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ABSTRACT

Elliptical diagnostics provide dynamical and climatological information about the behavior of the

Arctic and Antarctic stratospheric polar vortices. Here Kida’s model, describing the evolution of a uni-

form vortex in a linear, but possibly unsteady, background flow, is used to interpret the observed evolution

of the Antarctic vortex in late winter during 1999–2018. Kida’s model has oscillatory solutions that can

undergo an amplitude bifurcation, which serves as a simple model for the onset of vortex-splitting

stratospheric sudden warmings (SSWs). A data assimilation method is used to find solutions of Kida’s

equations consistent with the observations. A phase-plane analysis reveals large interannual variability in

the amplitude of oscillations of the vortex. In 2002, the year of the only observed vortex-splitting

Antarctic SSW, the system is found to cross a separatrix in phase space, associated with the SSW am-

plitude bifurcation, in late September. An output of the data assimilation is the linear background flow

experienced by the vortex. The rotational component of this linear flow is consistent with the vortex being

embedded in an anticyclonic background. The time-mean strain flow is weak but has a clear orientation,

consistent with the presence of stationary forcing due to planetary-scale topography and land–sea con-

trast. The time-varying strain flow is comparatively large in magnitude, illustrating the relative impor-

tance of the planetary-scale component of the turbulent dynamics occurring at tropopause level. Unlike in

the Northern Hemisphere, therefore, the direction of future Antarctic vortex splits will not necessarily

align with the direction of the 2002 split.

1. Introduction

Elliptical diagnostics were introduced as a method

to determine compact and fundamental information

about the state of the Arctic and Antarctic strato-

spheric polar vortices byWaugh (1997). The basic idea

is to take an available chemical [e.g., nitrous oxide

(N2O)] or dynamical (e.g., isentropic potential vor-

ticity) tracer field on a given level in the stratosphere,

and make a ‘‘best fit’’ of a piecewise constant function

with an elliptical boundary to this field, with the aim of

capturing the vortex location, shape, and orientation.

The best fit ellipse is calculated using the integral

moments of the field in question, and then choosing the

ellipse to match. The resulting time series of the vortex

centroid, area, aspect ratio, and orientation provide

a detailed picture of the climatology, interannual

variability, seasonal cycle, and vertical structure of

the vortices in each hemisphere [see, in particular,

Waugh and Randel (1999)]. Subsequent authors (e.g.,

Matthewman et al. 2009; Hannachi et al. 2011) have

used these diagnostics to study the vortex evolution in

the lead-up and aftermath of stratospheric sudden

warmings (SSWs) and to investigate statistical ex-

tremes of the vortices (Mitchell et al. 2011). The

vortex moment diagnostics underpinning elliptical

diagnostics have also proved useful in quantitatively

evaluating the representation of the polar vortices in

different chemistry–climate models (Mitchell et al.

2012), and even in assessing the nature of polar vor-

tices on Mars (Mitchell et al. 2015).

All of the studies above are concerned with the

observed statistics of the stratospheric vortices. Here,

the aim is to go further by using the elliptical diagnostics

to understand the dynamical evolution of the vortex, by

making use of a simple model. The model in question is

that of Kida (1981), which describes the evolution of a

two-dimensional vortex of constant vorticity in a linear,

but possibly unsteady, background flow. The original

suggestion for using Kida’s model in this way is in fact

due toWaugh (1997). Of course, Kida’s model cannot be

expected to capture every aspect of the dynamics of aCorresponding author: M. Mester, marton.mester.16@ucl.ac.uk
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three-dimensional vortex, in a spherical geometry, em-

bedded in a turbulent planetary atmosphere; however, it

may nevertheless describe much of the essential dy-

namics. Evidence of this is provided by Polvani et al.

(1990), who found that Kida’s model provides an ex-

cellent quantitative explanation of the observed evolu-

tion of Neptune’s Great Dark Spot, as observed during

the Voyager 2 flypast.

If Kida’s model is to be used to interpret observations,

the key question is exactly how the linear flow should be

chosen to fit the model to the data. In the case of

Neptune’s Great Dark Spot (at least during the Voyager

2 flypast), the vortex evolution is sufficiently coherent

and predictable that a time-independent linear flow (in

fact a simple shear flow) is sufficient to give a good fit to

the data. The stratospheric polar vortices on Earth,

however, are considerably less predictable. The Arctic

vortex in particular exhibits significant variability in its

vertical structure, and consequently the two-dimensional

Kida model cannot be expected to capture key aspects of

its dynamics. By contrast, disturbances of the Antarctic

vortex typically remain coherent in the vertical, particu-

larly during late winter (August–September). The current

study is therefore restricted to the August–September

behavior of the Antarctic vortex over the 20-yr period

1999–2018, with a particular focus on 2002, the year of

the only observed vortex-splitting Antarctic SSW [see,

e.g., J. Atmos. Sci. special issue 62 (3), 2005]. It is well

established (e.g., Scaife et al. 2005; Esler and Mester

2019, EM19 hereafter) that in at least some years (e.g.,

2012, 2016) the Antarctic vortex has been observed to

undergo Kida-like oscillations, but in other years (e.g.,

2014, 2015) these appear to be largely absent.

The aim of this work is to use a variational data as-

similation technique to combine the observed elliptical

diagnostics with the Kida model, and to apply the

technique to the Antarctic late winter over the periods

detailed above. In doing so, the slowly evolving back-

ground linear flow that is most consistent with model

and data is determined. The background linear flow can

be expected to have several components:

d A slowly evolving rotational component, which is

anticyclonic, and relatively large in magnitude. This

anticyclonic rotation is due to the relative vorticity in

the stratospheric surf-zone surrounding the vortex

having the opposite sign to the Coriolis parameter.
d A slowly evolving strain flow component that is due to

stationary planetary waves forced by surface topogra-

phy, land–sea contrast, etc.
d A more rapidly evolving strain and rotational flow com-

ponent that is due to ‘‘tropospheric macroturbulence,’’

that is, planetary-scalewaves generated by the interaction

of baroclinic eddies at tropopause level (see, e.g.,

Scinocca and Haynes 1998).

One specific goal is to assess the interannual variability

of the background linear flow components above, with

the aim of improving understanding of the causes of

vortex-splitting SSWs.

In section 2Kida’smodel is described and aHamiltonian

formalism is introduced, allowing a phase-portrait

analysis of the observed vortex evolution, and clarify-

ing the dynamical criterion used to identify the onset of a

vortex-splitting SSW. The reanalysis dataset and ellip-

tical diagnostics used to quantify the observed vortex

behavior are then described. In section 3, the observed

elliptical diagnostics are analyzed using the resulting

phase-portrait method. In section 4 the variational data

assimilation method is introduced and tested, and in

section 5 the main results from the assimilation method

are presented, and new perspectives on the interannual

variability of the vortex and background flow emerge.

Finally, in section 6, conclusions are drawn.

2. Dynamical model, data, and methodology

a. A symmetric, nonsingular Hamiltonian form for
Kida’s model

Kida’s equations (Kida 1981; Dritschel 1990) describe

the motion in two dimensions of an elliptic vortex in a

linear background flow. The equations describe the time

evolution of the aspect ratio l $ 1 and orientation u of

the vortex,

_u5V1
vl

(l1 1)2
2

l2 1 1

l2 2 1
G sin(2u2 2f) ,

_l5 2lG cos(2u2 2f) . (1)

HereV and G, respectively, denote the magnitude of the

rotational and strain components of the linear flow, f is

the angle of the strain axis, and v is the vorticity. In the

most general form of the equations each of V, G, and
f are time dependent.

For the purposes of this work, it is helpful to consider a

transformed version of Kida’s equations. First, it is

helpful to define a strain-rotation vector G [ (G1, G2,

G3)
T5 [G cos(2f), G sin(2f),V]T. Notice thatG defines a

general incompressible linear flow u5A � x where the

matrix A is given by

A5

�
G
1

G
2
2G

3

G
2
1G

3
2G

1

�
.

Next, followingMelander et al. (1986), who use the same

transformation in their derivation of a Hamiltonian
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moment model for two-dimensional vortex dynamics,

introduce the ellipticity vector

X[

�
X

Y

�
5 (l1/2 2 l21/2)

�
cos2u

sin2u

�
. (2)

It is useful to note the monotonic relationship between

the magnitude jXj of the ellipticity vector and the aspect

ratio l,

l5
1

4
[jXj1 (jXj2 1 4)1/2]2 . (3)

This relationship is plotted for convenience in Fig. 1.

When there is no strain, it is well known that the vortex

becomes unstable when l . 3 (Love 1893). In terms of the

ellipticity vector, this criterion can be expressed as

jXj. 2/
ffiffiffi
3

p
. When strain is present, the periodic orbits

undergone by the vortex becomemore andmore unstable

as their amplitude increases, with the first morphological

change in stability also occurring at l5 3 (Dritschel 1990).

It is a straightforward calculation to verify from (1)

that X evolves according to Hamilton’s equations:

_X5=?H , (4)

where =? [ k 3 = is the skew-gradient operator with

respect to X, and the Hamiltonian H is

H(X)5 (jXj2 1 4)1/2G � (k3X)1 jXj2 G � k

1v log

 
jXj2 1 4

4

!
. (5)

The Hamiltonian H is, up to a constant multiplicative

factor and additive constant, equal to the conserved

quantity of themotion found byKida (1981) for the case of

constantG andv [alsoH52h, as defined in (2) of EM19].

The Hamiltonian form (4) and (5) has a number of

advantages over (1):

d In the standard form of the Kida equations [(1)], the

circular vortex (l 5 1) is associated with a singularity

because _u becomes singular. In the transformed equa-

tion the circular vortex corresponds to X 5 0 and the

singularity is removed.
d The symmetric form of (4) and (5) allows for simple

norms to be defined. For example, jX 2 Xobsj can be

used to measure the distance between a model solu-

tion and observed data. Also jGj is a physically mean-

ingful measure of the magnitude of the linear flow

u5A � x, because its energy in a circle of radius R is

proportional to jGj2R2.
d The methods of Hamiltonian mechanics are available.

For example, contour plots of the Hamiltonian allow

for a simple phase-portrait interpretation of the dy-

namics, including the bifurcation associated with an

SSW, which will be exploited below.

The Hamiltonian phase-portrait representation, il-

lustrated in Fig. 2, allows the qualitatively different

vortex behaviors [seeDritschel (1990) andMatthewman

and Esler (2011) for detailed discussion] to be easily

differentiated. Note that, for ease of comparison with

the Antarctic vortex, the portraits have been plotted using

the convention thatv is negative (rather than positive as is

typical). The top panels show the Hamiltonian for a flow

defined by strain-rotation vector G that is typical of

SouthernHemisphere wintertime conditions (see section 5

below). The key feature is the self-intersecting separatrix

(bold line) defining the boundary between the high-

ellipticity anticlockwise (ACW)-rotating regime, the

low-ellipticity clockwise (CW)-rotating regime, and the

intermediate oscillating (OSC) region where the vortex

undergoes both a clockwise and anticlockwise rotation

as it completes a full oscillation period. In Matthewman

and Esler (2011) and EM19, the onset of an SSW is as-

sociated with crossing the separatrix from the CW to the

OSC regimes, resulting in rapid growth in ellipticity, a re-

versal in the direction of vortex rotation, and in practice a

split. It should be noted that crossing the separatrix at the

point where it self-intersects may result in the vortex

transitioning to the ACW regime instead of OSC.

Notice also that, within the CW regime there is a low-

amplitude regime (NUT), where the orientation of the

FIG. 1. Relation between aspect ratio and the magnitude of the

ellipticity vector. Love’s instability occurs for l $ 3 or equiva-

lently jXj$ 2/
ffiffiffi
3

p
.
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vortex nutates around a fixed angle. The boundary be-

tween CW and NUT is given by the trajectory that passes

through an initially circular vortex (CIRC), that is, through

X5 0. The system also has a fixed point (FP) inside NUT.

The lower three panels show how themagnitude of the

strain affects the Hamiltonian structure. In the absence of

strain (G1 5 G2 5 0) the phase lines are circular and the

behavior is that of the well-known Kirchhoff vortex. When

the strain is weak (bottom-center panel) the OSC regime

within the separatrix contour occupies only a slender region

of phase space. Finally, when the strain is strong, compared

to that in the top panel, theCWregime (identified herewith

normal SH conditions) disappears completely.

b. Dataset and vortex definition

Our observational data is derived from the European

Centre for Medium-RangeWeather Forecasts (ECMWF)

interim reanalysis (ERA-Interim) (Dee et al. 2011). The

main datasets used are potential vorticity q (PV hereafter)

and relative vorticity z on eight isentropic (375–850K)

levels in the Southern Hemisphere with 0.78 3
0.78 horizontal resolution. Climatologically, the Antarctic

polar vortex attains its maximum area coverage during

July–August, before decreasing slightly in September,

and then more rapidly in October and November (see,

e.g., Waugh and Randel 1999) before breaking up in a

final warming around 1December (Black andMcDaniel

2007). Here, the focus is on the August–September pe-

riod when the vortex is well established and supports

significant planetary wave activity (July is more quies-

cent). It is during this period that Kida’s model, which

describes the motion of a vortex with constant area, is

most relevant to the dynamics of the Antarctic vortex.

The analysis focuses on the 20-yr period 1999–2018,

including in particular 2002, when the only recorded

Antarctic SSW occurred.

FIG. 2. Contours of the Hamiltonian for the representative case v 5 21, G1 5 20.005, G2 5 20.005, and G3 5 0.2. (top left) All the

different possible evolutions, including ones with high aspect ratio. (top right) Zoom on the CW region that is associated with typical

midwinter SH polar vortex evolution. (bottom left) In the absence of strain (i.e.,G5 0), contours are circles and the vortex is either CWor

ACW. (bottom center) In the presence of weak strain (G1 520.0006, G2 520.0006), a self-intersecting separatrix emerges, with the CW

regime located within the smaller loop and the OSC regime located between the two branches of the separatrix. (bottom right) For

stronger strain (G1 5 20.013, G2 5 20.013), the smaller loop and CW regime disappears.
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The vortex is defined from the observed PV following

Matthewman et al. (2009). Briefly, for each potential

temperature level u, the average PV qb(u, t) poleward of

458S is calculated on this level for each available time t.

The Antarctic vortex, while larger than its Arctic coun-

terpart, nevertheless remains almost entirely within this

region throughout the period of interest. The vortex

boundary is then defined to be the PV surface where

q 5 qb(u, t).

To apply the proposedKidamodel to the polar vortex,

it is necessary to calculate a representative value of v,

which is the jump in relative vorticity across the vortex

edge boundary. To do this, we exploit the vortex edge

definition introduced above to calculate the average

relative vorticity vi in the interior of the vortex, and the

average relative vorticity vo between the latitude circle

458S and the vortex boundary. Contour plots of relative

vorticity (not shown) show more spatial variability than

the PV shown in Fig. 4, but a piecewise constant fit

remains a reasonable approximation. The jump in rela-

tive vorticity is then calculated as v 5 vi 2 vo. The

evolution of v(t) on the 600-K isentropic surface during

the winters 2009–18 and 2002 is shown on Fig. 3. Each

year, v ranges between27 and24 day21 during the first

half ofAugust and between28 and25 day21 during late

September. As a general trend, a slow decrease in

v during the August–September period can be clearly

seen; however, such strengthening in the vorticity jump

does not occur every year (e.g., 2002, 2010).

c. Elliptical diagnostics

Our PV-based construction of the equivalent el-

lipse follows the method described by Matthewman

et al. (2009), which is a modification to the ellipti-

cal diagnostics framework applied by Waugh (1997).

First, we use Lambert’s azimuthal equal-area projection

(l, f)/ (x, y)5R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(12 sinf)

p
(cosl, sinl), where l is

the longitude, f is the negative of the latitude, and R is

the radius of Earth, to map the vortex boundary and the

PV structure of the Southern Hemisphere to a plane

from the spherical geometry. A slight advantage of this

projection over the frequently used (e.g., in Waugh and

Randel 1999) polar stereographic projection is that the

latter underestimates the contribution of regions at

lower latitudes. To calculate the diagnostics, the po-

tential vorticity field is first modified according to

q̂(x, u, t)5

�
q(x, u, t), q(x, u, t), q

b
(u, t),

q
b
(u, t), q(x, u, t)$ q

b
(u, t);

(6)

that is, low-latitude PV variations are neglected by setting

the PV to be constant outside the vortex. Next, the

Mk,l(u, t) moment diagnostic is defined by the area integral

M
k,l
5

ð
R
2

[q̂(x, y)2 q
b
]xkyl dx dy. (7)

Note that the integrand vanishes outside of the vortex.

Following Matthewman et al. (2009), the equivalent el-

lipse is defined to have a constant uniform interior PV

(qc 1 qb, where the value of qc ’ qb enters only into the

area calculation below), and is otherwise chosen to

match the zeroth-, first-, and second-order moments of

the observed vortex. First, the center of the equivalent

ellipse is given by

(x, y)5
1

M
0,0

(M
1,0
,M

0,1
), (8)

and the relative vortex moments are defined to be

J
k,l
5

ð
R
2

[q̂(x, y)2 q
b
](x2 x)k(y2 y)l dx dy. (9)

Now, the orientation Q, and the aspect ratio L of the

equivalent ellipse are given by the formulas

Q5
1

2
tan21

 
2J

1,1

J
2,0

2 J
0,2

!
,

L5

��������
J
2,0

1 J
0,2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J21,1 1 (J

2,0
2 J

0,2
)2

q
J
2,0

1 J
0,2

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J21,1 1 (J

2,0
2 J

0,2
)2

q
��������

1/2

. (10)

The obtained time series of Q and L are the basis of the

interpretation using Kida’s model. For illustrative pur-

poses only, wemay also define the area of the equivalent

ellipse by A 5 M0,0/qc. Figure 4 shows the shape and

position of the equivalent ellipse, constructed from the

observed potential vorticity distribution on the 600-K

isentropic surface on 1 August 2002.

At each available time tn, (2) is used to calculate the

value of the ellipticity vector Xn from (L, Q). Cubic in-

terpolation is then used to generate an ellipticity vector

Xobs(t) with a continuous first time derivative. While the

vector Xobs(t) is evidently a derived quantity from the

reanalysis data, it serves as the observations in the data

assimilation method to be described in section 4 below,

and will be henceforth be referred to as the observed

ellipticity vector.

3. Observations of vortex evolution 1999–2018

The observed ellipticity vector Xobs(t) gives a new

perspective on the evolution of the Antarctic vortex

in the late winter. In particular the propagation of
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large-amplitude (wavenumber 2) Rossby waves on the

vortex can be easily visualized, using the phase-space in-

terpretation described above. Focusing first on the mag-

nitude of the ellipticity vector, Fig. 5 shows the evolution of

jXobs(t)j during August–September 2009–18 and 2002

(curve with circles, other years 1999–2008 omitted for

clarity) on the 600-K isentropic level. The evolution of

the ellipticity vector is found to be highly coherent in the

vertical (plots of vertical structure not shown here), es-

pecially during periods when the vortex is relatively

undisturbed. When the vortex is strongly disturbed, the

ellipticity can increase significantly with height; how-

ever, the oscillations on different isentropic levels re-

main highly correlated. As a consequence, the results

below are presented for the 600-K surface, which is

representative of the general behavior throughout the

stratosphere. For each of the years shown jXobs(t)j has a
relatively low magnitude in the first half of August,

indicating a near-circular, undisturbed midwinter vor-

tex. Subsequently, in several years significant oscilla-

tions develop. It is clear, at a glance, that the period

immediately preceding the vortex split in 2002 is the

only occasion when Love’s criterion jXobsj. 2/
ffiffiffi
3

p
for

vortex instability is met, which, while it is not an

exact condition for an SSW onset for the real three-

dimensional vortex in spherical geometry, is evidently

somewhat indicative of the onset of vortex instability.

(Note that the neglect of spherical geometric effects can

be justified under the f-plane approximation.) Apart

from 2002, the year in which jXobs(t)j attains its highest
value (’0.9) is 2017 (curve labeled with crosses).

The climatological value of jXobsj (thick black curve)

FIG. 4. PV contours (km2 kg21 s21), vortex boundary (dashed),

and equivalent ellipse (bold) on the 600-K isentropic surface on

1 Aug 2002.

FIG. 3. The evolution of the vorticity jump on the 600-K isentropic surface during winters 2002 and 2009–18.

1172 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 77



remains less than 0.5, that is, much smaller than the

threshold for instability. However, there is a significant

upward trend throughout the entire August–September

period, indicating that the vortex is becoming more

disturbed as the winter progresses [cf. Fig. 11e ofWaugh

and Randel (1999), which shows the same climatological

trend in aspect ratio during 1978–98].

Figure 6 shows the evolution in phase space of Xobs(t)

for each August–September period during 2009–18, and

also 2002. Here it is clear that in almost every year, the

vortex is describing clockwise orbits in phase space,

which can be identified with those shown in the shaded

regions of Fig. 2. Since the amplitude and direction of

the external strain experienced by the vortex changes

throughout the winter, the structure of phase space will

also change (see bottompanels of Fig. 2), with closed orbits

becomingmore circular during periods of weak strain, and

the orbits becomingmore distorted and ‘‘off-center’’ when

the strain is stronger. It is notable from Fig. 6 that

d The amplitude of the clockwise orbits vary greatly

between years. Figure 6 therefore gives a simple vi-

sualization of interannual variability in the southern

vortex, between winters when the vortex remains

relatively undisturbed and attains particularly low

temperatures, and winters such as 2017 when the

vortex reaches high ellipticity.
d The large-amplitude orbits in September 2009, August

2012, September 2013, August 2017 and September

2002, which are significantly ‘‘off-center’’ in the phase

plane, indicate the presence of a relatively strong

strain field.
d The almost perfectly circular orbits in late September

2017 indicate a relatively weak strain, meaning that

the region of phase space occupied by clockwise orbits

is larger, and the vortex is less likely tomeet the criterion

(identified as the event of crossing the separatrix, fol-

lowing EM19) for an SSW. This gives a possible

explanation of why the large-amplitude oscillations

experienced by the vortex in September 2017 did not

develop into an SSW.

4. Dynamical elliptical diagnostics

In this section a variational data assimilation tech-

nique is introduced. The aim of the technique is to use

Kida’s model to understand and interpret the observed

FIG. 5. Individual evolutions of the magnitude of the observed ellipticity variable Xobs in

2009–18 and 2002 and its climatological behavior averaged over 1999–2018.
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FIG. 6. The evolution of the elliptical phase-space variables (X,Y) during the 10 August–September periods for the years 2009–18 and for

2002. The white square marks the position of the ellipticity variables at the beginning of the observed time period.
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time-evolving elliptical diagnostics described above.

More precisely, we will simultaneously obtain a slowly

evolving strain-rotation vector G(t) that is consistent

with the background forcing experienced by the vor-

tex, and a time series of the ellipticity variableX(t) that is

‘‘close’’ to the observationsXobs(t), which together satisfy

Kida’s equation [(4)]. The results provide a framework to

understand and interpret the observed oscillations of the

vortex, as well as providing a more precise dynamical in-

terpretation of how far the system is from a vortex-splitting

SSW at any given time.

The assimilation equations

The assimilation equations are derived by first specify-

ing a suitable cost function and then applying the stan-

dard techniques of variational calculus to determine its

minimizer. The cost function, which consists of three

components, is

J(G,X,m)5

ðT
0

[j _Gj2 1 �2jX2X
obs

(t)j2 1m � ( _X2F)] dt ,

(11)

where F(X, G, v)5 =?H. The first component penalizes

rapid changes inG(t), becausewe are interested in finding a

slowly evolvingG(t) that best describes the external forcing

experienced by the vortex. The second component penal-

izes differences between the assimilated and observed el-

lipticity vector, and the third component introduces the

Lagrange multiplier m(t) to ensure that the assimilated

solution is a solution of Kida’s equation [(4)]. The free

parameter � controls the extent to which G evolves slowly

(� small) versus the extent towhich the assimilated solution

X remains close to the observations Xobs (� large). The

time interval T is the length of the observed time window

(61 days; days are used as the time unit in our calculations).

The extremal functions minimizing J are obtained by

solving the Euler–Lagrange equations,

€G52
1

2
(=

G
F) � m ,

_m5 2�2(X2X
obs

)2 (=F) � m ,

_X5F . (12)

where =G 5 (›G1
, ›G2

, ›G3
)T is the gradient operator in the

space of the vector G and =GF denotes the 3 3 2 matrix

with components ›Gi
Fj. The accompanying boundary

conditions are

_G(0)5 _G(T)5 0,

m(0)5m(T)5 0: (13)

Note that in total there are 10 boundary conditions for

the coupled system of three second-order equations and

four first-order equations, which is the correct number

for a unique solution in a linear system.

The system (12) and (13) is solved numerically using a

generalization of the shooting method, which is de-

scribed in detail in the appendix. Before integrating the

assimilation equations, it is necessary to choose a value

of v for the vorticity jump, for use in (4). To do this a

typical value of v526 days21 is chosen based on Fig. 3.

Some sensitivity tests have been performed, using in-

stead time-varying v(t) calculated directly from Fig. 3,

with the results being generally unchanged. All of the

results below are given for �2 5 0.01, which, as is shown

in the sensitivity tests detailed in the appendix, gives a

good compromise between the assimilated solutionX(t)

closely following the observed data Xobs(t), and the in-

ferred strain-rotation vector G(t) being slowly varying

in time.

In the appendix, some explicit solutions of (12) and

(13) are presented, showing the typical behavior of the

first component of the ellipticity vector X(t) and the

strain vector G1(t) (see Fig. 9 there). The results show

that the solutions have the desired properties of X(t)

following Xobs(t) and G1(t) varying slowly. Sensitivity

tests in which � is varied reveal that there is only a weak

sensitivity to �. The necessity of including a time-

dependent strain-rotation vector is demonstrated by

freezing the strain-rotation vector at the midpoint of the

assimilation time window (equivalent to applying � 5 0

in the second half of the time interval). In this case the

‘‘G-frozen’’ solution is time periodic and, while the solu-

tion follows the observed ellipticity vectorXobs for roughly

one period, it diverges rapidly fromXobs thereafter. Hence

the constant-GKida equations can therefore capture the

evolution over short periods, but longer periods require

time-varying G.

5. Results of the assimilation process

The assimilation equations [(12) and (13)] have been

solved for each August–September period from 1999 to

2018. The calculated strain-rotation vectors G(t) provide a

record of the effective forcing experienced by the vortex

during each winter period. All of the results shown below

are for the 600-K isentropic surface the results for which

are representative of, and highly correlated with, all

levels in the range 450–800K.

Figure 7 shows the time evolution of the magnitude of

the strain component (G2
1 1G2

2)
1/2

and the rotation

component G3, respectively (in both cases we scale

with the vorticity jump v, which is the natural non-

dimensionalization for Kida’s equations). It is very

striking that the strain component is small in magnitude

and fluctuates rapidly throughout each winter with high
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variability, whereas the rotation component of the linear

flow has a large magnitude and is relatively slowly

varying. The value of G3 remains within the narrow

range20.21 to20.18v during August and it has slightly

increased variability 20.22 to 20.16v during September.

These values reflect the fact that the relative vorticity

outside of the vortex is positive; that is, the cyclonic polar

vortex is embedded in a larger-scale anticyclonic flow. The

value of G3/v found by the assimilation method is close to

that used to produce ‘‘realistic’’ stratospheric flow profiles

in previous model studies (e.g., Esler et al. 2006; EM19).

The fact that the assimilation process robustly estimates G3

at a value consistent with observations is evidence of

the utility of the model. The representative value of

G3/v 5 20.2 was used in Fig. 2, validating the relevance

of the phase portraits shown.

Comparing years with a strongly elliptical vortex

(2010, 2012, 2013, 2016, curves in bold; 2017 and 2002,

curves with markers) with the relatively undisturbed

years (2009, 2011, 2014, 2015, 2018), it is clear that in

general there is negligible correlation between the mag-

nitude of the strain and the extent to which the vortex

is disturbed. Admittedly, the 2002 SSW does occur

following a period of high strain, and there is also a

period of high strain in the next most disturbed year

(2017), so extreme disturbance events may be an ex-

ception. The lack of correlation between the vortex el-

lipticity and the contemporaneous strain magnitude is a

property of the stochastic Kida models studied in EM19.

In the EM19 models, the vortex undergoes a random

walk in state space in response to the random background

flow, with the difference between disturbed and un-

disturbed winters depending on the outcome of this ran-

dom walk, as opposed to being caused by individual strain

events. Interestingly, there is a suggestion of a relationship

between disturbed winters (particularly Septembers)

and anomalously low background rotation G3, although

there are too few winters for this to be statistically

significant.

Figure 8 summarizes the statistical variability of the

strain components (G1, G2). The top panel shows the

mean for each August–September period (points) as

well as a Gaussian fit to the distribution over the period

1999–2018 (shaded regions). The arrows at the edge of

the figure give the orientation of the principal axis of the

strain, relative to the lines of meridian. Themost striking

feature across the two panels is again the fact that there is

very strong intraseasonal variability in (G1, G2), showing

that the forcing experienced by the vortex fluctuates

considerably across the course of a winter. Figure 8

provides strong evidence that the southern polar vortex

is much more strongly influenced by nonstationary plane-

tary waves caused by tropospheric macroturbulence,

rather than stationary planetary waves, which would

have a constant orientation on Fig. 8.

Notwithstanding the last remark above, the signature

of stationary forcing is nevertheless clearly apparent in

Fig. 8. Comparing the mean of (G1, G2) for each indi-

vidual year, there is a clear bias toward a negative value

of G2 (and less significantly, a slightly positive value of

G1). The consistency of this result over the twenty year

period shows there is a clear stationary wave component

to the linear flow field experienced by the vortex, con-

sisting of a strain flow roughly orientated along the

408E8–1408W meridian, of magnitude approximately

0.025jvj 5 0.15 days21. The presence of this stationary

strain, with fixed orientation, will act to increase the

probability of Southern Hemisphere vortex splits oc-

curring with a particular orientation (the Kida model

FIG. 7. (top) Time evolution of the magnitude of the strain

component of the background flow (G2
1 1G2

2)
1/2
/jvj. (bottom) Time

evolution of the rotation component of the background flow G3/v.

Both panels cover August–September for the years 2009–18 and

for 2002.
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suggests that splits will be initiated at orientation

458 clockwise of the stationary strain). However, the fact

that the stationary component of the strain field is much

weaker than the time varying component suggests that

any bias in the direction of future vortex splits will be

small, and all possible split orientations will be realized

in practice.

The assimilated X(t) and G(t) also allow the phase-

plane criterion for an SSW to be examined more pre-

cisely for each winter period. Recall that in Fig. 2 an

SSW occurs in Kida’s model when the phase-plane tra-

jectory crosses the separatrix (i.e., the solid curve in the

top-right panel), because the new (OSC) orbit in phase

space requires the vortex to reach a much higher ellip-

ticity, certainly exceeding Love’s criterion for instability

of l. 3. Crossing the separatrix would not be possible if

G were time independent, because the trajectory would

then be constrained, by conservation of H, to a closed

orbit. However, because G varies in time, not only canH

change (e.g., due to randomnoise as discussed in EM19),

but the position of the separatrix itself will also vary, as

shown in the lower panels of Fig. 2. The value of bothH

and its critical value Hc, which is the value of the sepa-

ratrix curve, have been calculated for each winter period

(not shown). The results confirm that the critical value

H 5 Hc is attained only in 2002, and not approached

closely on other occasions, except briefly in 2009 and

2013 when the magnitude of the strain is very large,

shrinking the CW region in phase space. Interestingly,

during the period of large ellipticity in mid- to late

September 2017, the Hamiltonian H does not approach

Hc because the strain rate is rather low resulting in an

unusually low value for Hc.

6. Conclusions

HereKida’smodel of a two-dimensional vortex evolving

in a linear background flowhas been used to generalize the

elliptical diagnostics ofWaugh (1997) in order to allow a

dynamical interpretation of the observed evolution of

the Antarctic stratospheric polar vortex. A Hamiltonian

reformulation of Kida’s equations allows for a phase-

space interpretation of the periodic orbits performed by

the vortex, and in particular highlights the amplitude

bifurcation, which has been previously associated with

SSWs (Matthewman et al. 2009). Analysis of the

vortex behavior during 1999–2018 showed that in ev-

ery year the vortex near continuously rotates clock-

wise or nutates, consistent with these periodic orbits

of the Kida vortex.

Variational data assimilation was then used to infer

the linear background flow experienced by theAntarctic

vortex as it evolved over each August–September pe-

riod. The main findings are as follows:

d The rotational component of the background flow is

slowly evolving and relatively large in magnitude,

undergoes only moderate year-to-year variability, and

is consistent with the cyclonic polar vortex being em-

bedded in an anticyclonic background flow (cf. Esler and

Scott 2005; Esler et al. 2006).
d The strain component of the background flow evolves

relatively rapidly (on a characteristic time scale of a

week or so), is relatively weak, and is dominated by its

unsteady component.

FIG. 8. (top) A Gaussian fit to the distribution of the strain

component of the background flow (G1, G2)/jvj during the period

1999–2018, as calculated by the assimilation process (see text).

Contours are at e21/2, e22, and e29/2 times the maximum value (cf.

one to three standard deviations). The means for individual years are

shown as solid points (also included is 2002). (bottom)Curves showing

the evolution of (G1,G2)/jvj during eachAugust–September period for

years 2009–18 and for 2002.

MARCH 2020 ME STER AND ESLER 1177



d A steady component to the strain flow is clearly

detectable and persistent between years, and is aligned

with the 408E–1408Wmeridian and has a relatively small

magnitude (’0.15 days21). This is the signature of the

effect of stationary planetary waves on the evolving

vortex. [See the discussion in, e.g., Esler and Scott (2005)

or EM19 for an explanation of how planetary-scale to-

pography can be identifiedwith an external strain flow at

the level of the stratospheric vortex.] It is interesting to

note that the streamfunction associated with this strain

flow has a tendency to enhance anticyclonic motion in

the region of the ‘‘Australian High’’ consistent with the

anticyclonic flow often observed there [see, in particular,

Harvey et al. (2002)], which suggests a link between the

obtained climatological strain flow and the development

of pairs of eastward-traveling anticyclones that is well

documented in literature (Harvey et al. 2002; Lahoz

et al. 1996).

The fact that the time-varying component of the strain

flow is much larger than the stationary component im-

plies that it is the dynamically active troposphere that

ultimately controls the frequency and nature of Antarctic

SSWs, as opposed to stationary planetary waves due to

land–sea contrast, etc., which are much more important

in theArctic. The archetypal ‘‘intermediate complexity’’

model of an Antarctic SSW is therefore, arguably, the

GCM study of Kushner and Polvani (2005), in which an

SSW occurs spontaneously in a long simulation in the

absence of planetary wave forcing from the lower

boundary. For further evidence of the relevance of

Kida’s model, or similar simple reduced models of

SSWs, to the Antarctic stratosphere, it will be necessary

to reexamine intermediate complexity models such as

Kushner and Polvani (2005).

The key question will be whether a free-running ver-

sion of Kida’s model such as those studied in EM19,

forced by a statistical model of the background flow

trained on the GCM data, is capable of meaningfully

predicting the statistics of vortex ellipticity, and the re-

sulting probabilities of vortex splits. The influence of

stationary waves can also be considered, by gradual

addition of topographic forcing; compare Taguchi et al.

(2001) and Sheshadri et al. (2015). Such a stochastic

model, once established, can be used to make predic-

tions about how key climatological variables such as

SSW frequency vary under changes to the model setup

and parameters. It also provides a simple pathway to

understanding why the changes occur, as changes to the

model climate can be easily linked to changes in the

external background flow experienced by the vortex.

From there, a deeper understanding of how SSW be-

havior will change under a changing climate will be

attainable. More broadly, the methodology we have

introduced will be useful in the study of vortices else-

where on Earth and in the solar system more widely

(cf. Polvani et al. 1990; Mitchell et al. 2015).
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APPENDIX

Solution of the Assimilation Equations

a. The numerical algorithm

Here, the algorithm used to solve the Euler–Lagrange

equation [(12)] with boundary conditions (13) is de-

scribed. It is nontrivial to find a solution to (12) satisfying

(13), because a naive attempt to integrate (12) over the

interval [0, T] results in a floating-point overflow, due to

the solution exploding exponentially with a growth rate

of a few hours. In other words, to solve (12) and (13) by

forward integration requires an extremely precise guess

for the unknown initial conditions for G(0) and X(0),

which must be obtained iteratively.

Our algorithm generalizes the well-known shooting

method, used for solving boundary problems for ordi-

nary differential equations, as follows. First, the equa-

tions are rewritten as a first-order system by introducing

notation z5 _G and Z5 (G, z,m,X)T to give

_Z5G(Z, t), (A1)

where

G(Z, t)5

0
BBBBBBB@

z

2
1

2
(=

G
F) � m

2�2[X2X
obs

(t)]2 (=F) � m
F

1
CCCCCCCA
. (A2)

The corresponding boundary conditions are now

z(0)5 z(T)5 0,

m(0)5m(T)5 0:
(A3)

Next, the time domain is divided intoN equal intervals

[tk, tk11] for k 5 0, . . . , N 2 1, where tk 5 kT/N. The so-

lution to (A1) on the interval [tk, tk11] will be denoted

Zk(t). A vector S of initial guesses, for the solution at

the beginning of each subinterval, is constructed by

concatenation
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S5 [G
0
(0),X

0
(0),Z

1
(t
1
), . . . ,Z

N21
(t
N21

)]T. (A4)

The vector S has 10N 2 5 components, since z0(0) 5 0

and m0(0) 5 0 are specified.

A standard ODE solver (we use MATLAB’s ode45

with a small absolute error tolerance of 1028) is then

used to solve for Zk(t) on each interval [tk, tk11] using the

initial conditions contained inS. The resulting solutions are

of course discontinuous at every end-point tk, and in fact

the ‘‘solutionmismatch’’W can be stored in a single vector

W5

0
BBBBBBB@

Z
1
(t

1
)2Z

0
(t

1
)

..

.

Z
N21

(t
N21

)2Z
N22

(t
N21

)

z
N21

(t
N
)

m
N21

(t
N
)

1
CCCCCCCA
. (A5)

Notice that W also has 10N 2 5 components, with the

final 5 being the boundary values in (13) at t 5 tN 5 T.

Finding a solution to the original problem (12) and

(13) is now equivalent to finding a particular set of initial

conditions S5 S* for which the solution mismatch W is

zero, that is, solving the nonlinear system

W(S)5 0: (A6)

The problem (A6) can be solved by implementing a stan-

dard root finding algorithm in multiple dimensions. The

problem is standard except that each evaluation of the

functionW requires a new solution forZk(t) (k5 0, . . . ,N2
1). Here, the trust-region dogleg algorithm (inbuilt solver

fsolve in MATLAB) is used to find a solution to accuracy

jWj, d, which is chosen to be 1028. The initial values used

for the first guess of S are G1(tk) 5 G2(tk) 5 0, G3(tk) 5
V 5 2v/5, z(tk)5 0, m(tk)5 0, and X(tk)5 Xobs(tk).

The above algorithm will converge rather slowly un-

less the following speedup is applied. Notice that the

Jacobian matrix J of (A6), which has components Jij 5
›Wi/›Sj, has a highly simplified structure, with nonzero

entries only on two ‘‘block’’ diagonals. This is because the

solution mismatches Zk(tk) 2 Zk21(tk) in W depend only

on the initial conditions Zk21(tk21) and Zk(tk) in S. A

standard implementation of most nonlinear root finding

methods requires repeated numerical evaluation of the

Jacobian, which will necessarily involve enormous redun-

dancy if the ‘‘zero’’ terms in J are calculated numerically.

This redundancy can be avoided by supplying a routine to

calculate the simplified Jacobian explicitly.

b. Solution behavior and parameter sensitivities

Figure A1 shows some examples of the solutions of

(12) and (13) obtained using the above algorithm. All

results shown are obtained with N 5 60 subintervals,

with some solutions checked against solutions with

N 5 30 to verify the robustness of the algorithm, with

agreement found within the chosen tolerance d. The

solution components shown are X(t) and G1(t) for

August–September 2018. The observed values Xobs(t)

for the ellipticity variable are plotted as solid circles, and

the assimilated solutions are curves.

Specifically, Fig. A1 shows the effect of varying �, the

free parameter in the cost function. The contrasting

limits � / 0 and � / ‘ can be explained as follows.

Solution with �/ 0 have constant strain-rotation vector

G, corresponding to the limit in which the background

forcing is constant, and the assimilated solution best

fitting the observations is periodic in time. Such a solu-

tion is generally a poor fit. The limit �/ ‘ corresponds

to the case wheremeasurements andmodel assumptions

are perfect and the assimilated solution interpolates the

observations precisely. The problem in this case is that

the strain-rotation vector G now varies extremely rap-

idly in time and defies interpretation. The solutions

shown therefore have intermediate values of � (�2 5
0.005, 0.01, and 0.02), and result in assimilated solutions

FIG. A1. (top) Ellipticity variable X(t) for August–September

2018, in the observations (points) and the assimilated solutions

(curves), showing the effect of the parameter �. (bottom) The first

component G1 of the strain-rotation vector for the same solutions.

In each panel the dotted curve shows the solution of Kida’s equa-

tions when the strain-rotation vector is frozen at t5 30 days (in the

�2 5 0.01 solution).
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that both fit the observations reasonably closely, and

have smoothly varying G(t). The effect of increasing � is

now clear. At higher � the assimilated solutions fit the

observed data more closely, but at the expense of G

varying more rapidly in time.

Also shown in Fig. A1 is a solution to Kida’s equations

in which the strain-rotation vector G is frozen halfway

through the solution at t 5 30 days. This solution is in-

cluded in order to demonstrate that Kida’s equations

with constant G do a good job of qualitatively capturing

the CW cycles performed by the vortex. The constant G

solution follows the observations reasonably closely for

one cycle, and then diverges as it remains on a fixed

periodic orbit, while the observed solution experiences

changes to the background forcing and begins to un-

dergo orbits with larger amplitude and longer periods.
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