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Abstract 
The study of land use change in urban and regional systems has been dramatically transformed in the last 
four decades by the emergence and application of cellular automata (CA) models. CA models simulate 
urban land use changes which evolve from the bottom-up. Despite notable achievements in this field, 
there remain significant gaps between urban processes simulated in CA models and the actual dynamics 
of evolving urban systems. This article identifies contemporary issues faced in developing urban CA 
models and draws on this evidence to map out four interrelated thematic areas that require concerted 
attention by the wider CA urban modelling community. These are: (1) to build models that compre- 
hensively capture the multi-dimensional processes of urban change, including urban regeneration, den- 
sification and gentrification, in-fill development, as well as urban shrinkage and vertical urban growth; (2) 
to establish models that incorporate individual human decision behaviours into the CA analytic frame- 
work; (3) to draw on emergent sources of ‘big data’ to calibrate and validate urban CA models and to 
capture the role of human actors and their impact on urban change dynamics; and (4) to strengthen 
theory-based CA models that comprehensively explain urban change mechanisms and dynamics. We 
conclude by advocating cellular automata that embed agent-based models and big data input as the most 
promising analytical framework through which we can enhance our understanding and planning of the 
contemporary urban change dynamics. 
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I Introduction 
Cellular automata (CA)1 were first proposed in 
1943 by Stanislav Ulam and John von Neu- 
mann, while working on the Manhattan Project 
at Los Alamos (Ilachinski, 2001). Using rudi- 
mentary computing machines, Von Neumann 
speculated that cellular automata might be good 
analogies for self-replication, and Ulam pro- 
vided two-dimensional CA models that exhib- 
ited self-replicating generative properties 
(Dyson, 2012). It was not until the early 1970s 
when John Conway invented the Game of Life 
board game that more serious efforts to apply 
CA to real systems first emerged. Although CA 
can be applied to any system of objects that can 
be formally replicated, its initial application was 
to systems whose elements could be arranged on 
a regular two-dimensional lattice. Tobler (1975, 
1979) pioneered this work in the geographic 
systems domain, relating this to image process- 
ing on the one hand and cartographic transfor- 
mations on the other. Parallel developments 
from remote sensing (where pixel arrays are the 
analogue), from fractal geometries, and from 
raster-based geographic information systems 
supported the effort in broadening the range of 
applications to ecological and urban and 
regional systems. These applications began to 
expand greatly some two decades after Con- 
way’s first demonstration of the Game of Life 
(Batty et al., 1997). 

Over the past four decades, the study of urban 
systems has been dramatically transformed by 
the emergence and application of CA models 
designed to simulate urban land use change 
from a bottom-up perspective. The fundamental 
elements of urban CA models are: (a) individual 
spatial units (i.e. cells) defined by their location 
(i.e. cell space); (b) geometry (i.e. shape of the 

cells on a grid, which can be regular or irregu- 
lar); (c) attributes (i.e. the state of cells; for 
instance, land use type) that evolve through time 
and over space; and (d) a set of specified rules 
governing the transition of cell states within 
their neighbourhood. The broad aim of urban 
CA modelling is to capture the rules that deter- 
mine the way in which the state of a cell changes 
with respect to what happens in its neighbour- 
hood and, collectively, how these changing 
states generate meaningful patterns that repre- 
sent possible paths the spatial system being 
simulated can take in the future. 

Notable achievements have been made in 
advancing CA models to simulate urban sys- 
tems since the early efforts of Tobler (1979) 
(Sante  ́et al., 2010; Li and Gong, 2016). These 
include the shift from arbitrary and fixed cell 
grid representation to irregular, flexible entity- 
based representations (O’Sullivan, 2000; 
Bithell and Macmillan, 2007; Pinto and 
Antunes, 2010); the extension from a rigid 
topologically-based neighbourhood definition 
to a flexible semantic definition adapted to each 
entity being represented (Moreno et al., 2009; 
Van Vliet et al., 2009); the use of better quality 
datasets for CA model calibration (Pontius and 
Petrova, 2010); new calibration techniques 
ranging from simple statistical and probabilistic 
methods to more sophisticated computational 
intelligence techniques including neural net- 
works, deep learning, machine learning, and 
heuristic optimisation (Li and Yeh, 2002; Feng 
et al., 2011; Feng and Liu, 2013); and the 
ongoing efforts making urban CA models avail- 
able as software, including the SLEUTH model 
(Clarke et al., 1997; Silva and Clarke, 2005; 
Rafiee et al., 2009; Chaudhuri and Clarke, 
2013; Rienow and Goetzke, 2015), the 
CA_MARKOV model (Shirley and Battaglia, 
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2008; Václavı́k and Rogan, 2009; Adhikari and 
Southworth, 2012), iCity (Stevens et al., 2007), 
Metronamica (Stanilov and Batty, 2011; White 
et al., 2015), and the more recently developed 
FLUS-CA model by Liu et al. (2017). 

Yet, contemporary practice in urban CA 
modelling continues to be limited by its persis- 
tent over-simplification of urban processes that 
are both multidimensional and complex (Tor- 
rens and O’Sullivan, 2001; Salvati and Serra, 
2016). While models (in general) are abstrac- 
tions and thus simplifications of reality, most 
urban CA models focus on simulating the 
spatio-temporal processes of urban expansion. 
Few attempts to date have been made to capture 
the wider chaotic dynamics of the urban system 
that cover a broader spectrum of urban change 
processes, including urban regeneration, densi- 
fication, gentrification, inner-city decline, poly- 
centric formation, de-urbanisation, and urban 
shrinkage, to name but a few. Current urban CA 
models are also limited in simulating the 
influences of physical and economic factors, 
and often overlook the summative impact of 
human decision-making behavioural factors on 
urban development. This shortcoming may be 
due to the inability of CA models to represent 
entities at the finest disaggregate levels, such as 
individual decision behaviours that drive the 
evolution of social systems (O’Sullivan, 
2002). Here, we argue that there is a need for 
CA models to embrace a wide variety of urban 
change processes that acknowledge the bottom- 
up processes that are associated with fractal pat- 
terns and dynamics, which taken together offer 
the capacity to model more realistically highly 
complex urban systems (Batty, 2007, 2013). We 
also consider that the integration of CA with 
other individual-based models such as the 
agent-based modelling (ABM) provides unique 
opportunities for urban CA modellers to incor- 
porate the underlying human decision factors 
that drive urban change. Here, CA is considered 
as a passive system that provides a cellular 
space which evolves under different transition 

rules where the rules are invariant through time, 
while ABMs are founded on agents acting 
within the cellular landscape, interacting purpo- 
sively with one another and with the environ- 
ment defined by cellular space. Agents thus 
have the potential to change their own beha- 
viours as they interact in the cellular space. 

Given the somewhat diverse practices in the 
development and application of urban CA mod- 
els due to the lack of a holistic understanding of 
the multi-dimensional urban change processes 
as well as the complex human decision beha- 
viours, there is a pressing need for the CA mod- 
elling community to coalesce around a series of 
research themes through which targeted prog- 
ress can be achieved. The aim of this paper is to 
address this need by summarising these contem- 
porary issues and challenges, and then charting 
a future research agenda towards which we can 
orientate our collective effort in urban CA 
modelling. 

 
II Contemporary issues in urban 
CA modelling 
A large number of urban models have been 
developed for different policy fields at various 
levels of spatial and temporal resolution (Spie- 
kermann and Wegener, 2018), with the broad 
aim of capturing the dynamics of space, time, 
and human choice in relation to urban change. 
According to King and Kraemer (1993), a 
model should play at least three key roles in     a 
policy context: (1) to clarify the issues in a 
debate, such as issues pertaining to the interac- 
tions and conflicts between different urban 
activities and land uses; (2) to enforce a disci- 
pline of analysis and discourse among 
stakeholders; and (3) to provide suggestive 
feedback and advice primarily in the form of 
what not to do – since the politics of any prac- 
tical application often conflicts with what a 
model suggests. By considering these three 
objectives alongside the abilities of existing 
urban models, we identify the following four 



4 Progress in Human Geography XX(X) 
 

 
key issues in the contemporary literature of 
urban CA modelling. These include: 

the restrictions of CA modelling to urban 
expansion rather than the  multi- 
dimensional processes of urban change, 
such as urban regeneration, densification 
and gentrification, in-fill development, 
sprawl, as well as urban shrinkage and 
vertical urban growth; 
the lack of factors representing individual 
human decision behaviours and their col- 
lective implications for urban change; 
the minimal effort in drawing on emer- 
gent sources of ‘big data’ to calibrate and 
validate CA models and to capture the 
role of human actors and their impact 
on urban dynamics; and 
the absence of theories in CA modelling 
that comprehensively explain urban 
change mechanisms and dynamics. 

We discuss each of these in turn. 
 
 

1 The restrictions of CA modelling to urban 
expansion rather than the multi- 
dimensional processes of urban change 
Following the processes of urbanisation and 
suburbanisation which came to dominate urban 
growth in the post-war years, one extreme and 
diametrically opposed trend – urban shrinkage – 
has more recently emerged. This trend is char- 
acterised by low fertility rates, outmigration of 
young families, declining productivity and the 
lack of a skilled workforce (Martinez-Fernan- 
dez et al., 2012). These exist primarily in the 
older industrial regions of Europe (Northern 
England, Scotland’s Clydeside, Lorraine, and 
the Rhine-Ruhr region), in large parts of the 
post-socialist countries in eastern Europe 
(Großmann et al., 2008; Haase et al., 2016), and 
in north-eastern United States rustbelt cities 
such as Buffalo, Cleveland, and Pittsburgh 
(Wiechmann and Pallagst, 2012). Recent 

shrinkage has also been observed in some cities 
in China, Japan, and South Africa (Rieniets, 
2009; Long and Wu, 2016). 

From recent reviews of CA-based urban 
modelling (Aburas et al., 2016; Musa et al., 
2017), it is evident that most existing urban 
models focus on simulating urban expansion 
and sprawl (Liu, 2008, 2012; Liu et al., 2013; 
Sakieh et al., 2015; Pérez-Molina et al., 2017), 
whereas studies of other types of urban transfor- 
mation such as gentrification, regeneration, and 
urban shrinkage have been rather limited. 

Recent CA modelling concerned with the 
process of urban regeneration involves the 
application of ABMs that employ cellular repre- 
sentations and complex model calibration rou- 
tines. For instance, Jordan et al. (2014) 
developed an agent-based model to simulate 
residential mobility and assess the impact of 
urban regeneration policy on the housing choice 
behaviours for a residential community in the 
United Kingdom. Another application by Zheng 
et al. (2015) simulated land use change in an 
urban renewal district in Hong Kong by com- 
bining the conversion of land use and its effects 
at the small area level (CLUE-S) model with a 
Markov prediction model. Their work demon- 
strates the utility of the modelling framework as 
a policy tool for scenario analysis of urban 
renewal, but lacked the capacity for capturing 
the entire life-cycle of urban regeneration from 
land evacuation to redevelopment. 

Urban gentrification, as a process that is usu- 
ally accompanied by urban regeneration, has 
also gained attention in the CA modelling com- 
munity. O’Sullivan (2000, 2002) simulated 
urban gentrification at the micro level by apply- 
ing an irregular graph-based CA architecture, 
drawing on the principle of proximal space and 
rent gap theory in residential property markets. 
Following on from this, Diappi and Bolchi 
(2006) investigated the gentrification process 
by applying an urban spatial model of gentrifi- 
cation also based on rent gap theory (Smith, 
1987). Their model included behavioural rules 

• 

• 

• 

• 
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for each type of agent such as homeowners, 
landlords, tenants, and developers, with non- 
linear interactions between agents at the local 
level which can then produce different config- 
urations of the system at the macro level. Simi- 
larly, Torrens and Nara (2007) developed a 
hybrid cellular and agent-based automata model 
that allowed for the representation of co- 
interactions among fixed and mobile entities  in 
urban settings as well as across multiple spa- tial 
scales. While this hybrid approach is useful in 
representing human behaviours in complex 
adaptive urban systems, it could also benefit 
from considering more top-down factors such as 
urban planning and zoning, social biases, and 
cultural factors in the form of traditional cus- 
toms and behaviours shared by certain ethnic 
communities. 

Beyond urban expansion, some scholars have 
also modified the strict CA model by adding 
constraints and processes that enable the simu- 
lation of urban shrinkage (Sante  ́ et al., 2010; 
Schwarz et al., 2010). For instance, Haase  et 
al. (2010) developed an agent-based model that 
computes spatially explicit household pat- terns, 
housing demand, and residential vacan- cies. 
This model was applied to simulate urban 
shrinkage in Leipzig, Germany. An updated 
version of a joint system dynamics (SD)-CA 
model and an ABM was developed by Haase  et 
al. (2012) using an integrated dataset of land 
cover and cadastral data, with specific indica- 
tors of urban shrinkage including population 
decline, change in household structure, housing 
costs, proximity of growing and declining 
neighbourhoods, decline in land use density 
through the expansion of brownfields and the 
emergence of unintended green spaces, and the 
concomitant consumption of land for new 
development. The integration of different mod- 
elling approaches enabled the inclusion of data 
on demographic, socioeconomic, housing, and 
governance features of urban shrinkage. How- 
ever, these models capture neither decision- 
making processes nor the relationships between 

housing supply and the specific demands of the 
individual agents, both of which are key issues 
that should be considered. As such, there is a 

pressing need to develop models that address 
the question of how socio-spatial land use 

change dynamics contribute to urban shrinkage. 
Urban development is a process that involves 

changes in urban form in both the horizontal and 
vertical geometric dimensions. Since the 1950s, 
planners have commonly perceived that vertical 
growth in the form of tall buildings increases 

urban density and is desirable in eliminating 
urban sprawl, increasing housing affordability, 

reducing energy costs for transportation, and 
distributing resources in a more compact way 

(Goetz, 2013). Therefore, vertical urban growth 
represents one of the most important aspects of 
‘smart growth’ and ‘sustainable development’, 
which further transforms the morphology and 

functioning of cities (Palme and Ram´ırez, 
2013). For example, the development of high- 
rise buildings has also been considered as a 
symbol of advancement, wealth, and efficiency, 
which resonates particularly with the politics in 
developing countries where the transformation 

of cities is primarily concerned with a large 
population base (Palme and Ram´ırez, 2013). 

Vertical urban growth is also reflected in build- 
ings with various functions including commer- 
cial, residential, and industrial land uses (Lin 
et al., 2014). Some scholars also report the neg- 
ative effects of vertical urban growth; for exam- 

ple, the densification of urban surfaces can 
decrease urban efficiency (Jaksch et al., 2016), 

increase pollution (Aristodemou et al., 2018), 
accelerate urban heat island effects (Santa- 

mouris et al., 2015), amplify road traffic noise 
(Tang and Wang, 2007), and adversely affect 
resident habits and lifestyles. In fact, there is 

no longer widespread agreement that the 
increased compactness of vertical urban growth 
reduces either urban sprawl or the use of energy 
in cities. 

However, despite the divergent views on ver- 
tical urban growth and its impact on urban form, 
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it is only in recent years that CA models of 
vertical urban growth have emerged (Lin et  
al.,  2014;  Koziatek  and  Dragićević,  2017), 
though 3D CA models have for some years 
already been applied in other fields. Despite the 
fact that CA can be easily extended to incorpo- 
rate 3D growth, most simulations have only 
dealt with two-dimensional space, with the 
exception of early ad hoc examples such as 
those developed by Batty and Longley (1994), 
Semboloni (2000), and Semboloni et al. (2004), 
who generated fractal growth in 3D when 
exploring the space-filling properties of urban 
regions but did not pursue the simulations fur- 
ther. However, models that better account for 
simulating the dynamics of spatio-temporal pro- 
cesses and patterns associated with vertical 
urban growth need to be further developed. This 
limitation is not just confined to CA models; all 
types of urban simulation models focus exclu- 
sively on simulating horizontal expansion 
(Schwarz et al., 2010), despite the global trend 
of increasing urban density through high-rise 
living. For instance, in CA-based urban models, 
the state of an ‘urban’ cell is typically consid- 
ered as the final state that will not change 
regardless of any further development on the 
cell through multi-functional development 
(such as high-rise buildings that have multiple 
functions including retail and residential use), 
densification, or vertical urban growth. Further- 
more, transportation and interactions between 
cells are usually confined to two dimensions, 
despite there being significant interaction 
effects in the third dimension. The advancement 
of LiDAR and building information models 
(BIM) representing physical and functional 
characteristics of places and the vertical mixed 
use of multi-level buildings has begun to fulfil 
an analytical need in urban CA modelling 
(Batty, 2000). Links between 3D representation 
and CA are being explored using generative 
grammars such as those embodied in ERSI’s 
CityEngine software (Koziatek and Dragićević, 
2017). As a practical example and a pioneer 

study, Lin et al. (2014) developed a 3D CA 
model that adopts a linguistic approach to simu- 
late building distribution patterns across space 
and time. This model combines a series of vari- 
ables such as population density, building 
height, and accessibility to transportation nodes. 
It provides a modelling framework that captures 
vertical urban growth patterns across space 
from the city centre through the fringe, periph- 
ery, and hinterland. More recently, Koziatek 
and Dragićević (2017) developed the 3D iCity 
to model vertical urban development in the 
Canadian city of Surrey. To further develop 
applications of this type of 3D urban CA model, 
we need to confront a series of challenges which 
include: (1) insufficient data to parameterise the 
model at the initial stage of model operation; (2) 
the inability to validate the results over the 
simulation period; and, (3) the inaccuracies in 
simulating buildings with heterogeneous 
heights using representations based on varying 
neighbourhood cells (Lin et al., 2014; Koziatek 
and Dragićević, 2017). 

 
2 The lack of factors representing individual 
human decision behaviours and their 
collective implications for urban change 
Compared to natural or agricultural landscapes, 
urban systems are strongly influenced by both 
human and environmental factors. In the con- 
text of the urban environment, this can be inter- 
preted as a concern for the degree of harmony 
between city residents and their everyday urban 
surroundings (Pacione, 1990). Land use 
changes are the consequence of various drivers 
that include the economy, technology, and 
human behaviours and decisions (Agarwal et 
al., 2002). Among these drivers, people’s 
behaviours and decisions such as the housing 
choices of residents and investors, investment 
decisions by land developers, and urban plan- 
ning regulations and design have played an 
overriding role. Haase and Schwarz (2009) pro- 
vide a general but comprehensive overview of 
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the major components of an urban system, con- 
sisting of three components collected through 
four types of relationships: (1) the impact of the 
human sphere on land use; (2) feedback of land 
use on the human sphere; (3) the impact of land 
use on the environment (including ecosystems); 
and (4) feedback of the environment on the 
human sphere (Haase and Schwarz, 2009). The 
principal driving force for urban change is the 
way in which the human sphere and the 
pressure it exerts on urban land use can have 
environmental consequences, which can in turn 
affect future human decisions and behaviours. 
Since cities are places where people deliber- 
ately come together to interact, our understand- 
ing of the evolution of cities must be enriched 
by studies of networks, interactions, connec- 
tions, and transactions between humans and the 
environment, ranging from individual, local, 
and regional, to global scales (Batty, 2013). 

In the process of coupling human and envi- 
ronmental systems with urban modelling, 
understanding how humans make decisions is of 
paramount importance (Gimblett, 2002; An, 
2012). Human decisions and subsequent actions 
change the structure and function of many 
environmental systems, which in turn influence 
human decisions and actions. To assess the 
extent to which current urban CA models have 
captured the human–environmen- tal dynamics, 
Table 1 presents a selection of urban CA models 
that considered (or not) dif- ferent levels of 
human-decision complexity categorised by 
Agarwal et al. (2002), as illu- strated in Figure 
1. 

Table 1 shows that some CA models, partic- 
ularly those in more recent studies, have com- 
prehensively considered human–environment 
interactions in the modelling process. Further- 
more, the integration of CA and ABM would 
allow the decision behaviours of various 
‘agents’ to be incorporated and simulated in the 
cellular space in order to understand the emer- 
gent spatial patterns through time (Batty, 2009; 
Waddell, 2002; Jjumba and Dragićević, 2012). 

Nevertheless, the existing literature reveals a 
somewhat simplified capacity to model com- 
plexity in human decision-making using more 
or less sophisticated measurements or concep- 
tualisations of stochasticity (De Almeida et al., 
2003; Feng et al., 2016). These models are yet to 
capture the fundamental role of humans and 
their interactions within the built environment 
which shapes our cities, and there is no unique 
approach to represent an individual’s decision 
behaviours and how collectively such individ- 
ual decision behaviours impact on the change in 
urban form. The critical role of human beha- 
viours in urban models has been generally over- 
looked for two main reasons: (1) the challenges 
of developing realistic operational models to 
incorporate the impact of decision behaviours 
and other drivers of urban transformation 
(Elliott and Kiel, 2002), and (2) the difficulty of 
even observing, but also collecting, verify- ing, 
and validating data reflecting an individu- al’s 
decision behaviours as dynamic contextual 
parameters (Crooks et al., 2008). Subsequently, 
CA models rarely have had the capacity to 
incorporate the most comprehensive drivers of 
human behaviours with respect to land use 
change (Agarwal et al., 2002). The emergent 
sources of ‘big data’ in various forms at the 
individual level could shed new light on how 
urban modellers might tackle this fundamental 
issue in urban CA models, but this will require 
new forms of data concerning decision pro- 
cesses which currently barely exist. Moreover, 
the lack of effort in using such data in current 
CA modelling practice needs to be addressed. 

 
 

3 The minimal effort in drawing on 
emergent sources of ‘big data’ to calibrate 
and validate CA models and to capture the 
role of human actors and their impact on 
urban change dynamics 
A persistent challenge in urban CA modelling 
concerns the fitting of urban CA models to data. 



8 Progress in Human Geography XX(X) 
 

 
Table 1. The levels of modelling human-decision complexity in urban CA models, adapted from Agarwal 
et al. (2002: 6). 

Human-decision 
Level complexity Model components Examples 

1 No human decision-making (only 
biophysical variables) 

 
 

2 Human decision-making 
assumed to be related 
deterministically to selected 
human variables (such as 
population size, change or 
density) 

3 Human decision-making seen 
as a probability function 
depending on socioeconomic 
and/or biophysical variables 
without feedback from the 
environment to the choice 
function 

 
 

4 Human decision-making seen 
as a probability function 
depending on socioeconomic 
and/or biophysical variables 
with feedback from the 
environment to the choice 
function 

5 One type of agent whose 
decisions are modelled overtly 
with regard to choices made 
about variables that affect 
other processes and 
outcomes 

 
 

6 Multiple types of agents whose 
decisions are modelled overtly 
with regard to choices made 
about variables that affect 
other processes and 
outcomes 

Land use (e.g. urban or non- 
urban, roads, different land 
use types) 

Environment (e.g. topography) 
Human sphere (e.g. demand 

rules, population, economy, 
planning, accessibility via 
transportation network) 

Land use (e.g. suitability rules, 
land use functions) 

Human sphere (e.g. population, 
household, jobs, employment) 

Land use (e.g. single-family 
residential, multi-family 
residential, commercial, 
industrial, transportation, 
public) 

Environment (e.g. undeveloped 
land) 

Human sphere (e.g. urban 
growth, policy simulation and 
evaluation) 

Environment (e.g. habitat change 
and habitat fragmentation) 

 
 
Human sphere (e.g. initial capital, 

lending amount) 
Environment (e.g. distance to 

CBD/toll road) 
Land use (e.g. land cover/values) 
Interaction: developer- 

environment relation (e.g. land 
find, assess, and decide) 

Human sphere (e.g. multiple 
agents, socioeconomic 
change) 

Environment (e.g. climate 
change) 

Land use (e.g. historical land use 
change) 

Interactions between variables 
via system dynamics and ABMs 

Rafiee et al., 2009; Van Vliet 
et al., 2009; Feng et al., 2011; 
Liao et al., 2016; Liu and Feng, 
2016. 

Verburg and Overmars, 2007; 
He et al., 2008; Lin et al., 2014. 

 
 
 
 
Jantz et al., 2010; Haase et al. 

2012; Fuglsang et al., 2013; 
Kamusoko and Gamba, 2015; 
Rienow and Goetzke, 2015; 
Sakieh et al., 2015; Berberoğlu 
et al., 2016; Tian et al., 2016. 

 
 
 
Dabbaghian et al., 2010. 

 
 
 
 
 
 
Torrens and Nara, 2007; Jordan 

et al., 2014; Wahyudi et al., 
2019a. 

 
 
 
 
 
O’Sullivan, 2002; Semboloni 

et al. 2004; Diappi and Bolchi, 
2006; Liu et al., 2013; Liu et al., 
2017; Wahyudi et al., 2019b. 
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Figure 1. Three dimensions of modelling human- 
decision complexity in urban CA models with model 
components, revised from Agarwal et al. (2002: 7). 

 
This is usually referred to as model calibration 
and validation. Model calibration typically 
involves determining the parameter values 
which specify the model’s rules to particular 
applications, while validation involves testing a 
simulation model with a set of sample data 
different from those applied to model calibra- 
tion and then evaluating the output, with the 
ultimate goal of producing accurate and cred- 
ible results. In fact, many applications are based 
on rules that are plausible and appear to reflect 
rational decision-making, but are rarely fitted 
and tested in any way (Crooks et al., 2008; An, 
2012). The rules can be inferred from vari- ables 
that define various attributes of cells and 
neighbourhoods, and then are matched against 
outcomes using various data mining and multi- 
variate methods. However, these rules tend to 
be arbitrary unless they are consistently exam- 
ined and pruned from the list of causes that 
determine how urban development occurs. 
Many new methods of multivariate analysis 
involving neural nets and related decision- 
making/data-mining techniques can be devel- 
oped, but there are only a small number of 
applications so far. However, currently, the 
calibration of urban CA models is dominated 

by the type of rules that need to be defined for 
such models, and this relies more on theory than 
real world applications. The actual pro- cesses 
of urban development need to be ana- lysed, 
after which rules based on these actual 
processes need to be devised and validated with 
respect to what the data are saying about urban 
development. This is a critical subject to broach 
and requires a systematic review in itself so that 
we might make progress on model validation 
and calibration. Verification, which is usually 
defined as ensuring that the model code is 
functioning correctly, is also becoming a more 
significant part of the process of model 
development as more models with different 
software requirements and diverse data struc- 
tures come to characterise ever more compli- 
cated CA models. 

Historically, research on urban land use 
change has primarily relied on remotely sensed 
imagery and aggregated census data or data 
from small-scale surveys. Over the past 
decades, however, rapid global change in the 
digitisation of records, expansion of networks, 
and the computerisation of societies has cre- 
ated large quantities of data with both spatial 
and temporal features relevant to urban forms 
and urban change dynamics (Glaeser et al., 
2018). With the globalisation of information 
and technologies, the world is becoming 
increasingly connected with virtual, per- 
ceived, and real spaces. Computation and 
analytics driven by the so called ‘big data’, 
defined in terms of its large volume, have 
become essential to tackle fundamental urban 
issues (Chen et al., 2012; Batty, 2018). Com- 
puters have been embedded into almost every 
conceivable type of objects, and the rise of the 
Internet of Things (IoTs) is changing how 
humanity interacts with itself and with the 
environment that we have  built  (Hammi et 
al., 2017). Accordingly, data in cities is being 
generated, recorded, and stored in 
unprecedented quantities from sources rang- ing 
from parking meters to smart-card-based 
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devices, from crowdsourced application users 
to hot-line callers, and from participatory 
mapping applications to activities involving 
citizen science. Big data from diverse real- 
time streaming offer information that tradi- 
tional censuses and survey data cannot 
provide. For example, social-media sites such as 
Facebook can track user locations to reflect the 
formation and dissolution of networks in real 
time, and cell phone companies can map the 
movements of their customers, which are 
contrasted with the limited information 
gleaned from traditional data collection. The 
emerging sources of big data offer modellers the 
opportunity to capture and reconstruct the 
spatial movements and decision behaviours of 
individuals, making it possible to develop ‘big 
CA’ models, that is, CA models at a fine spa- 
tial scale that incorporate individual human 
decisions, their interactions with each other 
and with the built environment in which they 
reside, as well as the way these human- 
environment interactions would collectively 
reveal the spatial and temporal dynamics of 
cities. Meanwhile, there also exist some emer- 
ging concerns as a consequence of the grow- ing 
size and complexity of urban big data. These 
pose a suite of daunting challenges for urban 
scholars with regard to the substantial 
investment in time and technical abilities 
needed to ensure that such data deliver the 
required information, while also considering the 
computational expense of employing such data 
across a variety of spatial and temporal scales. 

The first challenge lies in the nature of urban 
big data. The agglomeration of disparate big 
data sources spreads across a city as a digital 
skin woven by the ‘IoTs’, communication net- 
work, monitoring individuals, organisations, 
and governments (Rabari and Storper, 2014). 
Among these, three major big data sources are 
thought to be valuable to urban sciences 
(Arribas-Bel, 2014). These include: 

bottom-up data collected by individual 
mobile/computer users; 
intermediate data aggregated and created 
by compiling primary source data; and 
top-down data released by government, 
public organisations, and the private 
sector. 

 
Collectively, these data are not only archived in 
volumes and across different formats, but are 
also dynamic and continuously generated and 
updated, with significant differences in quality, 
coverage, accuracy, and timeliness. Data acqui- 
sition requires a comprehensive understanding 
of their sources and structures, and more impor- 
tantly, a clear mind for managing the appropri- 
ate information from the vast ocean of data for 
research purposes. 

The considerable value of urban big data is 
demonstrated when it can be linked and fused 
with other data sources, though this in itself is a 
challenge, that is, how to manipulate models 
that contain big data. It is critical to realise that 
the promise of big data is equally poised with 
numerous difficulties across many dimensions 
(Dong and Srivastava, 2013). Big data manipu- 
lation involves multiple stages – from data 
extraction, filtering, cleaning, formatting, 
re-structuring, and integrating – before being 
ready for analysis. This procedure is usually 
time-consuming and costly, requiring suitable 
computational facilities (e.g. software, inter- 
face, and storage) and computer skills (e.g. data 
mining, programming and statistical analysis) 
(Labrinidis and Jagadish, 2012). In particular, 
big data that can be used for urban modelling 
are usually geospatially explicit, which 
requires geographic thinking, methods, and 
spatial analytical and visualisation skills. 
Furthermore, data privacy is another key issue 
since a large body of big data are user- 
generated via social media, fostering citizen 
engagement in urban activities but also expos- 
ing personal information with the potential for 

• 

• 

• 
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use across unappropriated purposes if without 
protection (Perera et al., 2015). 

When data are ready for analysis, the chal- 
lenge becomes how to organise existing data in 
meaningful ways to allow modelling and com- 
parison of hidden patterns and relationships 
among dynamic urban systems. Data-driven 
urban modelling, particularly where the data 
tend to be big, is considerably more sophisti- 
cated than the simpler skills we used in the past 
for locating, identifying, analysing, and citing 
data (Wu et al., 2014). What needs to be primar- 
ily kept in mind is the purpose of modelling, 
rather than adapting studies to data that are 
available. An opportunistic way of conducting 
data-driven research may lead to interesting 
observations, but often bypasses ideas not 
meaningful to tackling real-world issues 
(Hashem et al., 2015). Past studies have 
revealed how big data can help to improve the 
planning of smart cities in at least four respects 
(Lim et al., 2018): preventive administration 
(e.g. civil complaint and crime prevention), 
operational management (e.g. trash collection 
and traffic control), network development (e.g. 
bus service scheduling and Wi-Fi hotspot opti- 
misation), and information diffusion (e.g. pollu- 
tion monitoring and intelligent navigation). 
Thus, changing city operations and improving 
the lives of city residents should be the ultimate 
goal of using big data in urban modelling, where 
urban research should combine both academic 
rigor and practical knowledge. 

 
4 The absence of theories in CA modelling 
that comprehensively explain urban change 
mechanism and dynamics 
Contemporary sciences usually invoke theory 
that enables scientific predictions to be com- 
pared with reality, with respect to the variations 
in the phenomena of interest across time and 
space (Batty, 2009). To deal with the complex- 
ity of such realities, theories are translated into a 
form that enables them to be represented as 

mathematical or logical models, with computers 
acting as the laboratory in which the simulation 
of reality takes place (Haase et al., 2012). Given 
a good theory, an urban model would be con- 
structed, validated, and then used as a vehicle 
for refining the theory through ‘what if’ style 
experiments and sensitivity testing (Batty, 
1976; Crooks et al., 2008). However, the overt 
role of theory has faded in many contexts as 
urban models embed theory within themselves 
(Crooks et al., 2008); that is, theory is often 
derived as the model is constructed. For exam- 
ple, UrbanSim as a simulation platform for sup- 
porting planning and analysis of urban 
development has been developed by adopting  a 
micro-simulation strategy that directly repre- 
sents the choices of households, businesses, 
developers, and governments (representing pol- 
icy inputs) in the real estate market in a way that 
is ‘behaviourally natural and intuitive’ and can 
be understood by non-technical stakeholders 
(Waddell, 2011: 217). Because models come  to 
control all of the inputs and parameters, most 
social systems cannot be represented in the form 
of a theory that guarantees any measure of clo- 
sure. Earlier generations of urban models have 
demonstrated the extent to which they can be 
validated in terms of the goodness-of-fit of the 
model to an existing system, but the difficulties 
and failures in model validation are features that 
exist for both the theory involved and data from 
the observed reality (Crooks et al., 2008). 

A large number of urban models have been 
developed over the last half century, and most 
can generally be classified into two categories: 
top-down aggregate models or bottom-up disag- 
gregate models (Tan et al., 2014). Top-down 
models, such as economic equilibrium models, 
are often constructed by breaking down a sys- 
tem to gain insight into its compositional sub- 
systems in a reverse engineering fashion; such a 
modelling approach is typically based on tradi- 
tional macroeconomic theories and is unable to 
deal with micro-level decision-making or with 
small-scale social and environmental problems 
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(Itami, 1994). On the other hand, the bottom-up 
modelling approach is formulated by piecing 
together sub-systems or its components to for- 
mulate more complex systems; this modelling 
approach has become more dominant in the 
field of urban modelling with the ongoing 
development of algorithms to represent the 
dynamics of urban systems. CA models, as one 
of the most popular bottom-up approaches, can 
capture changes in urban morphology through 
simple and flexible transition rules (Sante  ́et al., 
2010; Feng and Liu, 2016). However, CA mod- 
els inevitably have the common weakness of all 
bottom-up models: modellers have done little to 
link their models to urban theories which exist 
at a more aggregate scale (Torrens and O’Sulli- 
van, 2001). They have also faced difficulties in 
incorporating human decision behaviours 
(Haase et al., 2010; Arsanjani et al., 2013) and 
in capturing the macro-scale social and eco- 
nomic driving forces of urban change (Han  et 
al., 2009). 

The theoretical orientations of many CA and 
ABMs remain implicit and hidden, often covered 
by ad hoc assumptions about modelling struc- 
ture, process, and software interfacing (Crooks 
et al., 2008). Moreover, their processes, although 
explicit in these models, are almost invisible with 
respect to observation and data. In many cases, 
the development of an urban CA model is only an 
additional application of some simple structures 
that are adjusted for a local context (Couclelis, 
2002). In the increasingly diverse array of CA 
modelling applications, such models are consid- 
ered generic; they can be applied and fitted to 
data and processes in any particular field, subject 
to use for particular purposes, and hence largely 
independent of theory and practice (Batty, 2007). 
Although a theory is not necessarily required to 
guide this kind of urban modelling, many facets 
of theorising and thinking should be brought to 
bear on model construction, and to understand 
the mechanisms of urban change dynamics. For 
instance, location theory, which has long been 
used in the study of urban spatial structure, is 

reflected in the equilibrating micro-economics 
of the individual and the firm. This theory pro- 
vides important insights into residential develop- 
ment, and there is clear potential for invoking 
such theory in any CA or ABM that captures 
human behaviours. In short, the scope of urban 
models and theory is now considerably wider 
than in the past, and urban CA models must 
respond to this increasing complexity by expli- 
citly embracing the most appropriate theories 
pertaining to economic and social decision- 
making. This is a major challenge given that   it 
requires theory that deals not only with the static 
structure of the space but also its tem- poral 
dynamics, though this has been slow in 
progressing over the recent decades. 

Developing urban models based on explicit 
theory has two benefits for modellers. First, it 
simplifies the process of identifying driving fac- 
tors – physical/environment, institutional, or 
human decision behaviour factors – on urban 
change dynamics, particularly with regard to 
modelling the complexity of human decision- 
making behaviours. Second, the theory contri- 
butes to stakeholders’ involvement with respect 
to an in-depth understanding of causes and feed- 
backs of changes in human behaviours. Such 
model applications could well be used to cumu- 
latively modify human behaviours (Davis et al., 
2015). This benefit is critical when stakeholders 
need to encourage city residents to behave in a 
certain way. A good example is the positive 
influence of transit-oriented development that 
increases the amount of residential, business, 
and leisure space within walking distance of 
public transport, thereby enhancing accessibil- 
ity and promoting healthy community. It is thus 
necessary that urban modellers pay more atten- 
tion to develop models in accordance with the- 
ories of human behaviour. On the other hand, 
some stakeholders such as politicians may also 
prefer a ‘black box’ approach, whereby a result 
is generated from a model that fully explores a 
theory. In this case, CA models engaging Arti- 
ficial Neural Networks (ANNs) as a machine 
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learning approach, for example, would appear 
more appropriate (Li and Yeh, 2002). 

 
 

III Towards a future research 
agenda 
Responding to current challenges in urban CA 
modelling, we now map out four interrelated 
thematic areas that we argue require concerted 
attention by the urban CA modelling commu- 
nity. These are: (1) to build models that com- 
prehensively capture the multi-dimensional 
processes of urban change, including urban 
regeneration, densification and gentrification, 
in-fill development, as well as urban shrinkage 
and vertical urban growth; (2) to establish 
models that incorporate individual human 
decision behaviours into the CA analytic 
framework; (3) to draw on emergent sources  of 
big data to calibrate and validate urban CA 
models and to capture the role of human actors 
and their impact on urban change dynamics; 
and (4) to strengthen theory-based CA models 
that comprehensively explain urban change 
mechanisms and dynamics. 

 
1 Modelling multi-dimensional processes 
of urban change 
As discussed in the previous sections, few urban 
CA models can simulate multiple urban forms 
and processes. Although some of these gaps are 
being addressed to a certain extent by a number 
of researchers, such as O’Sullivan (2002), Dia- 
ppi and Bolchi (2006), and Haase et al. (2010, 
2012), the challenges faced by developers of 
urban CA models producing single urban form 
outputs lie in how to combine the multiple back- 
ground processes to produce a range of urban 
forms and phenomena – from urban regenera- 
tion, gentrification, densification, vertical 
growth, to urban shrinkage. In order to over- 
come the weaknesses and limitations in current 
scholarship, future research needs to consider 
the following. 

First, it is critical that models incorporate 
various types of drivers and constraints associ- 
ated with urban transformation so that these can 
be applied across multiple metropolitan con- 
texts. By doing so, complex transition rules 
need to be considered to determine how, 
when, and to what extent a given land parcel 
might be developed through time. For exam- 
ple, when modelling urban regeneration and 
gentrification, one often needs to change the 
order in which the transition rule sets are 
implemented so that the various effects of 
regeneration and gentrification can be incor- 
porated over time. We argue that urban 
growth and decline as simulated in CA models 
is not symmetric; the way the transition rules are 
implemented differs for modelling growth and 
modelling decline. 

Second, the selection of parameters should 
consider qualitative factors such as land owner- 
ship and land lease, land use density change, and 
land parcel shape by adjusting the CA model’s 
parameter settings. For instance, the choice of 
the neighbourhood type and size, which has sig- 
nificant impact on the global behaviour of a CA 
model, can be adjusted contingent on varying 
perceptions of the relative merits of other neigh- 
bourhoods in the wider urban system. 

Third, 3D urban modelling needs to be 
enhanced, especially for modelling vertical 
growth. To this end, LiDAR datasets are a pro- 
mising source of information for 3D urban mod- 
elling, but collecting and processing these 
datasets is both time consuming and costly. 
Land use attributes at the parcel level are being 
collected slowly by various national mapping 
agencies, but policymakers should provide 
more facilities for universities and the private 
sector to collect and process the data so that it 
can be used for urban modelling – without the 
need for intensive pre-processing. As a result, 
creating a platform for data sharing can provide 
new opportunities for urban modellers to model 
in 3D. Scholars also need to develop more com- 
plex transition rules for 3D modelling; to 
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achieve this, close collaboration between pro- 
grammers and urban modellers is critical. 

 
2 Incorporating human decision behaviours 
into the CA modelling framework 
The integration of CA with other types of mod- 
els has been suggested by various scholars 
(Hewitt et al., 2014; Musa et al., 2017). This 
integration has only been partially addressed 
through participatory modelling by obtaining 
feedback from stakeholders to calibrate the 
CA model and enhance its performance (Hewitt 
et al., 2014). To close this gap, ABMs are an 
unparalleled tool for modelling human deci- 
sions. However, the main challenges of ABMs 
arise from their complexity in implementing 
and designing the real-world rules for the rele- 
vant agents, as noted earlier. Often, these rule 
sets are generated using plausible hypotheses 
but are never tested due to lack of observational 
data (Wahyudi et al., 2019a). The CA-ABM 
hybrid approach needs to consider top-down 
(as well as bottom-up) concepts to address 
issues such as urban planning and zoning, trans- 
portation, social biases, and cultural factors, 
which may all be reflected in micro-scale sur- 
vey data or other primary data sources (Torrens 
and Nara, 2007). 

Moreover, both CA and ABM have limited 
geographic functionalities when considered in 
isolation (Torrens and Benenson, 2005). In con- 
trast, the integration of CA and ABM offers a 
powerful spatial approach to modelling com- 
plex geographic systems that are affected by 
physical and human factors at multiple scales 
ranging from the individual to the metropolitan 
region, as tested by Batty (2007) and Torrens 
and Benenson (2005). An integrated CA-ABM 
model would provide unique opportunities for 
urban modellers to address various types of 
urban transformation with regard to human 
decisions and preferences. The integration with 
other types of models to develop extended suites 
of urban models has been attempted particularly 

in ‘Metronamica’ (Research Institute for 
Knowledge Systems, 2013) and the more recent 
‘GeoDynamiX’ (Flemish Research and Tech- 
nology Organisation, 2018), but these tend to 
reflect a loose coupling across different spatial 
scales, and further work remains to be done. 

The development of urban models that can 
capture human decision behaviours and their 
interactions with the built environment requires 
micro-scale spatial and social survey data, 
which can be furnished in part by the use of 
public participatory GIS mapping (McCall, 
2003; Aburas et al., 2016) which incorporates 
the knowledge of stakeholders – residents, land 
developers, and urban planners – who are key 
drivers in the urban transformation process. The 
emergent sources of big data from government, 
social media, citizen science, and other 
location-based services and devices can also 
serve as excellent input for urban modellers to 
understand and model urban change dynamics. 

 
 

3 Drawing on emergent sources of big data 
to calibrate and validate urban CA models 
and capture the role of human actors and 
their impact on urban change dynamics 
The emergence of open and new data available 
from various sources has presented significant 
opportunities for research in the urban sciences. 
Entering into the new era of big data, ever- 
increasing quantities at near real time will ulti- 
mately change the ways in which human agents 
interact with each other and with the urban 
space they occupy and transform; these pose 
new challenges to urban modellers and 
researchers (Batty, 2018), and much effort 
should be devoted to conquer the aforemen- 
tioned big data challenges. Considering that 
these challenges are interrelated since informa- 
tion creation, data collection, manipulation, 
analysis, and modelling are interdependent 
activities, we propose the following four 
considerations for future work of modelling 
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human-environmental interactions and urban 
change dynamics. 

The first consideration is to be problem- 
oriented and to clarify the purpose of urban 
modelling in order to identify the requirements 
of data, analytic system, and other elements 
involving in the modelling process (Lim et al., 
2018). This direction should guide us through 
the whole procedure from data acquisition to 
building models. 

Second, more advanced computing para- 
digms and methods need to be developed to 
retrieve, store, manipulate, integrate, and ana- 
lyse such large data volumes across multiple 
sources. In particular, interdisciplinary 
approaches combined with complex spatio- 
temporal analysis and models are needed for 
transformative innovation and effective and 
timely solutions to urban problems (Croitoru  et 
al., 2013). These methods should fuse the 
bottom-up user-contributed information to 
more traditional top-down data sources so that 
we can move in between short-term snapshots 
and long-term planning to address real world 
issues (Crooks et al., 2016). 

Third, the quality and integrity of user- 
generated data should be controlled and 
improved by paying more attention to the secu- 
rity of the virtual environment (Perera et al., 
2015). The privacy of information providers 
should be protected and enforced by strict laws 
and regulations – from the time data are cap- 
tured in mobile or computer terminals to the 
point at which data are securely extracted and 
stored. Only by doing so can IoT solutions gain 
users’ confidence and in turn provide trusted 
data (Hammi et al., 2017). 

The fourth consideration is to promote data 
sharing and minimize conflicts between data- 
related stakeholders, including citizens, visitors, 
local governments, and commercial companies 
(Lim et al., 2018). The art of using big data for 
modelling urban dynamics lies in effective 
matchmaking among the concerns of all 
urban activity participants who are the data 

contributors as well as the beneficiaries by the 
creation of useful contents from big data. Urban 
modelling serves as a platform absolving infor- 
mation from these participants and optimising 
solutions to benefit them (Dong et al., 2015). 

Bearing these four considerations in mind, 
we have the potential to study, test, and refine 
ideas and theories pertaining to diverse urban 
problems at various spatial and temporal scales, 
and to open up a richer context for advancing 
urban modelling, and eventually pave the way 
for the systematic implementation of new tech- 
nologies in the computational urban sciences. 

 
4 Strengthening theory-based CA models 
that comprehensively explain urban change 
mechanisms and dynamics 
Choosing relevant theory should be the most 
important consideration even though this can be 
a challenging task for modellers, especially 
given the large number of theories, many of 
which have similar or overlapping constructs. 
Model developers may draw upon specific the- 
ories either at the beginning of the design pro- 
cess or after conducting preliminary research to 
indicate which theories are likely to be most 
relevant. CA models can accommodate urban 
morphology and land use theory by defining 
appropriate transition rules, model structures, 
and relevant parameters. However, while con- 
textual or environmental variables are relatively 
straightforward to consider (Wu and Webster, 
2000), it is far less likely that we can develop 
CA models based on full theories of human 
behaviours since they require an in-depth under- 
standing of the causes and feedbacks of changes 
in such behaviours (Davis et al., 2015). 

There is a need for methods that can better 
represent the effects of human behaviours on the 
urban development process. Related methods 
for extracting appropriate rule sets have been 
employed by De Almeida et al. (2003) and Feng 
et al. (2016), but much remains to be done to 
incorporate various decision models commonly 
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used in ABM, including micro-economic mod- 
els, space theory-based models, psychosocial 
and cognitive models, institution-based models, 
experience- or preference-based decision mod- 
els (rules of thumb), participatory agent-based 
models, empirical- or heuristic-based models, 
and evolutionary programming methods (An, 
2012). Some machine learning models such as 
ANNs have also been developed (see, for exam- 
ple, Li and Yeh, 2002), but these models need to 
avoid the many traps of autocorrelation and 
multi-collinearity, along with a host of ad hoc 
pattern-matching features that are essentially 
spurious in terms of the way spatial systems 
function and evolve. Furthermore, CA models 
based on human behaviour theory need to incor- 
porate the probability-of-occurrence with the 
conversion cost, neighbourhood conditions, and 
competition among the different agents (Liu et 
al., 2017; Wahyudi et al., 2019b). The inter- 
active coupling of the top-down system 
dynamic demands and the bottom-up CA 
approach would likely enhance the model’s 
capability for long-term stochastic simulation, 
reflecting the real city comprised of chaotic 
human behaviours. 

 

IV Conclusion 
This article acknowledges the fundamental 
transformations which have been brought to 
urban modelling via the bottom-up perspective 
through cellular automata models. Despite 
notable achievements in this field over a num- 
ber of decades, we argue that there remain at 
least four pressing issues faced by CA model- 
lers in  contemporary urban modelling practices. 
We draw out these issues into a dis- cussion 
mapping out four interrelated thematic areas 
that require concerted attention by the urban CA 
modelling community, which include: (1) 
building models that comprehen- sively capture 
the multi-dimensional processes of urban 
change; (2) establishing urban CA models that 
incorporate individual human 

decision behaviours; (3) drawing on emergent 
sources of big data to calibrate and validate 
urban CA models and to capture the role of 
human actors and their impact on urban change 
dynamics; and (4) strengthening theory-based 
CA models that comprehensively explain 
urban change mechanisms and dynamics. 

We suggest that the continued growth in CA 
modelling is in part contingent on tackling these 
four challenges in order to remain at the van- 
guard of urban modelling. In tandem with pro- 
gressing these four themes is the need to 
develop, implement, and train urban planners 
and policymakers in the use of CA-based model 
outputs. This is indeed most important to ensur- 
ing that urban CA modelling moves from an 
approach that is arguably the purview of a rela- 
tively select academic community to one that 
has a place in mainstream policy and practice. 
The first component of setting urban CA mod- 
elling on this path towards mainstream use is the 
development of user-friendly tools that are 
embedded within familiar computing environ- 
ments, of which the iCity model (Stevens et al., 
2007) is an excellent example in this regard. 

To sum up, the current global interest in sus- 
tainable urban development has highlighted the 
need to deepen our understanding of the pro- 
cesses that underpin urban transformations – 
and land use and urban models here play a vital 
role. However, there persists a major void 
between the real features of our urban systems 
and the relevant representativeness of these fea- 
tures with the current array of urban CA models. 
The purpose of this study has been to chart these 
deficits and to map out a future research agenda 
for both urban CA models and the CA model- 
ling community. To this end, we encourage 
scholars to concentrate their efforts on develop- 
ing multi-dimensional, dynamic, and vector- 
based models to simulate the holistic processes 
of urban change. We also highlight the need to 
better capture the role of human behaviours and 
decisions by drawing on theories that can facil- 
itate more rigorously grounded modelling 
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outcomes. We advocate cellular automata that 
embed agent-based models and big data input as 
the most promising analytical framework 
through which we can enhance our understand- 
ing and planning of contemporary urban change 
dynamics. 
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Note 
1. Cellular automata (CA) is usually formulated as a dis- 

crete model comprised of a cellular lattice which is 
often but not necessarily regular, where each cell is 
classified as one of a number of defined states. The state 
of each cell evolves over a number of discrete time 
steps and transition between states is controlled by a set 
of predefined rules which are based on the states of the 
nearest neighbouring cells, in strict applications of CA. 
This modelling approach differs from Agent- Based 
Modelling (ABM), which simulates the actions and 
interactions of autonomous agents (in the forms of 
either individual or collective entities such as organisa- 
tions or groups), with a view to assess their effects on a 
given system (Liu et al., 2019). The distinction between 
CA and ABM is often blurred when agents are located 
on cells and move between them, and when cells con- 
tain agents who act to change the state of the cells in 
question. 
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