and a converse condition, in which pro-
prioceptive task performance had to be maintained in the face of conflicting visual information. This enabled 
us to address the effects reported in the visuo-motor adaptation studies reviewed above and studies showing 
automatic biasing of one’s own movement execution by incongruent action observation46,47. In our simulations, 
we asked whether changing the relative precision afforded to vision versus proprioception—corresponding to 
attention—would improve task performance (i.e., target matching with the respective instructed modality, vision 
or proprioception) in each case. We implemented this ‘attentional’ manipulation by adjusting the inferred preci-
sion of each modality, thus changing the degree with which the respective prediction errors drove model updating 
and action. We then compared the results of our simulation with the actual behaviour and subjective ratings of 
attentional focus of healthy participants performing the same task in a virtual reality environment. We anticipated 
that participants, in order to comply with the task instructions, would adopt an ‘attentional set’48–50 prioritizing 
the respective instructed target tracking modality over the task-irrelevant one51–53, by means of internal precision 
adjustment—as evaluated in our simulations.

Results
Simulation results. We based our simulations on predictive coding formulations of active inference6,13,38,45. 
In brief (please see Methods for details), we simulated a simple agent that entertained a generative model of its 
environment (i.e., the task environment and its hand), while receiving visual and proprioceptive cues about hand 
posture (and the target). Crucially, the agent could act on the environment (i.e., move its hand), and thus was 
engaged in active inference.

The simulated agent had to match the phasic size change of a central fixation dot (target) with the grasping 
movements of the unseen real hand (proprioceptive hand information) or the seen virtual hand (visual hand 
information). Under visuo-proprioceptive conflict (i.e., a phase shift between virtual and real hand movements 
introduced via temporal delay), only one of the hands could be matched to the target’s oscillatory phase (see 
Fig. 1 for a detailed task description). The aim of our simulations was to test whether—in the above manual phase 
matching task under perceived visuo-proprioceptive conflicts—increasing the expected precision of sensory pre-
diction errors from the instructed modality (vision or proprioception) would improve performance, whereas 
increasing the precision of prediction errors from the ‘distractor’ modality would subvert performance. Such a 
result would demonstrate that—in an active inference scheme—behaviour under visuo-proprioceptive conflict 
can be augmented via top-down precision control; i.e., selective attention43–45. In our predictive coding-based 
simulations, we were able to test this hypothesis by changing the precision afforded to prediction error signals—
related to visual and proprioceptive cues about hand posture—in the agent’s generative model.

Figures 2 and 3 show the results of these simulations, in which the ‘active inference’ agent performed the tar-
get matching task under the two kinds of instruction (virtual hand or real hand task; i.e., the agent had a strong 
prior belief that the visual or proprioceptive hand posture would track the target’s oscillatory size change) under 
congruent or incongruent visuo-proprioceptive mappings (i.e., where incongruence was realized by temporally 
delaying the virtual hand’s movements with respect to the real hand). In this setup, the virtual hand corresponds 
to hidden states generating visual input, while the real hand generates proprioceptive input.

Under congruent mapping (i.e., in the absence of visuo-proprioceptive conflict) the simulated agent showed 
near perfect tracking performance (Fig. 2). We next simulated an agent performing the task under incongruent 
mapping, while equipped with the prior belief that its seen and felt hand postures were in fact unrelated, i.e., never 
matched. Not surprisingly, the agent easily followed the task instructions and again showed near perfect tracking 
with vision or proprioception, under incongruence (Fig. 2). However, as noted above, it is reasonable to assume 
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that human participants would have the strong prior belief—based upon life-long learning and association—that 
their manual actions generated matching seen and felt postures (i.e., a prior belief that modality specific sensory 
consequences have a common cause). Our study design assumed that this association would be very hard to 
update, and that consequently performance could only be altered via adjusting expected precision of vision vs 
proprioception (see Methods).

Therefore, we next simulated the behaviour (during the incongruent tasks) of an agent embodying a prior 
belief that visual and proprioceptive cues about hand state were in fact congruent. As shown in Fig. 3a, this intro-
duced notable inconsistencies between the agent’s model predictions and the true states of vision and proprio-
ception, resulting in elevated prediction error signals. The agent was still able to follow the task instructions, i.e., 
to keep the (instructed) virtual or real hand more closely matched to the target’s oscillatory phase, but showed a 
drop in performance compared with the ‘idealized’ agent (cf. Fig. 2).

We then simulated the effect of our experimental manipulation, i.e., of increasing precision of sensory pre-
diction errors from the respective task-relevant (constituting increased attention) or task-irrelevant (constituting 
increased distraction) modality on task performance. We expected this manipulation to affect behaviour; namely, 
by how strongly the respective prediction errors would impact model belief updating and subsequent perfor-
mance (i.e., action).

The results of these simulations (Fig. 3a) showed that increasing the precision of vision or proprioception—the 
respective instructed tracking modality—resulted in reduced visual or proprioceptive prediction errors. This can 
be explained by the fact that these ‘attended’ prediction errors were now more strongly accommodated by model 

Figure 1. Task design and behavioural requirements. We used the same task design in the simulated and 
behavioural experiments, focusing on the effects of attentional modulation on hand-target phase matching 
via prototypical (i.e., well-trained prior to the experiment, see Methods) oscillatory grasping movements at 
0.5 Hz. Participants (or the simulated agent) controlled a virtual hand model (seen on a computer screen) via 
a data glove worn on their unseen right hand. The virtual hand (VH) therefore represented seen hand posture 
(i.e., vision), which could be uncoupled from the real hand posture (RH; i.e., proprioception) by introducing 
a temporal delay (see below). The task required matching the phase of one’s right-hand grasping movements 
to the oscillatory phase of the fixation dot (‘target’), which was shrinking-and-growing sinusoidally at 0.5 Hz. 
In other words, participants had to rhythmically close the hand when the dot shrunk and to open it when the 
dot expanded. Our design was a balanced 2 × 2 factorial design: The task was completed (or simulated) under 
congruent or incongruent hand movements: the latter were implemented by adding a lag of 500 ms to the virtual 
hand movements (Factor ‘congruence’). Furthermore, the participants (or the simulated agent) performed the 
task with one of two goals in mind: to match the movements of the virtual hand (VH) or of those of the real 
hand (RH) to the phase of the dot (Factor ‘instructed modality’; written instructions were presented before each 
trial, and additionally represented by the fixation dot’s colour). Note that whereas in the congruent conditions 
(VH cong, RH cong) both hand positions were identical, and therefore both hands’ grasping movements could 
simultaneously be matched to the target’s oscillatory phase (i.e., the fixation dot’s size change), only one of 
the hands’ (virtual or real) movements could be phase-matched to the target in the incongruent conditions—
necessarily implying a phase mismatch of the other hand’s movements. In the VH incong condition, participants 
had to adjust their movements to counteract the visual lag; i.e., they had to phase-match the virtual hand’s 
movements (i.e., vision) to the target by shifting their real hand’s movements (i.e., proprioception) out of phase 
with the target. Conversely, in the RH incong condition, participants had to match their real hand’s movements 
(i.e., proprioception) to the target’s oscillation, and therefore had to ignore the fact that the virtual hand (i.e., 
vision) was out of phase. The curves show the performance of an ideal participant (or simulated agent).
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belief updating (about hand posture). Conversely, one can see a complementary increase of prediction errors 
from the ‘unattended’ modality. The key result, however, was that the above ‘attentional’ alterations substantially 
influenced hand-target phase matching performance (Fig. 3b). Thus, increasing the precision of the instructed 
task-relevant sensory modality’s prediction errors led to improved target tracking (i.e. a reduced phase shift of 
the instructed modality’s grasping movements from the target’s phase). In other words, if the agent attended to 
the instructed visual (or proprioceptive) cues more strongly, its movements were driven more strongly by vision 
(or proprioception)—which helped it to track the target’s oscillatory phase with the respective modality’s grasp-
ing movements. Conversely, increasing the precision of the ‘irrelevant’ (not instructed) modality in each case 
impaired tracking performance.

The simulations also showed that the amount of action itself was comparable across conditions (blue plots in 
Figs. 2 and 3; i.e., movement of the hand around the mean stationary value of 0.05), which means that the kine-
matics of the hand movement per se were not biased by attention. Action was particularly evident in the initiation 
phase of the movement and after reversal of movement direction (open-to-close). At the point of reversal of 
movement direction, conversely, there was a moment of stagnation; i.e., changes in hand state were temporar-
ily suspended (with action nearly returning to zero). In our simulated agent, this briefly increased uncertainty 
about hand state (i.e., which direction the hand was moving), resulting in a slight lag before the agent picked up 
its movement again, which one can see reflected by a small ‘bump’ in the true hand states (Figs. 2 and 3). These 
effects were somewhat more pronounced during movement under visuo-proprioceptive incongruence and prior 
belief in congruence—which indicates that the fluency of action depended on sensory uncertainty.

In sum, these results show that the attentional effects of the sort we hoped to see can be recovered using a 
simple active inference scheme; in that precision control determined the influence of separate sensory modali-
ties—each of which was generated by the same cause, i.e., the same hand—on behaviour by biasing action towards 
cues from that modality.

Empirical results. Participants practiced and performed the same task as in the simulations (please see 
Methods for details). We first analysed the post-experiment questionnaire ratings of our participants (Fig. 4) to 
the following two questions: “How difficult did you find the task to perform in the following conditions?” (Q1, 
answered on a 7-point visual analogue scale from “very easy” to “very difficult”) and “On which hand did you 
focus your attention while performing the task?” (Q2, answered on a 7-point visual analogue scale from “I focused 
on my real hand” to “I focused on the virtual hand”). For the ratings of Q1, a Friedman’s test revealed a significant 

Figure 2. Simulated behaviour of an agent performing the hand-target phase matching task under ideally 
adjusted model beliefs. Each pair of plots shows the simulation results for an agent with a priori ‘ideally’ 
adjusted (but unrealistic, see text for details) model beliefs about visuo-proprioceptive congruence; i.e., in 
the congruent tasks, the agent believed that its real hand generated matching seen and felt postures, whereas 
it believed that the same hand generated mismatching postures in the incongruent tasks. Note that these 
simulations are unrealistic in that the agent would not perceive visuo-proprioceptive conflicts at all. Each pair 
of plots shows the simulation results for one grasping movement in the VH and RH tasks under congruence or 
incongruence; the left plot shows the predicted sensory input (solid coloured lines; yellow = target, red = vision, 
blue = proprioception) and the true, real-world values (broken black lines) for the target and the visual and 
proprioceptive hand posture, alongside the respective sensory prediction errors (dotted coloured lines; 
blue = target, green = vision, purple = proprioception); the right plot (blue line) shows the agent’s action (i.e., 
the rate of change in hand posture, see Methods). Note that target phase matching is near perfect and there is 
practically no sensory prediction error (i.e., the dotted lines stay around 0).
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Figure 3. Simulated behaviour of a ‘realistic’ agent performing the hand-target phase matching task. Here we 
simulated an agent performing the incongruent tasks under the prior belief that its hand generated matching 
visual and proprioceptive information; i.e., under perceived visuo-proprioceptive conflict. (a) The plots follow 
the same format as in Fig. 2. Note that, in these results, one can see a clear divergence of true from predicted 
visual and proprioceptive postures, and correspondingly increased prediction errors. The top row shows the 
simulation results for the default weighting of visual and proprioceptive information; the middle row shows the 
same agent’s behaviour when precision of the respective task-relevant modality (i.e., vision in the VH task and 
proprioception in the RH task) was increased (HA: high attention); the bottom row shows the analogous results 
when the precision of the respective other, irrelevant modality was increased (HD: high distraction). Note how 
in each case, increasing (or decreasing) the log precision of vision or proprioception resulted in an attenuation 
(or enhancement) of the associated prediction errors (indicated by green and purple arrows for vision and 
proprioception, respectively). Crucially, these ‘attentional’ effects had an impact on task performance, as evident 
by an improved hand-target tracking with vision or proprioception, respectively. This is shown in panel (b): 
The curves show the tracking in the HA conditions. The bar plots represent the average deviation (phase shift 
or lag, in seconds) of the real hand’s (red) or the virtual hand’s (blue) grasping movements from the target’s 
oscillatory size change in each of the simulations shown in panel (a). Note that under incongruence (i.e., a 
constant delay of vision), reducing the phase shift of one modality always implied increasing the phase shift of 
the other modality (reflected by a shift of red and blue bars representing the average proprioceptive and visual 
phase shift, respectively). Crucially, in both RH and VH incong conditions, increasing attention (HA; i.e., 
in terms of predictive coding: the precision afforded to the respective prediction errors) to the task-relevant 
modality enhanced task performance (relative to the default setting, Def.), as evident by a reduced phase shift of 
the respective modality from the target phase. The converse effect was observed when the agent was ‘distracted’ 
(HD) by paying attention to the respective task-irrelevant modality.
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difference between conditions (χ2
(3,69) = 47.19, p < 0.001). Post-hoc comparisons using Wilcoxon’s signed rank 

test showed that, as expected, participants reported finding both tasks more difficult under visuo-proprioceptive 
incongruence (VH incong > VH cong, z(23) = 4.14, p < 0.001; RH incong > RH cong, z(23) = 3.13, p < 0.01). There 
was no significant difference in reported difficulty between VH cong and RH cong, but the VH incong condition 
was perceived as significantly more difficult than the RH incong condition (z(23) = 2.52, p < 0.05). These results 
suggest that, per default, the virtual hand and the real hand instructions were perceived as equally difficult to 
comply with, and that in both cases the added incongruence increased task difficulty—more strongly so when 
(artificially shifted) vision needed to be aligned with the target’s phase.

For the ratings of Q2, a Friedman’s test revealed a significant difference between conditions (χ2
(3,69) = 35.83, 

p < 0.001). Post-hoc comparisons using Wilcoxon’s signed rank test showed that, as expected, participants 
focussed more strongly on the virtual hand during the virtual hand task and more strongly on the real hand 
during the real hand task. This was the case for congruent (VH cong > RH cong, z(23) = 3.65, p < 0.001) and incon-
gruent (VH incong > RH incong, z(23) = 4.03, p < 0.001) movement trials. There were no significant differences 
between VH cong vs VH incong, and RH cong vs RH incong, respectively. These results show that participants 
focused their attention on the instructed target modality, irrespective of whether the current movement block was 
congruent or incongruent. This supports our assumption that participants would adopt a specific attentional set 
to prioritize the instructed target modality.

Next, we analysed the task performance of our participants; i.e., how well the virtual (or real) hand’s grasp-
ing movements were phase-matched to the target’s oscillation (i.e., the fixation dot’s size change) in each con-
dition. Note that under incongruence, better target phase-matching with the virtual hand implies a worse 
alignment of the real hand’s phase with the target, and vice versa. We expected (cf. Fig. 1; confirmed by the 
simulation results, Figs. 2 and 3) an interaction between task and congruence: participants should show a better 
target phase-matching of the virtual hand under visuo-proprioceptive incongruence, if the virtual hand was the 
instructed target modality (but no such difference should be significant in the congruent movement trials, since 
virtual and real hand movements were identical in these trials). All of our participants were well trained (see 
Methods), therefore our task focused on average performance benefits from attention (rather than learning or 
adaptation effects).

The participants’ average tracking performance is shown in Fig. 5. A repeated-measures ANOVA on vir-
tual hand-target phase-matching revealed significant main effects of task (F(1,22) = 31.69, p < 0.001) and congru-
ence (F(1,22) = 173.42, p < 0.001) and, more importantly, a significant interaction between task and congruence 
(F(1,22) = 50.69, p < 0.001). Post-hoc t-tests confirmed that there was no significant difference between the VH 
cong and RH cong conditions (t(23) = 1.19, p = 0.25), but a significant difference between the VH incong and RH 
incong conditions (t(23) = 6.59, p < 0.001). In other words, in incongruent conditions participants aligned the 
phase of the virtual hand’s movements significantly better with the dot’s phasic size change when given the ‘virtual 
hand’ than the ‘real hand’ instruction. Furthermore, while the phase shift of the real hand’s movements was larger 
during VH incong > VH cong (t(23) = 9.37, p < 0.001)—corresponding to the smaller phase shift, and therefore 
better target phase-matching, of the virtual hand in these conditions—participants also exhibited a significantly 
larger shift of their real hand’s movements during RH incong > RH cong (t(23) = 4.31, p < 0.001). Together, these 
results show that participants allocated their attentional resources to the respective instructed modality (vision or 
proprioception), and that this was accompanied by significantly better target tracking in each case—as expected 
based on the active inference formulation, and as suggested by the simulation results.

Discussion
We have shown that behaviour in a hand-target phase matching task, under visuo-proprioceptive conflict, ben-
efits from adjusting the balance of visual versus proprioceptive precision; i.e., increasing attention to the respec-
tive task-relevant modality. Our results generally support a predictive coding formulation of active inference, 
where visual and proprioceptive cues affect multimodal beliefs that drive action—depending on the relative 

Figure 4. Self-reports of task difficulty and attentional focus given by our participants. The bar plots show 
the mean ratings for Q1 and Q2 (given on a 7-point visual analogue scale), with associated standard errors 
of the mean. On average, participants found the VH and RH task more difficult under visuo-proprioceptive 
incongruence—more strongly so when artificially shifted vision needed to be aligned with the target’s phase (VH 
incong, Q1). Importantly, the average ratings of Q2 showed that participants attended to the instructed modality 
(irrespective of whether the movements of the virtual hand and the real hand were congruent or incongruent).
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precision afforded to each modality6,45. Firstly, a simulated agent exhibited better hand-target phase match-
ing when the expected precision of the instructed ‘task-relevant’ modality (i.e., attention to vision or propri-
oception) was increased relative to the ‘task-irrelevant’ modality. This effect was reversed when attention was 
increased to the ‘task-irrelevant’ modality, effectively corresponding to cross-modal distraction. These results 
suggest that more precise sensory prediction errors have a greater impact on belief updating—which in turn 
guides goal-directed action. Our simulations also suggest that the effects of changing precision were related to 
a perceived visuo-proprioceptive conflict—based on a prior belief that one’s hand movements should generate 
matching visual and proprioceptive sensations. In an agent holding the unrealistic belief that visual and pro-
prioceptive postures were per default unrelated, no evidence for an influence of visuo-proprioceptive conflict 
on target tracking was observed. Secondly, the self-report ratings of attentional allocation and the behaviour 
exhibited by human participants performing the same task, in a virtual reality environment, suggest an analogous 
mechanism: Our participants reported shifting their attention to the respective instructed modality (vision or 
proprioception)—and they were able to correspondingly align either vision or proprioception with an abstract 
target (oscillatory phase) under visuo-proprioceptive conflict.

A noteworthy result of the behavioural experiment was a more pronounced shift of real hand movements 
in the ‘real hand’ condition (i.e., participants partly aligned the delayed virtual hand with the target’s phase). 
This behaviour resembled that of our simulated agent under ‘high distraction’; i.e., under increased precision of 
task-irrelevant visual hand cues. This suggests that, in the RH incong condition, participants may have been dis-
tracted by (attending to) vision. Interestingly, however, our participants reported attentional focus on their real 
hand and even found the ‘real hand’ task easier than the ‘virtual hand’ task under visuo-proprioceptive incongru-
ence. This suggests that they did not notice their ‘incorrect’ behavioural adjustment. One interpretation of this 
seemingly ‘automatic’ visual bias is suggested by predictive coding formulations of shared body representation 
and self-other distinction; namely, the balance between visual and proprioceptive prediction errors to disambig-
uate between ‘I am observing an action’ or ‘I am moving’3,13. Generally, visual prediction errors have to be attenu-
ated during action observation to prevent actually realising the observed movement (i.e., mirroring)13. However, 
several studies have demonstrated ‘automatic’ imitative tendencies during action observation, reminiscent of 
‘echopraxia’, which are extremely hard to inhibit. For example, seeing an incongruent finger or arm movement 
biases movement execution46,47. In a predictive coding framework, this can be formalized as an ‘automatic’ update 
of multimodal beliefs driving action by precise (i.e., not sufficiently attenuated) visual body information3,13,30. 
Such an interpretation would be in line with speculations that participants in visuo-motor conflict tasks attend to 
vision, rather than proprioception, if not instructed otherwise48,51,53,54. Our simulation results suggest that altered 
precision expectations may mediate these effects.

Our results offer new insights into the multisensory mechanisms of a body representation for action, comple-
menting existing theoretical and empirical work. Generally, our results support the notion that an endogenous 

Figure 5. Task performance of our participants. Left: Averaged and normalized trajectories of the real hand’s 
(red) and the virtual hand’s (blue) grasping movements relative to the oscillation of the target (pulsating fixation 
dot, grey) in each condition. The individual participant’s averaged and normalized trajectories in each condition 
are shown as thin lines. In the congruent conditions, the virtual hand’s and the real hand’s movements were 
identical, whereas the virtual hand’s movements were delayed by 500 ms in the incongruent conditions. Right: 
The bar plot shows the corresponding average deviation (lag in seconds) of the real hand (red) and the virtual 
hand (blue) from the target in each condition, with associated standard errors of the mean. Crucially, there was 
a significant interaction effect between task and congruence; participants aligned the virtual hand’s movements 
better with the target’s oscillation in the VH incong > RH incong condition (and correspondingly, the real hand’s 
movements in the RH incong > VH incong condition), in the absence of a significant difference between the 
congruent conditions. Bonferroni-corrected significance: **p < 0.01, ***p < 0.001.
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‘attentional set’48–50 can influence the precision afforded to vision or proprioception during action, and thus pri-
oritize either modality for the current behavioural context. Several studies have shown that visuo-proprioceptive 
recalibration is context dependent; in that either vision or proprioception may be the ‘dominant’ modality—with 
corresponding recalibration of the ‘non-dominant’ modality9,10,48,51–53,55–57. Thus, our results lend tentative sup-
port to arguments that visuo-proprioceptive (or visuo-motor) adaptation and recalibration can be enhanced by 
increasing the precision of visual information (attending to vision48,51). Notably, our results also suggest that the 
reverse can be true; namely, visuo-proprioceptive recalibration can be counteracted by attending to propriocep-
tion. In other words, our results suggest that updating the predictions of a ‘body model’ affects goal-directed 
action. Crucially, the qualitative similarity of simulated and empirical behaviour provides a mechanistic expla-
nation for these processes, which is compatible with a neurobiological implementation (i.e., predictive coding).

Previous work on causal inference suggests that Bayes-optimal cue integration can explain a variety of mul-
tisensory phenomena under intersensory conflict; including the recalibration of the less precise modality onto 
the more precise one7,14,15,58–63. However, in the context of multisensory integration for body (upper limb) rep-
resentation, the focus of previous models was on perceptual (causal) inference59,62,64 or on adaptation or learn-
ing2,12. Our work advances on these findings by showing that adjusting the precision of two conflicting sources 
of bodily information (i.e., seen or felt hand posture, which were expected to be congruent based on fixed prior 
model beliefs in a common cause) enhances the accuracy of goal-directed action (i.e., target tracking) with the 
respective ‘attended’ modality. By allowing our agent to move and optimising sensory precision, this work goes 
beyond modelling perceptual (causal) inference to consider active inference; where the consequences of action 
affect perceptual inference and vice versa. Specifically, we showed that action (in our case, hand-target tracking) 
was influenced by attentional allocation (to visual or proprioceptive cues about hand position), via augmentation 
of the impact of sensory prediction errors on model belief updating from the ‘attended’ modality relative to the 
‘unattended’ one. In other words, we showed an interaction between sensory attention and (instructed) behav-
ioural goals in a design that allowed the agent (or participant) to actively change sensory stimuli. In short, we 
were able to model the optimisation of precision—that underwrites multisensory integration—and relate this to 
sensory attention and attenuation during action. These results generalise previous formulations of sensorimotor 
control12,64 to address attentional effects on action.

The relevance of our model—and the simulation results—also stems from the fact that it is based on a ‘first 
principles’ approach that, in contrast to most work in this area, commits to a neurobiologically plausible imple-
mentation scheme; i.e., predictive coding35–37. The model can therefore be thought of as describing recurrent mes-
sage passing between hierarchical (cortical) levels to suppress prediction error. Model beliefs, prediction errors, 
and their precision can therefore be associated with the activity of specific cell populations (deep and superficial 
pyramidal cells; see Methods)6,40,45. This means that, unlike most normative models, the current model can, in 
principle, be validated in relation to evoked neuronal responses—as has been demonstrated in simulations of 
oculomotor control using the same implementation of active inference65,66.

There are some limitations of the present study that should be addressed by future work. Firstly, our task design 
focuses on prototypical movements and average phase matching. Our results should therefore be validated by 
designs using more complicated movements. The main aim of our simulations was to provide a proof-of-concept 
that attentional effects during visuo-motor conflict tasks were emergent properties of active inference formula-
tion. Therefore, our simulations are simplified approximations to a complex movement paradigm with a limited 
range of movements and deviations. This simplified setup allowed us to sidestep a detailed consideration of for-
ward or generative models for the motor plant—to focus on precision or gain control. In the future, we plan to 
fit generative models to raw complicated movements. The aim here is to develop increasingly realistic generative 
models, whose inversion will be consistent with known anatomy and physiology. Lastly, our interpretation of the 
empirical results—in terms of evidence for top-down attention—needs to be applied with some caution, as we 
can only infer any attentional effects from the participants’ self-reports; and we can only assume that participants 
monitored their behaviour continuously. Future work could therefore use explicit measures of attention, perhaps 
supplemented by forms of external supervision and feedback, to validate behavioural effects.

Beyond this, our results open up a number of interesting questions for future research. It could be established 
whether the effects observed in our study can have long-lasting impact on the (generalizable) learning of motor 
control67. Another important question for future research is the potential attentional compensation of exper-
imentally added sensory noise (e.g., via jittering or blurring the visual hand or via tendon vibration; although 
these manipulations may in themselves be ‘attention-grabbing’68). Finally, an interesting question is whether the 
observed effects could perhaps be reduced by actively ignoring or ‘dis-attending’69,70 away from vision. An anal-
ogous mechanism has been tentatively suggested by observed benefits of proprioceptive attenuation—thereby 
increasing the relative impact of visual information—during visuo-motor adaptation and visuo-proprioceptive 
recalibration10,24,26,31,71–73. These questions should best be addressed by combined behavioural and brain imaging 
experiments, to illuminate the neuronal correlates of the (supposedly attentional) precision weighting in the light 
of recently proposed implementations of predictive coding in the brain37,40,74.

To conclude, our results suggest a tight link between attention (precision control), multisensory integration, 
and action—allowing the brain to choose how much to rely on specific sensory cues to represent its body for 
action in a given context.

Methods
Task design. We used the same task design in the simulations and the behavioural experiment (see Fig. 1). 
For consistency, we will describe the task as performed by our human participants, but the same principles apply 
to the simulated agent. We designed our task as a non-spatial modification of a previously used hand-target track-
ing task29,30. The participant (or simulated agent) had to perform repetitive grasping movements paced by sinusoi-
dal fluctuations in the size of a central fixation dot (sinusoidal oscillation at 0.5 Hz). Thus, this task was effectively 
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a phase matching task, which we hoped to be less biased towards the visual modality due to a more abstract target 
quantity (oscillatory size change vs spatially moving target, as in previous studies). The fixation dot was chosen as 
the target to ensure that participants had to fixate the centre of the screen (and therefore look at the virtual hand) 
in all conditions. Participants (or the simulated agent) controlled a virtual hand model via a data glove worn on 
their unseen right hand (details below). In this way, vision (seen hand position via the virtual hand) could be 
decoupled from proprioception (felt hand position). In half of the movement trials, a temporal delay of 500 ms 
between visual and proprioceptive hand information was introduced by delaying vision (i.e., the seen hand move-
ments) with respect to proprioception (i.e., the unseen hand movements performed by the participant or agent). 
In other words, the seen and felt hand positions were always incongruent (mismatching; i.e., phase-shifted) in 
these conditions. Crucially, the participant (agent) had to perform the hand-target phase matching task with one 
of two goals in mind: to match the target’s oscillatory phase with the seen virtual hand movements (vision) or 
with the unseen real hand movements (proprioception). This resulted in a 2 × 2 factorial design with the factors 
‘visuo-proprioceptive congruence’ (congruent, incongruent) and ‘instructed modality’ (vision, proprioception).

Predictive coding and active inference. We based our simulations on predictive coding formulations of 
active inference as situated within a free energy principle of brain function, which has been used in many previous 
publications to simulate perception and action6,13,38,45,65,66. Here, we briefly review the basic assumptions of this 
scheme (please see the above literature for details). Readers familiar with this topic should skip to the next section.

Hierarchical predictive coding rests on a probabilistic mapping of hidden causes to sensory consequences, 
as described by a hierarchical generative model, where each level of the model encodes conditional expectations 
(‘beliefs’; here, referring to subpersonal or non-propositional Bayesian beliefs in the sense of Bayesian belief 
updating and belief propagation; i.e., posterior probability densities) about states of the world that best explains 
states of affairs encoded at lower levels or—at the lowest level—sensory input. This hierarchy provides a deep 
model of how current sensory input is generated from causes in the environment; where increasingly higher-level 
beliefs represent increasingly abstract (i.e., hidden or latent) states of the environment. The generative model 
therefore maps from unobservable causes (hidden states) to observable consequences (sensory states). Model 
inversion corresponds to inferring the causes of sensations; i.e., mapping from consequences to causes. This 
inversion rests upon the minimisation of free energy or ‘surprise’ approximated in the form of prediction error. 
Model beliefs or expectations are thus updated to accommodate or ‘explain away’ ascending prediction error. This 
corresponds to Bayesian filtering or predictive coding35–37—which, under linear assumptions, is formally identical 
to linear quadratic control in motor control theory75.

Importantly, predictive coding can be implemented in a neurobiologically plausible fashion6,35–37,40. In such 
architectures, predictions may be encoded by the population activity of deep and superficial pyramidal cells, 
whereby descending connections convey predictions, suppressing activity in the hierarchical level below, and 
ascending connections return prediction error (i.e., sensory data not explained by descending predictions)37,40. 
Crucially, the ascending prediction errors are precision-weighted (where precision corresponds to the inverse 
variance), so that a prediction error that is afforded a greater precision has more impact on belief updating. This 
can be thought of as increasing the gain of superficial pyramidal cells38,43.

Active inference extends hierarchical predictive coding from the sensory to the motor domain; i.e., by equip-
ping standard Bayesian filtering schemes (a.k.a. predictive coding) with classical reflex arcs that enable action 
(e.g., a hand movement) to fulfil predictions about hidden states of the world. In brief, desired movements are 
specified in terms of prior beliefs about state transitions (policies), which are then realised by action; i.e., by sam-
pling or generating sensory data that provide evidence for those beliefs38. Thus, action is also driven by optimisa-
tion of the model via suppression of prediction error: movement occurs because high-level multi- or amodal prior 
beliefs about behaviour predict proprioceptive and exteroceptive (visual) states that would ensue if the movement 
was performed (e.g., a particular limb trajectory). Prediction error is then suppressed throughout a motor hier-
archy; ranging from intentions and goals over kinematics to muscle activity3,39. At the lowest level of the hierar-
chy, spinal reflex arcs suppress proprioceptive prediction error by enacting the predicted movement, which also 
implicitly minimises exteroceptive prediction error; e.g. the predicted visual consequences of the action5,33,40. 
Thus, via embodied interaction with its environment, an agent can reduce its model’s free energy (‘surprise’ or, 
under specific assumptions, prediction error) and maximise Bayesian model evidence76.

Following the above notion of active inference, one can describe action and perception as the solution to coupled 
differential equations describing the dynamics of the real world (boldface) and the behaviour of an agent (italics)6,38.
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The first pair of coupled stochastic (i.e., subject to random fluctuations ωx, ων) differential equations describes 
the dynamics of hidden states and causes in the world and how they generate sensory states. Here, (s, x, ν, a) 
denote sensory input, hidden states, hidden causes and action in the real world, respectively. The second pair of 
equations corresponds to action and perception, respectively—they constitute a (generalised) gradient descent on 
variational free energy, known as an evidence bound in machine learning77. The differential equation describing 
perception corresponds to generalised filtering or predictive coding. The first term is a prediction based upon a 
differential operator D that returns the generalised motion of conditional (i.e., posterior) expectations about 
states of the world, including the motor plant (vector of velocity, acceleration, jerk, etc.). Here, the variables 
( µs a, , ) correspond to generalised sensory input, conditional expectations and action, respectively. Generalised 
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coordinates of motion, denoted by the ~ notation, correspond to a vector representing the different orders of 
motion (position, velocity, acceleration, etc.) of a variable. The differential equations above are coupled because 
sensory states depend upon action through hidden states and causes (x, ν) while action a(t) = a(t) depends upon 
sensory states through internal states µ . Neurobiologically, these equations can be considered to be implemented 
in terms of predictive coding; i.e., using prediction errors on the motion of hidden states—such as visual or pro-
prioceptive cues about hand position—to update beliefs or expectations about the state of the lived world and 
embodied kinematics.

By explicitly separating hidden real-world states from the agent’s expectations as above, one can separate 
the generative process from the updating scheme that minimises free energy. To perform simulations using this 
scheme, one solves Eq. 1 to simulate (neuronal) dynamics that encode conditional expectations and ensuing 
action. The generative model thereby specifies a probability density function over sensory inputs and hidden 
states and causes, which is needed to define the free energy of sensory inputs:
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This probability density is specified in terms of nonlinear functions of hidden states and causes (f(i), g(i)) that 
generate dynamics and sensory consequences, and Gaussian assumptions about random fluctuations (ωx

(i), ων
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on the motion of hidden states and causes. These play the role of sensory noise or uncertainty about states. The 
precisions of these fluctuations are quantified by (Πx

(i), Πν
(i)), which are the inverse of the respective covariance 

matrices.
Given the above form of the generative model (Eq. 2), we can now write down the differential equations 

(Eq. 1) describing neuronal dynamics in terms of prediction errors on the hidden causes and states as follows:
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The above equation (Eq. 3) describes recurrent message passing between hierarchical levels to suppress free 
energy or prediction error (i.e., predictive coding36,37). Specifically, error units receive predictions from the same 
hierarchical level and the level above. Conversely, conditional expectations (‘beliefs’, encoded by the activity of 
state units) are driven by prediction errors from the same level and the level below. These constitute bottom-up 
and lateral messages that drive conditional expectations towards a better prediction to reduce the prediction error 
in the level below—this is the sort of belief updating described in the introduction.

Now we can add action as the specific sampling of predicted sensory inputs. As noted above, along active 
inference, high-level beliefs (conditional expectations) elicit action by sending predictions down the motor (pro-
prioceptive) hierarchy to be unpacked into proprioceptive predictions at the level of (pontine) cranial nerve 
nuclei and spinal cord, which are then ‘quashed’ by enacting the predicted movements.
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Simulations of hand-target phase matching. In our case, the generative process and model used for 
simulating the target tracking task are straightforward (using just a single level) and can be expressed as follows:
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The first pair of equations describe the generative process; i.e., a noisy sensory mapping from hidden states and 
the equations of motion for states in the real world. In our case, the real-world variables comprised two hidden 
states xt (the state of the target) and xh (the state of the hand), which generate sensory inputs; i.e., proprioceptive 
sp and visual sv cues about hand posture, and visual cues about the target’s size st. Note that to simulate sinusoidal 
movements—as used in the experimental task—sensory cues pertaining to the target and hand are mapped via 
sine functions of the respective hidden states (plus random fluctuations). Both target and hand states change 
linearly over time, and become sinusoidal movements via the respective sensory mapping from causes to sen-
sory data. We chose this solution in our particular case for a straightforward implementation of phase shifts 
(visuo-proprioceptive incongruence) via subtraction of a constant term from the respective sensory mapping 
(v, see below). Thus, the target state xt is perturbed by hidden causes at a constant rate (tt = 1/40), i.e., it linearly 
increases over time. This results in one oscillation of a sinusoidal trajectory via the sensory mapping sin(xt)—cor-
responding to one growing-and-shrinking of the fixation dot, as in the behavioural experiment—during 2 sec-
onds (the simulations proceeded in time bins of 1/120 seconds, see Fig. 2). The hand state is driven by action a 
with a time constant of ta =16.67 ms, which induced a slight ‘sluggishness’ of movement mimicking delays in 
motor execution. Action thus describes the rate of change of hand posture along a linear trajectory—at a rate of 
0.05 per time bin—which again becomes an oscillatory postural change (i.e., a grasping movement) via the sinu-
soidal sensory mapping. The hidden cause v modelled the displacement of proprioceptive and visual hand posture 
information in a virtue of being subtracted within the sinusoidal sensory mapping from the hidden hand state to 
visual sensory information sin(xt−v). In other words, v = 0 when the virtual hand movements were congruent, 
and v = 0.35 (corresponding to about 111 ms delay) when the virtual hand’s movements were delayed with respect 
to the real hand. Note that random fluctuations in the process generating sensory input were suppressed by using 
high precisions on the errors of the sensory states and motion in the generative process (exp(16) = 8886110). This 
can be thought of as simulating the average response over multiple realizations of random inputs; i.e., the single 
movement we simulated in each condition stands in for the average over participant-specific realizations, in 
which the effects of random fluctuations are averaged out38,65,66. This ensured that our simulations reflect system-
atic differences depending on the parameter values chosen to reflect alterations of sensory attention via changing 
parameters of the agent’s model (as described below). The parameter values for the precision estimates are some-
what arbitrary and were adopted from previous studies using the same predictive coding formulation to simulate 
similar (oculomotor) tasks38,65,66. The key thing is that changing these parameters (i.e., the precision estimates for 
visual and proprioceptive cues) resulted in significant changes in simulated behaviour.

The second pair of equations describe the agent’s generative model of how sensations are generated using the 
form of Eq. 2. These define the free energy in Eq. 1 and specify behaviour (under active inference). The generative 
model has the same form as the generative process, with the important exceptions that there is no action and the 
state of the hand is driven by the displacement between the hand and the target xt − xh. In other words, the agent 
believes that its grasping movements will follow the target’s oscillatory size change, which is itself driven by some 
unknown force at a constant rate (and thus producing an oscillatory trajectory as in the generative process). This 
effectively models (the compliance with) the task instruction, under the assumption that the agent already knows 
about the oscillatory phase of the target; i.e., it is ‘familiar with the task’. Importantly, this formulation models 
the ‘real hand’ instruction; under the ‘virtual hand’ instruction, the state of the hand was driven by xt − (xh − v), 
reflecting the fact that any perceived visual delay (i.e., the inferred displacement of vision from proprioception 
v) should now also be compensated to keep the virtual hand aligned with the target’s oscillatory phase under 
incongruence; the initial value for v was set to represent the respective information about visuo-proprioceptive 
congruence, i.e., 0 for congruent movement conditions and 0.35 for incongruent movement conditions. We 
defined the agent’s model to entertain a prior belief that visual and proprioceptive cues are normally congruent 
(or, for comparison, incongruent). This was implemented by setting the prior expectation of the cause v to 0 
(indicating congruence of visual and proprioceptive hand posture information), with a log precision of 3 (corre-
sponding to about 20.1). In other words, the hidden cause could vary, a priori, with a standard deviation of about 
exp(−3/2) = 0.22. This mimicked the strong association between seen and felt hand positions (under a minimal 
degree of flexibility), which is presumably formed over a lifetime and very hard to overcome and underwrites 
phenomena like the ‘rubber hand illusion’16 (see Introduction).

Crucially, the agent’s model included a precision-weighting of the sensory signals—as determined by the 
active deployment of attention along predictive coding accounts of active inference. This allowed us to manipu-
late the precision assigned to proprioceptive or visual prediction errors (Πp, Πv) that, per default, were given a log 
precision of 3 and 4, respectively (corresponding to 20.1 and 54.6, respectively). This reflects the fact that, in hand 
position estimation, vision is usually afforded a higher precision than proprioception7,51. To implement increases 
in task-related (selective) attention, we increased the log precision of prediction errors from the instructed modal-
ity (vision or proprioception) by 1 in each case (i.e., by a factor of about 2.7); in an alternative scenario, we tested 
for the effects of ‘incorrect’ allocation of attention to the non-instructed or ‘distractor’ modality by increasing the 
precision of the appropriate prediction errors. We did not simulate increases in both sensory precisions, because 
our study design was tailored to investigate selective attention as opposed to divided attention. Note that in the 
task employed, divided attention was precluded, since attentional set was induced via instructed task-relevance; 
i.e., attempted target phase-matching. In other words, under incongruence, only one modality could be matched 
to the target. The ensuing generative process and model are, of course, gross simplifications of a natural move-
ment paradigm. However, this formulation is sufficient to solve the active inference scheme in Eq. 1 and examine 
the agent’s behaviour under the different task instructions and, more importantly, under varying degrees of selec-
tively enhanced sensory precision afforded by an attentional set.
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Behavioural experiment. 26 healthy, right-handed volunteers (15 female, mean age = 27 years, 
range = 19–37, all with normal or corrected-to-normal vision) participated in the experiment, after providing 
written informed consent. Two participants were unable to follow the task instructions during training and were 
excluded from the main experiment, resulting in a final sample size of 24. The experiment was approved by 
the local research ethics committee (University College London) and conducted in accordance with the usual 
guidelines.

During the experiment, participants sat at a table wearing an MR-compatible data glove (5DT Data Glove 
MRI, 1 sensor per finger, 8 bit flexure resolution per sensor, 60 Hz sampling rate) on their right hand, which was 
placed on their lap under the table. The data glove measured the participant’s finger flexion via sewn-in optical 
fibre cables; i.e., each sensor returned a value from 0 to 1 corresponding to minimum and maximum flexion of 
the respective finger. These raw data were fed to a photorealistic virtual right hand model29,30, whose fingers were 
thus moveable with one degree of freedom (i.e., flexion-extension) by the participant, in real-time. The virtual 
reality task environment was instantiated in the open-source 3D computer graphics software Blender (http://
www.blender.org) using a Python programming interface, and presented on a computer screen at about 60 cm 
distance (1280 × 1024 pixels resolution).

The participants’ task was to perform repetitive right-hand grasping movements paced by the oscillatory 
size change of the central fixation dot, which continually decreased-and-increased in size sinusoidally (12% size 
change) at a frequency of 0.5 Hz; i.e., this was effectively a phase matching task (Fig. 1). The participants had to 
follow the dot’s size changes with right-hand grasping movements; i.e., to close the hand when the dot shrunk and 
to open the hand when the dot grew. In half of the movement trials, an incongruence between visual and proprio-
ceptive hand information was introduced by delaying the virtual hand’s movements by 500 ms with respect to the 
movements performed by the participant. The virtual hand and the real hand were persistently in mismatching 
postures in these conditions. The delay was clearly perceived by all participants.

Participants performed the task in trials of 32 seconds (16 movement cycles; the last movement was signalled 
by a brief disappearance of the fixation dot), separated by 6 second fixation-only periods. The task instructions 
(‘VIRTUAL’/‘REAL’) were presented before each respective movement trials for 2 seconds. Additionally, partici-
pants were informed whether in the upcoming trial the virtual hand’s movements would be synchronous (‘synch.’) 
or delayed (‘delay’). The instructions and the fixation dot in each task were coloured (pink or turquoise, counter-
balanced across participants), to help participants remember the current task instruction, during each movement 
trial. Participants practised the task until they felt confident, and then completed two runs of 8 min length. Each 
of the four conditions ‘virtual hand task under congruence’ (VH cong), ‘virtual hand task under incongruence’ 
(VH incong), ‘real hand task under congruence’ (RH cong), and ‘real hand task under incongruence’ (RH incong) 
was presented 3 times per run, in randomized order.

To analyse the behavioural change in terms of deviation from the target (i.e., phase shift from the oscillatory 
size change), we averaged and normalized the movement trajectories in each condition for each participant (raw 
data were averaged over the four fingers, no further pre-processing was applied). We then calculated the phase 
shift as the average angular difference between the raw averaged movements of the virtual or real hand and the 
target’s oscillatory pulsation phase in each condition, using a continuous wavelet transform. The resulting phase 
shifts for each participant and condition were then entered into a 2 × 2 repeated measures ANOVA with the 
factors task (virtual hand, real hand) and congruence (congruent, incongruent) to test for statistically significant 
group-level differences. Post-hoc t-tests (two-tailed, with Bonferroni-corrected alpha levels to account for multi-
ple comparisons) were used to compare experimental conditions.

After the experiment, participants were asked to indicate—for each of the four conditions separately—their 
answers to the following two questions: “How difficult did you find the task to perform in the following condi-
tions?” (Q1, answered on a 7-point visual analogue scale from “very easy” to “very difficult”) and “On which hand 
did you focus your attention while performing the task?” (Q2, answered on a 7-point visual analogue scale from 
“I focused on my real hand” to “I focused on the virtual hand”). The questionnaire ratings were evaluated for 
statistically significant differences using a nonparametric Friedman’s test and Wilcoxon’s signed-rank test (with 
Bonferroni-corrected alpha levels to account for multiple comparisons) due to non-normal distribution of the 
residuals.
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