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Abstract 

Pore-scale simulations of Li-ion battery electrodes were conducted using both pore-network modeling 

and direct numerical simulation. Ternary tomographic images of NMC811 cathodes were obtained and 

used to create the pore-scale computational domains. A novel network extraction method was developed 

to manage the extraction of N-phase networks which was used to extract all three phases of NMC-811 

electrode along with their interconnections Pore network results compared favorably with direct 

numerical simulations (DNS) in terms of effective transport properties of each phase but were obtained 

in significantly less time. Simulations were then conducted with combined diffusion-reaction to simulate 

the limiting current behavior. It was found that when considering only ion and electron transport, the 

electrode structure could support current densities about 300 times higher than experimentally observed 

values. Additional case studies were conducted to illustrate the necessity of ternary images which allow 

separate consideration of carbon binder domain and active material. The results showed a 24.4% decrease 

in current density when the carbon binder was treated as a separate phase compared to lumping the CBD 

and active material into a single phase. The impact of nanoporosity in the carbon binder phase was also 

explored and found to enhance the reaction rate by 16.8% compared to solid binder. In addition, the 

developed technique used 58 times larger domain volume than DNS which opens up the possibility of 

modelling much larger tomographic data sets, enabling representative areas of typically inhomogeneous 

battery electrodes to be modelled accurately, and proposes a solution to the conflicting needs of high-

resolution imaging and large volumes for image-based modelling. For the first time, three-phase pore 

network modelling of battery electrodes has been demonstrated and evaluated, opening the path 

towards a new modelling framework for lithium ion batteries.  
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1 Introduction 

Lithium-Ion batteries (LIBs) are the most widely used electrochemical energy storage devices for portable 

electronics and electric vehicles (EVs). They offer a good trade-off in terms of energy density, cycle life, 

low weight, low self-discharge, and high power-density and these advantageous properties have driven 

the revolution in portable electronics and, more recently, EVs. However, there is a continual need to 

improve their realizable energy density, enhance their safety, and extend their lifetime 1 as well as to 

reduce their cost. The positive electrodes in LIBs are composed of active material (typically a layered metal 

oxide material) into which Li-ion intercalation/deintercalation occurs, and a conductive additive (usually 

carbon black) that improves electrical conductivity throughout the electrode. These two components are 

combined with a binder into a porous structure and the remaining void space is filled with Li+ containing 

electrolyte, creating a 3-phase porous electrode. Understanding the multiple, coupled transport processes 

within this porous electrode is key to enhancing the transport of Li ions and electrons, and hence to 

optimise design of LIBs.   

To this end, mathematical modelling techniques are an essential tool to guide the experimental 

development of novel electrode structures. On one end of the spectrum lie the volume-averaged models 

originally developed by Newman et al.2. The majority of these efforts focus on developing more accurate 

and/or complete continuum scale models that require less computational cost 3,4. The drawback of 

continuum models is that they only include the microstructural properties of porous electrodes through 

volume-averaged correlations, but it is well known that structure plays a key role in the species transport 

and ultimately device performance. At the other end of the spectrum, models based on direct numerical 

simulation (DNS) techniques using 3D images of the electrode microstructure as the computational mesh 

have been developed 5–7. The relatively recent growth in application of 3D X-ray tomographic imaging to 

electrochemical devices and DNS models 8,9 have greatly enhanced the understanding of transport 

processes occurring inside the electrode by capturing details of the geometrical structure; however, DNS 

is computationally expensive. To incorporate all the necessary multiphysics, as well as transient behavior, 

is prohibitively demanding, such that even simulating the entire thickness of the cathode (on the order of 

30-75 µm) is an unreasonable task. Thus only DNS of small sections of electrode can be undertaken, and 

these are not large enough to be representative of a real LIB. There is thus a strong need to develop a 

modeling framework that can bridge the gap between the continuum models of entire devices and DNS 

on subsections of microstructure, but at low computational expense while maintaining the crucial 

microstructural details. To meet this objective, pore network models are a promising option.  

Briefly, pore network modelling is a method whereby a porous material is abstracted as a network of 

nodes and interconnections that represent pores and throats. It is possible using image processing to 

extract geometrical and topological details of porous media from a tomography image, then map this onto 

a network of interconnected nodes. Each node is a single unknown to be solved for, which approximates 

some of the pore-scale details of electrodes but allows simulation of large porous domains with very low 

computational cost as compared to DNS, with minimal difference in output (if the network extraction is 



performed correctly). Recently, pore network modelling has been used to model various electrochemical 

energy conversion and storage devices. For example, Aghighi et al.10 developed a pore network model to 

simulate a polymer electrolyte fuel cell (PEMFC) membrane electrode assembly. Aghighi et al.11 later 

extended this model to measure the effect of phase change in a PEMFC cathode. El Hannach et al.12 

developed a pore network model to analyze water management and electrical performance of a PEMFC 

cathode catalyst layer. Their model discussed both pore and solid-phase networks and integrated 

different transport phenomena as well as electrochemical reactions in the catalyst layer. Similarly, pore 

network models have been utilized to study multiphysics transport processes in redox flow batteries 

(RFB)with the recent work of Sadeghi et al.13 that developed a multiphysics pore network model to study 

the impact of electrode microstructure in redox flow batteries (RFBs). Gayon Lombardo et al.14 used an X-

ray CT image of a RFB electrode to extract a topological equivalent pore network and studied transient 

convective and diffusive transport processes. The results showed that concentration and pressure 

distribution inside electrodes greatly depends on microstructural properties. Some volume averaged 

approaches has also been adopted for fuel cell recently 15,16. Together these recent works illustrate a new 

trend toward more complex multiphysics modeling using PNMs. 

To date no PNMs have been applied to Li-ion battery electrodes. Lagadec et al.17 have simulated the 

diffusion of Li-ions through a porous membrane separator, but they did not investigate the electrode 

structure or electrochemical reactions. Torayev et al.18 used a pore network model of Li-O2 batteries. They 

applied their model to four different regions of the electrode and found that galvanostatic discharge 

curves in each region varied significantly in terms of capacity and overpotential, supporting the notion 

that pore interconnectivity and macroscopic arrangement play a crucial role in performance. In another 

article, Torayev et al.19 compared the ability of continuum and pore network modelling techniques to 

measure the impact of discharge performance and electrode pore size in Li-O2 batteries. They concluded 

that continuum models should be used with caution as they are unable to capture important 

microstructural effects. It was also noteworthy that the pore network model, which explicitly captured 

pore interconnectivity, matched more closely with experimental data. These two studies were performed 

on the 3D reconstruction of super-P carbon electrodes with only pore and solid phase under 

consideration. Commercial lithium-ion battery cathode electrodes consist of three phases; electrolyte, 

carbon binder domain (CBD) and active material such as lithium iron phosphate (LiFePO4, or LFP), lithium 

nickel manganese cobalt oxide (LiNiMnCoO2, or NMC) and lithium cobalt oxide (LiCoO2, or LCO). Treating 

the solid carbon binder and active material phases separately cannot only change the measured active 

surface area available, but also the transport mechanism of electrons in the solid phase because of 

significantly higher conductivity of the carbon binder domain (CBD) compared to active material 20. 

Assuming carbon binder and active material as a single solid phase can significantly alter the 

electrochemical performance of the model. Hence, a computationally efficient pore network model is 

required that includes all the three phases with interphase and intraphase connectivity taken into 

consideration. As such, tomographic images containing all three phases are also essential. 

The main objective of the present work is to apply and validate pore network modelling for studying the 

multiphysics involved in three-phase porous lithium-ion electrodes. A network extraction algorithm was 

developed to extract an arbitrary number of phases from X-ray CT images. The developed extraction 

algorithm is a continuation of previous work 21 and is used here to extract a topologically mapped network 

from a ternary tomogram of a LiNi0.8Mn0.1Co0.1O2 (NMC-811) electrode. The pore network was then used 

to simulate diffusion of lithium-ions in the electrolyte phase, conduction of electrons in active material 



and carbon binder phase and the reaction of lithium and electrons at the interface of active material and 

electrolyte phases of the porous cathode. Finally, two case studies are performed to highlight the 

importance of simulating three-phase lithium-ion cathodes and the influence of the CBD nanopores on 

maximum attainable current density and voltage distribution. The presented pore network model 

provides a new avenue to study critical transport and reaction process in lithium-ion battery porous 

electrodes. To the best of our knowledge, this is the first network extraction of a lithium-ion battery 

cathode. The algorithm is written in python and is shared in the open-source project PoreSpy 22 available 

at https://github.com/PMEAL/porespy. 

2 Methodology 

2.1 Electrode Material 

The material explored in this work is a nickel-rich lithium-ion cathode: Li(Ni0.8Mn0.1Co0.1)O2 or NMC-811, 

and was fabricated by Targray (18105 Transcanadienne, Kirkland QC, H9J 3Z4, Canada) via printing from 

a slurry onto an aluminum current collector and subsequently calendared to reduce electrode porosity. 

Additional information provided by the supplier can be found within the supplementary material.  

2.2 X-ray Computed Tomography  

To prepare the sample for imaging, a disk ca. 1.0 mm in diameter was punched from the electrode sheet 

and fixed atop of a 1.0 mm diameter, 10.0 mm tall steel dowel using quick-set epoxy. A single X-ray 

tomogram was collected using a Versa micro-CT instrument (Zeiss Xradia 520 Versa, Carl Zeiss., CA, U.S.A.). 

Imaging was conducted with a source accelerating voltage of 80 kV at a power of 7 W using a tungsten 

target for an un-filtered, polychromatic emission with a characteristic peak at 58 keV. The tomogram was 

collected using 3201 radiograph projections, each with an exposure of 16 s. Geometric magnification 

coupled with a scintillator and 20× optical magnification resulted in an image with a pixel size of 400 nm. 

These radiographs were then reconstructed using standard cone-beam, filtered-back-projection (FBP) 

algorithms using commercial software (‘Reconstructor Scout-and-Scan’, Carl Zeiss., CA, U.S.A.). After 

reconstruction, the tomogram data was processed using a non-local means filter to improve the image 

quality for segmentation. The data was then cropped, the greyscale values were segmented according to 

cathode particles (NMC811), binder and void/pore space. Further information on the quality of the image 

contrast, filtering and segmentation can be found in the supplementary material. All filtering, cropping 

and segmentation was achieved using Avizo Fire software (Avizo, Thermo Fisher Scientific, Waltham, 

Massachusetts, U.S.). 

2.3 Pore Network Extraction  

2.3.1 N-Phase Extraction Algorithm 

The developed network extraction algorithm is based on the watershed segmentation technique 

which defines the porous regions and throat connectivity in a visually intuitive manner 23,24. The current 

algorithm is based on our previously published SNOW algorithm (Sub-Network of an Over-segmented 

Watershed) 25 and its extension SNOW_DUAL algorithm 21. The basic SNOW algorithm consists of two 

steps. Firstly, marker-based watershed segmentation is performed to partition the image into pore 

regions. Before applying this step, however, spurious markers are trimmed by applying several filters 

(Figure 1a) to avoid over-segmentation by the watershed filter. Secondly, the discretized regions are 

further analyzed one at a time to extract geometrical and topological properties of the pore regions. The 



basic steps involved in the network extraction process are shown in Figure 1a. The SNOW algorithm was 

later extended to the SNOW_DUAL algorithm to extract both solid and void phases and, crucially, the 

interlinking of these phases with each other to study transport and reaction mechanisms in catalyst 

packings. However, lithium-ion cathode material consists of three phases, namely active material, CBD 

and electrolyte phase. Therefore, the dual approach was generalized to an N-phase extraction algorithm 

which can be applied to any material with an arbitrary number of phases. The developed model can be 

used for any kind of commercial cathode material such as lithium iron phosphate (LiFePO4) and lithium 

cobalt oxide (LiCoO2) if 3-phase tomograms were provided – or indeed for any tomographic data set of N-

segmented phases.  

The N-phase network extraction algorithm (SNOW_N) was developed on the premise that the watershed 

segmentation can be applied on each phase in an image individually, and then these individual 

segmentations can be combined to form a composite image. The overall algorithm implementation is 

shown in Figure 1b. Firstly, each phase (1 to N) is partitioned into regions using the SNOW algorithm 

individually. Before recombining the segmentations, the partitioned regions of the 𝑗𝑡ℎ phase are relabeled 

in order to differentiate it from other phases. For this, if Npi is the maximum label of ith phase region then 

jth phase first label will begin from Npi + 1. After the relabeling process, all partitioned regions are merged 

together to form a composite watershed segmentation image. In the next step, boundary nodes are added 

to specify boundary conditions during the simulation process 21. After assigning boundary nodes, the 

geometrical and structural features of each region are extracted one at a time without considering its 

phase association. The connectivity of the region under consideration is determined by scanning its 

neighbouring regions. This allows extracting throat properties of connected regions, including pore-to-

pore, pore-to-CBD, binder-to-NMC, and so forth. Once all the geometrical and connectivity information is 

determined, the next step is to label the interconnections between each phase with other phases. This 

step finds throats that interlink any two phases with each other and stores it in the form of separate 

arrays. For N phases there will be NC2 interconnection arrays. Next, the interfacial area between any two 

phases is determined using the marching cube algorithm which has been demonstrated to produce much 

more accurate values for interfacial area between regions 21. Lastly, the extracted information is stored in 

the form of a Python dictionary which can be opened directly in the open-source modelling package 

OpenPNM 26. The code is implemented in Python and is included in the open-source package PoreSpy22.        

To illustrate the impact of treating the binder and active material as a single phase, the developed 

SNOW_N algorithm was used to extract both two-phase and three-phase networks of the Li-ion NMC-811 

cathode. The two-phase network was extracted by assuming the carbon binder domain (CBD) and active 

material phase as one solid phase.  The extracted networks are shown in Figure 2. The green, purple and 

orange colour shows electrolyte, carbon binder and active material phase, respectively. The pore and 

particle size distribution for all phases is shown in Figure 3 and properties of both networks and original 

image are presented in Table 1. 

2.4 Network Validation by Direct Numerical Simulation 

The SNOW network extraction algorithm has been previously validated for sandstone, fibrous media, and 
artificial foams (Voronoi tessellations) 25, and the SNOW-dual was validated for sphere packs 21, but it is 
still necessary to validate 3-phase extraction on the present Li-ion battery material image. The triple phase 
nature of the material (and its requirement for a triple phase boundary to exist) leads to specific 
sensitivities of the modelling. 



The most direct validation is obtained by performing direct numerical simulation (DNS) on the image using 

a finite volume approach. This provides reference values for effective diffusivity of the pore space (i.e. 

tortuosity) and effective conductivity of the solid phase (including both NMC and CBD particles). These 

values can then be compared to those predicted by the extracted network to ensure that it accurately 

represents the porous structure. The following sections detail the procedure used to obtain the DNS 

results. 

2.4.1 DNS Model Formulation 

The predictive capabilities of the pore-network model were validated against the results computed by a 

DNS model, implemented in the FVM-based code ANSYS Fluent. The numerical domain was created using 

a direct mapping between the voxel image of the electrode and a hexahedral mesh generated with the 

same resolution (23,591,880 cells). Species and charge conservation equations (i.e., Laplace equation) 

were solved via user-defined scalars to determine the lithium-ion concentration and electronic potential, 

respectively. Therefore, the governing equation is given by 

 
∇ ∙ (Γ∇𝜙) = 0 (1) 

where Γ is either the mass diffusivity or electrical conductivity, and 𝜙 is the corresponding solution 

variable. In all cases, the Laplace equation was discretized in ANSYS Fluent using second-order central 

difference.   

Several user-defined functions were used to customize the model, including boundary conditions, 

transport properties and output results. The material properties and boundary conditions were similar to 

those prescribed in the pore-network model. The only difference is that boundary conditions were also 

set at internal interfaces. Consequently, in the reaction-diffusion simulation, zero concentration was 

imposed at the electrolyte/active material interface to model limiting-current conditions, rather than 

prescribing a high reaction-rate constant at electrolyte/active material interface (as done in the pore-

network model described below). Similarly, in the reaction-conduction simulation, current density at the 

electrolyte/active material interface was determined by direct application of Faraday’s law on the 

interfacial diffusive flux determined previously. A no-flux boundary condition was set at the 

electrolyte/CBD interface, while a coupled (i.e., continuity) boundary condition was prescribed at the 

active material/binder interface.  

 

2.5 Pore-Network Formulation 

The present study focuses on the cathode electrode of Li-ion battery that includes current collector and 

lithium nickel manganese cobalt oxide (LiNi0.8Mn0.1Co0.1O2) porous cathode operating under pseudo 

steady-state conditions. Figure 4 illustrates the schematic of a cell of lithium-ion battery domain. During 

discharge, lithium ions travel from the membrane side, through the electrolyte phase (pores) and 

intercalate into the active material (NMC-811) surface to form lithium nickel manganese cobalt oxide 

according to following electrochemical reaction: 

 𝑥Li+ + 𝑥𝑒− + 𝐿𝑖𝑦𝑁𝑖0.8𝑀𝑛0.1𝐶𝑜0.1𝑂2 → 𝐿𝑖𝑥+𝑦𝑁𝑖0.8𝑀𝑛0.1𝐶𝑜0.1𝑂2  (1) 

 



The physical processes occurring in the lithium-ion battery cathode during discharge are (a) diffusion and 

migration of lithium-ions in the electrolyte phase, (b) conduction of electrons in the active material and 

carbon binder domain and (c) reaction (i.e., intercalation) of lithium-ion at the interface of electrolyte and 

active material. Several simplifying assumptions were made in this work since the focus was on the pore-

scale transport processes rather than complete battery operation. The generation and transport of heat 

were neglected, as were any side reactions such as SEI formation. Migration of ions due to electric fields 

were also neglected. Electrochemical kinetics were not included, but rather it was assumed that the 

kinetics of the lithium intercalation reaction were very fast on the surface of the active material. This 

assumption simplifies the problem by decoupling the electrolyte and solid phase potentials, reducing it to 

reaction-diffusion in the electrolyte phase and reaction-conduction in active material phase. It was also 

assumed that effective transport properties are not concentration dependent as recently suggested in 
27,28. We assume all transport properties to be constant with changing concentration. The extension of 

this model to transient conditions relevant to charging and discharging will also be left for future work. 

The transport and kinetic equations that were used in the developed pore network model are given in the 

following sections. 

2.5.1 Lithium-ion transport 

The lithium ion transport in the electrolyte phase was considered to follow a reaction-diffusion process 

during the discharge cycle of the battery. The conservation of lithium-ions around a pore i in pore network 

under steady-state conditions can be represented by: 

 

∑ 𝑞𝑖,𝑗

𝑁𝑖

𝑗=1

= 𝑅𝑖 = 𝑘𝑐𝑖 (2) 

where 𝑞 is the molar flow rate in 𝑚𝑜𝑙/𝑠. 𝑅𝑖 is the net reaction rate of Li-ions in pore i. k refers to the 

reaction constant and ci refers to the concentration of Li-Ion in pore i. Ni is the number of neighbour pores 

to pore i.  

The molar flow rate qij between pore i and j can be defined using 1D Fickian diffusion:  

 
𝑞𝑖,𝑗 =

𝐷𝐿𝑖+𝐴

𝑥𝑖,𝑗
(𝑐𝑖 − 𝑐𝑗) =  𝑑𝑖,𝑗(𝑐𝑖 − 𝑐𝑗) (3) 

where DLi+ is the bulk diffusion coefficient of Li+ ions in the electrolyte phase. A is the cross-sectional area 

of conduit from pore i to pore j , 𝑥𝑖,𝑗  is the length of conduit from pore i to pore j, cj is the concentration 

of Li ion in the neighbouring pore j and 𝑑𝑖,𝑗 is the diffusive conductance between pore i and j. 

2.5.2 Electron transport 

The charge conservation for an arbitrary solid particle i is represented by the following governing 

equation: 

 

∑ 𝐼𝑖,𝑗

𝑁𝑖
𝐴𝑀

𝑗=1

= 𝑅𝑖
𝑒 =  z ⋅ 𝐹 ⋅ 𝑅𝑖 (4) 

where Ii,j is the rate of charge transport from solid particle i to solid particle j in Coulombs s-1. 𝑅𝑖
𝑒 is the net 

reaction rate of electrons at surface of particle i. F is Faraday's constant and z is the number of electrons. 



The rate of charge transport is proportional to the potential difference between particle i and j as stated 

by Ohm’s law:  

 
𝐼𝑖,𝑗 =

𝜎𝑒𝐴

𝑙𝑖,𝑗
(𝜑𝑖 − 𝜑𝑗) = 𝜎𝑖,𝑗(𝜑𝑖 − 𝜑𝑗) (5) 

where φi and φj are the electric potentials in active material at particle i and j respectively. σe is the bulk 

electronic conductivity of active material (NMC-811). li,j is the conduit length from particle i and j. Ai,j is 

the cross-sectional area of the conduit. 𝜎𝑖,𝑗 is the electrical conductance between active material particle 

i and j. 

It is assumed that no reaction takes place in the carbon binder phase. Therefore, the governing equation 

for charge conversation in this phase is as follows  

 

∑ 𝐼𝑖,𝑗
𝐶𝐵

𝑁𝑖
𝐶𝐵

𝑗=1

= 0 (6) 

The rate of charge transport in carbon binder phase can be represented as 1D Ohm’s law under steady-

state conditions as 

 

𝐼𝑖,𝑗 =
𝜎𝐶𝐵𝐴

𝑘𝑖,𝑗
(𝜑𝑖

𝐶𝐵 − 𝜑𝑗
𝐶𝐵) = 𝜎𝑖,𝑗

𝐶𝐵(𝜑𝑖
𝐶𝐵 − 𝜑𝑗

𝐶𝐵) (7) 

where 𝜎𝑒
𝐶𝐵 is the electronic conductivity of carbon binder domain. 𝜑𝑖

𝐶𝐵 and 𝜑𝑗
𝐶𝐵 are potential difference 

in carbon binder region i and j respectively. 𝑘𝑖,𝑗 is the conduit length in carbon binder region i and j 

respectively. The overall summary of the parameters used in this study is shown in Table 2. 

2.5.3 Boundary conditions 

The boundary conditions implemented for mass and current transport for different cases were as follows: 

1. In the electrolyte phase, a Dirichlet boundary condition of 1000 mol m-3 concentration of lithium 

ions was assigned in inlet pores at the separator surface. For the simulation in which only effective 

diffusivity is calculated, a Dirichlet boundary condition of 0 mol m-3 at outlet pores (near the 

current collector) and zero-diffusive flux at solid/electrolyte interface was applied, while for 

reaction-diffusion simulation Neumann boundary condition of zero diffusive flux was set in the 

outlet boundary pores.  

2. In the active material and carbon binder phase, 0 volt Dirichlet boundary conditions were 

implemented at the current collector. For simulations which calculate effective conductivities of 

the active material and carbon binder phases, 1 volt Dirichlet boundary conditions at outlet 

particles and zero-conductive flux at solid/electrolyte interface was applied, while for reaction-

conduction simulation, Neumann boundary condition of zero flux of charge was implemented at 

outlet particles.  



2.5.4 Pore-scale conductance models 

To calculate the transport rate between two pores 𝑖 and 𝑗 it is necessary to determine the total 

conductance of the conduit between the two pores, which consists of half of pore 𝑖, the throat, and half 

of pore 𝑗. In the present work, a custom geometrical model for the conductance of each pore was applied, 

based on truncated pyramids as shown in Figure 5. Due to the generally spherical nature of the grains in 

the electrode (both NMC and CBD phases), the contacts between  two pores essentially have no throat of 

length greater than zero. This overlapping sphere-sphere contact was modeled as the intersection of pairs 

of 4-sided truncated pyramids. The base of the pyramids was found from the diameter of pore, and the 

truncated side was set to the throat diameter. In this model, the conductance of the throat was assumed 

negligible because of zero length and the effect of the constriction between pores was included in each 

pore’s contribution. The total conductance, 𝐺, in a conduit made up of pores i and j and throat 𝑘 can be 

calculated since the resistances act in series: 

 
1

𝐺𝑖,𝑗
=

1

𝑔𝑖−𝑘
+

1

𝑔𝑗−𝑘
 (8) 

where 𝑔𝑖−𝑘 and 𝑔𝑗−𝑘 are found for each individual pore-throat section as described below.  

This results in the following expression for the electrical conductance of pore 𝑖 connected to throat 𝑘: 

 

𝑔𝑖−𝑘
𝑒 = 𝜎

𝑑𝑖𝑑𝑘

𝐿
 (9) 

where dk is the diameter of throat, 𝐿 is the distance from centroid of pore i to centroid of throat k and di 

is the diameter of pore i which is adjusted so that volume of truncated pyramid is equal to half of the 

volume of pore i.  

The pore space is defined by the interstitial regions between grains of solid material. In this case, like the 

solid phase discussed above, the throats are essentially constrictions defined by the converging-diverging 

nature of the spheres. As such, the same truncated pyramid model was also applied:  

 

𝑔𝑖−𝑘
𝑑 = 𝒟𝐿𝑖+

𝑑𝑖𝑑𝑘

𝐿
 (10) 

where 𝒟𝐿𝑖+  is the diffusion coefficient of the Li ion in the electrolyte and the geometrical properties are 

defined as above. All of the lengths and diameter values were determined during the network extraction 

stage described above. 

 

3 Results and discussion 

3.1 PNM validation against DNS 

3.1.1 Effective Transport Properties 

The pore network model (PNM) results were compared with direct numerical simulations (DNS) for two 

different conditions. In the first case, effective transport properties were determined using both PNM and 



DNS in both the electrolyte and solid phase under steady state conditions. Dirichlet boundary conditions 

were used in both inlet and outlet pores as described in section 2.5. The comparison of results is shown 

in Table 3. The combined effective conductivities in the active material and carbon binder phase were 

calculated using both approaches and the relative error was found to be approximately 3%. The 

normalized effective diffusivity of Li-ions in the electrolyte phase is 0.178 in PNM in comparison to 0.145 

in DNS simulation, meaning that the PNM model overestimated diffusivity by 18.5% (taking the DNS result 

as correct), which is not as close as the solid phase, but still quite acceptable. These higher relative errors 

in this case of diffusion can be attributed to the simplification of irregular pore-scale conduit geometry to 

truncated pyramids, which evidently works better for the solid phase because it’s generally spherical than 

the pore phase. Given that the pore network modelling approach takes significantly less computational 

time than DNS the relative errors reported in Table 3 are acceptable for performing engineering design 

and optimization calculations. The simulation results in terms of concentration and voltage profiles are 

compared for both cases in Figure 6.  

3.1.2 Comparison of Computational Costs 

One of the benefits of pore network modelling over direct numerical method is low computational cost 

required for simulations. To study the computational cost of the simulations described above we have 

divided computational time in two parts. 1) Meshing or extraction time and 2) Problem solution time. In 

this study the approximate time taken to build 25.5 million mesh elements domain was 1 hr. On the other 

hand, in pore network modelling the equivalent to meshing is extracting the network, which required 

approximately 5 minutes to extract 6460 nodes. However, when comparing the computational cost of 

running the simulations, the average solution time in DNS and PNM was 25 min and 1.21 seconds 

respectively. The computational time was calculated in Inter Xeon E5-2640, 2.40 GHz, 128 GB RAM and 

20 Cores. For direct numerical simulation the solver was parallelized across 10 cores to achieve residual 

below 10-8 while PNM solution was calculated using only 1 core. This comparison highlights the major 

advantage of the PNM approach over DNS, especially while simulating large electrode domains. The 

comparative advantage of PNMs would become even more important when considering multiphysics such 

as migration of ions, and transient behavior. 

3.2 Coupled Electron Conduction and Diffusion-Reaction 

With the pore-network extraction and geometrical representation validated by the comparison of overall 

effective transport properties above, the model was then used to predict the maximum achievable current 

density. For this study, reaction-diffusion of lithium-ions in the electrolyte phase and reaction-conduction 

of electrons in the active material and carbon binder domain phases were analyzed simultaneously in the 

presence of a fast reaction of Li-ions at the NMC phase surface, as discussed in section 2.5. This 

assumption forces Li-Ion reaction to follow first-order kinetics instead of Butler-Volmer kinetics as per 

equation 2. Although actual Butler-Volmer kinetics can be implemented in the PNM model 13, the purpose 

of this work was to explore the impact of structure on the maximum performance of Li-ion cells, and to 

validate our PNM approach to solve lithium-ion battery problems as a foundation for future work. As can 

be seen in Table 3, the PNM and DNS models predict a maximum or limiting current density of 1.43 and 

1.41 mA mm-2, respectively. These values are substantially higher than experimentally observed values, 

which are typically in the range of 1x10-3-2x10-2 mA mm-2 5. It was expected that the present simulations 

would be higher than an operational battery since mass transfer limited conditions were forced by 

applying very high reaction rates at the electrolyte-active material boundary. Moreover, we did not 



consider that Li-ions must diffuse into the active material after intercalation occurs. It is actually quite 

instructive to note that the pore structure is capable of supporting such high current densities, and that 

the cumulative effect of the real phenomena not considered in this study hinder the reaction rate 

substantially. Adding more complexity to the pore network model in future work will be valuable for 

understanding the contribution of each process.  

It is also observed that both the DNS and PNM simulations give very similar results for this case study. The 

average Li-Ion flux at electrolyte-active material interface differs by less than 1% between the PNM and 

DNS approaches. The results of the two approaches in terms of concentration and voltage distributions 

are shown in Figure 7. From the results in Table 3 it can be visually confirmed that the PNM approach 

produces results well within acceptable error to be used as an alternative modelling method for simulating 

Li-Ion battery problems.  

3.3 Impact of Electrode Structure 

Most pore-scale models of lithium-ion batteries in the literature treat the electrode as a two-phase system 

consisting of void and solid, meaning the active material and carbon binder domain are treated as a single 

phase. Given that carbon is specifically added to overcome the poor electrical conductivity of the active 

material, it is expected that such a simplification can produce erroneous results. This simplification was 

necessary since previously available tomography images only contained binary phase information.  

Attempts to work around this limitation have been made by algorithmically adding CBD to the solid phase 
29,30.  The available of a true 3-phase image in the present work provides an opportunity to better 

understand the importance of treating CBD as a separate phase. he developed pore network was used to 

study two different cases described below. 

3.3.1 Impact of treating carbon binder as a separate phase 

As described in section 2.4, the SNOW_N algorithm was used to extract both two and three-phase 

networks of lithium-ion cathode. The schematic diagram of both networks is shown in Figure 2. These 

networks were used to perform comparisons of electrodes with and without carbon binder phase as 

shown in Figure 3. Table 4 shows the surface area, effective conductivities and current density calculated 

in both two-phase and three-phase network. As expected, the average particle size in the two-phase 

network is larger than the three-phase case due to the fact that carbon binder particles are lumped 

together with the active material.  

As a limiting case, the maximum current density that can be supported by the structure was calculated by 

simultaneously modelling the diffusion of Li-ions with a rapid reaction in the active material. Limiting 

current may not be observed practice, but it is an interesting modeling target since it reveals that 

maximum current that can be supported by the electrode structure if electrolyte phase transport were 

the only source of mass transfer resistance.  The current density was found by calculating the total rate in 

mol s-1 of Li-ions entering the domain from the membrane, converting to total current, 𝐼, using Faraday’s 

law, then normalizing by the cross-sectional area of the current collector. As shown in Table 4 the current 

density is 24.4% higher in the two-phase network compared to the three-phase case. This decrease when 

considering the CBD is due to the reduction in reactive surface area available when CBD is treated 

explicitly. It should be noted that the few studies which did treat the CBD as a separate phase used DNS. 

Due to high computational cost,  these studies were limited to a domain volume of approximately 20.2 

µm × 18.13 µm × 12.4 µm 5 compared to the electrode volume of 227.2 µm × 255.6 µm × 26 µm used in 



the current study; approximately 58 times larger when the voxel sizes are considered. The volume 

limitation in the present work was not due to computational cost, but rather the field of view of the image. 

This has considerable implications for battery modelling – using a PNM approach it would be possible to 

model whole electrodes imaged via 3D stitching of several CT data sets without compromising on 

acquisition resolution. 

 

3.3.2 The role of nanopores in the carbon binder phase 

It has been reported that nanoporosity of the carbon binder phase in the porous cathode affects overall 

ionic and electronic transport process 20,29,31. This nanoporosity not only alters ionic diffusion pathways 

and access to the active material, but also affects the electron conducting network. To understand the 

importance of nanopores in the carbon binder phase, a parametric study was conducted where the 

porosity for the carbon binder was varied. These nanopores were not modelled explicitly as this would 

massively increase the computation demand of the model, negating the value of the PNM approach. 

Instead, the effect of nanoporosity was included by altering the effective conductivity and diffusivity of 

the CBD nodes in the network. To scale these transport parameters as a function of nanoporosity a 

Bruggeman-type relation was used 32, given by equation 12 and 13: 

 
𝐷𝐶𝐵𝐷

𝐿𝑖+
= 𝒟𝐿𝑖+(𝜀𝐶𝐵𝐷)𝑛 (12) 

 𝜎𝑒𝑓𝑓 = 𝜎𝐶𝐵𝐷 (1 − 𝜀𝐶𝐵𝐷)𝑛 (13) 

where  𝜀𝐶𝐵𝐷 is the nanoporosity of the carbon binder phase, 𝒟𝐿𝑖+  is the intrinsic diffusivity of Li-ion in 

electrolyte phase, 𝜎𝐶𝐵𝐷 is the intrinsic electronic conductivity of carbon binder phase. 𝒟𝐿𝑖+,𝐶𝐵𝐷 and 𝜎𝑒𝑓𝑓 

represent effective diffusivity and electronic conductivity after inclusion of nano pores in the carbon 

binder phase. n represents the Bruggeman constant which depends on how the nanopores are connected. 

Traditionally, 𝑛 = 1.5 for a sphere pack, but is often higher for real random structures, so in this study 𝑛 

was varied between 1.5 and 3. 

Figure 8 shows the impact of varying 𝜀𝐶𝐵𝐷 on various aspects of the electrode performance with n as a 

parameter. Figure 8a shows how the effective electrical conductivity of the entire network decreases as 

the nanopore fraction of the carbon binder increases. As 𝜀𝐶𝐵𝐷 → 1 the electrical conductivity for the 

electrode nears 0 for all values of 𝑛, since the conducting carbon material is sacrificed. Figure 8b shows 

that the effective diffusivity of the network increases as ions are able flow through the nanoporosity. As 

𝜀𝐶𝐵𝐷 → 0 the effective diffusivity approaches the value obtained in 3.1.1 for the pore network. The 

electrolyte phase tortuosity 𝜏𝐿𝑖+ =  
𝜀𝐷𝐿𝑖+

𝐷𝑒𝑓𝑓
 match well with recent study on LIB’s transport “distortion”33. It 

was observed that addition of high amounts of nanoporosity more than doubles the ability of Li ions to 

transport throughout the network. It is unlikely, however, that such high amounts of porosity could be 

achieved. Moreover, as already seen, high porosity drives the electrical conductivity of the network 

toward zero value so is not a practical target anyway. For both transport processes, the value 𝑛 has only 

a small impact, except at low values of 𝜀𝐶𝐵𝐷. For 𝜀𝐶𝐵𝐷 < 0.2, the effective diffusivity is almost unchanged 

while the electrical conductivity decreases noticeably. Note that equation 12 and 13 do not include 

percolation effects, which would make this behavior at low 𝜀𝐶𝐵𝐷 even more pronounced.  



More interesting is the interplay between increasing effective diffusivity and decreasing conductivity as 

the nanoporosity is increased. Simulations were performed with the ion diffusion-reaction coupled to the 

electron conduction, such that the voltage drop in each particle was determined that ensured a sufficient 

flow of electrons were delivered to each active site to match the consumption of ions there. Figure 8c 

shows the voltage of each NMC and CBD particle in the network as a function of position in the thickness 

direction of the electrode. These results were obtained for 𝜀𝐶𝐵𝐷 = 0 and 𝑛 = 3. It can be seen that a small 

number of NMC particles display a high voltage.  This may indicate that these particles suffer from 

artificially decreased connectivity with the current collector due to edge effects from image cropping.  

None of these particles are fully disconnected (i.e. floating in space) as sometime occurs due to image 

cropping, but the topology near the edges is unavoidable impacted and this could explain the observed 

voltages.  

Figure 8d shows current density simulated at different 𝜀𝐶𝐵 values. It can be seen that current density 

increases from 2.65 mA.mm-2 to 3.1 mA.mm-2 by changing the nanoporosity from 0 to 80% phase. This 

represents an 16.8% increase in maximum current density, but it must be conceded that simulation is not 

indicative of actual performance, since in reality the reaction rate would drop significantly in sites with a 

high ohmic overpotential due to the exponential dependence of electrochemical kinetics on voltage. The 

observed behavior is due to more available reaction area and more Li-ion pathways available from the 

electrolyte phase to active material due to the presence of nanopores in CBD. The loss of electrical 

conductivity is not factored into this result, and it is quite likely that a peak in current would be observed 

as some intermediate value of 𝜀𝐶𝐵𝐷, though this is outside the scope of the present work.  

4 Conclusions 

In this work, a pore network extraction algorithm was developed to extract connectivity and geometrical 

information from a ternary X-ray tomography image of a three-phase lithium nickel manganese cobalt 

oxide (LiNi0.8Mn0.1Co0.1O2) porous cathode. The extracted three-phase network not only includes 

geometric information of each phase but also topological information such as the interlinking of all phases 

with themselves and each other. This enables the study of pore-scale transport through the structure 

while considering the transport process in each phase. 

For validation, effective transport properties including the effective diffusivity of the pore phase and 

effective conductivity of the solid phase were calculated using DNS as a reference solution, and results 

compared favorably with the extracted network. Once the model was validated, more sophisticated 

simulations were performed by considering reaction-diffusion and reaction-conduction process in 

electrolyte and solid phase of three-phase network. These studies mimicked battery operation for the 

limiting case of maximum current, since only diffusion in the electrolyte phase and very fast kinetics at 

the electrolyte-active material interface were considered. This revealed that the maximum currents that 

can be supported by the electrode structure are substantially higher than experimentally observed 

currents.  

The developed pore network model was used in two case studies to highlight the effect of incorporating 

nanopores in the carbon binder phase, as well as the importance of using three-phase network over two-

phase network of Lithium-ion battery. The results showed a 24.4% decrease in current density when the 

carbon binder was treated as a separate phase compared to lumping the CBD and active material into a 

single phase, as is often done in previous pore-scale simulations on binary images. Moreover, it was 



observed that ionic and electronic transport properties are affected by inclusion of nanopores in the 

carbon binder phase. The current density was observed to increase by 16.8% as the nano-porosity of CBD 

increases from 0 to 80%.  

As compared to direct numerical simulation, the present work uses relatively large electrode domain to 

model multiple coupled phases together in a computationally efficient way. With the increased ability to 

stitch larger regions of electrode images together and decreasing data acquisition time, the approach 

explored here will become increasingly necessary in order to accurately describe realistic Li-ion battery 

electrodes and the inhomogeneities that can be present across their entire area. Also, the current study 

focuses only on steady-state processes, but due to low computational cost of pore network models, a 

transient approach to simulate porous media can be adopted.  
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7 Figures and Tables 

 

Figure 1 a) SNOW algorithm basic steps b) SNOW_N extraction algorithm flow chart 

  



 

Figure 2 a) X-µCT image of lithium nickel manganese cobalt oxide (LiNi0.8Mn0.1Co0.1O2) cathode, b) Extracted three phase 
network of (a), c) Two phase image of porous cathode where active material and CBD correspond to one solid phase, d) 

Extracted two phase network of (c) 

 

  



 

Figure 3 a) Pore size distribution of electrolyte phase in both two and three phase network, b) Active material particle size 
distribution in two and three phase network, c) Carbon binder particle size diameter in three phase network 

 

  



 

Figure 4 Schematic diagram of full cell lithium Ion battery. The applied boundary conditions are shown in red color. 

 

  



 

Figure 5 Schematic of geometric properties of pore scale conduit in network model 

 



 

 

 



Figure 6 (a) and (b) Comparison of DNS and PNM model in pure diffusion simulation, (c) and (d) DNS and 

PNM model comparison in pure conduction simulation

 

 

Figure 7 a) Direct Numerical simulation of Li ion diffusion and reaction, b) Pore network modelling simulation for same case as in 
(a), c) Direct numerical simulation of conduction-reaction in active material and carbon binder phase, d) Pore network modelling 

simulation of same case as (c) 



 

 

Figure 8 a)Effective electronic conductivity of solid matrix (NMC+CBD) vs nanoporosity of CBD, b) Effective diffusivity of Li-Ion in 
electrolyte phase vs nanoporosity of CBD, c) Potential difference in solid matrix vs distance from membrane at 𝜀𝐶𝐵 = 0 𝑎𝑛𝑑 𝑛 =

3, d) Current density of solid matrix vs CBD nanoporosity. 

  



Table 1 Properties of image and Extracted Pore Networks 

Value X-µCT image Three Phase Network Two Phase Network 

Dimension [voxels] 568 x 639 x 65 568 x 639 x 65 568 x 639 x 65 
Voxel Size [nm] 400 400 400 
Phase [vol %] 

1. Electrolyte 
2. Active Material  
3. Carbon Binder 

 
38.6 
39.6 
21.9 

 
38.23 
39.53 
22.23 

 
38.1 
61.9 

- 
Electrolyte Phase: Np, NT - 1648, 3619 1648, 3619 
Active Material Phase: Np, NT - 1712, 2057 1726, 5316 
CBD Phase: Np, NT - 1976, 4227 - 
Interconnections: 

1. Electrolyte-Active Material 
2. Electrolyte-CBD 
3. Active Material-CBD  

 
- 
- 
- 

 
6888 
8878 
7435 

 
11419 

- 
- 

 

  



Table 2 Summary of the parameters used in this study 

Parameter Value Units Description 

Lcathode 2.6 x 10-5 m Cathode thickness 
Across-section 5.807 x 10-8 m2 Cross-sectional area of cathode 
Vcathode 1.51 x 10-12 m3 Volume of cathode 
𝐷𝐿𝑖+  1.81 x 10-10 m2.s-1 Bulk diffusivity of Li ion in electrolyte phase 5 
𝜎𝐶𝐵𝐷 760 S. m-1 Electronic conductivity of carbon binder phase 34 
𝜎𝑒 1.7 x 10-3 S. m-1 Electronic conductivity of NMC-811 35 
CIN 1000 kg.m-3 Concentration of lithium ion at membrane-cathode interface 
𝜑𝐼𝑁 0 Volt Voltage at cathode current collector 
F 96485 C. mol−1 Faraday’s constant 

 

  



Table 3 Summary of results in this study 

Variable Pore Network Model Direct Numerical Model Relative Error (%) 

Deff/Dbulk 0.178 0.145 18.5 
σeff 31.9 30.92 3.07 
Li+ fluxvoid-NMC 1.481x10-2 mol/m2s 1.496x10-2 mol/m2s 0.67 
ivoid-NMC 1429.8 A/m2 1411.7 A/m2 1.26 
 

 

  



Table 4 Summary of results in case study 1 

Variable Units Three Phase Network Two Phase Network 

SAinterface m2 1.08x10-7 2.84x10-7 
σeffl S/m 31.9 8.32x10-4 
Li+ fluxvoid-NMC mol/m2s 1.481x10-2 7.44x10-3 
icurrent collector mA/mm2 2.652 3.51  

 

 


