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ABSTRACT 

 

Time-critical acute ischemic conditions such as ST-elevation myocardial infarction and acute 

ischemic stroke are staples in Emergency Medicine practice. While timely reperfusion therapy is 

a priority, the resultant acute ischemia/reperfusion injury contributes to significant mortality and 

morbidity. Among therapeutics targeting IRI, remote ischemic conditioning (RIC), has emerged 

as the most promising.  

 

RIC, which consists of repetitive inflation and deflation of a pneumatic cuff on a limb, was first 

demonstrated to have protective effect on ischemia/reperfusion injury through various neural and 

humoral mechanisms. Its attractiveness stems from its simplicity, low-cost, safety and efficacy, 

while at the same time it does not impede reperfusion treatment. There is now good evidence for 

RIC as an effective adjunct to reperfusion in ST-elevation myocardial infarction patients for 

improving clinical outcomes. For other applications such as acute ischemic stroke, subarachnoid 

hemorrhage, traumatic brain injury, cardiac arrest and spinal injury, there is varying level of 

evidence. 

 

This review aims to describe the RIC phenomenon, briefly recount its historical development, and 

appraise the experimental and clinical evidence for RIC in selected emergency conditions. Finally, 

it describes the practical issues with RIC clinical application and research in Emergency Medicine. 
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INTRODUCTION 

Individually and collectively, acute ischemic conditions represent a tremendous global health 

burden. Ischemic heart disease and stroke are by far the top two leading causes of death worldwide, 

across all country income categories, and have remained so consistently for the past 15 years.1 

This is not to mention other acute ischemic conditions seen in Emergency Medicine (EM) such as 

out-of-hospital cardiac arrest (OHCA), acute ischemic stroke (AIS) and ischemic bowel, to name 

a few. With aging of the global population, these conditions are projected to pose an increasing 

public health challenge.2–4 

Acute tissue ischemia is the crucial common pathophysiology of a number of devastating time-

critical conditions that present to Emergency Departments (ED). Ischemia involves restricted 

blood supply to tissues, either due to arterial occlusion or a global low-flow state, and the resultant 

impaired tissue perfusion provides inadequate oxygen and nutrients for cellular metabolism as well 

as inadequate removal of metabolic waste. This activates an ischemic cascade leading to tissue 

necrosis and infarction, and in turn, clinical sequelae. 

The mainstay of emergency treatment in these condition is to promptly restore tissue perfusion 

and salvage ischemic tissue, which in cases of acute thrombotic or embolic occlusion of arteries, 

involve reperfusion treatments. These include, in increasing order of invasiveness, injection of 

thrombolytics, endovascular interventions and surgical thrombectomy or bypass.5 Indeed, the 

importance of timely restoration of perfusion to ischemic tissues is exemplified in oft-cited adages 

such as “time is myocardium”6, “time is brain”7 and “chain of survival”8, as well as various time 

targets.9,10 
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However, with reperfusion comes ischemia/reperfusion (IR) injury (IRI), which paradoxically 

causes cell death in reperfused tissue11 and contributes significantly to post-reperfusion mortality 

and morbidity.12,13 For example, in a feline model of intestinal ischemia, four hours of ischemia 

resulted in less injury than three hours of ischemia followed by one hour of reperfusion.11 In ST-

elevation myocardial infarction (STEMI), IRI contributes up to 50% of final infarct size despite 

timely primary percutaneous coronary intervention (PPCI). This is a key reason for the continued 

high mortality and morbidity in these conditions, despite endovascular reperfusion treatments and 

continuous efforts to improve timeliness and access to these treatments. Hence, novel protective 

therapies are required to attenuate IRI alongside reperfusion in acute ischemic conditions to 

improve clinical outcomes. Besides organizing expeditious reperfusion therapy, Emergency 

Physicians could play important roles in providing therapy aimed at reducing IRI. Of treatments 

targeting IRI, remote ischemic conditioning (RIC)14, is currently considered the most promising.15 

RIC, in its most practical form, consists of repetitive inflation and deflation of a blood pressure 

cuff on a limb, and was first demonstrated to have a protective effect on IRI after myocardial 

ischemia.16 Promising data has since emerged in other acute applications such as AIS. Its 

attractiveness stems from its simplicity, low-cost, safety and efficacy, while at the same time it 

does not impede reperfusion treatment – making it greatly appealing to the Emergency Physician. 

This review article hopes to engage the EM clinical and research community on the three-decade-

long body of work surrounding RIC, with specific focus on applications relevant to EM (both ED 

and prehospital settings). This review will describe the RIC phenomenon, give a brief historical 

account of the scientific work leading to the current understanding, appraise the preclinical and 

clinical evidence for RIC in various emergency conditions, and finally, describe the practical issues 

with its clinical application and research in EM.   
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Remote ischemic conditioning – an introduction 

Remote ischemic conditioning is the mechanism whereby repetitive, brief, sub-lethal episodes of 

ischemia/reperfusion in various effector organs activates powerful endogenous protection against 

IRI after acute ischemia and reperfusion of distant target organs. In its most practical form, this 

means that repetitive inflation and deflation of a pneumatic cuff on a limb in patients with acute 

organ ischemic would be beneficial. 

Remote ischemic conditioning has three temporal variants, defined in relation to the onset time of 

the ischemic insult and reperfusion: remote ischemic preconditioning (RIPreC), perconditioning 

(RIPerC), and postconditioning (RIPost) (Figure 1). In acute clinical settings, RIPreC is not 

practicable because it must be commenced even before ischemia, whereas RIPerC, and to a much 

smaller extent, RIPost, are highly relevant as they be applied after the onset of ischemia and at 

reperfusion, respectively. Figure 1 shows how in a patient with a stereotypical acute ischemic 

condition navigating through an emergency care system could benefit from these temporal 

variants, of which the time spent in the ambulance and the ED has the strongest evidence and 

highest relevance to EMs. This review aims to review clinical applications in EM, and so will 

focus on RIPerC. Unless otherwise stated, RIC will refer to RIPerC. 

The mechanism of RIC is incompletely understood, in terms of signal release, signal transfer to 

the target organ as well as signal transduction within the target organ. The current understanding 

is that the conditioning stimulus is effected through complementary humoral and neural 

pathways.17 The humoral pathway has been studied more extensively, with studies have 

demonstrating the transport of blood-borne humoral factors, including an unidentified 

hydrophobic molecule sized 3.5-15kDa.18 A systemic inflammatory response due to immune cell 
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mobilization and infiltration have also been implicated.19,20 The neural pathway are demonstrated 

in experiments showing the reduction of, but not complete abolishment of the protective effect of 

RIC with transection of the femoral nerve, as well as in human experiments showing abrogated 

protection in subjects with diabetic neuropathy.21 A summary of known effector organs, methods 

of eliciting protection, mechanisms and target organs is presented in Figure 2. 

The mechanism of RIC in specific clinical applications like STEMI and AIS are beyond the scope 

of this review, and the interested reader is referred to relevant reviews.22–24 
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Bench to bedside – a historical perspective 

The predecessor of RIC is ischemic preconditioning. This was demonstrated by landmark 

experiments in 1986 by Murry et al which found that brief, intermittent ischemia and reperfusion 

of myocardium, followed by prolonged occlusion, reduced infarct size when compared to 

unconditioned controls.25 In an open-chest dog model, four cycles of 5 minute / 5 minute IR of the 

left circumflex artery (LCx) prior to a 40 minute LCx occlusion reduced infarct size by 75%.  

Pryzklenck et al then illustrated the “remote” aspect of RIC by demonstrating that conditioning 

the LCx reduced infarct size from left anterior descending occlusion in dogs.26 Since then, this 

laboratory curiosity has sparked off countless experiments that established RIC as a robust 

phenomenon with a variety of effector and target organs.14  

It was the finding that this cardioprotective stimulus can be effected by skeletal muscle27 and hence 

simply inflating and deflating a blood pressure cuff placed on the arm or leg28 that facilitated its 

translation into the clinical setting.  The first human proof-of-concept study was on elective 

coronary artery bypass graft surgery where RIC reduced myocardial injury after ischemic 

cardioplegia.29 
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Clinical emergency applications 

The role of RIC in the treatment of a range of conditions have been investigated in preclinical 

studies, clinical trials and meta-analyses.30 The following conditions are chosen for their relevance 

to EM practice and are discussed in this section (Table 1).  

ST-elevation myocardial infarction 

Evident from the above account of the historical development of RIC, STEMI is the classical 

application in which RIC is most tested and has the most robust evidence base. Despite timely 

reperfusion by PPCI, mortality and morbidity after STEMI remain significant, with 7% death and 

22% heart failure at 1-year.31 Further, the reduction of mortality since the advent of PPCI is 

accompanied by increasing chronic heart failure incidence.32 There is therefore an urgent need to 

develop cardioprotective therapies in order to prevent heart failure after STEMI.  

Therapeutic strategies that have potential to improve clinical outcomes in reperfused STEMI 

patients include RIC, IPost, exenatide, and metoprolol. These have emerged amongst a multitude 

of cardioprotective interventions investigated with largely neutral clinical data.15 

Botker et al conducted a landmark randomized controlled trial (RCT) on STEMI patients using 

RIC on the ambulance.33 This study demonstrated a 36% increase in myocardial salvage on SPECT 

imaging. On 3.8 year follow up, the RIC group had 35% fewer MACE and 52% reduction in all-

cause mortality.34 Furthermore, cumulative cardiovascular medical costs were 18% lower, mainly 

contributed by reduced readmissions.35 Since then, several trials showed benefit in surrogate 

outcomes of myocardial injury such as biomarkers or ST-segment resolution.36–40 
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A 2017 meta-analysis of nine RCTs with 1220 patients examined RIC in patients with STEMI 

who received PPCI.41 Myocardial salvage index was higher in the RIC group compared with 

control group (mean difference [MD]: 0.08; 95% CI, 0.02–0.14; four trials included, total 636 

patients). Infarct size was reduced in the RIC group compared with the control group (MD: -2.46; 

95% CI, -4.66 to -0.26), with moderate statistical heterogeneity among studies (five trials, 848 

patients). Finally, MACE was lower in the RIC group (9.5%) compared with the control group 

(17.0%; RR: 0.57; 95% CI, 0.40–0.82; four trials, 928 patients).  

Most recently, the RIC-STEMI trial reported in 2018.42 This was the largest trial to date with 500 

patients randomized to RIC versus sham RIC in the catheterization laboratory 10 minutes before 

PPCI, which found a reduction in the primary endpoint of combined cardiac death and 

hospitalization for heart failure, as well as each individually. This was the first trial powered to 

demonstrate improved clinical outcome as the primary endpoint. 

In summary, there is robust evidence for RIC as an effective adjunct to PPCI in STEMI patients 

for reducing infarct size and MACE. Whether it can improve long-term clinical outcomes is 

unclear and is currently being investigated in the European multicenter CONDI-2/ERIC-PPCI trial 

(NCT02342522) which has completed recruitment of 5200 STEMI patients and will report it 

results in Summer 2019.43 Notably, these completed and ongoing trials excluded patients with 

STEMI complicated by cardiogenic shock or cardiac arrest, a group which will be discussed in the 

section on cardiac arrest. 

 

Acute ischemic stroke 
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Recanalization in AIS has traditionally been achieved using systemic thrombolysis44, but in recent 

years have seen a rapid increase with current use of endovascular techniques.45,46 With 

recanalization, cerebral reperfusion injury occurs, and manifests as deterioration of penumbra, 

disruption of the blood–brain barrier, cerebral edema, and intracerebral hemorrhage.13 Perhaps 

analogous to STEMI, pharmacological targeting of neuroprotection has been largely 

disappointing.47  

 

The potential for RIC in human AIS was initially suggested by observations of natural RIPreC in 

that preceding transient ischemic attack attenuated subsequent stroke with smaller infarct size and 

less clinical deficits compared with patients without a preceding transient event.44,48,49 

Furthermore, patients who had untreated peripheral vascular disease prior to stroke (presumably 

preconditioned) similarly had lower disability and mortality.50 

Experiments using embolic middle cerebral artery occlusion mice models showed that with or 

without thrombolysis at 4 hours, RIC similarly reduced cerebral infarct sizes, with greater benefit 

seen in thrombolyzed mice.51  

The first human proof-of-concept RCT was conducted by Hougaard at el in 2009, randomizing 

443 suspected stroke patients on the ambulance to RIC or standard care.52 Only patients who were 

subsequently thrombolyzed were analyzed.  The outcome was neutral in terms of infarct size but 

showed increased tissue survival at one month with RIC. The study was not powered to detect 

differences in clinical outcomes.  

A second RCT was the ReCAST which was a pilot for a larger ongoing ReCAST-2 trial 

(NCT02779712).53 26 patients with AIS onset within 24 hours were randomized to RIC or sham 
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RIC in a stroke unit. There was no difference in the primary outcome of patient tolerability. There 

was a significant decrease in day-90 NIHSS score in the RIC group: median NIHSS score 1 versus 

3. None of the patients appeared to have been thrombolyzed. 

A 2018 Cochrane review was performed on the topic but is less applicable to EM because the 

above two trials on AIS were aggregated with two trials on small vessel cerebral disease.6 Relevant 

ongoing trials on the topic include the ReCAST-2 trial and the RESCUE-BRAIN trial 

(NCT02189928). There are currently no published trials on RIC in patients who receive 

thrombectomy. The use of RIPreC in stroke prevention, while exciting, will not be discussed in 

this review.  

 

 

Aneurysmal subarachnoid hemorrhage 

Spontaneously ruptured aneurysms account for 80% of subarachnoid hemorrhage (SAH). Of those 

who survive the early brain injury, even with successful embolization of the ruptured aneurysm, 

delayed brain ischemia occur in 30% of patients and contributes to substantial long-term physical 

and cognitive disability.54,55  

Preconditioning before inducing SAH in rats was shown to improve vasospasm, reduce cerebral 

inflammatory cytokines, reduce tissue hypoxia, and reduce neurological deterioration.56–58 While 

preconditioning need to occur before SAH, these studies serve to demonstrate that innate 

protective systems are present and can be activated through conditioning.56 

Two Phase I clinical trials tested RIC after SAH.59,60 In one study, 33 patients underwent RIC 

every 24-48 hours for 14 days.60 In the second study, 20 patients underwent RIC on non-
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consecutive days for four sessions.59 As intended, these two studies demonstrated both safety and 

feasibility of RIC in SAH. However, they were not designed to test effect on delayed brain 

ischemia. A post-hoc matched cohort analysis of the Gonzalez study59 showed RIC to be 

independently associated with good functional outcome on discharge (modified Rankin Scale 0-

2).61 

 

Traumatic brain injury 

Separate experiments on closed-skull TBI mouse models found that RIC two hours after injury 

preserved cognitive functions and motor coordination compared to sham RIC.62,63 A proof-of-

concept RCT randomized 40 severe TBI patients to RIC within one-hour and found RIC to reduce 

levels of the brain injury biomarkers S-100B and neuron-specific enolase.64 

 

Cardiac arrest 

RIC during cardiopulmonary resuscitation (CPR) in porcine models of prolonged cardiac arrest 

(untreated ventricular fibrillation, VF) improved left ventricular ejection fracture at one and four 

hours as well as neurological function at 24 and 48 hours.65,66 This was achieved using four cycles 

of 20-second/20-second no-CPR/CPR started within three minute of starting CPR after 15 minutes 

of untreated VF. The same research group later showed that RIC was synergistic with other 

enhancements in CPR including active compression/decompression CPR, abdominal binding and 

impedance threshold device66. Another group approached RIC differently, using four cycles of 

five minute femoral artery occlusion, and found reduced cardiac biomarkers and trend towards 

improved neurological outcomes.67 Whether RIC would be beneficial in the clinical setting of 

cardiac arrest remains to be tested.  
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Spinal cord injury 

The possibility of a role for RIC in emergency treatment of spinal cord injury is suggested by 

findings that IPost in rabbit models of spinal cord ischemia improved neuronal survival68,69 and 

neurological function68,70.  
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Practical issues 

Unknown Optimal RIC Protocol 

The optimal RIC protocol has yet to be fully defined. If RIC were considered as one would a drug, 

its dosing, pharmacokinetics, and pharmacodynamics are poorly characterized. The most 

commonly employed technique is three to four repetitions of 5 minute inflation/ 5 minute deflation 

using a standard blood pressure cuff on the arm. These are however empirically chosen and not 

guided by human studies investigating protocol aspects such as the optimal number of cycles, 

duration of inflation/deflation and arm versus leg.  

Clinical studies have predominantly applied the cuff on the upper arm, although a few used the 

thigh. In mice, RIC on one or both hind-limbs did not differ in cardioprotection, implying that 

muscle mass is inconsequential.71 While there are practical advantages to using the leg and leaving 

both arms unencumbered for intravenous access and blood pressure monitoring, it has been 

suggested that it is less tolerable by patients due to discomfort (cite). In a real-life clinical setting, 

there are also unproven safety concerns in preexisting lower limb peripheral arterial disease. 

In terms of number of cycles, Johnsen et al compared two, four, six and eight cycles on an isolated 

perfused mouse heart model, and found that four and six cycles are superior to two cycles.71 There 

are also suggestions that excessive conditioning may be deleterious.  

 

Equipment 

Practically any tourniquet capable of applying pressure on the proximal aspect of a limb above 

systolic blood pressure would achieve arterial occlusion and can be used for RIC. This is most 
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commonly done with a manual blood pressure cuff, sphygmomanometer and stopwatch, although 

some studies employed automatic cuff systems (eg autoRIC®, modified FB-270 oscillometric 

monitor; Fukuda Denshi)72 or a normal cuff connected to an automatic device (PeriVasc Cuff 

Unit;EBIDA)73. An automatic device can be left on and a pre-programmed protocol will run, hence 

relieving resources (both manpower and cognitive) in a busy resuscitation room or ambulance. 

These nontangible benefits are as difficult to demonstrate as those with mechanical chest 

compression devices in out-of-hospital cardiac arrest.74 In addition, in a trial setting, a sham control 

RIC protocol can be programmed into the device. 

 

Setting 

RIC has been applied successfully in emergency settings including in the ambulance33,75, during 

air medical transport76, in the ED, as well as in the catheterization lab. When using a manual cuff, 

RIC requires a dedicated personnel to administer, which is a practical limitation in the prehospital 

setting. A decision whether to implement RIC on the ambulance is clearly dependent on the 

average prehospital transport times of the system. In one system, 18% of patients had a 

transportation time too short to complete four cycles of RIC.52  
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DISCUSSION 

Emergency Physicians are uniquely positioned to impact outcomes in acute time-critical 

conditions. While advances in reperfusion has reduced early mortality and advances in 

rehabilitation mitigate the consequences of the ischemic insult in those who survive the acute 

event, it is preferable to optimize treatment in the initial treatment window to reduce disability in 

the first place. After reperfusion, reperfusion injury is the most viable treatment target. In this 

regard, RIC presents a practical and cheap intervention that is emerging as efficacious for several 

indications. There is solid evidence from experimental and clinical studies to support the ability of 

RIC to protect against IRI. In terms of translation, the efficacy is most concretely shown for 

STEMI, which has been subjected to a longer history of and more numerous trials. One remarkable 

feature is that of all the clinical studies that tested RIC, including one study that performed RIC 

twice daily on both arms for 300 consecutive days, no safety issues were found.77 

While enthusiasm for RIC has sometimes been tempered by a number of neutral clinical studies, 

the reasons for this are complex and have been discussed extensively in the literature. They have 

been attributed to design issues of both experimental and clinical studies used to test novel 

cardioprotective therapies.15 Some of these design limitations included testing in clinical trials 

without prior experimentation on large animals, pre-clinical experiments in healthy adults without 

co-morbidities and concomitant medications usually received by patients, and trials including 

patients with too small infarct sizes to benefit significantly. These limitations mean that neutral 

trials need to be interpreted carefully, and highlight the challenges of translating experimental 

studies into the clinics.78 A lesson can be learnt from how it took almost a decade between the first 

proof-of-concept RIC trial in STEMI and the first RIC trial showing improved clinical 

outcome.33,42 
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This review also reveals opportunities for acute care research. As described above, IRI is an 

unwanted effect of reperfusion and is culpable for profound mortality and morbidity in a variety 

of acute ischemic conditions, and is therefore a high-yield target to develop therapeutics for. These 

therapeutics are however, understandably unattractive for the pharmaceutical industry because 

these protective agents are given only once and not as continuous therapy. 

From a pathophysiologic point of view, RIC would have limited benefit if intended to replace 

reperfusion therapy, as it mainly works to salvage reperfused ischemic tissue. Hence, efforts to 

apply RIC to resource-limited EM settings such as tactical, wilderness and rural settings would 

have limited impact. Further, from a systems point of view, there is no replacement for developing 

emergency care systems and regionalization of care to improve access to and timeliness of 

reperfusion.43  

Increased awareness of this body of work may stimulate clinical and experimental investigations 

of this phenomenon for Emergency Physicians and EM researchers. The practical nature of this 

treatment and time window makes it attractive for the EM setting. In the Emergency Physician’s 

task to lead in the organization and optimization of care for time-critical diseases, RIC adds to the 

armamentarium and is a clinical and research frontier for EM. 

 

CONCLUSION 

RIC is a practical, low-cost and safe intervention to ameliorate IRI. Its efficacy is proven in 

STEMI, and evidence is emerging for other acute ischemic conditions including AIS.  
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Fig 1. Time windows for remote ischemic conditioning in acute ischemic conditions (such a ST-elevation 

myocardial infarction, ischemic stroke with large-vessel occlusion), in relation to typical emergency care 

system processes 

 

EMS: Emergency Medical Services; ED: Emergency Department; PPCI: primary percutaneous coronary 

intervention 
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Fig 2. Inter-organ protection against acute ischemia-reperfusion injury: known effector organs, target 

organs and mechanisms 
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Table 1. Summary of data available for translation of potential applications of remote ischemic conditioning 

for acute organ protection in Emergency Medicine  

 ST-
elevation 
myocardial 
infarction 

Acute 
ischemic 
stroke 

Aneurysmal 
Subarachnoid 
hemorrhage 

Cardiac arrest Traumatic 
brain injury 

Mechanistic data + + +/- +/- +/- 

Pre-clinical data  + + + + + 

Potential issues over 
safety 

- - - -- - 

Proof-of-concept human 
data 

++ ++ + -- + 

Clinical data ++, * +, * +, * --, * + 

Meta-analysis data + + -- -- -- 

 

Mechanism of cardioprotection known: +, well-studied; +/-, not clear 

Pre-clinical data: +, consistent protection 

Potential issues over safety: -, no known safety issues; -- not available 

Proof-of-concept human data: ++, several positive studies; +, only one positive study; --, not available 

Clinical data: ++, several positive studies; +, only one positive study; --, not available; *, ongoing studies 

Meta-analysis data: +, positive data; --, not available 

 

 

 

 

 


