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Abstract

The computational burden of running a complex computer model can make op-

timization impractical. Gaussian Processes (GPs) are statistical surrogates (also

known as emulators) that alleviate this issue since they cheaply replace the com-

puter model. As a result, the exploration vs. exploitation trade-off strategy can be

accelerated by building a GP surrogate. In the current study, we propose a new

surrogate-based optimization scheme that minimizes the number of evaluations of

the computationally expensive function. Taking advantage of parallelism of the

evaluation of the unknown function, the uncertain regions are explored simultane-

ously, and a batch of input points is chosen using Mutual Information for Com-

puter Experiments (MICE), a sequential design algorithm which maximizes the in-

formation theoretic Mutual Information over the input space. The computational

efficiency of interweaving the optimization scheme with MICE (optim-MICE) is

examined and demonstrated on test functions. Optim-MICE is compared with state-

of-the-art heuristics. We demonstrate that optim-MICE outperforms the alternative

schemes on a large range of computational experiments. The proposed algorithm is

also employed to study the extrema of coastal storm waves, such as the ones that ob-

served during Typhoon Haiyan (2013, Philippines). A stretch of coral reef near the

coast, which was expected to protect the coastal communities, actually amplified

the waves. The propagation and breaking process of such large nearshore waves

can be successfully captured by a phase-resolving wave model. However, the com-

putational complexity of the simulator makes optimization tasks impractical. The

optim-MICE algorithm is therefore used to find the maximum breaking wave (bore)

height and the maximum run-up. In two idealised settings, we efficiently identify
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the conditions that create the largest storm waves at the coast using a minimal num-

ber of simulations. This is the first surrogate-based optimization of storm waves

and it opens the door to previously inconceivable coastal risk assessments.
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Chapter 1

Introduction

Let us consider the problem of maximizing a search engine’s profits by displaying

appealing advertisements that attract user clicks, but we do not know which ad-

vertisements have a high likelihood of being clicked. Or when we want to build

a sensor network for monitoring a complex spatiotemporal phenomenon, e.g. the

temperature in a building, and an optimal placement of a set of sensors is required.

Or when we want to build a seawall to protect a coastal area from extreme environ-

mental phenomena such as a storm surge, but what causes an extreme coastal storm

and what is the maximum storm wave height that could possibly struck local level

are both unknown.

In such problems, a computer model is often built in order to gain information

about the problem and describe the entire situation. The more complex the situa-

tion, the more complex the computer model built is. Choosing the advertisements

that yield the maximum profits or building an optimal sensor network or even find-

ing the maximum storm wave height require us to optimize the computer model.

Taking the traditional mathematical approach (e.g. using gradients) is often im-

possible due to the complexity of the computer model. An alternative option is to

start displaying different advertisements and performing various experiments, until

we maximize our profits, or making observations about the storm wave height by

exploring different combinations of the sources that possibly produce the worst case
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scenario. In practice, such activities are typically costly, require the user’s attention

and patience and most importantly, are time-consuming.

What the maximum is and under what conditions the objective is achieved are

the ultimate questions in all these problems. However, the key common question

is which observations should we select with the aim to learn as much as possible

about the situation and, potentially, achieve the objective in an efficient manner; by

keeping the computational resources to the minimum and ensuring the accuracy of

the results.

1.1 Impact statement of the thesis

The aim of this study is to maximize a computer model, which is often seen as an

unknown function, with the least number of evaluations. The main contributions of

the thesis are summarised below:

• We introduce optim-MICE, a new surrogate-based optimization scheme that

maximizes a complex and a computational expensive function with the low-

est possible number of function evaluations. To overcome the computational

burden of running a computer model, the GP regression is used as a statistical

surrogate model, which has been shown to be a good approximation of the

computer model. The optim-MICE algorithm is built based on two settings in

order to determine the input points at which the computer model is evaluated

at: the bandit setting, where a balance between exploration and exploitation

needs to be achieved, and the parallel setting, where the knowledge about the

unknown function is growing rapidly as a lot of information is collected at the

same iteration. Taking advantage of the parallel evaluations of the unknown

function, the uncertain regions are explored simultaneously, and a batch of

input points is chosen using Mutual Information for Computer Experiments

(MICE), a sequential design algorithm which maximizes the information the-

oretic Mutual Information over the input space.
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The computational efficiency of interweaving the optimization scheme with

MICE is examined and demonstrated on different tests functions. The optim-

MICE algorithm is compared with state-of-the-art heuristics in different

computational experiments. In addition to the development of the optimiza-

tion algorithm and the validation of its efficiency, we examine the effects

of the main algorithm settings on the overall performance and whether the

computational efficiency of optim-MICE is improved. We also consider the

possibility of scaling the objective function and whether by stretching or

shrinking the uncertain region of the true optimum, a solution close to the

true optimum can be found in less computational time.

• The newly developed optimization scheme proposed in the current work is

used to study storm wave extrema, such as the ones that recorded during

Typhoon Haiyan in Philippines on November 2013. Typhoon Haiyan dam-

aged USD billions of worth of agriculture and infrastructures and completely

destroyed Hernani, a small coastal town. The particular event was success-

fully simulated by BOSZ (Roeber & Bricker, 2015), a computer model built

to reproduce the tsunami-like wave that struck the town. However, studies

of storm surge, such as optimization or sensitivity analysis which require a

large number of evaluations, have not been done yet due to the computational

complexity of the computer model.

Taking advantage of the computational efficiency of the proposed algo-

rithm on several computational experiments, optim-MICE is used to optimise

BOSZ and study different aspects of storm wave extrema: the maximum

bore height and the maximum run-up. Since both measures are governed by

different processes, the computer model needs to be optimized separately,

therefore optim-MICE is used twice. The aim of this study is to identify the

conditions that could possibly create extreme wave run-up and bore heights.

To better understand the different sources of uncertainties and which of them
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control the wave run-up and bore height, a local sensitivity analysis around

the maximum run-up and the maximum bore height is performed. Further-

more, the input parameters are all combined in a non-dimensional measure to

model their effects on the maximum wave run-up.

This is the first surrogate-based optimization of storm waves and it opens

the door to previously inconceivable coastal risk assessments.

1.2 Outline of the thesis

The current thesis is organized as follow:

Chapter 2 provides a comprehensive background on the major components incor-

porated in the proposed optimization algorithm. It includes relevant terminology

and concepts as well as key related work available in the literature.

Chapter 3 presents optim-MICE, the novel sequential-based optimization algo-

rithm proposed in the current work that aims to optimize an unknown, complex and

computationally expensive function with the lowest possible function evaluations.

In this chapter, the optim-MICE algorithm and the entire parallel optimization pro-

cedure are described in details. We compare the proposed optimization algorithm

with other state-of-the-art heuristics in different computational experiments. Based

on the results of the comparison we discuss the algorithm’s computational effi-

ciency.

Chapter 4 focus on the main algorithm settings and discuss their effect on the

overall performance of the optim-MICE algorithm. A sensitivity analysis is per-

formed on different computational experiments. The opportunity to improve the

computational efficiency of the algorithm is also discussed by examining the possi-

bility of scaling the uncertain region.
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Chapter 5 shows the effectiveness of the proposed algorithm on a real-world prob-

lem. The optim-MICE algorithm is used to study coastal storm waves heights

and run-ups, such as the ones that destroyed the town of Hernani during Typhoon

Haiyan. The focus of this chapter is to understand the different sources of uncer-

tainties and efficiently identify the conditions that create the largest storm waves at

the coast.

Chapter 6 gives a summary of the main results and considers some related open

topics for further work.

1.3 Activities related to the thesis

The newly developed optimization scheme proposed in this thesis has been pre-

sented at the:

• Statistical and Applied Mathematical Sciences Institute (SAMSI), which is

based in Duke University, in the Workshop on the Interface of Statistics and

Optimization (WISO) in February 2017,

• Centre for Mathematical Studies and their Applications, which is based in

École Normale Supérieure Paris-Saclay, in September 2017,

• Isaac Newton Institute for Mathematical Sciences, which is based in the Uni-

versity of Cambridge, in the workshop on Surrogate models for UQ in com-

plex systems, in February 2018,

• SIAM Conference on Uncertainty Quantification, based in California, in

April 2018.

The initial meetings and discussions about the work that has been done in Chapter 5

were funded by EPSRC as part of the "Mathematics for Living with Environmental
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Change" call. Specifically, EPSRC funded the project Research on Changes of

Variability and Environmental Risk (ReCoVER) aiming the use of novel mathemat-

ical tools for understanding, predicting and managing the effects of environmental

change. I applied and secured, as a Principal Investigator, a mini-project grant from

the EPSRC network ReCoVER. The work in Chapter 5 is done in collaboration

with Dr Volker Roeber who is based in the University of Pau and Pays de l’Adour

in France.

The work contained in the thesis has been collected in the following papers:

• Mathikolonis, T., Guillas, S. (2019), Surrogate-based Optimization using Mu-

tual Information for Computer Experiments (optim-MICE). (submitted to the

Journal of Global Optimization),

• Mathikolonis, T., Roeber, V., Guillas, S. (2019), Computationally efficient

surrogate-based optimization of coastal storm waves heights and run-ups.

(submitted to the Proceedings of the Royal Society A).

The developed optimization algorithm will be part of the Uncertainty Quantifica-

tion (UQ) software and available on the Multi-Output Gaussian Process (MOGP)

platform in GitHub. Both, the UQ software and the MOGP platform, are under

active development by the Research Engineering Group at the Alan Turing Insti-

tute and aim to incorporate various activities related to uncertainty quantification in

computer experiments.



Chapter 2

Background

2.1 Derivative - Free optimization

The standard mathematical approach in an optimization problem is to use all the

available information contained in the derivatives of any function. However, this is

not always the case as many practical applications require to optimize a function f

over a domain of interest where derivatives are unavailable, unreliable or computa-

tionally prohibitive. For instance, f can be very expensive to compute or may have

discontinuous derivatives. These problems are usually referred as derivative-free

optimization or black-box optimization since the analytic form of the function is not

known.

The development of different derivative-free algorithms starts in the mid-1960s

when the Nelder-Mead (NM) simplex algorithm is invented. The NM algorithm

is the most widely used direct search method for solving unconstrained optimiza-

tion without derivatives (Nelder & Mead, 1965). Since then, a lot of studies have

been done in the area with significant improvements by either providing conver-

gence proofs (Lucidi & Sciandrone, 2002; Abramson & Audet, 2006; Conn et al.,

2009b; Boukouvala et al., 2016) or using approximations of the expensive computer

simulator, known as surrogate models, as well as incorporating the Bayesian opti-

mization framework introduced by Kushner (1964) where the underlying function
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is a realization of some stochastic process.

Derivative-free algorithms are in a great demand as they can cope with various

challenges that are common in a lot of different fields such as expensive function

evaluation, a black-box function, noise and uncertainty in computer simulation out-

put and hidden constraints. Some of the areas where they have been applied are in

physics (Zhao et al., 2006), energy security (Ciaurri et al., 2010), medical image

registration (Oeuvray & Bierlaire, 2007) and environmental statistics (Stefanakis

et al., 2014). Despite the fact that many derivative-free algorithms, such as the

Genetic Algorithm and Particle Swarm optimization, have been proved to be reli-

able techniques for finding the global optimum, they often need a large number of

function evaluations (Conn et al., 2009a), and therefore a lot of computational re-

sources, which renders them unaffordable for computationally expensive problems.

Derivative-free algorithms can be classified into different categories (Rios & Sahini-

dis, 2013):

• direct vs. model-based: In direct methods, search directions (where to search

for the optimal value) are determined using the values computed directly from

the function f whereas in model-based methods, a surrogate model is built

and utilized for the search process,

• local vs. global: Local optimization algorithms search only the nearby neigh-

bourhood until a better - from the current - configuration is found, whereas

global optimization methods explore the entire search space and exploit the

search history until the optimal value is reached,

• stochastic vs. deterministic: Due to some randomness introduced, the output

of a stochastic model is always different even though the same parameter

values are used. On the other hand, a deterministic model, given particular

parameter values, will always produce the same output.
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Comprehensive reviews of the different derivative-free algorithms can be found in

Rios & Sahinidis (2013), Kolda et al. (2003) and Conn et al. (2009a). The focus of

the current work is on the model-based methods where a surrogate model takes the

place of a deterministic function for global optimization purposes.

Bayesian Optimization is a derivative-free optimization framework for sequentially

optimizing a black-box function. Although the Bayesian strategy was introduced

over 50 years ago (Kushner, 1964), it has recently gained more attention in the ma-

chine learning community, especially after the development of the Efficient Global

Optimization (EGO) algorithm proposed by Jones et al. (1998). In the current study,

we do not fully adopt the Bayesian Optimization framework, but we follow its two-

step approach. Firstly, we build a probabilistic model based on the assumptions

made about the function being optimized and then, we choose an acquisition func-

tion, also known as loss function, which is used to determine at which input point

the unknown function will be evaluated next. As in Bayesian Optimization, at each

step of the optimization process, the probabilistic model is refined by considering

the new data observed. Recent tutorials of Bayesian Optimization can be found in

Shahriari et al. (2015) and Frazier (2018).

The most well known probabilistic model used in black-box optimization is Gaus-

sian Process (GP) regression, which is also used as a surrogate model for computer

experiments due to its flexibility and tractability (Snoek et al., 2012). In terms of the

acquisition function, there is a huge range of strategies that can be used, however,

we choose to focus on the idea of balancing the exploration - exploitation trade-off

using the Upper Confidence Bound (UCB) algorithm. The sections below give

a solid background for all the important components incorporated in the current

research.
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2.2 Surrogate modelling

Computer models, which are most of the time black-box functions, are widely

used to study physical processes (Santner et al., 2003). To represent well a real-

world system, computer models can often become very complex. This makes the

optimization of a black-box function and further studies, such as sensitivity and

uncertainty analyses, too costly and time-consuming since a large number of eval-

uations might be needed. To overcome this issue, a statistical surrogate model

is built, also known as emulator or a meta-model, which replaces and accurately

represents the computer model (Santner et al., 2003; O’Hagan, 2006).

Specifically, a statistical surrogate model, which was first introduced by Sacks

et al. (1989) and Currin et al. (1991), is used as means for designing and analysing

computer experiments (Santner et al., 2003). The idea is that we want to know the

output of the computer model at different input values but, due to its computational

cost, we build a surrogate model that approximates the input-output behaviour and

accurately represents the analytical model. Through the years, surrogate models

have been expanded into a standard statistical approach for predicting the output

of a complex mathematical function with a lot of advancements (e.g. develop-

ing a surrogate model under a Bayesian framework (O’Hagan, 2006), emulating

multivariate simulators (Conti & O’Hagan, 2010; Overstall & Woods, 2016), mod-

elling the surrogate-model errors in the context of dynamical systems (Trehan et al.,

2017)) and applications (e.g. epidemiology (Willem et al., 2014; Williams et al.,

2019), environmental engineering (Sarri et al., 2012; Stefanakis et al., 2014), chem-

ical engineering (Quirante et al., 2015; Bowman & Woods, 2016)).

Surrogate models can be classified into physical and functional (Conn et al., 2009a).

Physical models are the surrogate models that are built from a physical or numerical

simplification of the true functions, whereas functional are algebraic representations

of the true functions. In the current work, we use functional surrogate models be-

cause previous knowledge of the physical system is not required, they are often
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computationally inexpensive and are more suited for global optimization purposes

as they might incorporate a stochastic component (Koziel et al., 2011; Conn et al.,

2009a). There are different types of functional surrogate models that could be

used such as polynomials interpolation (Giunta et al., 1997), multivariate adaptive

regression splines (Friedman, 1991), radial basis functions (Gutmann, 2001) and

Gaussian Process (GP) regression, well-known in geostatistics community as Krig-

ing models (Currin et al., 1991).

In our work, we build and utilise a GP emulator. GP regression is the most popular

statistical surrogate model as it allows modelling complicated functional forms. It

not only offers a prediction at a new input point but also provides an estimate of the

uncertainty in that prediction (Sacks et al., 1989). Rasmussen & Williams (2005)

provides an extensive discussion of the GP and its properties. In the next section,

we give a short description of the key components of a GP regression.

2.3 Gaussian Process (GP) regression

A GP is a continuous extension of multidimensional normal distribution. It is one

of the most common stochastic processes used in derivative-free optimization, and

computer experiments in general, as we can take advantage of all the convenient

mathematical properties of a normal distribution. Under a Bayesian framework, a

GP represents the prior knowledge about the unknown function f which is treated

as a random function. In a non-Bayesian framework, f is treated as if it is drawn

randomly from some population of functions, and one assumes that the distribution

of functions in that population is a GP model.

Whereas a probability distribution describes random variables which are scalars

or vectors and is used to model finite collection of real-valued variables, the GP

enforces implicit properties of a function without relying on any parametric as-

sumptions and can be seen as its distribution. Instead of having a mean vector and
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a covariance matrix as in normal distribution, a GP is defined by its mean function

m(x) and covariance function c(x,x′). Let f be a function mapping an input x ∈X

into an output y = f (x) in R. An unknown function f is a GP if for any set of

n inputs {x1, . . . ,xn}, the joint distribution of the set of outputs { f (x1), . . . , f (xn)}

follows a multivariate normal distribution. Therefore, it can be thought as

f (x)∼ GP(m(x),c(x,x′)), (2.1)

where m(x) = E[ f (x)], (2.2)

and c(x,x′) = E
[
( f (x)−m(x))

(
f (x′)−m(x′)

)]
, (2.3)

where the mean function m(x) reflects the expected function value at input x and

the covariance function c(x,x′) models the dependence between the function values

at input points x and x′.

The mean function usually takes the form

m(x) = h(x)T
β , (2.4)

a combination of a set of regression functions h(x) with a vector of unknown coef-

ficients β . It gives the expected value of the computer model output as a function

of the inputs and shows an indicator of how the output broadly responds to changes

in the inputs.

Two common forms used for the mean function are either to keep it constant

for all input values, which indicates no prior knowledge about the computer mod-

els’ output, or use a polynomial regression, which states that the output will be

approximately linear in all the inputs. A quadratic form and possibly higher order

polynomial terms can also be used if a non-linear trend is expected between the

output of the computer model and each input variable (Bastos & O’Hagan, 2009).

In practice, both forms tend to perform well (Rasmussen & Williams, 2005; Aye &
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Heyns, 2018). As in most of the studies, so in the current one, the mean function

is set to zero so as to let the variation in the data be explained by the covariance

function.

The covariance function is defined as c(x,x′) = σ2K(x,x′): a product of the process

variance, which is a scalar parameter (σ2 > 0), and a correlation function K. The

process variance states the overall variance of the output at any input point (large

values allow more variation). The correlation function states the strength of the

relationship between the two configurations x and x′.

The covariance function - also known as kernel - is at the heart of the GP as it

encodes the properties of the unknown function e.g. whether it is a relatively

smooth and continuous function. Intuitively, the covariance function is used to

define the similarity or the mutual informativeness of the function values f (x) and

f (x′) as a function of the input points x and x′. Unlike the mean function which can

be chosen freely, an arbitrary covariance function, in general, is not valid as it has

to be a symmetric positive semi-definite function.

In general, it is expected that input points x and x′ which are sufficiently close

in the input space X have similar f (x) and f (x′) and higher correlation than input

points that are far apart. Therefore, to define the similarity between two input points

it is sufficient enough to measure their distance. Here, we will only refer to the most

commonly-used covariance functions but a range of different class of covariance

functions can be found in Rasmussen & Williams (2005).

Among the most popular covariance functions are the squared exponential, separa-

ble power exponential and Matérn functions. All these functions are characterised

as stationary and/or isotropic. By definition, a covariance function is called station-

ary if it is invariant to translations of the inputs (e.g. it is a function of a distance

x−x′ for any pair of inputs x and x′) and isotropic, if it is a function of the Euclidean
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distance ‖x− x′‖ (not the direction). We define below the covariance functions:

• Squared exponential is probably the most popular covariance function within

the machine learning field. The functions sampled from a GP are infinitely

differentiable which means that the GP with this covariance structure has

mean square derivative of all orders and therefore, is very smooth (Rasmussen

& Williams, 2005). The squared exponential covariance function is defined

as

K(x,x′|l) = exp
{
−‖x− x′‖2

l

}
, (2.5)

with parameter l defined as the characteristic length-scale: the range at which

x and x′ are close enough to influence each other significantly. In practice,

length-scale value describes how smooth a function is. Small values indicate

that the function values can change quickly and vice-versa.

• Separable power exponential is a standard choice of modelling computer

experiments especially in higher dimensions (Santner et al., 2003; Gramacy

& Lian, 2012). This covariance function is useful when dealing with massive

data sets as it reduces the computational time (Genton, 2001).

Its structure is built based on the property of multiplication of covariance

functions, which yields also a covariance function, by taking the product

of correlations across each dimension i = 1, . . . ,d. Even if the core part of

the covariance function is based on the squared exponential function, the re-

sulting function is still stationary but not isotropic because the characteristic

length-scale is not the same for all the inputs. Its advantage can be fully seen

once a nugget parameter is added in the calculations. A nugget parameter (a

scalar positive value) is mainly added in the correlation function with the aim

to introduce a measurement error into a stochastic processes and/or to prevent

the K from becoming numerical singular. A well-conditioned correlation ma-

trix 1 can then be achieved and this will lead us to a better predictive accuracy
1A well-conditioned matrix is defined as a matrix whose inverse can be computed with good

accuracy.
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(Gramacy & Lian, 2012; Bilionis et al., 2013). The form of the separable

power exponential covariance function is

K(x,x′|ξ )) =
d

∏
i=1

exp
{
−‖x− x′‖p

li

}
, (2.6)

where ξ = (l1, . . . , ld)T ∈ Rd
+. Here, li is defined as the characteristic length-

scale for the ith input dimension. The degrees of smoothness is controlled by

0 < p≤ 2 with a typical default choice 2 as the function is infinitely differen-

tiable (Gramacy, 2007).

• Matérn is also one of the most popular covariance functions. Stein (1999)

states that the strong smoothness assumption in the squared exponential co-

variance function is unrealistic and suggests that a covariance from the Matérn

family is a better choice for spatial data and computer experiments. The gen-

eral form of the Matérn covariance function is

K∗(x,x′|ξ ,ν) =
d

∏
i=1

1
2ν−1Γ(ν)

(
2ν1/2‖x− x′‖

li

)ν

Jν

(
2ν1/2‖x− x′‖

li

)
,

(2.7)

where ξ = (l1, . . . , ld)T is the characteristic length-scale vector which mea-

sures how quickly the correlations decay with distance (li > 0), ν is a positive

parameter which specifies the degree of smoothness, Γν is the Gamma func-

tion for ν and Jν is a modified Bessel function of order ν > 0.

The great flexibility of the Matérn covariance function compared to the

squared exponential covariance function is the parameter ν which controls

the degree of smoothness (Handcock & Stein, 1993; Minasny & McBratney,

2005; Rougier et al., 2009). Generally, the larger the ν , the smoother the

process. Two of the most commonly-used cases in GP are when ν = 3/2

and ν = 5/2 as the smoothness is kept at a normal level. For ν → ∞ the

covariance function converges to a squared exponential covariance function.
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2.3.1 Determination of hyper-parameters

To be able to use the GP as an emulator for an expensive computer model and repli-

cate the functional connection between inputs and outputs, it is necessary to esti-

mate all the parameters from the data collected by running the computer model. The

parameters considered in a GP regression are the regression coefficient β , the pro-

cess variance σ2 and the characteristic length-scale (also known as the correlation

length) l or ξ , if for each ith input dimension a different correlation length is con-

sidered. These parameters are referred to as hyper-parameters and can be estimated

using different statistical modelling approaches e.g. Maximum Likelihood Estimate

(MLE) method, Restricted Maximum Likelihood method and Bayesian methods. A

short description of the two most commonly used approaches are provided below.

Bayesian Inference

A solid foundation for Bayesian Inference can be found in Lee (2004) and Gel-

man et al. (2013). Here, we only give the basic idea of its framework. The

hyper-parameters, defined as θ = (β ,σ2, l)T , are treated as unknown and random

variables. Suppose that y = (y1 = f (x1), . . . ,yn = f (xn)) contains n realizations of

the computer model at the input points x1, . . . ,xn. Before seeing the data y, any

prior knowledge we have about the hyper-parameters is specified using a prior dis-

tribution p(θ) over the hyper-parameters. The prior distribution is modified once

the data is observed to produce the posterior distribution p(θ |y). The posterior dis-

tribution is calculated based on the Bayes’ theorem and combines the information

from prior knowledge and data (through the likelihood function p(y|θ)):

p(θ |y) = p(y|θ)p(θ)
p(y)

. (2.8)

For algebraic convenience, we can specify our prior knowledge using a conjugate

prior, a prior which when combined with the likelihood function, produces a poste-

rior distribution that belongs to the same family as the prior distribution. Conjugate

priors are particularly convenient because they lead to a closed-form expression for

the posterior. However, in certain cases, the form of the posterior distribution can-
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not be found and as a result, in order to evaluate the posterior distribution and make

predictions, it is necessary to calculate the marginal likelihood p(Y ), known as the

model evidence:

p(Y ) =
∫

p(y|θ)p(θ) dθ . (2.9)

Computing analytically the integral for high-dimensional posterior distributions is

often intractable and as a result, Markov Chain Monte Carlo (MCMC) methods

are used (details about the MCMC method can be found in Gilks et al. (1995) and

Andrieu et al. (2003)). The MCMC method is the standard computational method

to compute a high-dimensional posterior distribution through sampling and make

inference about the parameters. Even if the MCMC algorithm is simple in structure

and generally easy to implement, it can be computationally expensive and most

Bayesian analysis can take longer. This is due to the convergence problem in which

we need to decide when is the appropriate time to stop sampling and use the sam-

ples to estimate characteristics of the distribution of interest.

Using the Bayesian method, we take into account the uncertainty related to pa-

rameter values on subsequent predictions and combine our prior knowledge with

data. Due to that, a Bayesian approach becomes very attractive when calculating the

GP hyper-parameters, sometimes under fully Bayesian setting (Handcock & Stein,

1993; Williams & Rasmussen, 1996; Williams & Barber, 1998; Gramacy & Lee,

2009) and otherwise using empirical Bayes methods (Oakley, 1999; Rasmussen &

Williams, 2005; Garbuno-Inigo et al., 2016).

Maximum Likelihood

The Maximum Likelihood Estimation (MLE) method is also widely used to esti-

mate the hyper-parameters of a GP. In this section, we give a brief description of the

design and analysis of computer experiments (DACE) framework, proposed Sacks

et al. (1989). This framework is also used in the current study.

The MLE method aims to find an estimator for each GP hyper-parameter that
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is most consistent with the observed data. Assuming that the distribution of the

computer model output y = {y1 = f (x1), . . . ,yn = f (xn)}, which resulted from a

set of possible input points X = {x1, . . . ,xn}, follows the multivariate normal dis-

tribution. We choose the values of hyper-parameters that maximize the likelihood

function given n observations of y. For computational convenience, we take the

multivariate normal log-likelihood function:

`(θ |y) =−n
2

ln(σ2)− 1
2

ln(|K|)− (y−Hβ )T K−1(y−Hβ )

2σ2 , (2.10)

where |K| denotes the determinant of K. The MLE of β , which is a d x 1 vector of

unknown regression coefficients, is its generalized least squares estimate

β̂ = (HT K−1HT )−1HT K−1y, (2.11)

where H is the n x d matrix of regression functions and K is the n x n correlation

matrix. The MLE solution for the process variance σ2 can be expressed as:

σ̂
2 = σ̂

2(ξ ) =
1
n
(y−Hβ̂ )T K−1

ξ
(y−Hβ̂ ), (2.12)

where ξ = (l1, . . . , ld) is a vector that represents the correlation length for the ith

input dimension and is set as fixed (Sacks et al., 1989). The subscript ξ in the term

Kξ is included to emphasize the fact that the correlation matrix is a function of the

correlation length parameter. A closed-form solution for ξ does not exist and a

numerical optimization is required. To reduce the computational burden needed for

the optimization, we substitute the known optimal values of β̂ (2.11) and σ̂2 (2.12)

into the log-likelihood function (1.10). The MLE of ξ , denoted by ξ̂ , can be found

by maximizing the profile log-likelihood function for ξ (Mardia & Watkins, 1989),

`(β̂ , σ̂2|ξ̂ ) =−n
2

ln(σ̂2(ξ ))− 1
2

ln(|Kξ |)−
n
2
, (2.13)
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which means finding the values of ξ that minimize (Santner et al., 2003),

n ln σ̂
2(ξ )+ ln(|Kξ |). (2.14)

The MLE optimization can be computationally expensive and in some cases, we

might need to address the issue of having multiple local maxima. To avoid that

issue, the current work uses the genetic algorithm approach which is robust despite

the fact that it can be computationally intensive for likelihood optimization. How-

ever, what makes the MLE method so popular is its optimal asymptotic properties.

There is a fair amount of literature on the estimation of hyper-parameters of a GP

using the MLE method (Forrester et al., 2008; Ginsbourger et al., 2009; Bachoc,

2013; Beck & Guillas, 2016). A classical derivation of the MLE approach and its

properties can be found in Mardia & Marshall (1984), Sacks et al. (1989) and Stein

(1999).

2.3.2 Prediction with Gaussian Process

In computer experiments, the computer model output y= f (x) is assumed to be a de-

terministic real-valued function of the d-dimensional variable x = (x1, . . . ,xd)∈Rd .

The unknown function f (x) is treated as a random function only at the input points

where the computer model has not been evaluated yet. Specifically, the unknown

function is modelled as a random field given the training data-set; a set of input-

output pairs included in the training data-set at time T .

Assuming that the random function is a Gaussian Process is a great advantage

as a GP regression not only offers a prediction at a new input point but also pro-

vides an estimate of the uncertainty in that prediction (Sacks et al., 1989). For

predicting the output y of the computer model at any input value, the GP emulator

is used. Conditionally on the training outputs after T iterations and on the estimated

hyper-parameters, YT = [yt , . . . ,yT ]
T at points XT = {xt , . . . ,xT}, the process is still

a GP and the predictive distribution of the output at a new input points x, also known

as test points, is a multivariate normal with mean ŷ(x) and variance ŝ2(x):
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ŷT+1(x) = kT (x)T (KT +σ
2I)−1YT (2.15)

and ŝ2
T+1(x) = k(x,x)− kT (x)T (KT +σ

2I)−1kT (x) (2.16)

where kT (x) = [k(x1,x), . . . ,k(xT ,x)]
T is the vector of covariances between the in-

put points already chosen and x and KT = [(x,x′)]x,x′∈XT
is the covariance matrix.

The Eq. 2.15 and 2.16 are derived by following the approach proposed by Sacks

et al. (1989). In general, to predict the output of the computer model, linear pre-

dictors of the form ŷ(x) = λ T (x)y for some λ (x) ∈ Rn are used. Assuming that

the hyper-parameters are known, the mean ŷ(x) is the best linear unbiased predictor

(BLUP) which minimizes the mean square error for the prediction (MSPE) with

respect to λ (x). The uncertainty in the prediction, or otherwise the variance of the

predictive distribution, is given as ŝ(x) = MSE[ŷ(x)].

2.4 Design of Experiments

The computer experiments involve running a deterministic black-box function

where its output is not affected by any uncontrollable variable and thus, there is no

random error. Therefore, techniques such as replication and blocking, which are

used to estimate and control the magnitude of random error, are not needed. Nev-

ertheless, a considerable level of uncertainty arises due to the lack of knowledge

about the relationship between inputs and outputs. The input-output behaviour is

approximated through the statistical surrogate model. Since the computer model

is computationally expensive to run and sometimes only a limited number of runs

is affordable, it is important to choose an experimental design that minimizes the

computational cost, but maximizes the information about the computer model.

Experimental design is defined as the process of selecting an efficient set of in-

put points (n design points) at which to evaluate the computer model and compute
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the output (Santner et al., 2003). The design points are combinations of the in-

put variables and are used as the training input points to predict the output. They

are chosen strategically based on various optimization criteria e.g. mean squared

prediction error (MSPE) (Sacks et al., 1989), maximum entropy sampling (Currin

et al., 1988) and distance between design points (Johnson et al., 1990). There are

different experimental design strategies in the literature that are mainly classified

into two categories: space-filling designs and adaptive designs.

2.4.1 Space-filling designs

The design points are spread throughout the input space, since all regions are treated

as equally important, giving the opportunity to obtain an overview of what the re-

sponse surface might look like. They are all chosen before computing any function

evaluation without concentrating in clusters or at the corners of the input space.

The main issue is that when certain regions of the input space are not important, a

certain amount of computational time is wasted.

Examples of space-filling designs are uniform designs, multilayer designs, maximin

and minimax distance designs and Latin hypercube designs (LHD) (Sacks et al.,

1989; Simpson et al., 2001; Pronzato & Müller, 2012). In terms of the prediction

accuracy, all the designs perform well (Marin, 2005) however, we will only give a

short description about LHD, which is commonly used in the literature but also in

the current study.

• Latin hypercube design has been proposed by McKay et al. (1979) as an

alternative method for choosing simulator inputs to regular grid design, with

the aim to avoid the grid’s collapsing property: no two LH design points

share the same value for any parameter.

As in grid design, which is the simplest possible experimental design, in LH

each input range is partitioned into n equal probability and non-overlapping

intervals. Unlike a grid, the number of partitions is equal to the number of
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the design points selected. Then, one value from each interval is randomly

selected with respect to the probability density of the interval. The same

process is followed for each dimension d, for all the inputs x1, . . . ,xd . The

n values selected for x1 are paired randomly with the n values for x2 until

the nd - tuplets are formed. Fig. 2.1 shows an example of LHD with two

parameters.

Figure 2.1: An LHD with two dimensions and 10 points

Unlike grids, the number of partitions in LHD does not need to grow expo-

nentially with the dimensionality of the input space (Urban & Fricker, 2010).

Since the design points are chosen before learning about the functional input-

output behaviour, it is important to ensure that the design should be space-

filling so as to collect information from the entire input space. Maximin- and

minimax- distance criteria can be used as an additional constraint while an

LHD is constructed. In a maximin-LHD the points are spread over the input

space so that the minimum distance among the design points is maximised,

whereas in minimax-LHD, the maximal distance from any point is minimized

(Johnson et al., 1990). In practice, the maximin distance criterion pushes the

points toward to the design boundaries while the minimax distance criterion

tends to push more points in the interior of the input space (Ba & Joseph,
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2011). The maximin design are less computationally intensive than minimax

designs.

2.4.2 Adaptive designs

To address the issue of having design points over some unnecessary regions of the

input space, adaptive designs have been proposed as efficient alternatives to space-

filling designs (Santner et al., 2003; Lam, 2008; Gramacy & Lee, 2009; Beck &

Guillas, 2016). The advantage of adaptive designs is that they collect information

about the unknown function during the experimental design process in the form

of input-output data from simulation runs. The design points are chosen sequen-

tially, often one-at-a-time or by batches, from regions where uncertainty is large.

Compared to space-filling designs, the adaptive designs can be computationally

expensive and sometimes time-consuming however, they can often be effective in

practice (Beck & Guillas, 2016). Examples of adaptive designs, which are going

to be further discussed below, are active learning MacKay (ALM), active learning

Cohn (ALC) and Mutual Information for Computer Experiments (MICE).

To best approximate the computer model output over the design space X ⊆ Rd , it

is important to determine the input values at which the data should be collected. To

end up with an optimal design, a specific design criterion needs to be optimized at

each step of the process. Since the design points are chosen sequentially, only the

most informative points are included in the training data set. A common charac-

teristic of the adaptive designs described below is that all are built to measure an

information gain quantity. Some of them are based on a simple measure of the pre-

dictive uncertainty, whereas others are based on the classical information theoretic

measures such as entropy and mutual information.

For convenience, XG is a discrete design space, (G for Grid, XG ⊆ X ) with nG

number of points, initial design is defined as (Xk,yk) with k number of points, Xcand

(Xcand ⊆ XG) is defined as the set of ncand candidate points.
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• ALM: At stage k the algorithm, proposed by MacKay (1992), chooses the

next design point xk+1 from Xcand that maximizes the predictive variance of

the GP,

xk+1 = argmax
x∈Xcand

ŝ2(x). (2.17)

The computational demand of ALM depends on how large the set of candi-

date points is. Studies show that ALM is not as computational expensive as

other sequential designs, and because it is easy to implement is often preferred

over others approaches (Gramacy & Lee, 2009; Bilionis et al., 2013; Beck &

Guillas, 2016). However, ALM tends to place many points on the boundaries

of the design space, especially in high-dimensional space. As the dimension

size d is increased, the number of boundary points grows as well. Boundary

points are optimal only when the model is known precisely. Since the full

form of the model is not known in advance, having points at the boundaries

might be suboptimal (Chaloner & Verdinelli, 1995; Gramacy & Lee, 2009).

Various studies also state that the boundary points are less informative than

nearby interior points (Chaloner & Verdinelli, 1995; Krause et al., 2008; Gra-

macy & Lee, 2009; Beck & Guillas, 2016).

• ALC: The algorithm, proposed by Cohn (1996), considers the effect of each

candidate point on the entire input space and the existing information gained

up to the current stage. As in ALM, it is based on the predictive variance of

the candidate points. ALC sequentially selects the next design point xk+1 that

yields the largest reduction in predictive variance over the input space. This

is defined as,

xk+1 = argmax
x∈Xcand

∫
X
(ŝ2(x′)− ŝ2

k∪x(x
′))dx′, (2.18)

where ŝ2(x′) is the variance of the design point x′, which is already in the

training data set, before observing the output at xk+1 and ŝ2
k∪x(x

′) is the vari-

ance at x′ when the new point xk+1 is added in the design. In practice, the

integral is often approximated by a sum over a reference set, a grid of nre f
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reference points in the input space, that is,

xk+1 = argmax
x∈Xcand

1
nre f

nre f

∑
i=1

(ŝ2(xi)− ŝ2
k∪x(xi)). (2.19)

Compared with the ALM, ALC is computationally more expensive. It per-

forms better as it examines the effect of each point from the candidate set

on the entire domain and has less concerns about the uncertainty near the

boundaries of the input space (Seo et al., 2000; Gramacy & Lee, 2009).

• MICE: The algorithm, proposed by Beck & Guillas (2016), is a modified

version of the mutual information (MI) criterion involved in the sequential

algorithm given by Krause et al. (2008). As with the MI criterion, MICE is

based on the idea of entropy and mutual information, two key measures of

information theory.

The required definitions are only briefly given but a good overview of the

information theory can be found in Cover & Thomas (2006). Entropy is de-

fined as the uncertainty of a single random variable or otherwise, it measures

the amount of information required to describe the random variable. Mutual

information is described as the reduction in the uncertainty of one random

vector due to the knowledge of the other. In other words, it measures the

amount of information that one random vector contains about another ran-

dom vector. To express the mutual information of two vectors, we use the

relative entropy, also known as Kullback-Leibler distance, which is a measure

of the distance between the distributions of the two vectors.

Suppose that the two random vectors Y and Y ′ have a joint probability den-

sity function pY,Y ′(y,y′) and marginal probability density functions pY (y) and

pY ′(y′). As given in Cover & Thomas (2006), the mutual information of the
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two vectors, denoted as I(Y ;Y ′), is defined as

I(Y ;Y ′) =
∫

pY,Y ′(y,y
′) log

(
pY,Y ′(y,y′)

pY (y)pY ′(y′)

)
dydy′. (2.20)

The definition of mutual information can be rewritten in such a way that

shows the relationship between entropy and mutual information of the two

random vectors. Therefore, mutual information is defined as

I(Y ;Y ′) = H(Y )−H(Y |Y ′), (2.21)

where H(Y ) is the entropy, also known as self-information 2, of the random

vector Y , and H(Y |Y ′) is the conditional entropy of Y given Y ′.

The idea of using the information theoretic mutual information measure

in the context of experimental designs and in spatial statistics is first used by

Caselton & Zidek (1984) with the aim to overcome the ‘waste information’

property of the entropy criterion as sensors are placed along the boundary of

the input space. In contrast to the entropy criterion, where only the uncer-

tainty of the selected sensor locations is considered, the MI criterion searches

for the subset of sensor locations that most significantly reduces the uncer-

tainty about the locations in the rest of the space.

The objective is to find an optimal monitoring network design X∗n with n

input points that maximizes the MI between the two sets: the set of points

already in the design Xn and the set with the rest points left in the discrete

design space XG \X∗n ,

X∗n = argmax
Xn∈Xcand

I
(
XG \Xn;Xn

)
(2.22)

= argmax
Xn∈Xcand

H
(
XG \Xn

)
−H

(
XG \Xn|Xn

)
. (2.23)

2The mutual information of a random variable with itself is the entropy of the random variable.
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Specifically, we want to find the set X∗n that maximally reduces the entropy

over the rest of the space XG \X∗n (Krause et al., 2008). Maximizing the MI

between the two sets is defined as an NP-hard problem3.

In order to avoid solving directly the optimization problem (Eq. 2.22), Krause

et al. (2008) proposed a greedy algorithm where an optimal design can be

achieved by adding sensors in sequence, one-at-a-time. More formally, at

each stage k, the new input point x ∈ Xcand added in the design Xk is the one

that maximizes the difference:

argmax
x∈Xcand

I
(
(Xk∪ x);XG \ (Xk∪ x)

)
− I
(
Xk;XG \Xk

)
. (2.24)

For GPs, the optimisation problem can be written as

xk+1 = argmax
x∈Xcand

ŝ2
k(x)/ŝ2

G\(k∪x)(x), (2.25)

where G \ (k∪ x) denotes the XG \ (Xk ∪ x), the set with the input points that

have not been selected yet.

The efficiency and prediction accuracy of the MI criterion is demonstrated

in Krause et al. (2008) where the greedy algorithm is compared with the

classical experimental design criteria. However, the quality and robustness of

the MI design is strongly affected by the set of candidate points and how they

appear in the input space. For example, when the points are irregularly spaced

and/or in clusters or in a non-equidistant grid the MI criterion is not robust

(Beck & Guillas, 2016). In MICE, the robustness is improved by adding in

the sequential algorithm an extra parameter. Specifically, the MICE criterion

is defined as

xk+1 = argmax
x∈Xcand

ŝ2
k(x)/ŝ2

G\(k∪x)(x;τ
2
s ), (2.26)

3An optimization problem is defined as NP-hard if an exact solution requires computational time
which grows exponentially with the size of the problem.
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where τ2
s , referred to as the nugget parameter, is the extra parameter added in

the correlation matrix K of the GP on XG \ (Xk∪x). Using MICE to construct

a sequential design of a computer experiment, predictions become smoother

and the GP’s variance is flatter (Beck & Guillas, 2016). This is mainly due to

the addition of the nugget parameter which, in general, can improve numerical

stability when the computer experiments are deterministic (Gramacy & Lee,

2009). In theory, the nugget parameter can take any positive value τ2
s > 0. In

practice, an ideal value is close to 1 as shown explicitly in Beck & Guillas

(2016).

2.5 Exploration and exploitation in GP framework

The aim of the current work is to find the maximum of an unknown function f :

X → R, where X ⊆ Rd , with the lowest possible number of function evaluations.

This is denoted as:

x∗ = argmax
x∈X

f (x). (2.27)

At each iteration t, we choose the next input point xt for evaluation based on the

knowledge obtained through the GP emulator built from the previous function eval-

uations. Once the unknown function is evaluated at the chosen point, the new point

is added in the design and the training data is updated. Then, the GP model, which

captures the characteristics of the unknown function, is refined using the new ob-

served data. By repeating these steps, the true optimum of the unknown function

can be achieved but not necessarily in the lowest possible function evaluations.

Since each evaluation of the computer model is expensive, it is important to ensure

that the next input point xt is the maximum or will lead us to the maximum of the

objective function within few iterations.

The ideal strategy to find the optimum value is to work with exploration and

exploitation. Its basic idea is to gather more, or enough, information about the

objective function by exploring the uncertain regions and then, make the best deci-
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sion by exploiting (here optimizing) all the available information already known. It

is generally accepted that the more uncertain we are about the function in a given

region, the more information we can gather about the unknown function. Therefore,

the next point xt is chosen from regions with high mean and variance. However, to

determine where to evaluate next and find the optimum, a balance between explo-

ration and exploitation is required.

The trade-off between exploration and exploitation has been studied in various

studies within machine learning (Črepinšek et al., 2013; Kaelbling et al., 1996;

Ishii et al., 2002) and often seen as a multi-armed bandit problem (Auer et al.,

2002; Bubeck et al., 2011; Robbins, 1985; Srinivas et al., 2010). Searching for a

balance between exploration and exploitation is important as it affects the overall

optimization performance such as its accuracy (Chen et al., 2009). The balance can

be achieved using an acquisition function, a function that also help us to find the

next point for evaluation. Both the acquisition function and the bandit setting are

discussed in more details in the next pages.

2.5.1 Acquisition function

In theory, an acquisition function is used not only to control the exploration-

exploitation trade off but also to guide us to search for the optimum (Brochu et al.,

2010). It incorporates the estimates obtained from the statistical surrogate model

about the computer model and the uncertainty at any given point. It is defined in

such a way that obtaining high values of the acquisition function correspond to

potentially high values of the objective function (Hoffman et al., 2011). This would

happen because the prediction might be high and/or the uncertainty in that region is

high.

The acquisition function depends on the already observed points and the GP em-

ulator’s output. Specifically, it is built based on the current best value f (x∗), the

predictive mean ŷ(x) (2.15) and the predictive variance ŝ(x) (2.16). A trade-off
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parameter β is also added in the formulation of acquisition function in order to

balance the exploration-exploitation trade-off. Here only a short description of the

three most popular choices is given, but more details on the different acquisition

functions available in the literature can be found in the comprehensive review of

the Bayesian Optimisation given in Brochu et al. (2010) and Wilson et al. (2018).

• Probability of Improvement (PI) is built based on the early work of Kushner

(1964). It evaluates the unknown function at the point where the improvement

might be occur. Specifically, the point with the highest PI over the best point

seen so far is selected. Under the GP, PI can be computed as:

PI(x) = P( f (x)≥ f (x∗)+β )

= Φ

(
ŷ(x)− f (x∗)−β

σ̂(x)

)
,

(2.28)

where Φ(·) is the standard normal cumulative distribution function.

Without including the trade-off parameter β , only pure exploitation can be

achieved and the chosen point will be the one that is greater than the current

observed optimum and not necessarily the point with the greater impact and

uncertainty (Brochu et al., 2010). On the other hand, if we set the trade-off

parameter too high, the exploration part becomes stronger and as a result, the

algorithm will be slow to fine-tune the optimal solution (Jones, 2001). The

value of the trade-off parameter has been examined in various studies (Jones,

2001; Lizotte, 2008) however, the exact choice of β is always left to the user.

• Expected Improvement (EI), which is introduced by Mockus et al. (1978), is

similar to PI. However, it takes into account not only the probability of im-

provement but also the magnitude of the improvement a point can potentially

yield. Specifically, the point that maximizes EI, is the point that improves

the unknown function the most. The EI can be evaluated analytically and its
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closed form under the GP is:

EI(x)= (ŷ(x)− f (x∗)−β )Φ

(
ŷ(x)− f (x∗)−β

σ̂(x)

)
+σ̂(x)φ

(
ŷ(x)− f (x∗)−β

σ̂(x)

)
,

(2.29)

where φ(·) and Φ(·) denote the probability density function and cumulative

distribution function of the standard normal distribution respectively (Jones

et al., 1998; Huang et al., 2006). As in PI, the value of the trade-off parameter

β (β ≥ 0) is left to the user, however Lizotte (2008) suggests that by setting

β = 0.01 we can achieve a good balance in most of the cases.

• Upper Confidence Bound (UCB) is mainly used in Cox & John (1992) which

suggests a sequential optimisation algorithm where the evaluation points are

selected based on the confidence bounds. Specifically, the next point for eval-

uation is the one that maximizes the UCB. An established connection between

GP optimization and UCB is given in Srinivas et al. (2010) and can be defined

as:

GP-UCB(x) = argmax
x∈X

ŷ(x)+β
1/2

σ̂(x), (2.30)

Similar with PI and EI, the value of β is left to the user. Choosing a high β ,

the algorithm will focus its search on regions with high uncertainty.

Among the three acquisition functions, EI and GP-UCB are better-behaved than PI

as the true global optimum of an unknown function can be found efficiently (Snoek

et al., 2012). Different empirical studies show that either GP-UCB performs at

least on par with EI or slightly better (Srinivas et al., 2010; Kandasamy et al., 2015;

Wilson et al., 2018). The convergence rates have been extensively studied for both

acquisition functions, EI and GP-UCB, but the theoretical properties of EI are still

remained elusive (Vazquez & Bect, 2007; Dani et al., 2008a; Srinivas et al., 2010;

Bull, 2011; Qin et al., 2017).
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The current work uses the GP-UCB as an acquisition function. The UCB, and

the confidence bounds in general, is proved that it can be successfully applied in

complicated situations as well as deal with the exploration and exploitation in a

bandit setting (Auer, 2002). More formally, the estimated mean of the computer

model output guide us for further exploitation whereas the width of the confidence

bounds, which reflects the uncertainty of the algorithm’s knowledge at each time

step, controls the exploration (Auer et al., 2002; Auer, 2002).

2.5.2 GP optimization and the bandit setting

A multi-armed bandit problem is a sequential decision making problem where at

each time step of a time horizon T , the algorithm chooses one of the available arms

(i.e. candidate points) and calculates its reward (Robbins, 1985). Depending on the

chosen arm, it is assumed that the reward is sampled, independently from the previ-

ous rewards, from some fixed but unknown distribution. The aim is to maximize the

total reward by optimally balancing exploration and exploitation: exploring all the

available arms to get more information while exploiting the arm with the highest

reward.

When GP optimization is formulated as a bandit problem, the value of the unknown

function at the chosen point xt is seen as the reward and the aim is to maximize the

sum of rewards ∑
T
t=1 f (xt). This follows the same scope as the equation (2.27) since

at each time step t we choose to add in the design the input point xt that gives the

maximum reward. By sequentially optimizing the unknown reward function at each

time step t, after T iterations the sum of rewards is also maximised. A standard

performance metric of the whole strategy of a bandit problem is the cumulative

regret, which measures the loss in reward due to not knowing the maximum value

of f , and the objective is to minimize it after T iterations (Bubeck et al., 2012). To

ensure that the strategy is performed well at each time step, the simple regret rt is
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calculated at each iteration t as:

rt = f (x∗)− f (xt). (2.31)

Theoretical analysis of algorithms aiming to maximize the sum of rewards, under

the multi-armed bandit setting, can be found in various studies (Azimi et al., 2010;

Contal et al., 2013; Desautels et al., 2014; Grünewälder et al., 2010; Lai & Robbins,

1985; Srinivas et al., 2010).

2.5.3 Sequential algorithms: towards the parallel strategy

The most successful kriging-based optimization technique is the Efficient Global

Optimization (EGO) algorithm proposed in Jones et al. (1998). At the beginning, a

GP model is fitted based on an initial design set. The algorithm follows an iterative

procedure where, at each iteration, a new candidate point is chosen by maximiz-

ing Expected Improvement (EI), known as a sampling criterion. Then, the GP is

re-fitted again considering the updated design set. The traditional EGO algorithm

is also extended into a parallel optimization scheme, by which multiple candidate

points are chosen at each iteration. Such a strategy is the q-EI, proposed in Gins-

bourger et al. (2008), where a batch of q points is added to the design set, at the same

time, by maximizing an approximate expression of EI. The computational cost of

the proposed algorithm is kept at the minimum as the kriging hyper-parameters are

not re-optimized each time a point is added in the design.

The "adding several points at once" strategy gets great attention as a lot of dif-

ferent variants of the parallel EGO algorithm are proposed in the literature. Instead

of using directly the Kriging method, Monte Carlo simulation is used for the multi-

point EI estimation which is proved that is a reliable technique but with considerable

extra computational cost (Janusevskis et al., 2012). A stochastic gradient algorithm

is proposed in Wu & Frazier (2016) as an alternative approach of maximizing the

q-EI, whereas in Zhan et al. (2017), the EGO-PEI algorithm, which is based on a
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pseudo EI criterion, is suggested as an extension of the traditional EGO algorithm

for choosing multiple design points for parallel evaluations.

A theoretical analysis of algorithms aiming to maximize the sum of rewards, or

minimize cumulative regret, under the bandit setting on a certain class of UCB,

has been initially studied by Lai & Robbins (1985). Specifically, asymptotically

efficient allocation rules are constructed showing that the regret in a bandit problem

has to grow logarithmically in the number of iterations. Since then, the asymptotic

behaviour of various algorithms, which incorporate the UCB policy, has been stud-

ied in a number of studies but none of them were applicable in a GP framework

(Lai & Robbins, 1985; Auer et al., 2002; Dani et al., 2008b; Kleinberg et al., 2008).

In contrast to EGO-based algorithms, where the convergence rates are under on-

going study (Bull, 2011; Vazquez & Bect, 2010; Qin et al., 2017), Srinivas et al.

(2010) give the first theoretical bounds of cumulative regret, for functions sampled

from a GP, which can be translated into convergence rates for GP optimization. A

technical connection between the multi-armed bandit setting and the experimental

design is also achieved as the regret is bounded by an information gain quantity

used as a sampling criterion (Krause & Guestrin, 2012).

The new GP optimization algorithm chooses the new candidate points that maxi-

mize the UCB (Srinivas et al., 2010). At each iteration t, the point xt is chosen from

locations where the unknown function is uncertain (large predictive variance) and

the maximum reward can be achieved (large predictive mean). The optimization

of the unknown function f is formalized as a multi-armed bandit problem where

the GP predictive uncertainty is used to control the exploration and exploitation.

The performance of the GP-UCB algorithm is measured according to the regret,

the difference between the actual maximum and the best result achieved, and the

cumulative regret. The objective is to minimize the cumulative regret, therefore

maximizing the black-box function.
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The trade-off between exploration and exploitation for the contextual GP bandit

problems is also addressed in the Contextual Gaussian Process Bandit Optimization

(CGP-UCB) algorithm proposed by Krause & Ong (2011). The pay-off function

corresponding to context-action pairs is modelled as a sample from a GP over

the context-action space. In the context free setting (without considering the ex-

ploration/exploitation trade-off), Grünewälder et al. (2010) gives sharp bounds

assuming that the entire horizon T is known and always the optimal arm is chosen

rather than giving bounds on minimizing cumulative regret.

A multi-fidelity version of the GP bandit problem was investigated by Kandasamy

et al. (2016) where the MF-GP-UCB algorithm, an extension of GP-UCB, aims to

eliminate the low function value regions using cheap lower fidelities and focus on a

small, but promising, region using a sequence of successively higher fidelities. Due

to the increase of the number of dimensions and in cardinality |X | the performance

of GP-UCB is reduced. To overcome this issue and control the discretization error

(the error resulting from the fact that a function of a continuous variable is repre-

sented in the computer by a finite number of evaluations), it has been proved that

GP-UCB can be run using the settings for finite set (Srinivas et al., 2012). An im-

proved version of the GP-UCB is also suggested by Contal & Vayatis (2016) where,

to precisely control the discretization error, a sequence of uniform discretizations

are constructed using generic chaining that leads to tight bounds.

Following the GP-UCB algorithm (Srinivas et al., 2010), different sequential op-

timization schemes have been proposed in the literature incorporating the parallel

strategy: multiple evaluations are performed in parallel whereby a batch of multiple

input points is selected at each iteration. A batch optimization strategy was first

introduced by Azimi et al. (2010), using the Monte-Carlo as an alternative to GP,

based on the idea of simulation matching (SM). The proposed algorithm, SM-UCB,

selects a batch of input points that closely match their expected behaviour. Choos-
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ing the level of parallelism and whether to sequentially evaluate the function or

evaluating it on a batch mode, was studied by Azimi et al. (2012). Specifically, in

early stages, the algorithm chooses a new input point one by one and then naturally

transits to a batch model where the batch size is adaptively changing based on the

expected prediction error.

The connection between the multi-armed bandit and the experimental design was

introduced by Srinivas et al. (2010) and extended by Desautels et al. (2014). Pre-

cisely, two algorithms accommodate the parallel strategy and the batch execution.

The GP-BUCB, which selects at each iteration a batch of fixed size, and GP-AUCB,

a variant of the first algorithm, which adaptively exploits parallelism to choose a

batch of input points. The size of the batch in the GP-AUCB algorithm is based

on the amount of information gained about the unknown function. The cumulative

regret bounds are provided for both algorithms. Daxberger & Low (2017) general-

izes the GP-BUCB algorithm by presenting DB-GP-UCB, a novel distributed batch

optimization scheme which can jointly optimize a batch of inputs, as opposed to

selecting the input points of a batch one at a time, and still preserve scalability in

the batch size.

By combining two strategies to determine the input points for each batch of a

fixed size, the GP-UCB-PE algorithm, proposed by Contal et al. (2013), aims to

maximize an unknown function with the lowest possible number of function eval-

uations. Specifically, the UCB policy is used to select the first input point by

balancing the exploration and exploitation whereas the remaining input points are

chosen using the Pure Exploration (PE) strategy from regions which contain the

true optimum with high probability. The PE step follows a greedy strategy where

the input points are chosen one by one based on the ALM, the experimental design

proposed by MacKay (1992). As a result, only the input points that maximize the

information gain quantity, as in the work of Srinivas et al. (2010) and Desautels

et al. (2014), are chosen. Under the GP framework, the information gain quantity
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is computed based on the predictive variance.



Chapter 3

optim-MICE: A sequential global

optimization algorithm

3.1 Problem statement and objectives

The current study addresses the problem of sequentially optimizing an unknown

function. Let f : X → R be our unknown function with X ⊆ Rd , compact and

convex. The aim is to find with the lowest possible number of function evaluations,

the maximum of the unknown function

f (x∗) = max
x∈X

f (x), (3.1)

where x∗ denotes the true location of the maximum of f . At each iteration t, a

batch of K input points (xk
t ) in X are chosen and then the function values at these

locations are simultaneously obtained.

The unknown function is modelled as a sample from a GP, with mean function

m(x) and covariance function c(x;x′). In the current study, the mean function is

specified as zero whereas the covariance function is chosen from the Matérn fam-

ily. Specifically, the smoothness parameter is set as ν = 5/2. The hyper-parameters

considered in the statistical surrogate model - GP regression - are estimated using
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the approach proposed by Sacks et al. (1989). The correlation length for each input

is estimated using the MLE approach.

The GP optimization is performed under the multi-armed bandit setting. We se-

quentially optimize the unknown function using the exploration vs. exploitation

trade-off strategy: we explore the uncertain regions and exploit the available in-

formation to reach the supposed location of the maximum. Following the parallel

strategy, at each iteration t a batch of input points K are chosen and the unknown

function is evaluated simultaneously. The standard objective is to minimize the

batch cumulative regret RK
T ,

RK
T = ∑t<T f (x∗)− f (xk

t ). (3.2)

A number of objectives need to be achieved during the optimization procedure such

as to find the value x∗ that maximizes the unknown function in the lowest possi-

ble number of iterations or get a solution close to the true optimum, minimize the

cumulative regret and balance the exploration vs. exploitation trade-off. Since the

function f is an unknown and a computationally expensive black-box function, it is

also important to be able to gain as much as possible information without necessar-

ily performing a lot of function evaluations. This is mainly done using the MICE

criterion. The unknown function f is evaluated only at inputs points which give the

maximum information.

3.2 Parallel optimization procedure

The newly developed sequential surrogate-based optimisation scheme follows the

two-step approach of a Bayesian Optimisation framework even if a Bayesian ap-

proach is not fully adopted. Firstly, the Gaussian Process regression, which is the

probabilistic model, is built and then, the Upper Confidence Bound (UCB) is used

as the acquisition function, to determine at which points the black-box function will
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be evaluated next. At each step of the optimization process, the GP is refined by

considering the new input points observed
{

xk
t
}

1≤k<K , which are chosen in batches

of a fixed size K. As in GP-UCB-PE (Contal et al., 2013), the first point is chosen

based on the UCB policy, whereas the K− 1 remaining points are chosen via the

Pure Exploration strategy.

This section gives an overview of the optimization scheme and how the new in-

put points are chosen at each step. It also shows the technical connection between

the multi-armed bandit and experimental design, as first shown in Srinivas et al.

(2012) and later in Contal et al. (2013). A simple example of the optim-MICE is

illustrated in Fig. 3.1.

3.2.1 Confidence region

Under the GP framework, the predictive distribution at any input point xt is again

a multivariate Gaussian distribution, GP(ŷ(xt), ŝ2(xt)) (as given in (2.15), (2.16)).

Using this property, we can define a confidence region in which the unknown func-

tion f is included with high probability. The confidence bounds are constructed as

in the GP-UCB acquisition function (2.30) and defined as:

f̂+t (x) = ŷt(x)+
√

βt ŝt(x)

f̂−t (x) = ŷt(x)−
√

βt ŝt(x),
(3.3)

where f+t is the upper bound, f−t is the lower bound, ŷ(xt) is the predictive mean

and ŝ2(xt) is the predictive standard deviation. The width of the confidence region

is regulated by the value of the trade-off parameter βt . It controls the exploration

and exploitation, namely the balance between exploring the regions with high un-

certainty (regions with high predictive variance) and focusing on the supposed input

point of the maximum (input point that might give the highest reward).

The first input point, x1
t , of each batch, is chosen based upon the UCB policy



3.2. Parallel optimization procedure 54

and it is the one that maximizes the upper bound, or the GP-UCB acquisition

function,

x1
t = argmax

x∈X
f̂+t (x). (3.4)

The upper and lower bounds as well as the first input point are shown in Fig. 3.1.

The grey area is bounded by f̂+t and f̂−t .

Figure 3.1: Illustration of optim-MICE applied in 1-dimensional test function. The grey
area shows the confidence region and is bounded by f̂+t and f̂−t . The first
input point, x1, is chosen based on the UCB-policy. The y•t is represented by
the horizontal yellow line whereas the relevant region, Rt , is the yellow area.
The black dashed lines shows the updated upper and lower bounds after having
selected x1. The second input point x2 is chosen using the Pure Exploration
strategy.
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3.2.2 Relevant region

Having now specified the region which contains the unknown function f with high

probability, a further reduction of that region is obtained where the true location of

the maximum, x∗, of f belongs with high probability. The relevant region, Rt , is

defined as

Rt =
{

x ∈X | f̂+t (x)≥ y•t
}
, (3.5)

where y•t is the lower confidence bound on the maximum, y•t = f̂−t (x•) and x•t =

argmax
x∈X

f̂−t (x). At every iteration t, only the locations that might contain the true

optimum of the unknown function f with high probability are kept in the relevant

region. In Fig. 3.1, the y•t and the Rt are represented by the yellow area.

3.2.3 Parallel evaluations using Mutual Information

Applying the parallel strategy, we are able to choose a batch of K input points at

each iteration t. The K−1 remaining input points are selected via Pure Exploration.

We restrict our attention to the relevant region Rt . The objective at this step is to

maximize the information gain about the unknown function by selecting the most

appropriate/informative input points.

In order to choose the next input point x2
t , we calculate the MICE criterion (2.26)

for all the input points available for selection. The point that is selected and added

in the batch is the one that maximizes the MICE criterion. For all 1 < k < K, using

a greedy strategy, the new input points are selected one by one,

xk
t = argmax

x∈Rt

ŝ2
t (x)/ŝ2

G\(t∪x)(x;τ
2
s ), (3.6)

where ŝ2
t is the updated variance after the next input point is chosen and included

in the batch. The predictive variance does not depend on the unknown function
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evaluation but only on the actual location of the next input point xk
t . After choosing

the K− 1 input points, the uncertainty about the unknown function is reduced and

the guess about the upper bound in the next iteration is improved. The second

input point x2 is selected after the Upper and Lower Confidence bounds have been

updated. In Fig. 3.1 the updated bounds are represented by the dashed lines. The

overall procedure is shown in Algorithm 1.

Algorithm 1 optim-MICE

for t = 1, . . . ,T do
Compute ŷt and ŝt with Eq. (2.15) and (2.16)

x1
t = argmax

x∈X
f̂+t (x)

Compute Rt with Eq. (3.5)

for k = 2, . . . ,K do
Compute ŝk

t with Eq. (2.16)

xk
t = argmax

x∈Rt

ŝ2
t (x)/ŝ2

G\(t∪x)(x;τ2
s ) (2.26)

end for
end for

3.3 Computational experiments

The empirical performance of the proposed method is compared with the GP-UCB-

PE algorithm (Contal et al., 2013) and the q-points EI (Chevalier & Ginsbourger,

2013; Ginsbourger et al., 2008), a multi-points criterion for parallel global opti-

mization based on the well-known EGO, on different optimization test functions.

In this study, the GP-UCB-PE and the q-points EI are referred to as UCB-ALM

and qEGO, respectively. The test functions have been selected to cover different

input dimensions (from 2 to 6), physical properties, and shapes (Jamil & Yang,

2013). Despite the fact that none of the test functions is expensive to evaluate, a

meaningful study of the performance of the proposed algorithm can be conducted
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assuming that these functions are computationally expensive. It is expected that

the proposed algorithm will behave the same on truly expensive functions as in test

functions with similar surfaces.

The computational efficiency of the optimization algorithms is measured by cal-

culating the cumulative regret: the loss incurred at iteration t due to not knowing

the input points where f is maximized beforehand. Since the goal is to find the

maximum of an unknown function with the lowest possible number of function

evaluations, the different optimization schemes are compared in terms of the mean

number of function evaluations (over multiple trials) required to get a solution with

relative error < 5% and < 1%. The relative error is given by | fbest − f ∗|/ f ∗, pro-

vided that f ∗ 6= 0, where fbest is the best solution obtained by an algorithm and f ∗

is the true optimum. To meet the relative error requirement of < 5% and < 1% the

target values for each optimization test function are calculated and presented in Ta-

ble 3.1. In cases where the global optimum is zero, the target values are calculated

based on the range of all the possible function values ensuring that the relative error

is met.

3.3.1 Experimental set-up

In reality, the computational resources are limited, each function evaluation is

costly, and the true optimum of a black-box function is unknown. The total number

of function evaluations is restricted needs to be set in advance since a stopping

criterion is not used in this study. So in this study, the total number of function eval-

uations is chosen before the optimization process starts for all the computational

experiments. This number is determined by the size of the initial design drawn

(Ninit), the number of iterations (T ) and the batch size (K). Since the number of

evaluations is a comparison metric for the current study, and to keep consistency,

all the algorithm settings are chosen to be the same for all optimization methods.

Table 3.1 gives the basic information of the test functions used in the current study

and summarizes the domain and target values for each one of them.
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Table 3.1: Test functions for the computational experiments (E)

Test
function Label Dim Design space

Global
optim

Target
E <1%

Target
E <5%

Branin E1 2 [−5,10]× [0,15] -0.398 -0.402 -0.418
Griewank E2 2 [−600,600]2 0 -0.2 -0.9
Himmelblau E3 2 [−6,6]2 0 -0.2 -1
Hosaki E4 2 [0,10]2 2.3458 2.3223 2.2285
Michalewicz E5 2 [0,π]2 1.8013 1.783 1.711
Sasena E6 2 [0,5]2 1.457 1.442 1.384
Six-Hump Camel E7 2 [−3,3]× [−2,2] 1.302 1.289 1.223
Zakharov E8 2 [−5,10]2 0 -0.05 -0.25
Harmann-3 E9 3 [0,1]3 3.863 3.824 3.669
Rosenbrock E10 3 [−5,10]3 0 -1.8 -9
Powell E11 4 [−4,5]4 0 -1 -5
Sphere E12 4 [−5.12,5.12]4 0 -0.1 -0.5
Styblinski-Tang E13 4 [−5,5]4 156.664 155.097 148.831
Michalewicz E14 5 [0,π]5 4.688 4.641 4.453
Hartmann-6 E15 6 [0,1]6 3.322 3.264 3.131
Trid E16 6 [−36,36]6 50 49.5 47.5

The initial input points are sampled using a maximin-distance design LHD. Regard-

less of the number of dimensions, the optimization procedure for each experiment

starts with an initial design of Ninit = 2 input points. One may increase the size of

Ninit so as to cover better the input space with more points and possibly find the

true optimum in fewer function evaluations. However, the effectiveness of using

an adaptive design will not fully be achieved and this might lead to evaluate the

unknown function over regions where uncertainty is low.

During the optimization process, T ×K input points can be sequentially added

in the design and therefore, in addition to the Ninit runs, a further T ×K evalu-

ations can be performed. If the size of the resulting design is not restricted then

choosing a bigger batch size gives the opportunity to explore more the uncertain

regions without spending computational time re-estimating the GP parameters, but

this increases the number of times the costly function is evaluated. In the current
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study, the batch size is kept fixed for all the optimization methods, regardless of the

dimensions: at each time t, a batch of K = 5 input points are selected. The number

of iterations T is changed according to the number of dimensions: the higher the

dimensions, the higher the number of iterations is.

The optimization results are affected by the size of the candidate set. Having a

large number of candidate points increases the chances to end up with more in-

put points in the Relevant Region (Rt) and be closer to the true optimum but, it

also increases the computational time needed to examine all the candidate points

regardless of design criterion. On the other hand, with a small candidate set, we

might need more function evaluations to find the true optimum and might not fully

benefit from the parallel exploration as the number of candidate points available for

selection in the Relevant Region might be less than the predefined batch size K and

therefore, the knowledge that we could obtain at each iteration for the unknown

function will be minimum.

Due to the limited computational budget, only a certain number of candidate points

can be examined using the MICE criterion. As a result, to cover the whole search

space and ensure that enough candidate points have been placed in the important

regions, 104 input points are initially sample using LHD where only a subset of

them, which is randomly chosen, is examined with the MICE criterion. For conve-

nience, the number of input points in the search space is defined as Nsearch = 104

whereas the candidate points available for selection Ncand. At each time step t, a

new search set of size Nsearch = 104 is sampled and therefore, after the locations

where x∗ does not belong with high probability are discarded, a new set with a

number of candidate points Ncand is chosen for the PE. The number of candidate

points, Ncand, is fixed at each iteration. For computational experiments with higher

dimension, the size of the candidate set is chosen to be bigger.

For the UCB-ALM, all the input points included in the search set (Nsearch = 104)
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are examined with the ALM criterion because its computational cost is low. There-

fore, the number of candidate points available for selection is Ncand = 104.

The qEGO method is performed in R using DiceKriging and DiceOptim, two

packages which are built for the approximation and the optimization of black-box

functions and include the q-EI criterion (Roustant et al., 2012). Specifically, at

each iteration, a batch of input points is obtained by maximizing the multipoint EI

criterion using a hybrid genetic algorithm. To overcome multimodality of the EI

function, and keep accuracy, the default settings are kept, which does not allow us

to specify the values of Nsearch or Ncand. Furthermore, in the qEGO method, a

GP model can only be fitted when the number of initial design points is at least

one input point bigger than the number of dimensions. As result, the Ninit for

the qEGO method is not kept fixed for all the computational experiments and is

increased accordingly.

To get an accurate measure of the performance of all the optimization schemes,

50 trials of each of these algorithms on each test function are performed where

each trial uses a different random seed. Table 3.2 gives a summary of the algorithm

settings used for each optimization method.

Table 3.2: Algorithm settings

Algorithm
Settings (No.)

Optimization
methods

Dimensions
2D 3D 4D 5D 6D

Initial points UCB-ALM, optim-MICE 2 2 2 2 2
qEGO 3 4 5 6 7

Iterations 20 30 40 50 60
Batch size 5 5 5 5 5
Search space
points

UCB-ALM, optim-MICE 104 104 104 104 104

qEGO - - - - -

Candidate
points

UCB-ALM 104 104 104 104 104

optim-MICE 50 100 150 200 250
qEGO - - - - -
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3.4 Results and discussion

3.4.1 Computational efficiency

We compare optim-MICE with alternatives over 16 different computational exper-

iments. Having performed 50 runs for each different experiment, a comprehensive

picture of the computational efficiency of each optimization scheme is obtained. A

summary of the results are shown in box-plots in Fig. 3.2a and 3.2b . The mean

number of function evaluations required by each algorithm to get a solution with

a relative error < 5% and < 1% is shown in Table 3.3. The mean function eval-

uations is calculated based only on the trials that achieved the target values. The

number of successful trials (trials that achieved or exceed the target values) is given

in the brackets. If none of the trials succeed to get an appropriate solution this is

recorded as zero (shown in the brackets). Then, the mean function evaluations is

recorded as a number greater than the total function evaluation specified to perform.

The 2-dimensional experiments examined are W-shaped (E4, E6), steep ridges

(E5), valley-shaped (E7), plate-shaped (E8) with either one global maximum or

more (E1) and sometimes with many local maxima (E2). Regardless of the surface

and the complexity of the function, optim-MICE and UCB-ALM are doing defi-

nitely better than qEGO as all the best solutions obtained in each trial (Fig. 3.2a

and 3.2b) are closer to the true optimum. For E1, E3, E5, E6 and E7, the target

values and the true optimum in all the 50 trials performed are fully achieved (Table

3.3). For E2, E4 and E8 not all the trials are successful as some of them do not get

a solution within 1% and/or 5% of the global maximum. However, the mean best

solution, for both ALM- and MICE-based algorithms, always give a value close to

the true optimum.

On the other hand, considering the spread of the solutions obtained in qEGO

and the small number of the successful trials, the behaviour of algorithm can be

unstable and the optimum achieved can be far away from the targets. A substantial



3.4. Results and discussion 62

Table 3.3: Mean function evaluations of the trials achieved the target values with a relative
error < 1% and < 5%. The brackets show the number of trials that achieved the
target values (out of the 50 performed). Zero in the bracket indicates that none
of the trials succeed to get the target values.

E
Mean Function

Evaluations E < 1%
Mean Function

Evaluations E < 5%
UCB-ALM optim-MICE qEGO UCB-ALM optim-MICE qEGO

E1 52(50) 49(50) 100+(0) 41(50) 39(50) 100+(0)
E2 64(12) 50(13) 100+(0) 23(50) 21(50) 8(6)
E3 44(50) 39(50) 71(3) 32(50) 30(50) 73(11)
E4 89(4) 71(9) 49(4) 61(29) 57(41) 39(7)
E5 59(50) 58(50) 67(3) 55(50) 53(50) 57(5)
E6 75(50) 70(50) 100+(0) 52(50) 57(50) 38(3)
E7 57(50) 51(50) 79(5) 44(50) 40(50) 47(11)
E8 79(11) 78(26) 45(4) 74(37) 67(42) 41(11)
E9 45(50) 35(50) 150+(0) 28(50) 35(50) 150+(0)
E10 120(21) 116(29) 150+(0) 104(50) 100(50) 150+(0)
E11 200+(0) 197(13) 200+(0) 191(7) 183(17) 151(23)
E12 52(31) 45(34) 200+(0) 29(50) 26(50) 167(15)
E13 103(36) 97(39) 200+(0) 76(50) 70(50) 200+(0)
E14 250+(0) 250+(0) 250+(0) 250+(0) 250+(0) 250+(0)
E15 193(3) 179(9) 300+(0) 88(50) 82(49) 300+(0)
E16 300+(0) 119(8) 300+(0) 107(14) 102(11) 300+(0)

Numbers in bold indicate the best result achieved in terms of mean function evaluations, among
the three optimization schemes. In E4 and E8, optim-MICE performs better because the target values
achieved in more trials.

difference between UCB-ALM and optim-MICE can be noted on the mean function

evaluations required to meet the target values. In most cases, using optim-MICE,

the target values can be achieved faster with fewer function evaluations, which

imparts confidence in the computational efficiency of MICE.

In the higher dimensional experiments, the computational complexity increases and

the target values are harder to achieve. Again, using optim-MICE surpasses the

other two approaches, as for all the experiments (E9-E16) the number of success-

ful trials is greater. To get a solution with a relative error < 5% and < 1%, with

optim-MICE, requires less function evaluations and therefore less computational
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resources. For example, a solution with a relative error < 1% for the E9 and E15 is

achieved by evaluating the function 10 and 14 fewer times, compared to the other

algorithms, respectively (Table 3.3).

The summary results for the experiments E9, E13, E14 and E15 presented in

Fig. 3.2a and 3.2b suggest that optim-MICE outperforms competing methods. The

exact shape of E9 and E15 (Hartmann function) is unknown but it is well-known

that it is a relatively smooth function with very few modes. The mean best solution

for the 3- and 6-dimensional cases indicates UCB-ALM and optim-MICE are doing

better than qEGO. A difficult test case is E14 (5-dimensional Michalewicz func-

tion) because part of the surface is plateau, which often hampers the search process

of the optimization algorithm as these areas do not offer any information, and has

steep ridges. The complexity of the function does not seem to be a problem in the

2-dimensional case (E5) but here, all the algorithms struggle to achieve the target

values and find the global maximum. Comparing the three methods, optim-MICE

does significantly better than the alternatives as, in most of the 50 trials performed,

the best solution achieved is closer to the true optimum.

The global optimum of E10 (Rosenbrock) is located in a long narrow valley which

makes the exploration process of an optimization algorithm even slower. Using

either the ALM or MICE criterion, it is ensured to achieve the target values and

a solution closer to the true optimum. As in E7, which is also a valley-shaped

function, so too in E10, the function values obtained with qEGO are far away from

the true optimum indicating its difficulty to find the uncertain region.

For most of the global optimization methods relied on heuristic techniques, E11

(Powell) is an easy problem (Steihaug & Suleiman, 2013) whereas for other meth-

ods, including the proposed algorithm, it is a challenging test case. Considering the

summary results in Fig. 3.2b, optim-MICE and qEGO are significantly better than

UCB-ALM. What attracts the attention here is that with qEGO the mean function
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Branin2D (E1) Griewank2D (E2)

Himmelblau2D (E3) Hosaki2D (E4)

Michalewicz2D (E5) Sasena2D (E6)

Six-Hump2D (E7) Zakharov2D (E8)

Figure 3.2a: Summary of the best solution achieved in the 50 trials in box-plots with a gap
in the range of function values. Red star shows the mean best solution.

evaluations required to get a solution within 5% of the true optimum is much lower,

and the number of successful trials is higher, than the alternatives but none of the

trials performed gets a solution with a relative error < 1%. On the other hand, with

optim-MICE, the best solution achieved is even closer to the true optimum.

Both functions, E12 (Sphere 4D) and E16 (Trid 6D), have a bowl-shaped surface
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but, based on their 2-dimensional illustrations, the uncertain region of E12 is in the

middle of the surface while Trid’s global maximum is positioned towards the edge.

In contrast with UCB-ALM, optim-MICE spots the uncertain region of E12 faster

and the mean function evaluations required to achieve the target values is smaller.

This is also in line with the structure of the MICE criterion which, at each time step,

forces us to choose a new point that yields the least uncertainty between itself and

the unselected input points. This point is usually ‘central’ with respect to points

that have not been selected yet (Krause et al., 2008). As ALM tends to place many

points in the boundaries of the design space, it is expected to find the uncertain

region faster and perform better in E16. The number of trials that found a function

value within 5% of the true optimum is higher than in optim-MICE but none of the

trials got a solution with a relative error < 1% (Table 3.3). Considering the range

of the best solutions achieved in the 50 trials (Fig. 3.2b), it can be stated that the

overall performance of optim-MICE is better.

3.4.2 Exploring Branin’s input space: the visited locations

The Branin function has been selected to examine further as it is a 2-dimensional

case with three global maxima. Therefore, this function is a challenging case as

we need to explore the entire search space and identify the three different uncertain

regions. A contour plot for the Branin function and the three global maxima can be

seen in Fig 3.3. Fig. 3.4 shows all the design points chosen for E1 (Branin), from

each algorithm, of the trial with the best (left) and worst (right) solution. Green

triangles show the three global maxima whereas red ones show the optimal solution

obtained from each algorithm. Choosing the design points based on the MICE

criterion proves to be advantageous as in both trials, best and worst, the uncertain

regions are fully explored without spending computational time on unnecessary

areas. Although with the ALM criterion the uncertain regions are also successfully

spotted on both trials, more computational time is spent exploring unimportant

regions and evaluating the objective function on locations far away from the true

optimum. It also tends to push a number of design points near the boundaries which
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Hartmann3D (E9) Rosenbrock3D (E10)

Powell4D (E11) Sphere4D (E12)

Styblinski4D (E13) Michalewicz5D (E14)

Hartmann6D (E15) Trid6D (E16)

Figure 3.2b: Summary of the best solution achieved in the 50 trials in box-plots with a gap
in the range of function values. Red star shows the mean best solution.

might make it attractive for cases where the optimum is in the edges.

Considering the input points chosen with qEGO, the visited locations are spread

around the entire design space. As in the best trial, so too to the worst trial, it

lacks the ability to identify the important regions, and stick to them, which results

in a bad design set and often the true optimum is not found within the predefined
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Figure 3.3: Contour plot of the Branin function. Triangles show the three global maxima.

time horizon. The information gained about the objective function from the chosen

points is limited, and a valuable computational time is wasted on evaluating it on

unhelpful locations. A possible reason that might affect the overall performance of

qEGO is the small number of initial points: at the initial stage of the optimization,

the knowledge is minimal and the right direction is difficult to be found.

The way that qEGO explores the input space looks to be beneficial when the

true optimum is not isolated in a small region of the search space. Such examples

are E4 and E8, where the uncertain region covers a huge area and is not interrupted

by ridges or drops. Despite the fact that qEGO could not achieve the target values

in most of the trials performed in E4 or E8, and the mean best solution is far from

the true optimum (Fig. 3.2a), for the ones that perform well, the average function

evaluations required to a get a solution with a relative error < 5% and < 1% is

much lower compared with the other methods. By slightly increasing the number

of initial design, and the corresponding initial computational cost, qEGO could

possibly perform better in some particular experiments.
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Best Solution Worst Solution

UCB-ALM

optim-MICE

qEGO

Figure 3.4: Design points selected from each optimization approach for the Branin function
(E1) according to the best (left) and worst (right) solution achieved among the
50 trials. Green triangles show the three global maxima and red triangles show
the optimal solution obtained from each algorithm
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3.4.3 The convergence of the regret

The computational efficiency of the three algorithms is further examined by calcu-

lating the simple regret. Fig. 3.5a and 3.5b show the evolution of the mean simple

regret for nine of the experiments. The small plots are zoomed around the most

interesting part. The mean simple regret is calculated based on the true optimum

and the mean current solution taken of the 50 runs.

In more details, with ALM- and MICE-based criterion, the mean regret in E1

converges to zero after the same number of function evaluations, whereas with

qEGO, this does not seem happening in the specified time horizon. This is also

explained by the fact that none of the 50 trials performed achieved a solution close

to the true optimum (see Table 3.3). A difficult case for all the algorithms, as it

is mentioned earlier, is when the objective function has many local maxima. Such

a case is the E2 where, with qEGO, even if a lot of function evaluations are per-

formed, the regret is not converging to zero. In contrast, the decay of regret is

done faster in UCB-ALM and optim-MICE but, to converge to zero and get a solu-

tion literally close to the global maximum both need a lot more function evaluations.

The efficiency of the search process followed by the MICE-based algorithm is

also noted in E7, E8, E13 and E16 as the convergence is achieved in fewer function

evaluations than in alternatives. In terms of qEGO, except in E9 where it seems to

struggle a lot, in all the other experiments the regret decreases, but slowly, and does

not converge to zero within the predefined time period common to all methods. As

it is expected, despite the improvement seen in E14 during the optimization pro-

cedure, the complexity level of the function affects the algorithm’s search process.

To achieve convergence with any of the three methods, more function evaluations

would be required, and tuning the algorithm settings would be also helpful. Overall,

considering the fast decay of the regret, it can be stated that optim-MICE finds the

uncertain region and gets a solution close to the true optimum in less computational

time, regardless of dimensionality and complexity of the function.
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Branin2D (E1) Griewank2D (E2)

Six-Hump2D (E7) Zakharov2D (E8)

Figure 3.5a: Comparison of the mean simple regret with respect to the total function evalu-
ations performed during the optimization process. Small plots show a zoomed
part of the decay of the regret.
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Hartman3D (E9) Rosenbrock3D (E10)

Styblinski4D (E13) Michalewicz5D (E14)

Trid6D (E16)

Figure 3.5b: Comparison of the mean simple regret with respect to the total function evalu-
ations performed during the optimization process. Small plots show a zoomed
part of the decay of the regret.



Chapter 4

Tuning settings

The main settings of optim-MICE are the number of iterations (T), the batch size

(K), the number of input points in the search space available for selection (Nsearch)

and the number of candidate points ready to be examined with MICE (Ncand).

To understand their effect on the proposed algorithm, a simple sensitivity analy-

sis is performed on four of the experiments: Hosaki 2D (E4), Sasena 2D (E6),

Rosenbrock 3D (E10) and Hartmann 6D (E15). Specifically, one setting is varied

while others remain fixed. In total, 12 different scenarios are presented and com-

pared over each test function. The base scenario has the same algorithm settings as

in the previous chapter (Table 3.2). As before, 50 trials performed for each scenario.

The effect of the main settings on the overall performance of the algorithm, and

whether its computational efficiency is improved, are also examined in a scaled

version of f (x). Different transformations of the objective function are compared

under the 12 scenarios. At two different levels, Hosaki 2D (E4) and Rosenbrock 3D

(E10) are both scaled vertically and horizontally by varying one algorithmic setting

at a time and compared with the non-scaled version. Each scenario is performed

50 times. A vertical scaling multiplies or divides every function value by a con-

stant while leaving the input variables unchanged. In contrast, a horizontal scaling

multiplies or divides every input variable by a constant while leaving the function

value unchanged. In theory, scaling the objective function during an optimization
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study does not matter as the location of the maximum within the input space stays

the same. However, it is expected to have a significant influence on the overall

performance of the optimization algorithm as the appearance of the search space

and the uncertain region changes accordingly i.e sometimes they stretch and some

others shrink.

Tables 4.2 and 4.4 show the best solution achieved, the mean best solution and

standard deviation as well as the average number of function evaluation required to

get a solution with a relative error < 5% for E6 and E15, respectively. Tables 4.1

and 4.3 show the average number of function evaluations required to achieve the

target values for E4 and E10 under different scaled versions. The first row in all the

four tables (4.1 - 4.4) shows the algorithm settings used for the base scenario and

its results. The results of the 50 trials performed for each scaled version of the ob-

jective function are summarized in box-plots (Fig. 4.5 and 4.6). The computational

efficiency of the algorithm is also measured by calculating the cumulative regret

for all the different scenarios for each test function (see Fig. 4.1-4.4). The simple

regret is calculated based on the true optimum and the mean current solution taken

of the 50 runs. All the tables show the number of successful trials - those which

achieved the target value - in the brackets. If the target value is achieved in none of

the trials, then this is recorded as zero.

4.1 Algorithm settings: effect and importance

By increasing the number of iterations, the mean best solution is closer to the true

optimum, the standard deviation, as expected, becomes smaller and more trials

succeed to get a solution within the acceptable level of error. But does the over-

all performance get better? Clearly, a small number of iterations can affect the

precision of the results and the solution obtained can be far from the true global

maximum (e.g. in E4, E6 and E10). Considering the mean simple regret, the con-

vergence to zero can be achieved but this happens only in a later stage as it requires
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more computational time. If the computational time is not a constraint, a higher

number of iterations can be beneficial and add value to the entire optimization pro-

cess, but not always. For example, in E4 and E10, the more iterations performed

the better the mean best solution is, whereas in E6 and E15, after a certain number

of iterations there is no substantial improvement and a lot of computational time is

wasted.

Table 4.1: Tunning Algorithm Settings: Scaling Hosaki 2D (E4). Brackets show the num-
ber of successful trials, out of the 50 performed, which achieved a solution with
a relative error < 5%.

T K Nsearch Ncand

Mean Function Evaluations (E <5%)

Non-
Scaled
Version

Scaled Versions
Vertical Horizontal

0.5 f (x) 2 f (x) f (0.5x) f (2x)
20 5 104 50 57(41) 55(44) 57(44) 60(41) 59(42)
10 5 104 50 28(12) 22(12) 22(10) 29(8) 29(7)
30 5 104 50 84(47) 80(45) 81(47) 82(44) 83(46)
50 5 104 50 83(50) 75(50) 77(50) 84(50) 85(50)
20 2 104 50 30(6) 18(5) 20(6) 21(4) 23(8)
20 10 104 50 98(48) 94(48) 97(49) 104(48) 107(50)
20 15 104 50 92(50) 89(50) 92(50) 102(50) 105(50)
20 5 50 50 58(26) 58(35) 58(36) 58(33) 58(33)
20 5 111000333 50 58(30) 57(39) 57(32) 61(32) 63(31)
20 5 111000555 50 54(41) 51(43) 53(40) 55(36) 55(40)
20 5 104 25 61(27) 56(27) 55(29) 60(31) 60(31)
20 50 104 100 50(44) 51(47) 51(45) 56(29) 60(31)

Numbers in bold indicate the algorithm setting that is varied in each different scenario.
Grey-coloured column shows the best scaled version of f (x)

The amount of exploration needed is not known beforehand but it can be controlled

by the size of the batch. Using a small batch size, the uncertain regions are not

fully explored and the mean best solution is far from the optimum (e.g. E4, E10).

In this case, there is a high possibility to fail to achieve the target value (e.g. when

K = 2, Tables 4-7), or to perform a lot of function evaluations until the decay of the

regret is achieved or even fail to convergence into zero. On the other hand, a large

batch size helps the algorithm in the search process in the very first few iterations,
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where the knowledge about the unknown function is limited, and always ensures a

good solution. As more input points are chosen in each iteration, the regret decays

straight away indicating that the uncertain region can be found in few function

evaluations (Fig. 4.1 and 4.3).

But having a larger batch size does not always guarantee a massive improvement of

the overall performance of the optimization. For example, in E4 and E10, a larger

batch size gets a solution even closer to the true optimum but not as close as if

more iterations would be performed, in E6, a batch of 10 or 15 input points does

not make substantial difference whereas in E15, a batch of 5, 10 or 15 input points

yields almost the same mean best solution. Once the uncertain region is found, the

progression can be slow and the convergence to zero can only be achieved after a

lot of function evaluations (Fig. 4.2 and 4.4). A possible reason might be that the

explored region is tiny and any new input point selected for the design will add little

or no information about the unknown function as the candidate points drawn in that

region will almost be identical. That slows down the performance of the algorithm

and makes it much harder to see an improvement.

What it is also worth mentioning is that the number of function evaluations re-

quired to achieve the target value is increased as the batch size is increased and,

that number is much bigger if it is compared with the scenarios of increasing the

number of iterations. This indicates that exploring the search space more than is

needed is not always computationally efficient, despite the better solution that can

be achieved at the end.

Although optim-MICE is computationally more expensive than the other two alter-

native schemes, it is more effective. The quality of the points added in the design at

each time step is better and as a result, the true optimum is achieved in less function

evaluations. Due to the limited computational resources, the MICE criterion is only

examined on a certain number of candidate points. If the number of potential design
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Figure 4.1: Mean simple regret for Hosaki 2D (E4) under different combinations of the
algorithm settings. top: Number of iterations (T) and Batch size (K). bottom:
Number of points in the search space (Nsearch) and Number of candidate points
(Ncand).

points included in the search space is small, and the same as the number of candi-

date points (e.g. Nsearch = 50 and Ncand = 50, Table 4.1) which are used for the

exploration part, the uncertain regions are not fully explored. The solution is often

far from the true optimum and the regret converges to zero after a lot of function

evaluations. Considering the results obtained in the four experiments, where only

half of the 50 trials performed are successful, there is a also a higher possibility to

fail to achieve a solution with a relative error < 5%. In contrast, as it is expected,

having a high Nsearch, the target value is found in less computational time and the

decay of regret is done faster.

The number of candidate points examined by MICE is a vital setting to the overall

performance of the algorithm. Despite the fact that in the ALM-based algorithm

a much larger number of candidate points are examined at each iteration, the re-

sults in the computational experiments show that the MICE-based algorithm still
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Table 4.2: Tunning Algorithm Settings: Sasena 2D (E6). Brackets show the number of suc-
cessful trials, out of the 50 performed, which achieved a solution with a relative
error < 5%.

T K Nsearch Ncand
Best

Solution

Mean
Best

Solution
SD

Mean Function
Evaluation

E < 5%
20 5 104 50 1.4564 1.4553 0.0012 57(50)
10 5 104 50 1.4523 1.0126 0.5270 37(9)
30 5 104 50 1.4565 1.4566 0.0024 58(50)
50 5 104 50 1.4565 1.4559 0.0031 58(50)
20 2 104 50 1.4366 0.9441 0.7010 29(7)
20 10 104 50 1.4565 1.4561 0.0004 65(50)
20 15 104 50 1.4565 1.4561 0.0003 68(50)
20 5 50 50 1.4556 1.1801 0.8431 60(21)
20 5 111000333 50 1.4560 1.3630 0.6103 55(47)
20 5 111000555 50 1.4565 1.4555 0.0012 62(50)
20 5 104 25 1.4564 1.4551 0.0067 61(50)
20 5 104 100 1.4565 1.4540 0.0019 50(50)

Numbers in bold indicate the algorithm setting that is varied in each different scenario.

performs better even with a smaller candidate set. Considering the results obtained

in the four test cases, a larger set of candidate points gives a solution even closer

to the true optimum with the lowest possible number of function evaluations. The

proposed algorithm also performs well with a small candidate set as the mean best

solution is still within an acceptable distance from the true optimum. However,

with a larger set, the average number of function evaluation required to get a so-

lution with a relative error < 5% is much lower (Tables 4.1 - 4.4). How fast the

regret decays depends on the complexity of the function, but having a large number

of candidate points allows the regret to converge in fewer function evaluations (e.g.

Fig. 4.1 and 4.2).

4.2 Stretching and shrinking the uncertain region

Compared with the non-scaled version, scaling E4 either vertically or horizontally

does not make a substantial difference in the solution achieved. Overall, the best
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Figure 4.2: Mean simple regret for Sasena 2D (E6) under different combinations of the
algorithm settings. top: Number of iterations (T) and Batch size (K). bottom:
Number of points in the search space (Nsearch) and Number of candidate points
(Ncand).

solutions achieved from all the 50 trials in each scaled-version, shown in box-plots

in Fig. 4.5, are very close to the solutions achieved in the non-scaled version. In

contrast, the mean function evaluations required to get a solution with a relative

error < 5%, when the objective function is scaled vertically, is minimized even

more compared with the non-scaled and the horizontal scaled versions.

Hosaki (E4) is a function with two isolated regions - one large and one small -

and a huge uncertain region which lies in the large one. Multiplying the input

variables by a scale factor less than one, the entire uncertain region stretches in

the horizontal direction and that makes the search space even wider. On the other

hand, by multiplying the input variables by a scale factor greater than one causes

all the input variables to increase and the uncertain region to shrink. Compared to

y = f (0.5x), this horizontal transformation is more effective as the best solutions

achieved, in most of the scenarios, are closer to the true optimum. However, in both
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Table 4.3: Tunning Algorithm Settings: Scaling Rosenbrock 3D (E10). Brackets show the
number of successful trials, out of the 50 performed, which achieved a solution
with a relative error < 5%.

T K Nsearch Ncand

Mean Function Evaluations (E <5%)

Non-
Scaled
Version

Scaled Versions
Vertical Horizontal

0.5 f (x) 2 f (x) f (0.5x) f (2x)
30 5 104 100 100(50) 75(50) 112(42) 88(50) 97(41)
20 5 104 100 83(31) 74(45) 84(29) 78(34) 73(34)
40 5 104 100 94(50) 78(50) 121(50) 87(50) 99(50)
60 5 104 100 99(50) 81(50) 118(50) 86(50) 100(50)
20 2 104 100 47(5) 53(11) 46(2) 54(5) 43(4)
20 10 104 100 114(50) 82(50) 138(50) 102(50) 118(50)
20 15 104 100 115(50) 97(50) 159(50) 104(50) 137(50)
20 5 111000000 100 94(12) 81(29) 98(4) 79(15) 82(18)
20 5 111000333 100 97(41) 87(49) 112(26) 98(45) 92(41)
20 5 111000555 100 96(50) 79(50) 114(48) 85(50) 101(49)
20 5 104 50 95(50) 83(50) 114(35) 90(50) 99(48)
20 50 104 150 95(50) 79(50) 113(42) 79(50) 105(47)

Numbers in bold indicate the algorithm setting that is varied in each different scenario.
Grey-coloured column shows the best scaled version of f (x)

horizontal scaled-versions, the number of function evaluations required to get the

target value is higher than in the non-scaled one. This happens possibly because

the true optimum ends up, in both scaled-versions, in an area where the algorithm

requires more function evaluations in order to get the target value i.e. if the uncer-

tain region is stretched a lot the true optimum ends up in a flatted area whereas if it

shrinks more than what is needed, the true optimum lies in a very tiny area.

Among the scaled-versions, vertical scaling (y = 0.5 f (x) and y = 2 f (x)) seems

to perform better than horizontal scaling. Considering all the trials performed, most

of the best solutions achieved in each different scenario are closer to the true opti-

mum. As in the non-scaled version, in the scaled ones, by increasing the number of

iterations and the batch size and, choosing the design points from a larger candidate

set, the computational efficiency is improved. Although by scaling vertically the

objective function by a factor greater than one (e.g. y = 2 f (x)) seems to be bene-
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Figure 4.3: Mean simple regret for Rosenbrock 3D (E10) under different combinations of
the algorithm settings. top: Number of iterations (T) and Batch size (K). bot-
tom: Number of points in the search space (Nsearch) and Number of candidate
points (Ncand).

ficial and overall a good solution can be achieved, the 0.5 f (x)-case is even more

computationally efficient. What is really achieved by scaling vertically the objec-

tive function by a factor of 0.5, is that the mean function evaluations required to

get a solution with relative error < 5% is lower than in the other examined versions

(Table 4.1).

By multiplying the objective function by a value less than one causes all the function

values to decrease and the uncertain region to shrink in the vertical direction. With

this transformation, not only we can get a solution close to the true optimum but

also we can find the best solution in the lowest possible function evaluations. This

mainly happens because the interval of the possible function values is also shrunk,

while the search space remains unchanged, and any new input point added in the

design during the exploration part is very likely to be close to the true optimum.

Furthermore, by exploring a shrunken uncertain region in the vertical direction the
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information obtained is more valuable. Due to that, the knowledge about the ob-

jective function is soon increased during the optimization procedure and the target

value can be achieved in less computational time.

Figure 4.4: Mean simple regret for Hartmann 6D (E15) under different combinations of the
algorithm settings. top: Number of iterations (T) and Batch size (K). bottom:
Number of points in the search space (Nsearch) and Number of candidate points
(Ncand).

The advantage of scaling the objective function is better shown in E10. Rosenbrock

(E10) is viewed as a difficult function to be optimized as the global maximum, in

its 2-dimensional case, resides inside a long narrow and parabolic-shaped valley.

The problem becomes much harder in the higher dimensional cases and to find the

uncertain region and get the true optimum is trivial. However, using optim-MICE

and scale the objective function vertically by 0.5 seems to be beneficial as the over-

all performance of the algorithm is improved. The results are shown in Fig 4.6.

For convenience, we plot the negative logarithm of function values i.e if f is the

function values, we plot the − log(− f ).
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Table 4.4: Tunning Algorithm Settings: Hartman 6D (E15). Brackets show the number
of successful trials, out of the 50 performed, which achieved a solution with a
relative error < 5%.

T K Nsearch Ncand
Best

Solution

Mean
Best

Solution
SD

Mean Function
Evaluation

E < 5%
60 5 104 250 3.286 3.228 0.023 106(49)
50 5 104 250 3.260 3.191 0.031 114(49)
70 5 104 250 3.296 3.229 0.019 117(50)
90 5 104 250 3.296 3.235 0.014 113(50)
60 2 104 250 3.250 3.188 0.058 72(41)
60 10 104 250 3.292 3.231 0.021 143(50)
60 15 104 250 3.292 3.230 0.020 170(50)
60 5 250 250 3.241 3.158 0.036 156(24)
60 5 111000333 250 3.259 3.189 0.031 130(40)
60 5 111000555 250 3.294 3.258 0.011 86(50)
60 5 104 200 3.263 3.225 0.024 110(48)
60 5 104 300 3.285 3.230 0.022 101(50)

Number in bold indicate the algorithm setting that is varied in each different scenario.

Overall, by shrinking the uncertain region in the vertical direction the variation

between the best solutions achieved in each trial is smaller than in the other ex-

amined versions (Fig 4.5 and 4.6). The number of successful trials is also bigger

and that imparts even more certainty about the algorithm’s performance. In all the

different scenarios performed, the mean best solution is closer to the true optimum

and the mean function evaluations required to get a solution with a relative error

< 5% is much lower than in any other version.

Despite that the sensitivity analysis of the algorithm settings and the scaling method

are done in four experiments, some general recommendations for the choice of the

tuning settings and the scale factor can be given as the test functions used differ on

the level of complexity and physical properties covering a huge variate of different

situations. Some generic recommendations are explained in Chapter 6. It would

be ideal to perform more experiments so as to get a better understanding of the
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effect of the algorithm settings on the proposed algorithm. However, in reality,

each computer model (true function) is different so it is hard to suggest specific

recommendations for the choice of tuning parameters.
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Figure 4.5: Summary of the best solution achieved in the 50 trials in box-plots for the scaled-versions of Hosaki 2D (E4)
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Figure 4.6: Summary of the best solution achieved in the 50 trials in box-plots for the scaled-versions of Rosenbrock 3D (E10). The y-axis shows the
negative logarithm of the negative function values (− log(− f )).



Chapter 5

Surrogate-based optimization of

storm waves heights and run-ups

5.1 Background and aims

Storm surges cause coastal inundation due to setup of the water surface resulting

from atmospheric pressure, surface winds and breaking waves. They occur during

tropical cyclones, also known as typhoons or hurricanes, and are referred as the

major geophysical risks associated with coastal areas due to the large numbers of

casualties and damage (Ellis & Sherman, 2015; Feng et al., 2018).

Typhoons are subject to climate change-related influences, such as warmer sea

surface temperatures and sea level rise (Bengtsson et al., 2009; Lin et al., 2012;

Wang et al., 2015). Despite the fact that modelling storm surge events under differ-

ent climate scenarios is not straightforward, changes in the storm surges’ intensities

and frequencies in a warmer climate have been investigated with high-resolution

climate models (Bengtsson et al., 2009; Lin et al., 2012). However, different studies

have shown that, statistically, weather-climatic extremes (e.g. wind, precipitation)

are still sometimes over-or under-estimated due to the difficulty to evaluate them in

climate simulations, adding another layer of uncertainties to assess future scenarios

(Muis et al., 2016; Romero & Emanuel, 2017). Therefore, it is crucial to quantify
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carefully the local impact of storm waves following these regional climate forcings

in order to estimate future (and possibly increasing) storm wave risks.

About half of the strongest typhoons in the Western North Pacific hit the Philip-

pines, as the country lies in the most tropical cyclone-prone waters on Earth (Ribera

et al., 2008; Takagi et al., 2017). On 8 November 2013, one of the strongest tropical

storm events ever recorded in the Philippines, Typhoon Haiyan, damaged billions

worth of agriculture and infrastructure and, caused 6340 casualties. The town of

Hernani, which was completely destroyed, got the attention of multiple research

groups (Roeber & Bricker, 2015; May et al., 2015; Soria et al., 2018). What is

interesting about the situation of Hernani, is that the broad fringing coral reef near

its coast was expected to protect the coastal communities (Ferrario et al., 2014)

however, in the case of Hernani, the reef exacerbated the damage from energetic

waves.

Furthermore, as explained by Roeber & Bricker (2015), the nature of this event

has remained a mystery for some time. Initially, it was assumed that the damage

was caused by a storm surge, but the water level due to barometric-, wind-, and

wave-induced set-up would not have carried the destructive power - especially

because storm surges move rather slowly. The possibility of a meteo-tsunami or

a near-field tsunami was also precluded as the propagation speed of the storm

system was not in phase with the local wave celerity and no tsunami-generating

earthquake or landslide activity was reported. For reference, meteo-tsunami are

large waves driven by air-pressure disturbances often associated with fast-moving

weather events such as severe thunderstorms whereas near-filed tsunami is trig-

gered by seismic activity and consists of a series of waves rather than a single one,

just like tsunamis, but occurs within 200 km of the epicentre of an earthquake and

quickly arrives near the coasts (Roeber & Bricker, 2015).

Various studies state that the strong wind from Typhoon Haiyan pushed enough
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water onshore causing a storm surge height of 6m (Mori et al., 2014). The areas

most affected by the storm surge were close to Tacloban, where the bathymetric

conditions favored the generation of such a massive storm surge. Surprisingly,

destructive long-period bores struck the town of Hernani. Though the actual storm

surge was rather small, wave run-up heights of over 7m have been reported around

Hernani’s Pacific coastline (Soria et al., 2016). The duration of the flooding caused

by each bore was on the order of a minute and therefore much longer than the

period of regular storm waves. The tsunami-like waves, which resulted from the

wave-breaking process over the steep reef face, have been shown to be generated by

the energetic surf beat under some particular conditions that favored the generation

of infra-gravity waves (e.g. reef geometry, wave patters whose ranges of varia-

tions will depend upon climate forcing). Due to the fact that a similar tsunami-like

flood was only reported during the 12 October 1897 typhoon, coastal risk assess-

ment and evacuation plans did not consider the existence of this rare but disastrous

event. The phenomenon in Hernani was successfully captured by Roeber & Bricker

(2015) using a Boussinesq-type phase-resolving wave model, called BOSZ, able to

reproduce the transfer of short wave energy into energetic long-period infra-gravity

waves (Roeber & Cheung, 2012).

In general, the impact of inundation and coastal flooding events is often quanti-

tatively assessed by the maximum wave run-up. The wave run-up is defined as the

maximum vertical extent of a wave’s up-rush on a beach or structure above a known

reference level such as a chart datum or simply the mean water level. Understanding

the conditions that caused the wave run-up and obtaining accurate predictions are of

utter importance for coastal flooding hazard predictions. Due to that, wave run-up

has been extensively studied either to observe the interaction between tsunami-like

waves and fringing reefs (Yao et al., 2018; Ning et al., 2019), or to understand the

influence of infragravity (long) waves (Shimozono et al., 2015; Montoya & Lynett,

2018), and the effects of climate change on coastal flooding risk (Lin et al., 2012;

Quataert et al., 2015).
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Various statistical approaches are also widely used to study the wave run-up. Ex-

treme Value Theory (EVT) is applied to analyse the storm peak significant wave

height and estimate the failure probabilities of offshore structures (Northrop et al.,

2017). It is also used to evaluate the risk of storm tides considering projected

changes to cyclone behaviour and the impact of wave setup (an effect of breaking

waves at the coast) (McInnes et al., 2003). Hakkou et al. (2019) estimated the

extreme total water level using classical EVT theory taking into account the dif-

ferences of coastal morphology in order to assess the flooding. Using a point-wise

and spatial statistical model to build a high-resolution hindcast data-set, Sartini

et al. (2017) investigated the spatial variability of extreme significant wave heights

aiming to improve the understanding of the processes governing wave climate. The

combined impact of wave height and other variables (water level, wind waves etc.)

has been studied by applying advanced probabilistic approaches (Jonathan et al.,

2014; Leijala et al., 2018). Multivariate copula functions are also widely used to

model the dependence between wave height, wave period, water level and storm

duration and to analyse their extremes (De Waal & Van Gelder, 2005; Li et al.,

2014; Rueda et al., 2016). The above studies are based on data-driven methods.

To overcome the lack of data and explore various scenarios, numerical models

are widely used in this field. They provide valuable information about the coastal

flooding events as they can compute the relevant physical processes efficiently

and capture the extreme environmental events successfully. But because they are

computationally demanding, further studies and more detailed analysis, such as

sensitivity analysis, become impractical (Sarri et al., 2012). To overcome this issue,

empirical equations are used as a simpler method to estimate run-up elevation dur-

ing extreme surge events. Due to the fact that these methods are mostly derived from

specific data-sets and represent a range of commonly encountered conditions, their

applicability to more complex geophysical situations is limited and within their cal-

culations can possibly include a substantial error (Park & Cox, 2016; Ji et al., 2018).
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Recent studies highlight the need for further understanding the risk associated

with natural hazards in order to improve coastal resilience (Behrens & Dias, 2015).

The advancement in computational methods has given the opportunity to reduce the

computational burden of numerical simulations and perform challenging studies

such as the quantification of the uncertainty in the predictions of hazard character-

istics. Statistical emulators, which have been shown to be a prominent solution and

alleviate the computational cost issues, are starting to be used in this field.

Sarri et al. (2012) used a Gaussian Process statistical emulator to accurately ap-

proximate the landslide-generated tsunami model built by Sammarco & Renzi

(2008) whereas Beck & Guillas (2016), proposed an improved experimental design

to efficiently build an emulator for a tsunami model. Statistical emulators have

been also used in more recently to quantify tsunami hazard over the North Atlantic

Ocean (Salmanidou et al., 2017) and Cascadia (Guillas et al., 2018), to explore

how eruption source parameters affect volcanic radiative forcing (Marshall et al.,

2018), to quantify the uncertainty in Manning’s friction parametrization applied to

predict the sea surface elevations for the 2011 Japanese tsunami (Sraj et al., 2014),

to identify different sources of uncertainty contributed in volcanic ash transport and

dispersion simulators (Spiller et al., 2014), as well as to perform fast and efficient

predictions of estuarine hydrodynamic variables, such as the water levels and non-

tidal residual, in the USA Pacific Northwest (Parker et al., 2019).

A statistical emulator is often seen as an integral part in an optimization algorithm,

which aims to maximize a numerical simulator, especially in situations where the

traditional mathematical approach can not be taken due to the complexity of the

simulator. Stefanakis et al. (2014) used an active experimental design strategy to

find the combination of parameters which will give the maximum run-up amplifi-

cation of typical tsunami waves with the lowest possible model runs. The method

explores the entire input space and focuses on the uncertain region, which contains
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the targeted location of the maximum, using the Active Learning MacKay (ALM),

an active experimental design. At each time step, each combination of the input

parameters is examined considering its predictive variance (a measure of uncer-

tainty of the point predicted). The same optimization technique was integrated into

a methodology of predicting and optimizing the layouts of wave energy converters

in a wave farm (Sarkar et al., 2016).

The current study focuses on finding the worst case scenario from extreme coastal

storm and infra-gravity waves - such as the ones that destroyed the town of Hernani

- with a minimum computational effort. A suite of storm waves that lead to extreme

wave run-up and bore heights are studied to understand sensitivities to inputs and to

identify the conditions that will create possibly large storm wave run-ups at the local

level. To do that, optim-MICE, the newly developed optimization scheme proposed

in Chapter 3, is used to find the combination of reef and wave spectral parameters

that affect surf beat run-up and forces on coastal structures. Taking advantage of

the computational efficiency of the optim-MICE algorithm, the maximum run-up

and bore height are estimated using lowest possible number of evaluations and thus

keeping the computational requirements to the minimum. This is the first maxi-

mization of storm surge heights and run-ups using surrogate-based optimization.

5.2 Storm surge simulation set-up

The numerical simulations are performed using BOSZ (the Boussinesq Ocean and

Surf Zone model), a Boussinesq-type phase-resolving wave model, which can han-

dle the generation of large nearshore waves and their breaking process over an

abrupt fringing reef (Roeber & Cheung, 2012). BOSZ has successfully captured

the Typhoon Haiyan storm surge event, which happened back in Philippine Islands

as it is able to compute the tsunami-like surf beat over the reef near Hernani. The

massive bore that destroyed Hernani was an extreme infra-gravity surge, which

resulted from the transfer of energy from short swell waves to long infra-gravity
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waves initiated by wave breaking at the reef edge. The capability of the BOSZ

model in handling these wave processes provides the baseline for studying different

aspects of storm wave extrema such as the maximum bore height and the maximum

run-up. The maximum bore height is defined as the highest free surface elevation

over the section of the horizontally flat reef, whereas the maximum run-up is the

highest vertical elevation on the beach, to which the waves reach. Both measures

are governed by different processes. To study both extremes the model input needs

to be optimized separately.

In practice, one of the challenges in an optimization task is to decide when to

stop the iterative strategy. A number of different empirical stopping criteria have

been proposed in the literature where the entire optimization procedure is stopped

once a rule is satisfied (Azimi et al., 2012; Stefanakis et al., 2014). But in real-

ity, the computational resources are limited and only a certain number of function

evaluations can be performed. Due to the computational complexity of BOSZ, we

fix the total number of function evaluations, and therefore the computational time,

able to perform in both tasks. The predefined limit is in line with the algorithm

settings chosen in Chapter 3 (Table 3.2) ensuring the computational efficiency of

optim-MICE regardless of dimensionality and function complexity. For the Bore

Height case, which is a four-dimensional, a total of 40 iterations are performed

having a batch of size 5 and at each time-step 150 candidate points are available

for selection. On the other hand, for the Run-Up case, which is a five-dimensional

problem (as one of the physical parameters is proved to be not influential during

the variable importance assessment, see Section 5.3.1), a total of 50 iterations are

performed having a batch of size 5 and at each-time step 200 candidate points are

available for selection.

The two main inputs of BOSZ are the bathymetry/topography and the offshore

wave spectrum. For each extreme measure a different simplified bathymetric pro-

file is created whereas the wave generation for the wave input is based on the
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empirical JONSWAP distribution (Hasselmann et al., 1973), which depends solely

on the values of significant wave height, Hs, and peak period, T p. Tables 5.1 and

5.2 show the physical parameters incorporated in each optimization task. The range

of the parameters was selected to account for reasonable and physically possible

combinations. It was not the goal to utilize the maximum values of the parameters.

Fig. 5.1 and 5.2 show the simplified bathymetric profiles used in the optimization

task and illustrate the meanings of the physical parameters.

Table 5.1: Physical Parameters for Bore Height

Parameter Measure Range
alp: Fore-reef slope degrees 3 - 33.33
h2: Water depth over the reef m 0.01 - 3
Hs: Significant wave height m 1 - 5
Tp: Peak Period s 10 - 18

Figure 5.1: Bore height: Bathemetric profile of the experimental set-up.

Table 5.2: Physical Parameters for Run-Up

Parameter Measure Range
alp: Fore-reef slope degrees 3 - 33.33
h1: Water depth offshore m 50 - 75
h2: Water depth over the reef m 0.01 - 3
bet: Beach slope degrees 1 - 30
Hs: Significant wave height m 1 - 5
Tp: Peak Period s 10 - 18
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Figure 5.2: Wave Run-up: Bathemetric profile of the experimental set-up.

5.3 Storm surge extrema: results and discussion

BOSZ is a modular computer code, which in this study is treated as a black-box

model. The computational expense of a Boussinesq-type model is relatively small

in comparison to a full 3D model; however, thousands of individual runs can re-

quire substantial amounts of time even if the computation is executed only along a

transect across the shoreline. The presented technique ensures that the variation of

input variables efficiently influences the computer model’s output in a way that the

maximum bore or run-up heights are quickly achieved. The overall efficiency of

the computer model is improved and a large amount of computational time is saved

during the optimization procedure. To be more precise, the entire optimization task

takes approximately 10 hours in total on a cluster of 4 cores whereas, each run of

BOSZ takes about 2.5 minutes for our idealised set-up used here to demonstrate

capabilities. For realistic geometries ideally modeled on a two-dimensional domain

at high resolution each run could take even hours and the total computational time

of performing such an optimization task would increase sharply.

5.3.1 Variable importance assessment

To find which input variables (physical parameters) are significantly contributing

to the model output, before the optimization starts, we choose to perform the Mor-

ris Method (Morris, 1991), an initial Sensitivity Analysis (SA), also known as a

Screening technique, which is widely used in the area of computer experiments

(Boukouvalas et al., 2014; Iooss & Marrel, 2017) and its effectiveness and effi-
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ciency has already been proved (Campolongo et al., 2007; Sanchez et al., 2014).

With a small number of model evaluations and without relying on strong assump-

tions about the computer model, the Morris method explores quickly the model’s

behaviour and ranks the input variables according to their impact on the model

output. The input space for each input variable, as given in Tables 5.1 and 5.2,

is discretized in levels and then, a factorial sampling strategy is used to construct

trajectories where one input variable is varied at a time by a pre-defined step ∆,

while keeping all others fixed. The sensitivity information is obtained by using

the defined trajectories and computing for each input variable a number of incre-

mental ratios, called Elementary Effect (EE), from which basic statistics are then

calculated. EEs, which are approximations of the first order partial derivatives, are

defined as the ratio between the variation in the model output and the variation in

the input variable itself (Morris, 1991). The sensitivity measures obtained from EEs

are then used to classify the input variables into groups based on their effects.

In more details, suppose that the model Y has d independent input variables, for any

possible value of these d parameters in the input space, i.e., X = [X1,X2, . . . ,Xd],

model output Y (X) can be defined as y(X1,X2, . . . ,Xd). Each input variable Xi,

i = 1, . . . ,d, is varied across p selected levels in the input space. Thus, the exper-

imental region is discritized in a d-dimensional p-level grid. The input variables

are assumed to be uniformly distributed in [0,1] and then transformed from the unit

interval to their actual distributions.

Using the Morri’s sampling strategy (Morris, 1991; Campolongo et al., 2007), a

sequence of d + 1 points are sampled in the grid, which is often called trajectory.

The first point sampled is randomly selected whereas the next sample differs only

in one coordinate from the preceding one. At each step, the ith input variable Xi

is changed by a pre-defined step ∆, while all the other input variables remain un-

changed. The direction to the new point and which input variable will be modified
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are both randomly selected. The model output is computed for every point in the

trajectory. Based on the trajectory obtained, the EE, known also as the coefficient

of variation, is computed for each input variable. The EE of the ith input variable is

defined as:

di(X) =
y(X1, . . . ,Xi−1,Xi +∆,Xi+1, . . . ,Xd)− y(X)

∆
, (5.1)

where ∆ is a multiple of 1/(p−1) and X(X1,X2, . . . ,Xd) is any selected value in the

grid such that the transformed point (X+ ei∆) is still in the experimentation region

for each index i = 1, . . . ,d and ei is a vector of zeros but a unit as its ith component.

To be able to evaluate the global sensitivity of the model and obtain a global

measure considering the whole input space, a set of r different random trajectories

of d+1 points needs to be constructed at the cost of r×(d+1) (Campolongo et al.,

2011; Sanchez et al., 2014). Having r trajectories, a finite distribution of the EEs

is formed which allows deriving statistical measures of the overall importance of

each input variable. The various trajectories obtained differ by their starting point

and the order of modified coordinates.

A challenging problem is to choose the number of trajectories r in order to ob-

tain a good estimate of the EEs. Despite the fact that the analysis is more precise

when r is high, it increases the computational cost significantly. The literature sug-

gests either a number for trajectories or different approaches on how to optimally

choose r. The current work uses the Optimal Trajectory (OT) approach where from

a huge number of trajectories M which are built at the beginning, we select the

combination of r trajectories with the highest "spread" in the experimental region

using the Euclidean Distance (ED). It is a two-step approach: for each possible

combination of r trajectories out of M, we first calculate the sum of all the dis-

tances, defined as D, between couples of trajectories. Then, the combination with

the highest value of D is chosen. The distance edml between a couple of trajectories,
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m and l is defined as:

edml =

∑
d+1
i=1 ∑

d+1
j=1

√
∑

d
z=1

[
Xm

i (z)−X l
j(z)
]2
, for m 6= l

0, otherwise,
(5.2)

where d is the number of input variables and Xm
i (z) indicates the zth coordinate of

the ith point of the mth Morris trajectory. More details can be found in Campolongo

et al. (2007) but here is a simple example on how edml is calculated as given in

their work: for instance, we set r = 4 and select the combination 4, 5, 7 and 9 out

of the possible M = {1,2,3,4,5,6,7,8,9,10}. The quantity D4,5,7,9 is defined as

D4,5,7,9 =
√

ed2
4,6 + ed2

4,7 + ed2
4,9 + ed2

6,7 + ed2
6,9 + ed2

7,9.

Once r trajectories are collected, common statistical measures used to evaluate

the EEs. To express the sensitivity of the input variables, we calculate the mean

µ and the standard deviation σ , both proposed by Morris (1991), and the absolute

mean µ∗ proposed by Campolongo et al. (2007). The main purpose of calculating

the absolute mean µ∗ is to ensure that all the effects will be considered in the vari-

able importance assessment (e.g. if the model is non-monotonic, some effects may

cancel each other out). In general, µ assesses the influence of each input variable on

the model output and measures the overall sensitivity and the standard deviation σ ,

measures the involved interactions and non-linearity effects of the ith input variable

without allowing to make the distinction between the two cases, non-linearity and

interactions. As presented in Saltelli et al. (2008), the sensitivity is measured using:

µi =
1
r

r

∑
k=1

di σi =

√
1
r

r

∑
k=1

(di−µ)2 µ
∗
i =

1
r

r

∑
k=1
|di|. (5.3)

Before starting the screening strategy, an experiment is performed with the aim to

find an appropriate number of trajectories. Since the two optimization tasks differ

in the number of input variables, the OT approach is applied in both cases. We
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compare the robustness of the sensitivity results and their variation while the size of

the optimal set of trajectories is changing. We first examine the sensitivity of each

variable by setting r = 2. To overcome the issue of the opposite signs, we use the

mean value of the absolute EEs, which also indicates the importance of the input

parameters (Campolongo et al., 2011). The results are shown in Fig. 5.3. As the

size of the optimal set is increasing, the width of the error bars becomes narrower.

Setting the size of the optimal set of trajectories any value greater than r = 6 for

the bore height case and r = 8 for the run-up case, would result in performing

unnecessary model runs as the accuracy of the results is not improved.

For completeness, the Morris screening strategy is applied in both cases. The

input variables are ranked in order of importance and, according to the classifica-

tion scheme proposed in Sanchez et al. (2014) which is based on the ratio σ/µ∗,

are characterised in terms of linearity (σ/µ∗ < 0.1), monotony (0.5 > σ/µ∗ > 0.1)

or possible interactions (σ/µ∗ > 1). The classification scheme is based on the as-

sumption that the EEs are normally distributed and that 95% of EEs are within the

range (µ∗±1.96σ ). For example, if σ/µ∗ < 0.1 most EEs (95%) are in the range

of ±20% around µ∗ making them almost constant and this indicates that the input

variable has almost linear effect on the model. Fig 5.4 shows the Morris screening

results for both cases. By plotting three straight lines of slopes σ/µ∗ = 0.1,0.5

and 1, the elementary effect scatter plot (right part of fig 5.4) is used to graphically

identify the effect that each input variable has on the model (Sanchez et al., 2014).

For the bore height case, all the input variables appear with significant influence,

with the most influential one being the the significant wave height (Hs). None of

them show a strong linear effect or possible interactions with at least one other

variable. A linear relationship between the water depth over the reef (h2) and the

bore height can be stated due to the relatively low standard deviation. For the wave

run-up case, the most influential input variables are the beach slope (bet) and the

significant wave height (Hs). The fore-reef slope (alp), water depth over the reef
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(h2) and peak period (Tp) are less important but still with a significant influence

on the model’s output. On the other hand, the water depth offshore (h1) can be

classified as negligible, without any impact on BOSZ and therefore, can be fixed

during the optimization procedure. Except of the beach slope and the significant

wave height, where their behaviour can be characterized closer to linear, all the

other input variables show a non-linear influence and/or interactions with other

parameters (σ/µ∗ > 0.5).

Figure 5.3: Robustness of the sensitivity results at different sizes of the optimal set of tra-
jectories. Red lines show the error bars of the mean absolute elementary effects
(µ∗). Top panels: for Bore height, Bottom panels: for Wave run-up.

5.3.2 Extreme bore height

After performing 200 simulations and using optim-MICE, the maximum bore

height obtained is 7m (Fig. 5.6). To get a better understanding which of the input
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Figure 5.4: Results for the screening of input variables with the Morris method. Grey lines
show the error bars of the mean absolute elementary effects (µ∗). top: for Bore
height, bottom: for Wave run-up.

variables control the bore height and how, a local sensitivity analysis around the

maximum bore height is performed using 500 runs of the last fitted Gaussian Pro-

cess emulator. This allows us to carry out a near instantaneous sensitivity analysis

(in less than 1 s), whereas running BOSZ around the maximum for 500 of inputs

would be computationally costly, taking hours or days. The four panels in Fig. 5.5

shows the behavior of the maximum bore height over the reef flat as a function of

the four input parameters reef slope (alp), water depth over the reef (h2), significant

wave height (Hs) and peak period (Tp), under the condition that only one of the four

parameters is changed, taking values across its range, and all others stay constant at

the value where the maximum bore height is recorded.

It is not very surprising that the bore height increases with the significant wave

height, i.e. the incident offshore wave energy. For a given set of peak period,
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reef slope and reef depth, the increase in bore height is close to linear with the

value of significant wave height. However, the other variables involved show a

different trend. So does the effect of an increasing peak period tend to taper off

beyond Tp ∼ 16 sec. The offshore wavelength increases quadratically with the

peak period. As the peak period increases, the overall wave spectrum then contains

significantly more energy from longer waves in comparison to a spectrum with a

shorter peak period. At the same time, the overall composition of wave energy in

the spectrum shifts towards longer wave groups. Such wave groups can be seen

as reoccurring pulses (above mean water level) and lolls (below mean water level)

of several waves due to the interaction of individual waves with each other. These

wave groups are of much longer period than the individual swell waves and they

are therefore called infra-gravity (IG) waves. IG waves can be of very different

nature. A way to distinguish them is to classify them into two groups of bound

and free IG waves. The IG waves resulting from the composition of the spectrum

are inherently connected to the shape of the swell spectrum and they are therefore

bound IG waves. In contrast, IG waves released after wave breaking are mostly

free waves. In many cases, the presence of large wave groups also results in large

breaking waves and run-up. In case of the maximum bore height it is very likely

that the highest values are reached when the most energetic wave group is present.

For the tested configurations, the increase in wave groups does not lead to a steady

increase in observed bore height after wave breaking occurs over the reef flat.

A similar, but yet more drastic effect can be observed when only the water depth

over the reef is changed. Very shallow water over the reef does not lead to the

largest bore heights, mainly because the height of a hydraulic jump depends on

the water level at both sides of the discontinuity and the height of the jump itself.

Over nearly dry bed, waves move as sheet flow rather than as a pronounced bore.

However, for our particular configuration, water depths larger than ∼ 1m have an

adverse effect on the bore height. This is due to the fact that the incoming energy

is distributed over a larger mass of water. Instead of having a jamming effect, the
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energy is absorbed by a larger mass of water that reduces the height of the bore.

The influence of the reef slope on the bore height follows a different trend in

comparison to the other parameters. Starting off with a very gentle slope (right side

of panel 1 in Fig 5.5), the zone where waves break is relatively wide. The water

depth is a controlling factor for the initiation of wave breaking, i.e. individual waves

of various heights start breaking in different water depths. With a gentle bathymetry

slope, this leads to a wide spread area where wave breaking is possible and, in turn,

a more pronounced dissipation zone. As the slope increases, the horizontal area of

wave breaking shrinks and most waves tend to break around the same position over

the slope. At the same time, wave shoaling starts to become effective and increases

the wave height before breaking. Shoaling is a group wave process, i.e. it acts on

the underlying bound IG waves. With very steep slopes, parts of the wave energy is

reflected and the bore height behind the breaking zone does not further increase.

Figure 5.5: Local sensitivity of the maximum bore height on the fore-reef slope (al p), water
depth over the reef (h2), significant wave height (Hs), peak period (T p).
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5.3.3 Extreme wave run-up

After performing 250 simulations and using optim-MICE, the maximum wave run-

up obtained is 12m (Fig. 5.6). The behavior of the maximum run-up in dependence

of the remaining parameters can be analyzed in a similar fashion as in the bore

height case. By using the last fitted Gaussian Process emulator, a local sensitivity

analysis around the maximum run-up is performed. The model was setup in an

almost identical way compared to the bore height analysis - with the exception that

a dry slope was added to the right side of the reef slope where waves can freely

run up on after having propagated over the reef flat. The four panels in Fig. 5.7

show the behavior of the maximum run-up over the dry slope as a function of the

other four input parameters significant wave height (Hs), peak period (T p), water

depth over the reef (h2), and bathymetry slopes, fore-reef slope (al p) and beach

slope (bet), under the condition that only one of the four parameters is changed,

taking values across its range, and all others remain constant at the value where the

maximum run-up is recorded.

In contrast to the maximum bore height, the highest run-up does not exhibit a

near-linear relationship with the incoming wave height (Hs). The maximum and

minimum run-up are not found at the highest and lowest significant wave height of

5m and 1m respectively, but instead they occur at about 4.5m and 1.7m. In between

the two values, a strong increase in run-up can be observed.

The dependence of the run-up on the peak period (T p) and on the water depth

over the reef (h2) follows a similar trend as what can be seen for the maximum

bore height. Especially for the water depth of the reef, the highest run-up coincides

approximately with the presence of the highest bore over the reef. This is somehow

intuitive because there is no obstruction of the propagating bores on their way to-

wards the run-up slope; i.e. an approaching large bore will most likely run up far

on the slope unless an opposing flow from a previous drawdown stage reduces the

flow momentum.
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For the two slopes (fore-reef and run-up slope) we can conclude that a gentle

slope generally leads to smaller run-up values than a steep slope. The reasons are

different from what influences the maximum bore height. The lower run-up heights

over gentle topographic slopes result mainly from the fact that wave breaking can

take place over a longer duration and distance. Though, no bottom friction was

implemented in the study, the effects of frictional loss are more pronounced over

gentle slopes than over steep slopes. In other words, if frictional losses were ac-

counted for, the dashed line in the upper left panel of Fig. 5.7 would be steeper.

Bore Height Wave Run-up

Figure 5.6: Optimization of BOSZ using the optim-MICE algorithm. left: Maximum Bore
Height versus total function evaluations. right: Maximum Run-up versus total
function evaluations.

5.3.4 Total effect of dependencies on run-up

Another way to look at the influences on the maximum wave run-up on a dry slope

is the non-dimensional surf similarity parameter or Iribarren number expressed as

Ir = tanal p/
√

Hs/Lo, where L0 = 2T p2/2π . Originally designed to give an esti-

mate of wave breaker type and wave breaking intensity as a function of beach slope

and offshore wave steepness. In general, low values indicate a gentle ‘spilling’

type of wave breaking, whereas high Iribarren numbers show evidence of plunging

and even collapsing breakers - a type of wave breaking that occurs instantaneously
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Figure 5.7: Local sensitivity of the maximum run-up on the fore-reef slope (al p), beach
slope (bet), water depth over the reef (h2), significant wave height (Hs), peak
period (T p).

in contrast to the long-lasting spilling breakers. For a fixed slope, a lower wave

steepness results in more abrupt wave breaking types. An extreme example is a

tsunami wave, which is usually very long but of low amplitude. Once it approaches

shallow water, it shoals over a long distance and ultimately breaks abruptly into a

bore.

With respect to the presented case study, we generally observe high run-up val-

ues for low Iribarren numbers. Fig. 5.8(a) shows that the maximum run-up occurs

for rather low ratios of reef depth to offshore wave height (significant wave height

Hs is high in comparison to the water depth over the reef h2) in combination with

low Iribarren numbers. A similar behavior can be observed in Fig. 5.8(b) where

low Iribarren numbers lead to high run-up values if the ratio of bore height over

the reef to offshore wave height is small. Both trends can be explained through
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the mechanisms of energy dissipation in breaking waves. A low bore height to

significant wave height indicates rather low dissipation rates of breaking waves in

relation to the initial energy level. As the bores approach the run-up slope, they

describe spilling rather than collapsing breakers and the energy dissipation is not

instantaneous. The same is true for low ratios of water depth over the reef to off-

shore wave height (Fig. 5.8(a)). This leads to relatively high run-up heights.

Along the same lines, Fig. 5.8(c) shows that high run-up values can be found

for low Iribarren numbers and low ratios of fore-reef slope to significant wave

heights. In case of large incoming waves over gentle slopes, the waves approach

rather as spilling breakers over a broad surf zone. It should be pointed out that the

run-up values are distributed over a wide range of surf similarity values, i.e. low

Iribarren numbers do not automatically lead to high run-up values. However, the

largest run-up values fall into the category of low Iribarren numbers and no scenario

in this case study shows very high run-up heights in combination with high surf

similarity parameters.

5.4 Summary

Employing optim-MICE for the current optimization task gave us the opportunity

to find the maximum breaking wave (bore) height and the maximum run-up in less

computational time. In two idealised settings, we efficiently identify the conditions

that create the largest storm waves at the coast using a minimal number of simula-

tions.

This case study uses an idealized bathymetry whose main features character-

ize a fringing reef. The computation of a suite of typical storm waves over this

bathymetry shows that maximum breaking wave heights and runup on a straight

beach behind the reef follow particular trends. Most importantly, the run-up on the

beach after the wave breaking process is not linearly related to the incoming wave
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(a) (b)

(c)

Figure 5.8: Wave run-up as a function of (a) water depth over the reef to significant wave
height, (b) bore height to significant wave height and (c) fore reef slope to sig-
nificant wave height. The bar indicates the Iribarren number Ir (the surf sim-
ilarity parameter) calculated with the fore-reef slope, significant wave height
and wavelength.

energy, whereas the breaking wave height is close to linearly related to the height

of the approaching waves. The water depth over the reef is a strong controlling pa-

rameter for both breaking wave height and run-up. Counter-intuitively, the highest

values do not occur at the highest water level, but in fact at relatively low levels

(around 1m in our case study). This can be explained with the generation of infra-

gravity waves through wave breaking and their effect on the nearshore dynamics,

which are highly nonlinear processes.

Finally, with the presented optimization algorithm, it is possible to shorten the
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computation time significantly compared to what is usually required to run through

a permutation of scenarios in order to find a worst case scenario. This approach will

greatly help assess quickly the potential of coastal hazards and thus improve future

hazard mitigation efforts.



Chapter 6

Conclusion

6.1 Summary

The current thesis has been mainly motivated by the challenge of optimizing a

black-box function where traditional mathematical approaches cannot be taken, the

knowledge about the objective function is limited, and often does not exist, and

each function evaluation is computationally expensive. To tackle this problem,

this study proposed optim-MICE, a novel surrogate-based optimization scheme.

Taking advantage of parallelism of the evaluation of the unknown function, the

uncertain regions are explored simultaneously, and a batch of input points is chosen

using Mutual Information for Computer Experiments (MICE), a sequential design

algorithm which maximizes the information theoretic Mutual Information over the

input space. Specifically, optim-MICE explores the entire input space and focuses

on the region where the maximum belongs in with high probability. The objective

function is only evaluated at a batch of input points that are chosen to yield the

maximum information about it.

Overall, incorporating the MICE criterion in the GP framework seems to be more

computationally beneficial compared to the state-of-the-art heuristics. The optim-

MICE method increases the confidence in getting a solution close to the true op-

timum in fewer function evaluations. Regardless of the dimensionality and com-
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plexity of the computer model, with optim-MICE the search process for identifying

the uncertain region is more efficient and the regret decays faster compared to the

alternatives. The total computational time needed to find the true optimum and

achieve convergence of the regret is less than the other approaches.

The performance of the proposed optimization scheme is affected by the algo-

rithm settings. A complex and a high-dimensional computer model clearly needs

more iterations and a bigger batch size than a simple and low-dimensional func-

tion. To get the most of the proposed optimization scheme, a balance between the

number of iterations and the batch size is needed according to the complexity that a

function might have. If one performs a lot of iterations without exploring enough,

the information gain about the unknown function at each time step is limited as

the number of input points added in the design is small and the objective function

is evaluated only a few times. Furthermore, the advantage of MICE is not fully

utilized and a certain computational cost is added, without necessarily needed, such

as the re-estimation of the hyper-parameters of the surrogate model.

When making use of a large batch size, the uncertain region is definitely ex-

plored more and the chance to find the true optimum in fewer function evaluations

is higher. But, choosing a larger batch size than what is needed, an amount of

computational time is wasted as the algorithm is forced to stay in a region which

might not be of interest anymore - and has already been discovered from the first

exploration steps - or in a region which has already been explored and any addi-

tional information will not add value. In both cases, it is unavoidable that a number

of function evaluations are performed without obtaining any progress.

To keep the number of function evaluations as low as possible when a large batch

size is chosen, based on the two experiments performed in Chapter 4, it is worth

scaling the objective function vertically by a small factor (e.g. 0.5). This can only

be generalised if more experiments are performed examining different functions
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with different shapes and physical properties. Based on the two examined cases, by

shrinking the uncertain region in the vertical direction, the information obtained by

each new point added in the design at each iteration seems to be more valuable as

it is more likely to be closer to the true optimum. In terms of Nsearch and Ncand,

things are more straightforward. Regardless of dimensionality and complexity of

the function, having a large number of input points spread around the search space

and choosing to examine a big set of candidate points with the MICE criterion could

lead us to more accurate results without wasting more computational resources.

The first surrogate-based optimization of storm waves was presented in the current

thesis. The proposed algorithm was used to identify the extrema of coastal storm

waves over a reef-type bathymetry, for two quantities: breaking wave height and

local wave run-up. The hypothetical setting was similar to what governed the wave

event that destroyed the town of Hernani during Typhoon Haiyan. The capability of

the computer model in handling various wave processes, gave us the opportunity to

explore different aspects of storm wave extrema, such as the maximum bore height

and the maximum run-up, at a local level. Due to the computational complexity

of the computer model, finding the combination of the controlling parameters that

leads to the worst-case scenario would require a large number of individuals runs.

However, by employing optim-MICE, the computation time shorten significantly.

The computational efficiency of the optim-MICE algorithm helped us efficiently

identify and explore the important regions fast and obtain the maximum run-up and

bore height in the lowest possible number of function evaluations (model runs).

Overall, the computational analysis performed in Chapter 3 showed that the total

number of individual runs needed to find the maximum, or a solution close to the

maximum, is increased by 20% for GP-UCB-PE, and 75% for qEGO, when com-

pared to optim-MICE. Considering now only the cases with higher dimensions, on

average, getting a solution close to the true optimum with GP-UCB-PE required

50 more function evaluations and 140 with qEGO, compared to optim-MICE (with
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a 250 run budget). Translating this into computational time, and knowing that the

current study needed about 10 hours on a cluster of 4 cores, such an optimization

task would be expected to be completed in approximately 12 and 16 hours if GP-

UCB-PE and qEGO would have been used, respectively.

The more complex the computer set-up, e.g. for realistic coastal hazard assess-

ments with one run taking hours not minutes, the more computational resources

are required to complete the overall optimization task and therefore, it is crucial to

ensure that a good solution can be achieved in the lowest possible computational

time. Considering the overall performance of the proposed optimization scheme,

which was demonstrated in the current study, optim-MICE is better at imparting

confidence that the maximum, or a solution close to the maximum, can be achieved.

6.2 Future work

In the current work, the proposed optimization algorithm was compared with state-

of-the-art heuristics and to keep consistency all the algorithm settings were chosen

to be the same. One of the important settings is the size of the set of candidate

points. Due to the limited computational budget, optim-MICE, compared to the

alternative optimization schemes, could only examine a small number of candidate

points. Despite that, it still outperforms the others and its efficiency was proved in

various computational experiments. It is true that having a large number of candi-

date points increases the chances to find the true optimum, or a solution close to the

true optimum, with the lowest number of function evaluations. But unavoidably, the

computational time increases as all the candidate points have to be examined with

the MICE criterion. Also, a lot of GP predictions need to be performed until the

input point that provides the maximum increase in mutual information is obtained.

This step is actually the most computational heavy part of optim-MICE. To further

speed up the entire proposed optimization algorithm, an interesting extension would

be to make use of GPU (Graphics Processing Unit) acceleration. GPU is a type
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of specialised computation hardware consisting of many small processing units

(cores) able to handle multiple tasks in parallel efficiently. Its computational power

will give us the opportunity not only to perform exact GP inference for large de-

signs but also to compute predictive means and variances at thousands new points.

By exploiting the computational capabilities of the GPU, we can perform fast GP

predictions and make full use of the efficiency of optim-MICE. By examining more

candidate points with the MICE criterion at each time-step of the algorithm, the

true optimum can be found in even less function evaluations minimizing the total

computational resources needed.

Another extension could be to provide theoretical guarantees through the upper

bounds for cumulative regret of optim-MICE, which can be seen as the conver-

gence rates of the GP optimization. The technical connection between the bandit

setting and experimental design has been shown in various established algorithms

where the theoretical bounds of their cumulative regret have been provided. Since

the proposed optimization algorithm chooses a batch of input points based on the

MICE criterion, a full information theoretic mutual information measure, a new

regret bound needs to be calculated. In addition, a full theoretical framework under

the bandit setting and the mutual information measure can also be provided for GP

optimization with commonly-used covariance functions, such as Squared Exponen-

tial and Matérn covariance function.

In an optimization problem, such as the computational experiments presented in the

current study, we are interested in finding the true optimum or otherwise, the feasi-

ble solution: the solution that optimizes the objective function. What if a problem

involves the simultaneous optimization of several objective functions where these

functions are evaluated by expensive deterministic computer models? An example

could be the study for coastal wave heights and currents across an entire region, not

one output type at one location at a time as in Chapter 5. Therefore, a possible future

study is the extension of optim-MICE into the multi-objective setting. A unique
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solution that optimizes all the objective functions simultaneously may not exist,

instead a possibly infinite number of optimal solutions exists. In a multi-objective

setting, also known as Pareto optimization, we are interested in finding the Pareto

optimal. A solution is called Pareto optimal if none of the objective functions can

be improved in value without degrading some of the other objective values. Given

the computational efficiency of integrating the MICE criterion into a surrogate-

based optimization scheme, this extension could possibly reduce significantly the

computational burden of optimizing multiple objective functions.
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