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Targeting residual cardiovascular risk in primary and secondary prevention, would allow deployment of novel therapeutic agents, facilitat-
ing precision medicine. For example, lowering vascular inflammation is a promising strategy to reduce the residual inflammatory cardiovas-
cular risk in patients already receiving optimal medical therapy, but prescribing novel anti-inflammatory treatments will be problematic due
to the lack of specific companion diagnostic tests, to guide their targeted use in clinical practice. Currently available tests for the detection
of coronary inflammation are either non-specific for the cardiovascular system (e.g. plasma biomarkers) or expensive and not readily avail-
able (e.g. hybrid positron emission tomography imaging). Recent technological advancements in coronary computed tomography angiog-
raphy (CCTA) allow non-invasive detection of high-risk plaque features (positive remodelling, spotty calcification, low attenuation plaque,
and napkin-ring sign) and help identify the vulnerable patient, but they provide only indirectly information about coronary inflammation.
Perivascular fat attenuation index (FAI), a novel method for assessing coronary inflammation by analysing routine CCTA, captures changes
in the perivascular adipose tissue composition driven by inflammatory signals coming from the inflamed coronary artery, by analysing
the three-dimensional gradients of perivascular attenuation, followed by adjustments for technical, anatomical, and biological factors.
By detecting vascular inflammation, perivascular FAI enhances cardiovascular risk discrimination which could aid more cost-effective de-
ployment of novel therapeutic agents. In this article, we present the existing non-invasive modalities for the detection of coronary inflam-
mation and provide a practical guide for their use in clinical practice.
...................................................................................................................................................................................................
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Introduction

Coronary artery disease (CAD) remains a leading cause of death and
disability.1 Current cardiovascular risk modification focuses on life-
style interventions and the optimal control of traditional risk fac-
tors.2–4 Newer treatments such as pro-protein convertase subtilisin/
kexin type 9 (PCSK9) inhibitors or canakinumab,5 could also be
administered in certain patients,4 but their untargeted deployment is
not cost-effective. It is therefore essential to develop new non-inva-
sive diagnostic tests that would identify the vulnerable patient, going
beyond current clinical risk scores,6 which have moderate only per-
formance, systematically overestimate the actual risk for cardiovascu-
lar events,7 and are inappropriate for assessing risk in special groups
of patients, such as those with autoimmune chronic diseases (e.g.
psoriasis, rheumatoid arthritis) or HIV, known to be at high cardio-
vascular risk.8 As many acute coronary syndromes (ACS) occur in

individuals without obstructive atherosclerotic plaques,9,10 new tests
should focus on identifying the vulnerable coronary plaques, rather
than the degree of luminal stenosis they cause.

Vascular inflammation is a critical factor involved not only in ath-
erosclerotic plaque formation, but also in the triggering of plaque
rupture. The role of inflammation in atherosclerosis has been recog-
nized for decades,11 and its importance in human coronary athero-
sclerosis is further supported by epidemiological evidence and
Mendelian randomization studies.11,12 Recently, the CANTOS trial
provided the first clinical evidence that reducing systemic inflamma-
tion by the intereleukin-1b inhibitor canakinumab significantly lowers
the risk of major adverse cardiovascular events.5 Therefore, the as-
sessment of ‘residual inflammatory risk’ has been proposed as a ra-
tional strategy for enhancing risk prediction and guiding the
deployment of cost-effective, precision treatments for cardiovascular
disease prevention.5 These concepts are summarized in Figure 1.
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Residual inflammatory risk can be quantified either by measuring

circulating inflammatory biomarkers [e.g. high sensitivity C-reactive
protein (hsCRP)] or by imaging [e.g. positron emission tomography/
computed tomography (PET/CT)]. However, circulating biomarkers
lack specificity for vascular inflammation, while PET/CT is expensive

and not widely available. Coronary calcium score measured by CT, is
a rational biomarker for risk stratification in low/intermediate risk
individuals, but it is increased by risk-modifying treatments such as
statins, limiting its use in secondary prevention. We have recently
developed13 and validated14 a new method for the non-invasive
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Figure 1 Current landscape in cardiovascular risk stratification. A schematic representation of coronary luminal stenosis over ageing (chronological
or biological) is shown at the top. It is estimated that �6.5% of the general population will develop obstructive coronary artery disease during their
lifetime. At the early stages of disease, before the clinical manifestations of atherosclerosis, cardiovascular risk stratification is based on the assessment
of the clinical profile and the use of risk scoring systems (which usually have modest predictive accuracy). In asymptomatic subjects, risk prediction
can be further enhanced by coronary calcium scoring. Non-invasive diagnostic assessment of symptomatic subjects relies on functional stress imaging
or anatomical assessment by coronary computed tomography angiography. However, �50% acute coronary syndrome occur in patients without
any obstructive plaques,69 for whom usual functional imaging tests are of limited diagnostic value. Novel, accurate, and cost-effective ways for cardio-
vascular risk discrimination (e.g. assessment of coronary inflammatory burden) would allow the deployment of more effective prevention treatment
strategies and save lives, but appropriate screening tools for the detection of coronary inflammation have been lacking.
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quantification of coronary inflammation by analysing the changes of
perivascular adipose tissue (PVAT) attenuation (or radiodensity) in
coronary computed tomography angiography (CCTA). This new bio-
marker, called perivascular fat attenuation index (FAI), overcomes
many of the limitations of existing biomarkers,13,14 and could be a
valuable tool for the quantification of residual inflammatory risk and
cardiovascular risk stratification.

In this article, we discuss the existing non-invasive modalities for
the detection of coronary inflammation with special focus on CCTA
assessment and the newly developed FAI technology.

Inflammation in vascular disease
pathogenesis

Types of inflammation and relevance to
the cardiovascular system
The links between the immune system and atherogenesis are well
established.11 Resident immune cells may become activated in a non-
specific way by pathogens as a generic host defence (innate immunity)
leading to the respiratory burst of macrophages, activation of mast
cells, neutrophils, and the complement system cascade.15 Activation
of toll-like receptors (TLRs) on immune cells also triggers pro-
inflammatory signalling responses and dendritic cell activation, which
cross-link innate and adaptive immunity. The latter is a highly organ-
ized defence mechanism, more relevant to atherosclerosis, via the
interactions between antigen presenting cells (dendritic cells, B cells,
macrophages) and naive T cells, leading to T-cell responses, and anti-
body secretion. T-cell activation leads to production of interferon-c
and pro-inflammatory interleukins that perpetuate T-cell responses.15

Atherosclerosis is a state of systemic low-grade inflammation asso-
ciated with immune system activation in the presence of classic risk
factors (i.e. diabetes mellitus, dyslipidaemia, hypertension), but also
related to other conditions (e.g. periodontitis).16 This chronic low-
grade inflammation is different to the severe chronic inflammatory
state associated with autoimmune conditions e.g. psoriasis, rheuma-
toid arthritis, per se leading to a 1.5- to 2.0-fold increase in the risk of
cardiovascular events.17 Acute inflammation e.g. associated with sys-
temic infections/sepsis also leads to pro-inflammatory cytokine pro-
duction, but this is less relevant to atherosclerosis.

Inflammation in atherosclerotic plaque
formation and rupture
Low-grade inflammation leads to endothelial dysfunction and loss of
nitric oxide bioavailability,18 followed by the expression of cell
adhesion molecules and selectins, a process which is induced by pro-
inflammatory cytokines, and attracts circulating leukocytes into
arterial intima (Figure 2).19 Pro-inflammatory mediators trigger the
production of reactive oxygen species that oxidize LDL in the sub-
endothelial space. Oxidized-LDL is taken up by macrophages who
are turned into foam cells, initiating plaque development.19 Activated
T-lymphocytes and smooth muscle cells (SMC) are also involved in
the inflammatory response, which results in SMC proliferation and
migration to the intima. At this stage, regulated differentiation of
SMC to osteoblasts can lead to intimal/medial arterial calcification
and plaque stabilization.20 However, excess plaque inflammation and

extracellular matrix degradation by matrix-metalloproteinases
results in tissue remodelling and cap destabilization11,21 ultimately
leading to plaque rupture, coronary thrombosis, and ACS.19

Perivascular adipose tissue and plaque
inflammation
Evidence suggests that PVAT secretes pro-inflammatory cytokines
and other bioactive mediators which diffuse into the adjacent vascu-
lar wall, promoting atherogenesis in a paracrine manner (‘outside-in’
signalling).22,23 However, reverse signalling from vessels to the sur-
rounding fat also takes place. Wire-injury of the vascular wall leads to
pro-inflammatory changes in PVAT phenotype via tumour necrosis
factor (TNF)-a signalling.24 In humans, vascular oxidative stress trig-
gers vasoprotective responses in PVAT25–27 (as a local defence
mechanism), and arterial inflammation induces well-described mor-
phological changes in PVAT.13 In our previous studies using human
vessels, we have demonstrated that inflammatory molecules (e.g.
TNF-a, interleukin-6) released from the inflamed arterial wall, diffuse
into the perivascular space inducing lipolysis and supressing adipogen-
esis,13 in a model that resembles a local ‘cachexia-type’ response of
PVAT to vascular inflammation. This response reduces adipocyte size
and leads to a gradient of the lipophilic phase of PVAT around the
vascular wall.13,26 Therefore, reported differences in epicardial fat
biology28 or volume29 in the presence of coronary atherosclerosis
could be the result of vascular inflammation rather than the cause of
vascular disease. Following the discovery that vascular inflammation
drives phenotypic changes in PVAT in a paracrine way (via inside-out
signals), an experimental study using a porcine model demonstrated
a striking increase of fluorodeoxyglucose (FDG) uptake by PVAT fol-
lowing angioplasty injury.30 This study confirmed the concept that in-
flammatory events in the vascular wall induce changes in PVAT,
contrary to the belief of an exclusively ‘outside-in’ signalling (i.e. from
PVAT to the vascular wall). Whether adipose tissue ‘browning’ is
included among vascular inflammation-induced changes in PVAT
remains to be seen.31 The interactions between vascular inflamma-
tion and PVAT in atherogenesis are summarized in Figure 2.

Non-invasive approaches to
detect coronary inflammation

Circulating markers of inflammation
Anti-inflammatory interventions (such as statins32 or canakinumab5)
reduce cardiovascular risk. On the other hand, administering non-
specific anti-inflammatory treatments to patients with normal hsCRP
(e.g. methotrexate)33 has no impact on clinical outcomes.
Measurement of circulating levels of pro-inflammatory mediators
(e.g. hsCRP, interleukin-6, interleukin-1b, or interleukin-1 receptor
antagonist and lipoprotein-associated phospholipase A2 etc.), is a
widely used strategy to quantify residual inflammatory risk.5,12,32,34–36

Both circulating hsCRP and interleukin-6 are independently associ-
ated with cardiovascular events [for upper CRP tertile hazard ratio
(HR) 1.2, 95% confidence interval (CI) 1.1–1.3; per 2 SD increase in
plasma IL6 odds ratio 1.6, 95% CI 1.4–1.8],37,38 but they provide only
modest predictive information (c-statistic in the range of 0.61–
0.65)37,39 and may overestimate risk in the primary prevention
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setting.34 For example, based on hsCRP levels, it is estimated that al-
most �60% of subjects in the secondary prevention setting could be
classified as having ‘high residual inflammatory risk’.34 The profiling of
circulating non-coding RNAs are alternative approaches for cardio-
vascular risk stratification,40,41 but their accurate measurement is
problematic, and their clinical value unclear.

Gut microbiota is implicated in the pathogenesis of atherosclerosis
and the development of arterial hypertension. Microbiota may induce
systemic inflammation via microbial colonization and/or the release
of active, pro-inflammatory metabolites in the plasma.42 These pro-
inflammatory mediators can trigger tissue inflammatory pathways,
such as inflammasome activation in epicardial adipose tissue and pos-
sibly within the vascular wall.42 Plasma levels of both trimethylamine
N-oxide (TMAO) (a pro-atherogenic and pro-thrombotic metabol-
ite produced from gut microbiota) and its precursor trimethyllysine,
have independent value in predicting major adverse cardiovascular
events in patients with ACS (c-index 0.76–0.80).43,44 Whether bio-
markers of gut microbiota can be used as surrogates for vascular in-
flammation is unknown, but findings from recent studies suggest that
these biomarkers may be useful in cardiovascular risk stratification.

Hybrid positron emission tomography
imaging of vascular inflammation
Positron emission tomography/computed tomography and PET/mag-
netic resonance (MR) are non-invasive imaging modalities that
co-register PET images with CT or MR anatomical data. The most
widely used radioactive tracer, 18-fluorodeoxyglucose (18F-FDG) is
taken up by metabolically active cells (such as macrophages) and
can monitor inflammation in the human arterial wall (e.g. of carotid
arteries or aorta),45 albeit not directly informative about the
inflammatory burden of coronary arteries (due to increased
background noise and high 18F-FDG uptake by the myocardium).
The predictive value of arterial (i.e. aortic) 18F-FDG uptake for
future cardiovascular events is only modest (c-statistic 0.66)46 and
does not detect ruptured coronary plaques in >50% of ACS
patients.47

Other tracers, such as e.g. sodium fluoride 18F (18F-NaF) or
Gallium 68 (68Ga)-DOTATATE have better specificity for coronary
inflammation. 18F-NaF is taken up by areas of active microcalcification
that correspond to vascular inflammation and active vascular dis-
ease.48 Uptake of 18F-NaF is significantly increased in ruptured
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Figure 2 The role of inflammation and perivascular adipose tissue in atherosclerosis. Pro-inflammatory mechanisms are involved in early endothe-
lial dysfunction and the recruitment of inflammatory cells and lipoproteins into the vascular intima, which contribute to a vicious cycle of lipid accumu-
lation, foam cell formation, fatty streak development, and perpetuate vascular wall inflammation, leading to plaque formation and rupture, local
thrombosis, and acute coronary syndrome. Phenotyping of coronary plaques by coronary computed tomography angiography can detect anatomical
high-risk plaque features that independently predict plaque rupture events. Perivascular adipose tissue adipocytes regulate aspects of vascular biology
via secretion of active adipokines, but also receive inflammatory stimuli from the underlying vessel, which inhibit adipocyte differentiation and intracel-
lular lipid accumulation. A shift in perivascular adipose tissue phenotype as the result of vascular inflammation takes place at the early stage of vascular
disease, before the development of any vascular lesions, while in advanced atherosclerosis and/or after a plaque rupture event, high levels of vascular
inflammation lead to the loss of fat droplets in perivascular adipocytes and a shift in the lipid:aqueous phase of perivascular adipose tissue. PR, positive
remodelling.
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..coronary plaques,48 although the predictive value of such measure-
ments is unexplored. Use of 68Ga-DOTATATE imaging, a
somatostatin receptor subtype-2 (SST2)-binding PET tracer, tracks
M1-primed pro-inflammatory macrophages, and is increased in cul-
prit lesions of ACS patients.49 Other PET imaging systems, such
as CXC-motif chemokine receptor 4 (CXCR4) imaging using
68Ga-pentoxifaxor tracer,50 PET/MR imaging systems of oxidation-
specific epitopes using a zirconium-89 (89Zr)-labelled tracer
(89Zr-LA25)51 or choline-based tracers and others52 could be also
useful tools for imaging of inflamed atherosclerotic lesions, but more
data are needed on their diagnostic and predictive performance.
Despite the unique information on the links between immunology
and vascular inflammation provided by PET/CT or PET/MR, these
methods remain expensive, with limited clinical availability and high
radiation exposure.

Other methods for molecular imaging
of inflammation in preclinical models
Contrast-enhanced ultrasound molecular imaging of vascular
inflammation using microbubbles (e.g. targeted to vascular cell adhe-
sion molecule-1)53 has existed for more than a decade, but is
not widely used in clinical practice. Short-tau inversion recovery
T2-weighted cardiac magnetic resonance (CMR) imaging has been
used to detect adventitial oedema and coronary inflammation in ani-
mal models.54 Also studies with MR imaging of myeloperoxidase
using novel paramagnetic sensors (Gd-5HT-DOTAGA) have yielded
promising findings in experimental models of atherosclerosis.55

Nonetheless the clinical application of MR angiography for detection
of coronary inflammation remains limited.54 Progress in hybrid
fluorescence-mediated tomography co-registered with CT or MR
could be a future alternative to the use of radiolabelled PET tracers
for imaging vascular inflammation,56 but to date these method lack
clinical applicability.

Anatomical detection of high-risk
plaque features using coronary
computed tomography angiography
Another strategy to identify the vulnerable patient is by phenotyping
atherosclerotic plaques for high-risk features.14 Coronary computed
tomography angiography informs not only on the presence of ob-
structive plaques and coronary plaque burden, but also on the pres-
ence of high-risk plaque (HRP) features, i.e. the napkin-ring sign,
positive remodelling (remodelling index >1.1), low attenuation pla-
que, and spotty calcification.57 HRP features are not a direct metric
of inflammation, but are anatomical signs of plaque vulnerability and
flag the risk of rupture (which is primarily driven by plaque inflamma-
tion).57 HRP features provide incremental predictive value for coron-
ary events on top of the extent of coronary atherosclerosis in
patients undergoing diagnostic CCTA.58,59 Certainly, the subjective
assessment of HRP features, and the increase of vascular calcification
by statins make the role of CCTA or non-contrast CCT in secondary
prevention challenging. The risk reclassification value of HRP features
is greatest in lower risk groups, such as younger patients, women and
those with non-obstructive CAD,59 and their reporting is recom-
mended by the Society of Cardiovascular Computed Tomography
(SCCT) as a ‘vulnerability’ modifier of the CAD-RADS score.60

Detecting coronary inflammation
using perivascular fat attenuation
index

Vascular inflammation (in particular TNF-a/IL-6 released from the
inflamed vascular wall) triggers lipolysis and inhibits adipogenesis in
PVAT, causing a gradient of adipocyte size in the first few millimetres
around the inflamed coronary arterial wall (Figure 3). The gradient of
PVAT adipocytes around the inflamed coronary artery leads to a re-
spective gradient in PVAT’s composition from a more aqueous/less
lipophilic phase close to the inflamed artery to a less aqueous/more
lipophilic phase in the non-PVAT within the epicardial fat depot.13

Following this discovery, we designed an imaging tool to measure ap-
propriately weighted gradients in the CT attenuation (or radioden-
sity) of coronary PVAT, captured by a new imaging biomarker, the
perivascular FAI.13 Perivascular FAI was developed via a radiotran-
scriptomic approach, and describes changes in the transcriptomic
profile of PVAT in response to inflammatory signals from the adjacent
coronary artery wall, as well as the changes in adipocyte size, adipo-
genesis, and lipolysis, all processes driven by coronary inflammation.13

The proprietary algorithm used for this analysis (namely CaRi-
HEART, Caristo Diagnostics, Oxford, UK) implements artificial
intelligence (AI) to quantify a weighted measure of attenuation in
concentric 1 mm-layers of perivascular tissue around the human ar-
terial wall, capturing the gradient of perivascular weighted attenu-
ation with increasing distance from the arterial wall, reflecting the
changes in PVAT biology that occur as a result of vascular inflamma-
tion. FAI differs significantly between patients with obstructive CAD
and non-atherosclerotic vessels and is positively associated with total
coronary plaque burden.13 Notably, perivascular FAI is only weakly
correlated with HRP, suggesting that it captures different biological
information than traditional HRP features. In addition, FAI can also be
used for a ‘plaque-specific’ analysis, e.g. to identify culprit lesions in
ACS patients, having an excellent classification performance for dis-
criminating between stable and unstable plaques (area under the
curve (AUC) 0.91, 95% CI 0.80–1.00).13 By determining FAI in the
reference proximal segments of the right coronary artery or left an-
terior descending artery, excellent surrogates of the background vas-
cular inflammation of the entire coronary tree can be obtained,
independently of the presence of specific plaques in other areas of
the coronary vasculature. However, over and above the standardized
FAI measurement in these coronary segments, FAI is increased
around culprit lesions of ACS patients and dynamically responds to
changes in local inflammatory status after plaque rupture events,
returning back to ‘normal’ levels a few months after an ACS.13 Given
that the plaque-specific FAI analysis is a relative measurement of the
signals on top of the overall vascular inflammatory burden, it has to
be measured in relation to a reference coronary segment proximally
to the lesion of interest. A shift of PVAT attenuation during ACS has
been confirmed by various recent independent studies,61–63 while a
similar visual attenuation shift around spontaneous coronary arterial
dissections has also been reported.62 However, it should be noted
that FAI is different to the crude ‘mean CT attenuation (or radioden-
sity)’ of PVAT, since it has to be appropriately corrected and
weighted for parameters related to the obesity status, technical scan-
ning parameters, and anatomical factors specific to the coronary
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segment being examined, all information extracted by the CaRi-
HEART algorithm from the CCTA DICOM files. For example, crude
measurement of perivascular radiodensity or attenuation (ignoring
the attenuation gradients generated around inflamed arteries), con-
sistently underestimates coronary inflammation in obese individuals,
as the global adipocyte size is larger in obesity (driving the radioden-
sity closer to -190 HU), while in lean individuals it overestimates in-
flammatory burden [as the small adipocyte drive attenuation (or
radiodensity)] to higher values, even in the absence of local inflamma-
tion. FAI is weighted for the scanner, CT scan settings, reconstruction
algorithms, and other technical parameters extracted from the
CCTA DICOM files (proprietary artificial intelligence-enhanced algo-
rithm CaRi-HEART, developed by the University of Oxford), making

it hardware-agnostic, and analysable across different scanning settings
and reconstruction algorithms. Notably, FAI is not affected by arterial
calcification or lumen attenuation, thus having an advantage over cor-
onary wall biomarkers, although the information provided is comple-
mentary to HRP features.13 The concept of FAI is summarized in
Figure 3. Due to its nature, perivascular FAI is a sensitive biomarker to
detect coronary inflammation and FAI mapping can be used as an in-
ternal ‘thermometer’ of the entire coronary tree (when measured in
non-diseased proximal coronary segments) or as a local biomarker
of coronary plaque inflammation and vulnerability (as a relative meas-
ure around plaques under investigation). The predictive value of peri-
vascular FAI was recently explored in the CRISP-CT (Cardiovascular
RISk Prediction using Computed Tomography) study, which involved

Lipid to  
aqueous  

phase  
balance 

Distance from arterial wall 

Adipocytes 
exposed to  

inflamma�on 

Adipose  
�ssue  

texture 

The underlying biology 

control +cytokines 

Low inflamma�on High inflamma�on 

Coronary 
vessel &  

PVAT 

Clinical transla�on 

Culprit Non-culprit Stable 
Stable  Unstable 

Plaques 

Δ[
FA

I] 

-30 

-15 

0 

15 

30 P<0.001 

FA
I (

HU
) 

p<0.0001 

1 3 5 7 9 11 13 15 17 19 
-90 

-80 

-70 
Coronary artery disease 
Healthy coronaries 

-65 

-75 

-85 

Distance from arterial wall (mm) 

A  

B  

C  

D  

E 

F  

G  

H  

Distance from arterial wall Distance from arterial wall 

Distance from arterial wall 

Adipocyte  
size 

Lipid 

Aqueous 

Lipid 

Aqueous 

VPCI Non-PVAT VPC

PVAT 

20 

Figure 3 Schematic representation of the biology underlying the detection of coronary inflammation by imaging perivascular adipose tissue.
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standardized measurement of perivascular FAI around the proximal
right coronary artery and the proximal left anterior descending
(LAD) artery, in �4000 individuals undergoing clinically-indicated
diagnostic CCTA in two independent populations from Erlangen
(Germany) and Cleveland (USA).14 Perivascular FAI around the
proximal segment of LAD or right coronary artery (RCA) was
strongly predictive of all-cause and cardiac mortality, where its asso-
ciation with the former was driven by that with the later. A threshold
in perivascular FAI of -70.1 HU around the proximal right coronary
artery was defined as the cut-off, above which FAI was related with a
six- to nine-fold increase risk for fatal heart attacks and five-fold in-
crease risk for non-fatal myocardial infarction (Figure 4).14 This pre-
dictive value was over and above the current state of the art in risk
stratification, including risk factors (e.g. smoking, diabetes mellitus),
extent of coronary atherosclerosis in CCTA, HRP features, and any
other clinically relevant information available for these individuals.
Perivascular FAI significantly improved discrimination and risk classifi-
cation for both all-cause and cardiac mortality beyond traditional risk
factors, HRP features and the extent of CAD (Figure 4).14 Notably, al-
though FAI around the LAD and RCA were similarly predictive of
cardiac mortality, they were not identical. The variability between the
two coronary arteries could potentially predict the coronary terri-
tory involved in a future ACS, but this information was not available
in the CRISP-CT study.

Given the value of the FAI technology in predicting future fatal and
non-fatal cardiac events, the obvious question is whether the risk
identified by this method is modifiable by treatments. A definitive an-
swer to this question can be given only by large randomized clinical
trials, where individuals are randomized into treatment arms accord-
ing to their baseline perivascular FAI. From the CRISP-CT study,14

we have learned that perivascular FAI loses its predictive value for
long-term cardiac mortality in individuals who initiated treatment
with aspirin and/or statins after CCTA. On the other hand, individuals
with elevated perivascular FAI that did not start any risk-modifying
medication after CCTA have an 18-fold increased risk for fatal heart
attacks, compared to those with perivascular FAI below the cut-off.
Also, recent pilot data suggest that treatment of psoriasis patients
with biologic agents (anti-TNFa, anti-IL12/23, or anti-IL17) lowers
perivascular FAI.64 These are strong observations, generating the
need for appropriate clinical trials to evaluate this concept.

Another important question is the ability of perivascular FAI to
track changes in coronary inflammation in response to treatment.
Several randomized clinical trials examining this concept are ongoing,
but initial evidence suggests that perivascular FAI measured around
culprit lesions during ACS changes dynamically post-event, with sig-
nificant changes being detectable as early as 5 weeks post-ACS and
following the initiation of optimal secondary preventative therapies.13

As a dynamic and specific marker of coronary inflammation that is
extracted from the post-processing of routine CCTA datasets, with
independent prognostic discrimination and risk reclassification value,
FAI overcomes many of the limitations of other existing modalities
for vascular inflammation detection. FAI tracks low-grade vascular in-
flammation associated with cardiovascular risk factors including any
type of inflammation leading to increased release of inflammatory
cytokines by the vessel,13 as well as vasculitis related with the chronic
inflammation of autoimmune diseases such as psoriasis.64

Perivascular FAI has prognostic value for cardiac mortality both in

patients with and without obstructive CAD, and the biological proc-
esses captured by FAI could offer complementary information to
other functional imaging tests or the routine anatomical information
extracted from CCTA.

Incorporating coronary computed
tomography angiography-based
measurement of coronary
inflammation in clinical practice

Coronary computed tomography angiography radiation exposure is
now down to approximately <5 mSv for most modern scanners and
is readily available in most centres who investigate patients with chest
pain.65 Recent data from SCOT-HEART suggest that incorporation
of standard CCTA in the chest pain management pathway is helpful
for both guiding treatments and improving clinical outcomes.66 High-
risk plaque features in CCTA have low sensitivity but good specificity
for future major adverse cardiac events.59,67 Plaque characterization
on top of CCTA and calcium score in subjects undergoing diagnostic
CCTA is independently associated with�10-fold higher risk of future
cardiac events (HR 9.4, 95% CI 2.7–33.4) and substantially improves
risk prediction on top of clinical profile and CCTA luminal assess-
ment alone (c-statistic from 0.82 to 0.93).68 More conservative were
the results of the PROMISE trial in which the presence of HRP in
patients with stable chest pain was independently associated with
modestly increased risk for future events (HR 1.7, 95% CI 1.1–2.6)
and contributed to patient reclassification.59

With the use of the new AI-enhanced technologies like perivascu-
lar FAI, the ability of CCTA to detect the ‘vulnerable patient’ can be
significantly improved. In the CRISP-CT study,14 80% of the people
undergoing CCTA for investigation of chest pain did not have ob-
structive CAD, and according to the current clinical guidelines they
had no indication for changing their medical management. However,
we know that�50% of heart attacks occur in individuals without sig-
nificant luminal stenosis,9 due to rupture of non-obstructive, but pre-
sumably highly inflamed atherosclerotic plaques.69 By performing
HRP and perivascular FAI analysis, a new category of high-risk individ-
uals without obstructive disease can be identified. Indeed, in the
CRISP-CT study,14 43% of the population undergoing diagnostic
CCTA had high cardiovascular risk as determined by perivascular FAI
or HRP features (Figure 4). Among those individuals undergoing
CCTA without flow-limiting coronary atherosclerosis, 15% had HRP
and 24% abnormal perivascular FAI, while the overlap between the
two was only 3%. In the same study, the existing state-of-the-art risk
stratification by CCTA (risk factors, extent of atherosclerotic disease,
and HRP) performed well in predicting cardiovascular mortality
(c-statistic: 0.913, 95% CI 0.867–0.958 in the derivation and 0.763,
95% CI 0.669–0.858 in the validation cohort of study), and the add-
ition of perivascular FAI significantly enhanced the predictive value of
these models (increase in c-statistic by 0.049 and 0.075 for the deriv-
ation and validation cohorts, respectively).14 These results confirm
that the two approaches capture different pathologies, and they have
complementary risk-prediction capacity (Figure 4).

In addition to those individuals without significant luminal stenosis
on CCTA, �20% of the individuals in CRISP-CT14 had obstructive
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Figure 4 Prognostic value of perivascular fat attenuation index. In the CRISP-CT study,14 which evaluated two prospective clinical cohorts of 3912
patients undergoing diagnostic coronary computed tomography angiography for clinical indications, perivascular fat attenuation index was predictive
of cardiac mortality both in the derivation and validation cohorts (A, B). Fat attenuation index provided incremental prognostic value for cardiac mor-
tality on top of traditional clinical risk factors, Duke coronary artery disease index and number of high-risk plaque features on coronary computed
tomography angiography (C, D), (reproduced with permission from Oikonomou et al.14). High-risk plaque (HRP) features on coronary computed
tomography angiography are defined as the napkin-ring sign (NRS), low attenuation plaque (LAP), spotty calcification (SC), and positive remodelling
(SP) (E). Stratification of the pooled population of CRISP-CT based on the presence of high-risk plaque and high coronary inflammatory burden as
determined by perivascular fat attenuation index and observed rates of cardiac mortality within each group (F, G). The combination of high-risk pla-
que and high fat attenuation index could be used to identify vulnerable patients at the highest risk that are eligible for aggressive prevention strategies;
derived from post hoc data analysis of CRISP-CT data in the Oxford Academic Cardiovascular Computed Tomography (OXACCT) Core Lab.
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CAD, with many undergoing additional interventions (percutaneous
coronary intervention (PCI)/coronary artery bypass grafting
(CABG)). Among those patients with established coronary athero-
sclerosis, 56% had HRP and 26% abnormal perivascular FAI, while the
overlap between the two was 13%. The use of HRP and perivascular
FAI analyses was complementary for risk prediction, as the observed
5-year cardiac mortality in CRISP-CT was 1.8% in people with low
FAI/HRPþ, 3.8% in those with abnormal perivascular FAI/HRP-, and
6.6% in those with both abnormal perivascular FAI and HRPþ

(Figure 4). This suggests that incorporating both perivascular FAI and
HRP in a combined risk assessment model would add major value to
risk stratification in secondary prevention.

This could potentially be supplemented by measurement of
hsCRP, given that the correlation between perivascular FAI and
hsCRP levels is poor, suggesting that the information captured by
perivascular FAI is different to systemic inflammatory burden. FAI
analysis could be used as a companion diagnostic test in secondary
prevention, allowing the personalized deployment of high cost treat-
ments (such as canakinumab or PCSK9-inhibitors) to only a small
proportion of CAD patients who are poor responders to the current
state-of-the art treatment and have persistently high levels of coron-
ary inflammation. A proposed pathway for the deployment of these
new technologies to medical practice is presented in Figure 5.

Defining coronary inflammation using perivascular FAI alone or in
combination with HRP features comes with certain limitations, which
need to be considered. HRP features are operator-dependent and are
relatively rare in populations with chest pain without flow-limiting cor-
onary stenosis; perivascular FAI measurement is time consuming and
its reliable calculation is complex, requiring AI solutions. Off-site plat-
forms would offer global solutions to the clinician if they are cost-

effective, user friendly, strictly managed, and regulated (i.e. have the ap-
propriate regulatory and quality approvals, such as a CE-mark in
Europe or Food and Drug Administration (FDA) clearance in the
USA). Certainly, the need for contrast CCTA that involves radiation
exposure will limit the deployment of these solutions in primary pre-
vention, although their use as part of a standard CCTA reporting arma-
mentarium will give an entirely new dimension to the management of
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treatment

Aggressive 
treatment 

(e.g. sta�ns/aspirin)

Discharged

Discharged on standard treatment

FAI normal/no HRP

Aggressive treatment 
(Novel therapeu�cs an�-PSCK9, Canakinumab?)

FAI abnormal (24%)
and HRP (3%) /or HRP (33%)*

*: % referred to data from CRISP-CT study
FAI: Perivascular Fat A�enua�on Index
f/u: follow up
1y: 1 year

FAI abnormal (26%) 
and HRP (13%) /or HRP (56%)*

1y f/u FAI normal/no HRP 1y f/u FAI abnormal and/or HRP

Intensify treatment & 1y f/u CCTA

Non-Obstruc�ve Disease (~80%) Obstruc�ve Disease
Confirmed

Coronary Angioplasty or 
Coronary Bypass Surgery

Obstruc�ve Disease
not confirmed

Obstruc�ve Disease (~20%)

Invasive Coronary  Angiography

Pa�ent referred for CCTA plus analysis for FAI/HRP

FAI normal/no HRP

Figure 5 Vision for implementing fat attenuation index (FAI) and high-risk plaque features (HRP) in clinical practice. CAD, coronary artery disease;
CV, cardiovascular; OMT, optimal medical treatment; anti-PCSK9, pro-protein convertase subtilisin/kexin type 9 inhibitors.

0.5 0.6 0.7 0.8 0.9 1.0 
Predic�ve performance 
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Figure 6 Predictive performance of commonly used biomarkers
for cardiovascular risk stratification in stable patients. CCS, coron-
ary calcium score; CCTA, coronary computed tomography angiog-
raphy; FAI, fat attenuation index; FDG, fluorodeoxyglucose uptake;
HRP, high-risk plaque features; myocardial injury biomarkers: high
sensitivity cardiac troponin I/T; systemic inflammation: plasma levels
of C-reactive protein and interleukin-6; bar graphs represent low-
high (and mean) value for the predictive performance of each bio-
marker (i.e. c-index, more details provided in the Supplementary
material online, Appendix to Figure 6).
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patients with chest pain. Finally, the results of randomized clinical trials
will interrogate the responsiveness of these new methods to treat-
ments that modify cardiovascular risk, while future outcomes clinical
trials will explore whether the risk identified by these new measures of
coronary inflammation is modifiable by established treatments in pri-
mary prevention or by emerging therapeutic strategies over and above
the current secondary prevention measures.

Conclusions

The role of inflammation in the development of atherosclerosis and
plaque rupture leading to ACS is now well established. Despite the
advancement of medical pharmacotherapy in primary and secondary
prevention, residual inflammatory risk is neither adequately identified
nor managed. Therefore, the development of methods to detect the
inflamed coronary artery, flagging the ‘vulnerable patient’, remains an
unmet need. The value of the most commonly used biomarkers for
risk stratification in stable patients is summarized in Figure 6, while a

schematic on the strengths and limitations of each approach for the
detection of coronary inflammation is provided in Figure 7.

The lack of any plasma biomarkers specific for coronary inflamma-
tion has shifted the focus to non-invasive imaging. While PET/CT
offers good solutions for the imaging of coronary inflammation, it ex-
pensive and difficult to implement in routine clinical practice.
Conversely, standard CCTA allows the identification of HRP fea-
tures, which are useful for risk stratification, despite their qualitative
nature. The recently developed perivascular FAI, captures the
changes in the composition of PVAT around the inflamed coronary
arteries by using a composite measure of the perivascular attenuation
gradients around the coronary arteries (Take home Figure). This new
way to measure inflammation, using images acquired from a standard
CCTA, can be used both prospectively and retrospectively (in al-
ready obtained scans) to allow risk reclassification. The combination
of HRP and perivascular FAI in an integrative fashion has the potential
to change the landscape in precision medicine, guiding the deploy-
ment of standard as well as novel therapeutics in both primary and
secondary prevention.
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Figure 7 Overview and comparative assessment of existing approaches for the detection of coronary inflammation. CTA, computed tomography
angiography; FAI, fat attenuation index; PET, positron emission tomography.
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