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Abstract

This technical note presents a dynamic causal rieggDCM) procedure for evaluating different
models of neurovascular coupling in the human brausing combined electromagnetic (M/EEG)
and functional magnetic resonance imaging (fMREBad&his procedure compares the evidence for
biologically informed models of neurovascular conglusing Bayesian model comparison. First,
fMRI data are used to localise regionally specifieuronal responses. The coordinates of these
responses are then used as the location prior®i@M of electrophysiological responses elicited by
the same paradigm. The ensuing estimates of m@daheters are then used to generate neuronal
drive functions, which model pre- or post-synagativity for each experimental condition. These
functions form the input to a model of neurovasculzupling, whose parameters are estimated from
the fMRI data. Crucially, this enables one to eatdudifferent models of neurovascular coupling,
using Bayesian model comparison — asking, for examghether instantaneous or delayed, pre- or
post-synaptic signals mediate haemodynamic respokiée provide an illustrative application of the
procedure using a single-subject auditory fMRI aviEG dataset. The code and exemplar data
accompanying this technical note are availableudpnothe statistical parametric mapping (SPM)

software.

Key words: dynamic causal modelling, multimodal, neurovascaotamling, neural mass models,
Bayesian model comparison



1. Introduction
To interpret the blood oxygenation-level depend®@LD) contrast, and its disruption due to aging

(Tarantini et al 2017), disease (Shabir et al. 20d8pharmacological interventions (Otsu et al®01

a better understanding of the biological mechanisingseurovascular coupling is useful. Neuronal
activity triggers vasodilation, both directly viagsalling molecules — such as nitric oxide and
adenosine (Li and ladecola, 1994) — and indiredgtlyastrocytes (Takano et al., 2006). The ensuing
change in blood flow is accompanied by a chandddad oxygenation (Logothetis, 2001; Filosa et al
2007), detectable as the BOLD contrast. Howevetettare many outstanding questions about the
origin of BOLD in the human brain (Arthurs & Bondfa, 2002; Hall et al., 2016). For instance, is it
driven by pre- or post-synaptic potentials of neatgopulations? Does a region’s BOLD response
depend on local or distal neuronal projections? Méhases region-specific differences in the BOLD
response? Human neuroimaging can complement ammodkls in addressing these fundamental
guestions. Moreover, neuroimaging is uniquely pdiafte investigating differences between people
with different aetiologies or at different stagek disease progression, non-invasively. Aberrant
neurovascular coupling may play a role in many aghysiological conditions (Tarantini et al 2017).
For instance, in Alzheimer’s disease, a reductiomduced blood flow — in response to neuronal
demands for energy — has been implicated in cognidiecline (Shabir et al. 2018; Snyder et al.
2015). Another example is aging, where there isragnessive reduction in the efficacy of
neurovascular coupling (Lipecz et al. 2019). Thesdivate the importance of an efficient approach

to disambiguate the neurovascular mechanisms titgrwrite neural and haemodynamic responses.

Invasive recordings in animal models are commontpleyed to distinguish neuronal, vascular and
haemodynamic contributions to the BOLD responsg (eogothetis et al., 2001; Grill-Spector et al.,
2006; Shmuel et al., 2006). However, the same intaggchniques cannot be adopted to study the
human brainn vivo, which necessitates the use of non-invasive fanatiimaging. BOLD contrast
imaging using fMRI provides high spatial resolutiton localising activity and, with suitable models,
enables inferences about the mechanisms of newwawaascoupling (Stephan et al. 2007). This
imaging technique typically has greater temporabhation than other MRI methods used to study
neurovascular coupling, such as arterial spin lmgel(Ferre et al.,, 2013) or Vascular-Space-
Occupancy (Lu and van Zijl, 2012); however, ittidl o0 slow to inform detailed models of neuronal
activity. By contrast, electromagnetic recordingstsas MEG provide exquisite temporal resolution
— at the level of electrophysiological dynamics kiah in turn support the identification of detailed
neural models (David et al., 2006). The questi@ntarises: how can we leverage the sensitivity of
fMRI to haemodynamics and the sensitivity of MEG rteuronal dynamics to best study neuro-
vascular interactions in humans non-invasively? @ppgroach pursued here is to combine a detailed
neuronal model fitted to EEG or MEG data with a welof neurovascular coupling and

haemodynamics fitted to fMRI data. Our objectivehis paper is to introduce efficient tools useful



for modelling neurovascular function, rather thaoviding answers to long standing questions about
the origin of the BOLD signal. Therefore, at thiage, we do not intend to draw any definitive
conclusions about neurovascular physiology (whidh nequire group studies). Instead, we present
the methodological foundation by which competingpdtheses about the origin of the BOLD
response can formulated and tested. We envisagendthod will be particularly useful for modelling
between-subject differences in neurovascular cogmue to pathology and disease. To illustrate how
to apply the methods, we use an empirical datasethich a single subject performed an auditory

(roving oddball) task, while undergoing MEG and fMR

To establish a method for modelling neurovasculaupting, our first consideration was which
neuronal model to use. Neuronal models of varyiogpmexity have been used in previous studies
examining neurovascular coupling. For example, ®Riet al. (2005, 2006, 2007) explored
mechanisms of neurovascular coupling using fMRIGEEata. In their models, the BOLD response
could be induced by pre- and/or post-synaptic giatisnassociated with a single population of deep
pyramidal cells, connected with two populationsimiibitory interneurons. Voges et al. (2012)
investigated neurovascular coupling in the conté@pilepsy, using a neural mass model with one
inhibitory and one excitatory sub-population, basedWendling et al. (2000, 2005) and Jansen and
Rit (1995). A recent study by Friston et al. (201i8ed a four population canonical microcircuit
(CMC) model (Bastos et al., 2012) to demonstrasg tMRI and EEG/LFP data features may be
uncorrelated, despite having the same underlyingamal sources. They coupled the CMC model,
which includes superficial and deep pyramidal cafisvell as excitatory and inhibitory neurons, with
the haemodynamic model typically employed in DCMff/dRI (Stephan et al. 2007). This combined
model, which so far has only been demonstrated siwittulated EEG / LFP data, has the potential to
reveal laminar specific contributions to the BOLESponse. For this reason, we used the CMC model

here, although it could easily be replaced with atiner appropriate neural mass model.

Our second consideration was the form of the nexsoyar coupling model and which neuronal
sources should drive haemodynamics. Previous stidiee explored detailed neurovascular coupling
models using non-invasive measurements (see rdwekWuneau et al., 2015). For example, Sotero
and Trujllo-Baretto (2007) proposed a model in whiomped excitatory and inhibitory neuronal
inputs drive a detailed model of metabolic changd haemodynamics. Other models have been
evaluated by Rosa et al. (2011), who embeddedottveafd model proposed by Riera et al. (2006) in
a (variational) Bayesian framework. They performeedayesian model comparison to evaluate
different neuro-vascular coupling functions basedsgnaptic activity and / or post-synaptic firing
rates. Here, we took a similar approach and condpidue evidence for different combinations of pre-
or post-synaptic neuronal inputs, as well as exogennputs from different neuronal populations,
using Bayesian model comparison. These mixtureqieafronal activity entered an established

neurovascular coupling model (Friston et al., 208@yhich a vasodilatory signal induces flow and is
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subject to feedback induced by that flow. This lechwasoactive signal is likely to subsume various
signalling molecules and cascades. Nitric oxide \M@s proposed as a likely basis for this signal, a
its half-life is consistent with empirically derideparameter estimates from fMRI measurements
(Friston et al., 2000). Nevertheless, there areymaher vasoactive agents that constrict or dilate
blood vessels, including epoxyeicosatrienoic a¢iElsTs), prostaglandin E2 (P@Eand potassium
(K"). (For a recent review, see Nippert et al., 201f8)istinguishing these signalling pathways is of
interest, more biophysically detailed models cobkl implemented using the model comparison
framework presented below (e.g., see Huneau eR@l5). In the illustrative model used here, the
lumped vasoactive signal drives a haemodynamicsemadd a subsequent model of the fMRI signal
(Stephan et al. 2007). We emphasise, that anyesketbomponents could be substituted or compared

based on their contribution to model evidence.

Our third consideration was how to integrate MEGQI dMRI data to efficiently estimate the
parameters of the neuronal, neurovascular and heramic parts of the model. To make inversion
tractable, reasonable independence assumptionBecarade about the parameters (i.e. a mean-field
approximation). For example, Rosa et al. (2011)3dusdhree-step variational Bayesian estimation
procedure, where they first estimated neuronalmaters, then neurovascular coupling parameters,
and finally the parameters governing haemodynantitere, we also used variational Bayesian
inference methods, and divided the estimation iatcmeuronal part and a neurovascular and
haemodynamics part, linked yeuronal drive functions. These functions are canonical synaptic
responses to each experimental condition from eadhnonal population, derived from a neural mass
model which has been fitted to the MEG data. Thisetions then form the input to the
neurovascular coupling model, which in turn dritke haemodynamics. Parameters relating to the
neurovascular and haemodynamic parts of the modedstiimated from the fMRI data. This approach
offers convenience and flexibility, because theraeal drive functions can be generated from any of

the neural mass models available in the DCM franmkwwdthout the need for re-implementation.

In summary, the framework we set out in this pagauples a dynamic causal model of laminar

specific neuronal responses (Bastoslet2012, 2015) with a model of neurovascular couphmd

the BOLD response (Stephanakt 2007). They are linked by neuronal drive funcsiowhich model

the pre- or post-synaptic activity of each neurgragulation under each experimental condition. The
form of the neuronal drive or coupling functionspirameterised to enable hypothesis testing using
Bayesian model comparison. To illustrate the predagpproach in this paper, we specified a sample
factorial model space covering a number of foumati questions about the mechanisms of

neurovascular coupling. The factors were: presyoapersus postsynaptic contributions to the

neurovascular signal, whether the inputs to newmyar coupling were region-specific, whether

distal regions contributed to local changes in BOtd3ponse, and whether neurovascular delays

associated with the release of vasoactive agergsqalcium) should be modelled. This model space
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allowed us to illustrate how to perform family-wisedel comparisons, quantifying the evidence for
each question in turn. Future studies may use aemsegace such as this to examine the

commonalities or differences among individuals mugs of subjects in their neurovascular coupling.

This paper has five sections. In section two, weogethe theory underlying the approach. In sectio

three, to further unpack intricacies of the methogyp, we illustrate multimodal DCM applied to an

exemplar fMRI / MEG dataset and compare models cisgal with some key hypothesis about
neurovascular mechanisms. The Discussion, in sedtior, considers the procedures in terms of
limitations and future applications. Finally, inc8en five, a software note provides instructiontbe

code, as implemented in a toolbox for SPM.

2. Theory

2.1 Dynamic Causal Modelling for MEG
A biologically informed generative model of multioha fMRI and MEG data is shown in Figure 1.

This DCM includes the common underlying neuronahegators of both MEG and fMRI
measurements, mediated by a spatial lead fieldBDOD response model, respectively. We will
explain each part of the model in the followingtasts, before illustrating its application to reta.

All variables are defined in tables 1-4.

2.1.1 Generative model of neuronal responses
We used the canonical microcircuit (CMC), which misdthe circuitry of a typical cortical column

(Bastos et al., 2012, 2015; Douglas and Martin,1)9%he model has been widely applied in the
translational neuroscience literature, in particatathe context of predictive coding (Bastos et al
2012), to explain evoked (Rosch et al., 2019) qpatsal responses (Rosch et al., 2018). It congprise
four neuronal populations per brain region: spitellate cells in the granular layer (ss), supedfici
pyramidal cells in the supragranular layer (sphjbitory interneurons distributed in all layerstbg
cortex (i) and deep pyramidal cells in the infragular layers (dp), as shown in Figure 1. The
connectivity architecture in the CMC model introdddere consists of a subset of known anatomical
connections (predominantly) in visual hierarchiéscortex (Ninomiya et al., 2012; Friston et al.,
2017). The four populations within each corticaluoon have intrinsic (inter-and intra-laminar)
connections that are ubiquitous in most corticahar(Thomson and Bannister, 2003; Binzegger et al.,
2004; Haeusler and Maass, 2007). Experimental atvthgic inputs are received by spiny stellate
cells in the granular layer (hereinafter referredat extrinsic forward connections) that project to
superficial pyramidal cells and thereafter to dgmpamidal cells. Each excitatory connection
establishes reciprocal connections with inhibitiotgrneurons. All populations have a recurrentf(sel
inhibitory connection proportional to the levelefcitation of the neuronal population. There are tw

types of external (extrinsic) input entering eacterotircuit from different levels of the cortical



hierarchy. Inputs can be bottom-up (forward) cotinas arising from superficial pyramidal cells of
the level below, targeting spiny stellate cells alegp pyramidal cells. Alternatively, inputs can be
top-down (backward) connections arising from degpamidal cells of the level above, targeting

inhibitory interneurons and superficial pyramidalle (Felleman and Van Essen, 1991; Hilgetag et

al., 2000).

Neuronal / haemodynamic model

Canonical micro Neurovascular Haemodynamic
circuit (CMC) coupling response

1. Spiny stellate cells

2. Superficial pyramidal cells
3. Inhibitory interneurons

4. Deep pyramidal cells

v v

Lead field model BOLD response
[
i I

MEG data fMRI data

Figure 1. Components of a forward model of fMRI agldctrophysiological (MEG) data. The generative
neuronal/haemodynamic model is shown in the toglpavhich illustrates the pathway from neural pagioins
(blue panel on the left) to neurovascular coupligeey panel in the centre) and haemodynamic regpons
(orange panel on the right). The neural model (eftel) is a laminar specific canonical microcitq@MC)
comprising four populations (numbered 1-4) peroraigion. Each CMC is linked through extrinsic (betn
regions) forward and backward connections. Prgastsynaptic neuronal signddsare combined (at the level
of the putative astrocytes) which is presentedhérhiddle panel. The ensuing neurovascular sigtleatztime t

<&




drives the haemodynamic part of the model (righteha This accounts for increased blood flow to ¥keous
compartment (pictured) and is accompanied by ctanmg®lood volume and the level of deoxyhaemoglobin
The bottom panels illustrate the electrophysiolajand fMRI measurements that arise from the nealrand
haemodynamic parts of the model respectively, ntediy a spatial lead field model for MEG and a BOL
signal model for fMRI. To make inversion of this d& tractable, we split the neuronal and haemodymam
parts and connected them via neuronal drive funstiosee text and Figure 5.

Two conversion operators govern the dynamics oh eeironal population (Jansen and Rit 1995).
The first operator converts the mean pre-synaptiadiniatem to the mean postsynaptic membrane
potentialV as follows (Freeman, 1975):

V=h® m (1)

Where ® denotes the linear convolution operator @nib the impulse response function (synaptic
kernel) with synaptic rate constant
t t

—e K, t=0
RO =1k @
0, t<o0

The second operator then transforms the postsynamimbrane potential into a firing rate, which
forms the input to the next connected neural pdjmuia

1 1

SO = (e, OV = Vi) T+ exp(a;Vin) )

In equation 3ga, is the slope of the sigmoid function (in DCM, stset to one) ant,, is the firing
threshold (in DCM it is set to zero, see Moranle@07). This effectively means neuronal firing is
treated as a deviation from baseline firing; thgratbowing for negative firing rates (Moran et al,
2007; Moran et al, 2013 and Jirsa and Haken 199¥$. is fairly common for convolution type mass
models of the sort used here e.g., Jirsa and H@lBgY). In addition, please see Moran et al, 2013 f
a discussion of other kinds of models (e.g., cotidnédased models) where nonnegative firing
constraints are explicit. The maximum firing in atan 3 is set to one because — in this
parameterisation — the maximum firing rate is luthpéth the connectivity constants (e.g. Jirsa and
Haken 1997). The dynamics of postsynaptic poteniiategionk, populationi, VX, with the synaptic

rate constant; obey second order differential equations as fatow



2

1d
(1 +—a) vE®) = £,(vg,vE W) 4)

where the intrinsic presynaptic excitations areegibbyVX, the termi/ denotes extrinsic drives of a

populatione in a distal regiorex ; and the functioif is defined as follows (Friston et al., 2017):

fi(V&, v u)

A0 (U) — () — om0 (78) — o (VE) + Cu i =55

~ { APTP(VEX) = agpspa (Vi) + assnspa (Vi) = aiinspo(VE) ifi=sp (5)

) |4 b 0(VE) = aunio (ViF) — aap-ao (Vi) + assmuo (V) + agpoao (Vi) if i = i
kA;p_’dpa(l@f,x)—adp_)dpd(Vé‘p) = Qiinapo (Vif) + aspoapo (Vs if i =dp

The laminar specificity of the extrinsic and ingio connections in equation (5) are specified by
placing prior constraints on the intrinsic (withiegion) connectivity parameters_,, as well as on

the elements of the extrinsic (between-region) &odvand backward adjacency matri

(A;”_’SS andA;”_’dpdenote forward connections matrices, whereas backe@nnection matrices are

specified byA?? P andA%P~"). Matrix C parameterises the experimental driving input émgethe
system. These modelled neuronal dynamics are themom source of both the fMRI and MEG
signals. As we will explain later, in DCM for MEGve estimate condition specific forward and
backward matrices3s;,, which are applied (algebraically added) to #y, matrices anda,_,.

parameters in order to model the differences betveaperimental conditions.

2.1.2 MEG observation model
The observation function for MEG data has the feifg form Qaunizeawet al., 2009):

YMEG = Z YXAf Z leVj (t) +em

K J

(6)

whereey, ~N(0,Cy) are 1.1.D. measurement errors (with covariancerimat,), YX is a gain matrix
for brain regionk andAX is a Laplacian operator that is modelled as a umixbf n spatial basis

functions as follows:

AK — ZAK@K
~ nvn (7)



whereAX are the spatial eigenvalues of the gain matrix@here parameters to be estimated. The
termy;; lP]-Vf(t) (wherej is the index of neuronal population) in equatiogqu@ntifies the contribution

(modelled by unknown vectd#;) of neuronal populations denoted BY(t) to the MEG signal. This

completes the forward model of MEG data.

2.2 Haemodynamic model

2.2.1 Generative model of neurovascular coupling
Neuronal dynamics (presynaptic or postsynapticjtexteurovascular coupling mechanisms, which

in turn trigger the vascular system to provide @tygor neuronal consumption. While detailed
models of the neurovascular system have been dmal¢e.g. Carmignoto and Gomez-Gonzalo
2010; Figley et al 2011), the lack of temporal teSon of fMRI places a limit on the complexity of

models that can be inverted efficiently (Huneaalgt2015; Pang et al., 2017). The framework sét ou
in this paper provides the necessary tools for @ing the evidence for models of neurovascular
coupling, enabling one to select the model(s) thatimise the trade-off between accuracy and

complexity. Two groups of models will be comparedhis paper to illustrate the approach.

The first group of models posit that an instantaiseneurovascular response to neuronal activity
(presynaptic firing rates or postsynaptic potegjigives rise to the BOLD response. This is mediate
by the release of signalling molecules that reguéatd induce blood flow. The neurovascular signal
can therefore be characterised as the algebraisaliifed and summed responses associated with
different neuronal populations. The scaling cahezibe considered to be the same for all regians, o
different across regions: we will compare the entefor each of these options below. Additionally,
we will compare models where presynaptic inputedoh of the neuronal populations in the CMC
were grouped into inhibitory, excitatory and exit signals, each scaled by global coefficients
(equal across regions) and summed to generatesitpuhe haemodynamic model, as proposed in
Friston et al (2017). Grouping the neuronal comtitns in this way offers a more parsimonious
model than parameterising every neuronal populaticontribution. Here, all scale values associated
with the neurovascular parameters had a (reladivildy prior, placing minimal constraints on their

value.

Alternatively, there might be a delay between tharonal activity and haemodynamic response, due
to the kinetics of intracellular calcium levelstime collaterals of astrocytes (Bazargani and Attwel
2016). Therefore, a second class of neurovascutdels was included with additional delay factors.
A parsimonious model that captures the mean delitly time constantr,,. due to elevation of
intracellular calcium level is governed by a secamder linear system with an impulse response

function proposed by Pang et al. (2017):



t -t
—e Tnc, t=>0
fTLC(t) = TTLC (8)
0, t<o0

The prior expected value of the delay factor inatipm 8 was0.7 s, based on recent observations

from animal studies (Masamoto et al., 2015).

2.2.2 Generative model of the BOLD response
A linear transformation of the neurovascular cauplsignal gives the vasodilatory signal that alters

the blood flow and accordingly the blood volume anxggenation level. The haemodynamic model

explains the dynamics of the vascular system &swel(Friston et al., 2000 & 2003):

hs =z —nhs = x(hipn — 1)
hin = hs
o1 L
h, = a (hin — hy) (9)
| (B in

by = G )
The first two lines in equation (9) are a dampéerfilwith the resonance frequency of the vasomotor
signal, i.e.0.1 Hz) that converts the neurovascular sigmalto a vasodilatory signak,. The
parameterg) andy in the first equation are the decay rates of thgodilatory signal and the auto-
regulatory feedback term, respectively. Activatidrihe vasodilatory signal causes alteration irodlo
inflow h;, to the venous compartments, which in turn causes@ease in blood voluntg, and a
reduction in the level of deoxyhaemoglolin. The model for blood perfusion dynamics is given by
Buxton et al.'s (1998) Balloon model, in the thadd fourth lines in equation (9). The mean rate
constantr,, in the Balloon model is the time taken for bloodoiss through the venous compartment
(the transit time). The parameter for the bloodseésstiffness isa and is known as Grubb’s

coefficient, andt, is the net oxygen extraction fraction at rest,clilgharacterises the fMRI baseline.

2.2.3 fMRI observation model
Finally, the change in blood volume and deoxyhadaitg combine to generate the BOLD signal:

h
YBoLD =Vo{kl'(1_hq)+k2'<1_h_z>+k3'(1_hv)}+63 (10)

With the addition of noise, this is the BOLD sigmakasured in the scanner. It comprises of

physiological and field sensitive parameters, tisteTable 3.
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2.3 Multimodal estimation procedure
The parts of the model described so far specifatavpay from neuronal activity to MEG and fMRI

signals. In this section we set out a novel fiesel (i.e., within-subject) method for combiningse
model components and estimating their parametdrs.pfocedure has three stages. First, a typical
mass-univariate SPM analysis is performed on th&IfMdata, to locate brain regions that evince
experimental effects. Second, a DCM for MEG is #st; comprising a neuronal part (Section
2.1.1) and an observation part (Section 2.1.2). ddwrdinates of the brain regions identified in the
fMRI analysis are used as prior constraints orotheervation part, which projects neuronal actitaty
the scalp surface. A DCM is then fitted to the MB&a using the standard variational Laplace
scheme (Friston, 2007), which provides an estinétdhe parameters and the log model evidence
(approximated by the negative variational free gperNext, using the posterior expectations of the
neuronal parameters, the DCM is used to genergkesgerior predictive neuronal response to each
experimental condition; hereaftereuronal drive functions, which form a bridge between the MEG
model and the fMRI model.

To clarify this approach, let the simulated eleghysiological response (e.g., pre or post synaptic
signals) of populatioriin regionj for the conditionsy, ..., ¢, be denoted by‘cilj(t), Cinj(t), and
also assume that the time associated Withrepetition of conditiorc, in the fMRI experiment is
denoted byt;, with total repetitions of the conditiojz,| (i.e., the total number of times that an
experimental condition * is shown to a subjectésnated by |*|). Then the neuronal drives associated

with populationi in regionj to the neurovascular function are calculated ksvis:

|cal |cnl

z(t) = ch"f (t—t)+ ---+chi{ t—t" (11)
=1 =1

Thez% (t) in each region are then combined based on thiiart hypothesis about neurovascular
coupling. In this paper, the neurovascular drivegshe haemodynamic response in regiofeach

region comprises four populations) were calculatsidg one of the two general forms:

4
ZOEDW IO
i=1

4
2O = foe ® (Z Bijz" <t)>
i=1

The first line in equation 12 states that neur@wivity causes the BOLD response instantaneously

(12)

whereas the second equality introduces a delay displersion through the application of a

convolution operator that models intracellular aatt dynamics, as in equation 8. We will refer to

11



these two forms aBirect andDelay, respectively. In equation 12, paramelgrs are scalars (for the

it" population in regiorj) that can be constrained to be identical or varpss regions.

Finally, the third step is to use these neurovascsignals as input to the haemodynamic model of
responses in each region or source (see theifissof Equation 9). The parameters and evidence of
the haemodynamic models are estimated from the fti#Rd using Variational Laplace in the usual
way (Friston et al 2007).

3. lllustrative example

3.1 Dataset

To illustrate how to apply the methods outlined\ahowve acquired a dataset from a single subject
(right-handed, male, age 30) who performed the saiméory task while undergoing fMRI and MEG
on separate days. This experiment was conductegicéordance with the Ethics Committee of
University College London, UCL Ethics Ref: 1825/Q08RI) and Ref: 1825/005 (MEG).

The task was a variant of the auditory roving odidbaradigm (Baldeweg et al. 2004), which has
been extensively characterised in patient and ebptpulations using DCM (e.g. Boly et al., 2011,

2012; Dima et al., 2012; Garrido et al., 2008; FRost al., 2018). Participants hear a series of
‘standard’ tones of the same pitch (frequency). @Bmmnally, the tone changes to a new pitch (a
‘deviant’), eliciting neural responses that gratluatduce over the tones that follow, as the ddvian
becomes the new standard. These neural effect® ecaasked deviations in the MEG signal (the
mismatch negativity, MMN) and we expected therbéaoncomitant changes in the fMRI signal. We
extended the roving oddball task with a second ex@atal factor of agency. In each block of tones,
the auditory stimuli were either produced by théject (‘control’ condition) or by the computer

(‘respond’ condition) as detailed in Figure 2.
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9 to 36 tones
“Respond” w») Duration: 700ms
or “Control” ‘,) Interval: 400-2000ms
Deviants: 0 to 6

%

2 hhd dd hdhd ts

Time (s)

~
7

Figure 2. Structure of a single block of the expemt. The subject received an auditory cue, insirg¢hem to
respond to auditory tones or control the tonespii@ssing a button). After 2s, a series of tones prasented.
Deviant tones (red striped circles) differed imgiuency from the preceding tone. Whether a toneanstandard
or deviant was independent of whether the tonetviggered by the computer or the subject. The bierted
with an inter-block interval of 1s. Image credi&ess button by Hea Poh Lin and Speaker by ProSgnitoon

the Noun Project, CC BY 3.0.

There were therefore two independent experimemtetiofs — surprise (standards vs deviants) and
agency (computer- vs human-controlled tones). Taimmae fMRI efficiency, the auditory stimuli
were arranged into blocks of four types — 1) regpeith many deviants 2) respond with few deviants
3) control with many deviants 4) control with fewwiants. The computer screen in the MRI scanner
and MEG system displayed a white fixation crossadolack computer screen, and the subject was
instructed to fixate throughout. We will presentalgses focussing on the novel manipulation of
agency in a separate manuscript. Here, we usedcdli¢ated under this task purely to illustrate the
estimation of neuronal and neurovascular respoimsé®e auditory hierarchy. The MEG and fMRI
datasets were pre-processed using standard presetuSPM12 (for details, see the supplementary

material).

3.1 Preliminary fMRI analysis
We used the fMRI data to select regions of intefestthe subsequent analyses. We specified a

General Linear Model with regressors (covariateg)oding the onsets of deviants in the control
blocks, deviants in the respond blocks, auditomscmstructing the participant of whether they were
in a respond or control block, as well as regresenmcoding head motion and a constant term. We
computed the t-contrast for the main effect of dets vs standards, thresholded at p < 0.05 family-
wise error corrected for multiple comparisons. Tilentified five regions conventionally included in
mismatch negativity studiggarrido et al.,2008): left and right Heschl’'s gy&ft and right planum
temporale and right inferior frontal gyrus (IFG).eWdentified the MNI coordinate of the peak
response in each region and extracted a singleseptative timeseries (the first principal companen

from each.
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3.2 DCM for MEG specification
Pre-processing the MEG data gave rise to four typlegvent-related potential (ERP), namely

standards in respond blocks (SR), deviants in respbocks (DR), standards in control blocks (SC)
and deviants in control blocks (DC). We defined eunonal (CMC) model comprising a fully
connected network (by defining priors on adjacematrix A) to govern dynamics of the four ERP
conditions SR, DR, SC and DC in the time intefMa}- 400] ms post-stimuli. Differences between

the four ERPs were characterised by the followietyvieen trial effect (BTF) matrix:

0 0 1

00 1 0fF (13)
01 00

The BTF matrix instructed DCM for MEG to treat the SR citioth as the baseline, and to model
each of the remaining conditions by adding condigpecific forward and backwar8 matrices
(Litvak et al., 2011). The priors for the B matsca this paper were defined such that all exteinsi
forward, backward and self-inhibition of neuronabpplations were subject to change by the DR, SC
and DC conditions. The thalamic inputs, U, wereesiezd by the lowest level in the cortical hierarchy
of our model (left and right Heschl's Gyrus). Thguts U were specified and parameterized by a
bell-shaped (Gaussian) function which encoded #iaydand dispersion of the neural response to
external stimuli. Consistent with other DCM studidsauditory mismatch negativity paradigms (e.g.,
Garrido et al., 2008, David et al., 2006, and Rastchl., 2019.), we hypothesised that the effect of
stimulation would drive neural activity about 70+fr& post stimulus (having said that, one could
explore different sets of priors for the input paeders and compare ensuing model evidences
associated with them, i.e. using Bayesian modelpawison to find the best prior for any specific
auditory paradigm). We fitted this model to the MEG@ta using the eight principal modes of the
modelled and observed ERPs as data features (Aldwitz and Friston 2015; Friston, et al., 2007).
Using the posterior expectations of the neuronedrpaters, we then used the canonical microcircuit
model to simulate neuronal drives (i.e., postepoedictive expectations) for each of the four

experimental conditions.

3.3 Neurovascular model specification and comparison
The neuronal inputs to the haemodynamic model wereerated from the neuronal drive functions,

parameterised according to the hypothesis beingded et the simulated neuronal response of
populationi in regionj for the four conditions be denoted @'DR’DC_SC(t). Using equation 11, the

neuronal drives associated with populatioim regionj to the neurovascular function are given as

follows:
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We defined a sample model space that included af 9 candidate haemodynamic models covering

a number of biologically informed hypotheses abitg nature of neurovascular coupling. These

models varied according to four model attributefaotors:

Q1: How should neurovascular coupling be paransstdfi We considered three options, regarding

whether the haemodynamic part of the model shoalldriven by:

» collaterals from presynaptic inputs to each popahatwith separate parameters for each
population

» collaterals from presynaptic inputs to each popatatgrouped into excitatory, inhibitory and
extrinsic collaterals (Friston et al. 2017)

» postsynaptic neuronal drivg functions in equation 11)

Q2: Should distal neuronal sources exert changeth@megional BOLD response? In other words,
should haemodynamics be driven by local neuronpllations only, or additionally by exogenous

inputs from other regions?

Q3: Should neurovascular coupling parameters b®negpecific or equal for all regiong (in

equation 12)?

Q4: Should a Direct or Delay model governing thaaiyics of astrocyte responses be used (selection
of the first or second equality in equation 12)sTdddresses the delays associated with the redéase

vasoactive agents (e.g., intracellular calcium).

These four questions underwrite 16 candidate mpdisted in Table 5. We then estimated the
parameters and evidence (free energy) for eacheofrtodels using a standard variational Laplace
scheme (Friston et al 20070 address each experimental question, we groupezhtitidate models
into families and compared them using family-wissy®sian model comparison (Penny et al., 2010).
Finally, we used Bayesian model comparison over ¢hére model space to find the most

parsimonious explanation for the origin of the BOtd3ponse in our dataset.

3.4 Results
We first used the fMRI data to locate brain regioesponding to the main effect of deviants versus

standards. As hypothesised, this included fivearegitypically found in the oddball paradigm, shown

in Figure 3a.
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a) Regions of interest (fMRI) b) Model structure
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Figure 3. Region of interest selection and DCM meknstructure. a) Five neuronal sources activatathd the
fMRI experiment, as identified using a mass unatarianalysis. These were left and right Heschfag¢fHG,
rHG), left and right planum temporale (IPT,rPT) aight inferior frontal gyrus (rlFG). Peak MNI cadinates,
used as priors for MEG source localisation, arevshdn) Structure of the neuronal part of the DCMCcE large
black circle is a canonical microcircuit (CMC), Brbic connections between regions are shown agedur
black lines, and connections that were subjecthinge — from one condition to another — are inditatith
straight red lines.

Next, we used the coordinates of these five regigngriors for source localisation in DCM for MEG.
We specified a DCM, as shown in Figure 3b, whehdaain region or source (large black circle)
was a canonical microcircuit. We fitted this mottethe MEG data. Figure 4 shows the scalp maps
associated with the prediction of the model anddbgerved data over the time course of a trial. A

close correspondence between the predicted andatsais apparent.
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Figure 4. DCM for MEG results. This figure showslgcmap projections of observed and predicted mesgo
for two conditions; namely, standard and devianet(in the respond blocks only).

We then used the posterior neuronal estimatestolaie pre/postsynaptic potentials associated with
the four experimental conditions — i.e. to genem@ronal drive functions. These are shown in
Figure 5a for the inhibitory population in the IF@gion (the rest of the neuronal drives were
calculated in a similar way). These condition-sfiecesponses were then aligned with the associated
condition-specific stimulus onsets in the fMRI expental design (equation 11 and Figure 5b).
Neuronal drives associated with each source wera #ftummed (and in some models filtered to
replicate delay dynamics of neurovascular couplity)generate the neurovascular drive to the

haemodynamic model (equation 14 and Figure 5c).
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a) Neuronal drive functions b) Neural drive functions x fMRI task onsets
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Figure 5. Simulated neuronal drive associated wite neuronal population. DCM for MEG was first used
infer the neuronal parameters of CMC models. a) &hsuing neuronal parameters were used to generate
condition specific neuronal responses (e.g., preysic signals). b) To generate the input for the
haemodynamic model, the neuronal drive functionseve®nvolved (or shifted in time) with the onseteaich

trial of the fMRI experiment. ¢) All condition spific neural responses were then summed to genénate
neuronal drives to neurovascular coupling unitsisTwias repeated for each neuronal population aath br
region.

As detailed in Section 3.3, we specified and edehd 6 candidate haemodynamic models, which
varied in their mechanisms of neurovascular cogpliccording to four model factors. We then
divided the models into ‘families’ according to batactor and performed a series of family
comparisons. For this exemplar single subject a@mglythe results of Bayesian model comparison
showed that neurovascular coupling was best exgda{with a posterior confidence approaching

100% for each comparison) as:

0] driven by collaterals from presynaptic input, sepely parameterised for each neuronal
population, rather than presynaptic input groupet iexcitatory/inhibitory/exogenous

connections or postsynaptic input
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(i) driven by local neuronal projectiomsthout afferent input from distal regions

(iii) separately parametrised on a region-specific bediser than having shared weights for
each condition and neuronal populations across begions

(iv) having a direct form of model governing the dyna€ astrocyte responses, as opposed

to a delayed effect.

The overall winning model in our sample model spaaéh a log Bayes factor of 7.67 compared to
the next best model, suggested that this subj@®®&D response could best be explained by
instantaneous local presynaptic neuronal activityith region-specific parameterisation of
neurovascular coupling. Figure 6 shows the estidhagurovascular coupling parameters from this
model, with parameters not contributing to the moeledence pruned using Bayesian model
reduction. For each parameter, Bayesian model tietuwas also used to test the hypothesis that the
parameter was present vs absent (i.e. non-zerere3. 2n this plot, each group of four bars are the
estimated contribution of each neuronal popula{®8, SP, II, DP) to the haemodynamic model. In
all five regions there were parameters which dedaonfidently from their prior expectation of zero
confirming that the synaptic activity estimatednfrthe MEG data captured variance in the fMRI data
(explained variance per region: 53%, 37%, 64%, arh28%). Figure 7 shows the prediction of the

winning model and the observed fMRI time serietheffive regions.

Readers should note that this example is only @gdrio illustrate how to apply the proposed method,
therefore the results should not be generalisedh ftbe exemplar subject, with this specific
experimental paradigm. To make inferences aboutdljand atypical neurovascular coupling, group

studies would be necessary, with the appropriaiedsn subject modelling and model comparison.
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Posterior estimation of neurovascular coupling

IHG rHG IPT rPT riIFG

Effect size
S

Bayesian Model Reduction
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Parameter (neuronal population)

Figure 6. Estimated neurovascular parameters. Tdie ghow posterior estimates of the neurovasadapling
parameters} that best accounted for the multimodal data andRB&halysis of estimated parameters that
elucidate key parameters governing dynamics of. ddta grey bars are the expected values and tlkeepior
bars are 90% credible intervals. Each group of fmms corresponds to parameters quantifying th&ibation

to the neurovascular coupling by: spiny stellat8)(Superior pyramidal (SP), inhibitory internewdil) and
deep pyramidal (DP) cells. The titles indicate ltiha@in regions: left Heschl's gyrus (IHG), right s gyrus
(rHG), left planum temporale (IPT), right planunmigorale (rPT), right inferior frontal gyrus (rIFG).

! The results in figure 6 were reported in a praxisi form — as part of a tutorial/review in Jafaret al 2019.

20



Predicted (54.43%) Observed
Tr ‘
g 0 ‘I'IJ'H"*A(‘V’\ 4‘ww'w“‘..'J"'\J"A"I‘M""f"\"\“‘rv’\"rjUh-’f\"‘a'.vw.*.“‘"f'v‘knﬁ'4"'4\MI,A.“J-LMH\4LM"MM%\ 'H“&}“IJU”\
500 1000 1500 2000 2500 3000
1k Predicted (37.32%) Observed
© 05 i
0 _“\/'\\HMMK.«A" {A'LNLWW’M}‘ .\,"‘J-Ar ‘IAM”J\,\J\,’ M"H‘*f\-‘-{kl‘,l.j.\ln,f www\yw,qﬂkw,' .quf,J W,
-05 C 1 1 1 1 1 1
500 1000 1500 2000 2500 3000
2t Predicted (63.57%) Observed
bips i
& :)fwm;rvl-*ﬂw‘w‘rr*ﬂ"M“rW“,M"nf»\}'*v’wﬁ*"w-/mWW*V"M'J’?*‘*A"(*"»'JJ’W'-'W'WM“‘N}%“'ML*.
'1 1 1 1 1 1 1
500 1000 1500 2000 2500 3000
1+ Predicted (37.16%) Observed
" |
& 0 j.«m~_LL.w,wLw"JMMLJ:\',u”J.xJ;\Lru*w&.vww:M:w:mM,MN‘*MW-Mm‘.nM‘m
_1 1 1 1 1 1 1
500 1000 1500 2000 2500 3000
— Predicted (28.13%) Observed
1 -
O
L 0 g-ﬂmiww-.w..«',-h’ﬁ"\\\.\\%‘v%‘-mumlx)M.wwwbﬂ."ﬁx‘l,wl.hw.l.uh.b.‘-&\'”'*\»!"-\MJ»W-UMNAWM.M
-1 C 1 1 1 1 1 1
500 1000 1500 2000 2500 3000
Time (Sec)

Figure 7. Model prediction and observed data. tediBOLD time series associated with the instasdan
region-specific model of neurovascular coupling hatdsms driven by regional presynaptic signals el &
observed fMRI time series are shown. The verticdd tabels are associated with the five brain regideft
Heschl's gyrus (IHG), right Heschl’'s gyrus (rHGgftl planum temporale (IPT), right planum tempor@T),
right inferior frontal gyrus (rlIFG). Numbers in thegend denote explained variance (%).
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4. Discussion

4.1 Methodology
The novel contribution of this work is to establighrelatively straightforward multi-modal DCM

procedure that flexibly connects laminar-specifieural mass models, which are fitted to
electrophysiological data, with neurovascular megdelhich are fitted to fMRI data, via simulated
neuronal drive functions. Together, these form mmete generative model of the BOLD signal,
which enables hypotheses about neurovascular cguaibe tested efficiently using Bayesian model
comparison and reduction. The neuronal drive fonstiact as a bridge between the fMRI and MEG
modalities, enabling multi-modal analyses to bedcmted with any of the neural mass models
implemented within the DCM framework. We addresshd difficult parameter identification
problem inherent in having a single generative rhamfeboth BOLD and electrophysiological
recordings by separately estimating neuronal paemheusing MEG data, and neurovascular /
haemodynamic parameters using fMRI data. This aasden as a simple form of Bayesian belief
updating, in which the posterior estimates basexh WIEG data are used as precise priors for models
of haemodynamic responses, which share a commoof seturonal parameters. Crucially, we can
leverage this form of Bayesian belief updating gsioff the shelf’ dynamic causal models for both
modalities. The only things we need to add areamalrdrive functions that link the modality-specifi
DCMs. The proposed approach may offer new insigtitsthe source of the BOLD response in the

healthy and pathological brain and is availabletlgh the SPM software.

As noted in the introduction, the purpose of thapgr is to introduce an analytic procedure — not to
draw any definitive conclusions about the natureetfirovascular coupling or how haemodynamics
are affected by demographic or diagnostic facts.therefore elected to present a single case .study
This analysis can be generalised to group studiigyunierarchical or parametric empirical Bayes for
dynamic causal modelling (Friston et al., 2015,&01n principle, this provides an opportunity to
infer the nature of haemodynamic coupling thatasserved over subjects. However, this particular
application was not our focus, largely because daildd mechanistic understanding of
haemodynamics would be better informed by more siveadata (probably from animal studies).
Rather, our goal was to provide efficient estimaibsaemodynamic parameters from non-invasive
(human) data, enabling researchers to investigattork like age and pathology (e.g., migraine,
Alzheimer’s disease) on haemodynamic parametensa-way that is not confounded by uncertainty
about changes in neuronal coupling and intrinsicudiry. In this light, the current paper can be
regarded as a foundational (technical) descriptibthe methodology that could pave the way to
addressing questions about between-subject efbectaemodynamic parameters (under a particular
model of neurovascular coupling). This kind of aggion speaks to the underlying motivation for
combining electromagnetic and haemodynamic datahdnmt, the principal advantage of multimodal

fusion in this paper is the opportunity to estimatel quantify haemodynamics per se. The extra
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information afforded by MRI data about neuronalgmaeters is limited, given an appropriate model
of electromagnetic responses. The key thing thatMiRI data brings to the table is the ability to
guantify neurovascular coupling given (MEG or EE&3éd) estimates of neuronal coupling, on a per
subject basis. In this setting, the proceduresirmdlabove are aimed explicitly at disambiguating
changes in neuronal and haemodynamic coupling, wipeantifying age and disease-related

neurophysiology.

One might ask what the advantages are of acquikii and M/EEG data in separate sessions — as
opposed to simultaneously. Clearly, simultaneouguiadion has the benefit of modelling the
electromagnetic and haemodynamic responses toaime seuronal generators. However, from a
statistical perspective there are advantages taragpacquisition protocols. These rest upon tbe fa
that the efficiency of the design can be optimigmdeach modality separately. This is particularly
prescient given that the haemodynamic responsetifundmposes particular constraints on
experimental design for fMRI, which would be inappriate for an EEG paradigm. For example, one
can use many more EEG trials under a separate sitbgui protocol. Assuming a stereotypical
neuronal response for each trial type thereforeblesaan efficient estimation of neuronal (and

haemodynamic) model parameters, via the use bBtrerages.

4.1.1 Relation to other methods
The approach set out here can complement wellledied empirical methods for measuring

cerebrovascular reactivity; namely, CO2 challen@éaggio et al 2014; Salient et al 2014). These
procedures enable blood flow to be modulated arahtified in vivo; however, they do not enable
one to estimate the underlying neuronal respomsesrtous stimuli. Furthermore, these methods may
not be appropriate in all situations. For examplere the study of certain clinical populations
precludes the use of gas challenges. Therefor@nanwasive method that relies only on BOLD
contrast, such as that described here, could be mactical. Additionally, using electromagnetic
responses that are generated directly from neurgleglolarisation) sources allows one to compare
neurovascular models that map from neuronal regsaiashaemodynamic and metabolic responses in

a more efficient manner.

The multimodal dynamic casual modelling approacksented in this paper (for investigating
neurovascular mechanisms) can be compared agaimst modelling and simulation techniques.
Pang et al (2018) considered different models afreéascular coupling, each of which drove a
canonical haemodynamic response function (HRF)y Titied these models (where each formulated
a different neurovascular mechanism with a comm&#Ho BOLD time series and used goodness
of fit criteria for model selection. Schirner et @018) used structural imaging for inferring etfee
connectivity and simulated data from a hemodynamodel that was driven by EEG source activity
(under the hypothesis that excitatory activityreftected by EEG, perfused blood flow) to replicate

BOLD responses similar to real fMRI data.
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From a technical standpoint, using variational Bige techniques (inferring parameters by
optimising free energy) is superior to maximum litkeod or goodness of fit (Bishop, 2006). This
follows because fitting models based only on theguracy fails to account for model complexity and
precludes generalisability. In addition, model rastiion using dynamic casual modelling allows for
estimation of the posterior probability of parametand model evidence, which is necessary for
model selection based on Bayesian model compa(afarian et al, 2019). This allows for testing
and comparison of several hypothesis about differeathanisms of neurovascular coupling. The use
of multimodal data provides complementary constsaom parameter estimation that afford a greater
efficiency — in terms of parameter estimation aralel comparison — then using a single (i.e., fMRI)
modality (Wei et al 2020). In short, our proposedltrmodal approach could complement existing
fMRI DCM studies elucidating, for instance, neuwld haemodynamic contributions to aging
(Tsvetanov et al 2016).

4.2 Potential applications
To illustrate the type of hypotheses that can bdres$ed using this approach, we used Bayesian

model comparison to address four experimental guressin a single subject MEG/fMRI dataset. Our
model space could be applied directly to data feogroup of subjects, or it could easily be modified
in order to accommodate different hypotheses abeutovascular coupling (please see the software
note for more information). In practice, we exp#wt a model space such as this would be used to
identify a parsimonious model that was apt for @augrsubjects, before being used to quantify subject

specific differences in model parameters, for eXardpe to aging or disease.

To illustrate this kind of model comparison, we edkvhether presynaptic or postsynaptic neuronal
activity mediated haemodynamic responses. Thisafoguestion speaks to the findings of Attwell
and ladecola (2002) and Logothetis (2003, 2008) whncluded that mean neuronal firing rates

(presynaptic signals) are largely responsiblelerBOLD response in humans.

The second question was whether extrinsic collhtaff@rents from distal regions contribute to

haemodynamics, or whether neurovascular couplingldhoe considered a purely local phenomenon.
Bayesian model comparison suggested that locabnalactivity provided the best explanation for

the BOLD response, as is assumed, for example,ass+anivariate (SPM) analysis or Dynamic

Causal Modelling (DCM) for fMRI.

The third question in this illustrative model spas@s whether the contribution of neuronal

populations to the neurovascular units was idehtcaoss brain regions or region-specific. Model

comparisons of this sort could establish whetherem®al contributions to neurovascular mechanisms
are region-specific (Devonshire et al., 2012),mateled distinct across cortical layers (Goense.gt al
2012 & 2016).
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The fourth question we asked was whether the BOgBas was best explained as being driven by a
Direct (scaling only) or Delay (scaling and delay)del of neurovascular coupling. This question was
motivated by studies in animal models, suggestinglay between neuronal activity and the BOLD
response due to elevation of intracellular calcinnastrocyte collaterals (Rosenegger et al., 2015).
We used a lumped linear second-order model, whachbe inferred efficiently using fMRI data. The

ensuing model comparison addressed questions attoether instantaneous electrophysiological

fluctuations induce BOLD responses directly, aorigal in Logothetis (2003).

The proposed framework may be particularly usedulstudying processes that effect both neuronal
and haemodynamic responses. For instance, it dmulgsed to model effects of aging (D'Esposito et
al., 2003) in cognitive paradigms, where aging wlobe expected to not only affect neuronal
responses, but also the stiffness of blood vessglsntified by Grubb’s exponent in the
haemodynamic model (see Equation 8) and/or delaythé model neurovascular coupling. To
facilitate this, multimodal DCM could be combinedtiwthe parametric empirical Bayes (PEB)
(Friston et al., 2016), to test for differences@urovascular and haemodynamic parameters between
young and old age groups. The approach in this rpamey also be useful for characterising
experimental manipulations for which neurovasctuaction alone is altered. For instance, the action
of a particular intervention such as diazoxiderisdpminantly on neurovascular coupling, with little
effect on neuronal dynamics (Pasley 2008). In sumpnthe current modelling initiatives, together
with PEB for random (between subject) effects asialyare well placed to characterise and elucidate

neurovascular physiology.

Finally, an interesting application could addrdss genesis of the negative BOLD signal. To do so,
one would start by designing a paradigm (e.g. Klarget al., 2011 & Huber et al, 2014) to elicithbot
positive and negative BOLD responses. Using mulliahdCM and Bayesian model comparison,
one could test hypotheses about neurovascular mische that might induce negative BOLD
(Valdés-Hernandez et al., 2018). Interesting qaaestimight include (i) do BOLD responses result
from positive/negative neuronal drive signals d@oifuced in this paper? (ii) Does neuronal inhiiiti
significantly contribute to the negative BOLD (Saliret al., 2006; Bernal-Casas et al., 2017)?

4.3 Limitations and further development
A common issue in non-simultaneous multimodal pigrad is the possibility of different underlying

generators of neuronal responses for each modgiilgral et al., 2010). For the example analysis in
this paper, the use of MEG data to inform the attarsation of fMRI data rests explicitly on having

a common neural model that can generate both niedalivhich shares the same neuronal parameters
and architecture (see Hall et al., 2014). In otherds, we assume that the neuronal responses in the
two recordings — under the same paradigm — arerggkin the same way. However, if quantifying

neuronal plasticity over time were of interest, aneld collect MEG and fMRI data for several days
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and perform multi-modal DCM at each time point. mheéhe parameters of the MEG-informed
haemodynamic model (associated with each day) dmilentered into a second level analysis to test
for commonalities and differences over time. Foaragle, one could test for differences between
scanning in the morning and evening, or for a patdam effect of the number of days between
recordings. Given that we have illustrated the pdoce using a single dataset, we could not illtestra
tests for session to session variability. Howebstween session (or subject) variability in model
parameters is generally assessed using hierarchicalels, known technically as Parametric
Empirical Bayes (Litvak et al 2015). This is anaddished technology for between session and
between subject effects in the parameters of dynaausal models and — in principle — would be
straightforward to apply in the current setting. dther words, having established the model of
neurovascular coupling with the greatest evidendbeabetween session (or subject) level, one can

then quantify the between session (or subjectpiadiy in model parameters.

The approach described here affords the opporttoiipvestigate how (weighted) laminar-specific
neuronal activity contributes to a single measurgniper region) BOLD signal. Therefore, a key
limitation of the model is the assumption of a #ngaemodynamic compartment. This could be
improved by using laminar fMRI data. In fact, nduseasculature has a well-studied spatial
arrangement in the cortical depth, which was medelh the DCM framework by Heinzle et al.
(2016). This modelling approach could be incorpegtain the approach described here, to better
account for differences across laminae due to Vasoe. Furthermore, as high spatial resolution
fMRI data becomes more readily available — withrbleout of 7 Tesla scanning — the question arises
of how to make use of these data to inform estisnateneurovascular coupling parameters. There is
considerable interest in associating the BOLD raspowith specific layers of the cortical column,
and the laminar specificity of forward and backwaahnections (e.g. Scheeringa & Fries, 2017,
Lawrence et al., 2017, Duyn, 2012 and Scheeringa.e2016). Typically, laminar fMRI involves
dividing the cortical depth into several layers axtracting time series from each layer. Incorpogat
these laminar specific measurements into the frarevpresented here could, in principle, be
achieved by incorporating a mapping between neliggidvities corresponding to cortical layers and

the laminar haemodynamic model.

It is worth reiterating that the current approasHléxible in the sense that one can select diftere
models (or different priors) that best accommodiagescientific question at hand (see the review by
Huneau et al., 2015 for different examples). Thiect®n of neuronal and haemodynamic models
(and their priors) — for the exemplar analysishis {paper — was motivated by the fact they are well
established in the literature, and are readily lalsde within the SPM software. Nevertheless, as
physiological understanding and imaging fidelity prove, there are new opportunities for
development of the models themselves. In the exapmEsented here, we used the classic model of

Buxton et al. (1998) to generate predicted haemaajyn responses. However, alternative
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haemodynamic models could be implemented and cadpbased on their evidence, to address
particular questions of interest. For instancerglie significant interest in elucidating the maakens
that give rise to the BOLD post-stimulus undersh@@gU) (van Zijl et al., 2012) as well as
differences in the PSU between experimental canditand people. Characterising this phenomenon
calls for models that distinguish the neural, neasgular and haemodynamic contributions to the
observed fMRI signal — the statistical efficiendywhich can be improved by the use multi-modal
data, such fMRI and EEG / MEG (Wei et al., 2020)rekent example of a promising dynamic
haemodynamic model, which could be implementechén@CM framework, explains differences in
the PSU (and other transient data features) betwetical laminae, by explicitly encoding
haemodynamic flow through ascending veins (Havligeldludag, 2020). The evidence for a model
such as this could be compared against the moasl here and the optimal one selected for a
particular application. Note, however, that if teeperimental interest is primarily about condition-
specific neural / neurovascular effects, the chamtéhaemodynamic model may have a limited
influence on the results (e.g. as found by Havlietlal., 2015). This is because there is, to aelarg
degree, conditional independence between neuralhaethodynamic parameters (Stephan et al.,
2007), a situation further improved by the use oftrmodal data (Wei et al., 2020). This suggests
that different contributions to the data could lemtified efficiently. Another example would be for
modelling metabolic activity; i.e. the usage of@lse induced by excitatory and inhibitory activity.
For this, one may consider using inhibitory anditaxory neuronal drive functions, introduced here,

as the inputs to the model by Sotero et al. (22009).

Finally, the priors for the model parameters (fotroCMC and haemodynamic models) can also be
updated based on empirical studies. As an exangi®/] assumes a prior for the resting blood
volume V,, of 8%. Since the introduction of this model, sasdhave generally found a lower value
(e.g. 5%) (Leenders et al, 1990). Changes in passumptions can be implemented easily by
changing the appropriate Matlab function encoding dbservation model (e.g., spm_gx_hdm.m).
Priors for the parameters of CMC model can alsoated. For example, the particular parameter
setting of the sigmoid function in CMC model canupelated (e.g., by updating firing thresholds to
mV or considering it as free parameter) in the SBdftware to better accommodate biological
plausibility (the associated function is spm_dcmcctim.m). In summary, we hope the statistical
tools presented here will prove useful, for both déimgoing development of neurovascular models and

the application of these models for testing hypsé¢iseusing multi-modal data.

5 Software note
Tools for conducting the analysis procedure preskent this paper is included in SPM12 software.

The key function for multimodal DCM inversion ismpdcm_nve.m. Input to this function is a cell
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array that includes: (i) SPM analysis of fMRI daf#), extracted fMRI time series, (ii) DCM for
M/EEG, (iv) options for how neuronal responses texcieurovascular coupling and how neuronal
vascular coupling should be modelled, and (v) arimalbat defines whether any neuronal activity
should be excluded from the study (e.g. excluding/gmst synaptic inhibitory activity from the
neuronal drive functions).The model options definithe interface between neuronal and
neurovascular coupling should be defined as a Matéd array. The first entry of the cell indicates
that the BOLD signal can be induced by pre- (‘pre9st- (‘post’) synaptic signals or decomposed
presynaptic signals (‘de’) (Friston et al., 201The second entry defines whether for differentrbrai
regions, the neurovascular coupling model has dnees(‘'s’) or different (‘d’) parameters. The third
entry is to select whether extrinsic neuronal a@gti{'exc’) or intrinsic neuronal activity (‘int’)
induces regional BOLD signals (when using the aptjpost’, this option should be set to ‘na’). For
instance, the model option M = {'pre’, ‘s’, ‘int’states that the presynaptic neuronal drive (exctudi
extrinsic neuronal drives) induces a model of neasoular coupling that has the same parameters

across all regions.

To exclude any neuronal drive from the fMRI study,1 vectors with an entry of one (present) or
zero (exclude) can be defined (the first entrysisomiated with superficial pyramidal cells, theoset
entry with inhibitory interneurons, the third entrjth excitatory interneurons and the fourth engry
associated with deep pyramidal cells). For instaifiaee wanted to exclude an inhibition signal from
the fMRI inversion, we could define matrix O =[ 1101]. The option for excluding some of the
neuronal drives allows one to specify models tmatilate signalling mechanisms such as glutamate
release (typically from excitatory populations) tthaay dilate capillaries directly by relaxing
pericytes (Hall et al., 2014). In effect, one caaleate the evidence for models in which excitatory
signals to neurovascular coupling (potentially raéeli by glutamate) have distinct effects on the

BOLD response compared to inhibitory populations.

Functions that are called by the estimation fumctiqgspm_dcm_nvc.m) include: (i)
spm_dcm_nvc_fmri_priors.m, which can be used tandepriors for neurovascular parameters as
well as the haemodynamic response function; (i) spcm_nvc_specify.m, which takes the SPM.mat
file for fMRI analysis and creates experimentaluhpme series for fMRI inversion (this routine als
defines necessary parameters for DCM inversioii); pm_dcm_nvc_nd.m, which uses estimated
neuronal parameters from DCM for ERP and generateguronal drive function over different
experimental fMRI inputs; and (iv) spm_nvc_gen.mickhgenerate a BOLD signal prediction from
scaled summed of neuronal drives. Inputs to spm_dem nd.m are DCM for M/EEG and
experimental inputs for fMRI. This function usesgpm_fx_cmc_tfm_gen.m to create (decomposed)
presynaptic signal (with or without external newbrdrive), (i) spm_dcm_nvc_rep.m, which
replicates the neuronal signals over fMRI trialsl @n) spm_gen_par.m, which generates condition-

specific neuronal parameters from DCM for M/EEG.
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7. Tables

Table 1. Parameters of the neuronal model (see also Figure 1

Aik

C

Description Par ameterisation

Postsynaptic rate constant of thé&"neuronal exp(HK )Q(I
population in each dfl regions

Intrinsic connectivity between populationandk in exp(H )@_
each region. 2

a=[2111]%512

Condition-specific matrices. Elements are zero ssle O f
forward, backward or intrinsic connections are
allowed to change in different conditions.

Forward and backward extrinsic connectiv exp(04) . Asp
matrices. If there is any forward (backwar

connection between from regiog to i, the

corresponding elemertt, j) in Ay (respectivelyA,)

is set to one.

Scalar matrix to driving input 6,

Table 2: Parameters of neurovascular and haemodynamic resfonctions.

Description Parameterisation Prior

Rate of signal decay per sec 0.64Cexpg, . p(4,) = N(0,2%)
Rate of flow-dependent elimination 0_32[bxp6X ) p(QX) =N(0,0)
Rate of hemodynamic transit per se 2 00Cexp@, = p(6,) = N(0,2%)
Grubb's exponent 0.32Exp@, | p(8,) = N(0,0)

Intravascular : extravascular ratio 1.00CEXpG, p(8.) =N(0,5)

Resting oxygen extraction fraction 0_40[9Xp6¢ ) p(g¢) =N(0,0)
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Kk =[256,128,16,32

Prior

p(&,)=N(0,0)

p(d,) =N(0,0)

P(6)=N(03

P(6,) =N(0.3

p(ét) = N(0.3;)



ﬁ Sensitivity of signal to neural activit' 0 p(8) =N(0 %)
1 k)
T, Decay rate of the astrocytes collate 0.7 - exp(6;,,)

1
p(enc) = N(O' E)

Table 3: Biophysical parameters of the BOLD observatiordeion equation 10.
Description Value

V, Blood volume fraction (.08

k, Intravascular coefficient 6.9[¢

K, Concentration coefficien & L@

k, Extravascular coefficient 1— ¢

Table 4: Glossary of variables and expressions.

Variable Description
u Thalamic input, modelled by a Gaussiaction.
V}.K Thej-th (neuronal) state in regidft e.g., mean depolarisation of a neuronal popuiatio
J(V]K) The neuronal firing rate — a sigmoid squashing tiencof depolarisation
z Neurovascular signal; e.g., intracellular astrocgkium levels
hg, by, by By Haemodynamic states; h vasodilatory signal (e.g., NO);,h blood flow, K - blood —

volume and f- deoxyhaemoglobin content

: Electromagnetic field vector mapping from (neurdnaktates to measured
(electrophysiological) responses
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Table 5: Model space design to investigate function of neassaular coupling.

Model F1: Parameterization F2: Distal inputs? F3: Region-specific? F4: Direct vs Delay
1 Pre Yes Yes Direct
2 Pre No Yes Direct

3 Pre Yes No Direct
4 Pre No No Direct

5 Post N/A Yes Direct
6 Post N/A No Direct

7 Pre (Friston et al.2017) Yes No Direct
8 Pre (Friston et al.2017) No No Direct
9 Pre Yes Yes Delay
10 Pre No Yes Delay
11 Pre Yes No Delay
12 Pre No No Delay
13 Post N/A Yes Delay
14 Post N/A No Delay
15 Pre (Friston et al.2017) Yes No Delay
16 Pre (Friston et al.2017) No No Delay

* Factors F1-F4 correspond to the factors of theeeinental design described in Section 3.3
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