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Abstract

Characterising tissue microstructure is of paramount importance for understanding

neurological conditions such as Multiple Sclerosis. Therefore, there is a growing

interest in imaging tissue microstructure non-invasively. One way to achieve this is

by developing tissue models and fitting them to the diffusion-MRI signal. Neverthe-

less, some microstructure parameters, such as permeability, remain elusive because

analytical models that incorporate them are intractable. Machine learning based

computational models offer a promising alternative as they bypass the need for an-

alytical expressions. The aim of this thesis is to develop the first machine learn-

ing based computational model for white matter microstructure imaging using two

promising approaches: random forests and neural networks. To test the feasibility

of this new approach, we provide for the first time a direct comparison of machine

learning parameter estimates with histology.

In this thesis, we demonstrate the idea by estimating permeability via the intra-

axonal exchange time τi, a potential imaging biomarker for demyelinating patholo-

gies. We use simulations of the diffusion-MRI signal to construct a mapping be-

tween signals and microstructure parameters including τi. We show for the first

time that clinically viable diffusion-weighted sequences can probe exchange times

up to ≈1000 ms. Using healthy in-vivo human and mouse data, we show that our

model’s estimates are within the plausible range for white matter tissue and display

well known trends such as the high-low-high intra-axonal volume fraction f across

the corpus callosum. Using human and mouse data from demyelinated tissue, we

show that our model detects trends in line with the expected MS pathology: a sig-

nificant decrease in f and τi. Moreover, we show that our random forest estimates

of f and τi correlate very strongly with histological measurements of f and myelin

thickness.

This thesis demonstrates that machine learning based computational models

are a feasible approach for white matter microstructure imaging. The continually

improving SNR in the clinical scanners and the availability of more realistic sim-

ulations open up possibilities of using such models as imaging biomarkers for de-

myelinating diseases such as Multiple Sclerosis.
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Impact Statement

This PhD research provides novel insights into the analysis of diffusion-

weighted MRI data in the context of demyelinating neurological diseases such as

Multiple Sclerosis. Specifically, this work focuses on the use of machine learning

to define new imaging biomarkers of axonal membrane permeability for Multiple

Sclerosis.

Our work demonstrates for the first time the clinical potential of machine learn-

ing methods for microstructure parameter estimation (Chapters 4 and 5). This re-

search delivers a machine learning based computational framework which could be

used in clinical and biomedical research to obtain estimates of informative tissue

parameters from diffusion-weighted MRI scans. We demonstrate the clinical appli-

cability of our framework in an example which estimates membrane permeability

in the brain white matter. Using healthy volunteers and Multiple Sclerosis patients,

we find that our machine learning approach detects changes in the brain tissue in

line with expectations from the pathology of Multiple Sclerosis. The preliminary

results of this study were published in NeuroImage in February 2017.

We further validate our framework’s potential as an imaging biomarker through

direct comparison with histology measurements in a preclinical mouse model

(Chapters 6, 7 and 8). Our results suggest for the first time, quantitatively and

in-vivo, that machine learning based computational frameworks could act as suit-

able biomarkers for detecting and tracking changes in demyelinating pathologies.

Besides Multiple Sclerosis, the applicability of our approach extends to other

myelin damaging pathologies such as spinal cord injuries or leukodystrophies. The

manuscript presenting these results is currently under review and has been submit-

ted to NeuroImage on 24th July, 2019.

More generally, our framework can easily be extended to estimate a range of

other informative microstructure parameters, which could be important for numer-

ous white matter pathologies of the human nervous system. From a clinical per-

spective, these future developments can have a great impact on the understanding

and diagnosis of neurological conditions of the white matter.

In order to maximise the impact of this research and to encourage its adoption
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by the wider research community, the work in this thesis has also been presented in

high-impact educational and scientific sessions at the 2017 and 2018 annual meet-

ings of the International Society for Magnetic Resonance in Medicine.
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Chapter 1

Introduction

Studying brain tissue microstructure properties such as the size of axons or the

permeability of cell membranes is of paramount importance for diagnosing and

monitoring neurological conditions such as Multiple Sclerosis (MS) or Parkinson’s

disease. By measuring microstructure properties in both healthy and diseased tis-

sue, we can gain insight into the mechanisms underlying pathologies and potentially

develop new biomarkers that can help with their diagnosis and treatment. This is

particularly important as many neurological conditions are still very poorly under-

stood and lack effective treatment. An example of this is MS, characterised by the

formation of lesions in white matter which disrupts the ability of the nervous system

to communicate effectively. The main underlying process in MS lesions is demyeli-

nation, which is characterised by a breakdown of the myelin sheath surrounding

the axons in the tissue. The condition of the myelin sheath has been linked with

the permeability associated with the intra-axonal exchange time τi [1, 2, 3], which

measures the average time a water molecule spends inside the intra-axonal space.

The intuitive explanation behind this link is that, as the myelin breaks down, there

are less barriers preventing the water molecules from leaving the intra-axonal space,

making the axons more permeable. Changes in permeability have also been linked

with other pathologies such as Parkinson’s disease [4] and cancer [5], leading to a

widespread interest in developing permeability-based biomarkers.

Due to its sensitivity to the motion of water molecules within tissue, Diffusion-

Weighted Magnetic Resonance Imaging (DW-MRI) is potentially able to estimate

the intra-axonal exchange time τi, together with other important microstructural
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properties such as cell size or intracellular volume fraction. By fitting mathematical

or computational models to the DW-MRI signal, we can estimate the microstruc-

tural properties of the underlying tissue in a completely non-invasive and non-

ionising way.

So far, measuring the intra-axonal exchange time τi has been problematic due

to the intractability of the mathematical models which accurately relate τi to the

DW-MRI signal or, in the case of more simplistic models, due to unrealistic as-

sumptions that are not valid in the brain white matter tissue. Given the challenges

involved in deriving accurate analytical models with exchange, there have been al-

ternative approaches which bypass the need for analytical models and use simula-

tions of the DW-MRI signal to learn how this is affected by permeability. One such

approach [6] constructs a library of synthetic DW-MRI signals and their associ-

ated microstructure parameters including τi, and estimates the parameters of a new,

unseen signal, by retrieving the closest matching entry in the library using a nearest-

neighbour approach. Nevertheless, the nearest-neighbour approach used in [6] does

not generalise well to new data as it does not learn the relationship between signals

and microstructure parameters, but simply matches it to an existing entry. Machine

learning approaches, on the other hand, are capable of learning this relationship and

have a very good generalisation capacity. Recently, machine learning algorithms

have been shown to produce state-of-the-art results in a variety of medical imaging

problems, with random forests and neural networks among the most widely used al-

gorithms in this field [7, 8]. However, their application to microstructure parameter

estimation including τi has not yet been studied in simulations or in-vivo.

Here, we experimentally investigate the feasibility of machine learning based

computational models with permeability for white matter microstructure imaging,

using a random forest and a neural network approach. We explore the potential of

our computational framework for microstructure parameter estimation, including

the intra-axonal exchange time τi, both in clinical and preclinical settings, using

synthetic and in-vivo human and mouse data.

We acquire in-vivo data from healthy and MS volunteers using a clinically vi-

able sequence in order to demonstrate the clinical potential of our framework as an
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imaging biomarker for demyelinating pathologies. As this is the first application

of machine learning to microstructure parameter estimation, we seek further vali-

dation of our results by performing a direct comparison with histology, as the gold

standard in microstructure imaging. Since histological samples of brain tissue are

extremely invasive and difficult to obtain in the clinical setting, we use a preclin-

ical mouse model of demyelination. This enables us to perform for the first time

a direct comparison between machine learning based estimations of microstructure

parameters and histology.

1.1 Scope and objectives
The aim of this thesis is to develop and test the feasibility of machine learning based

computational models with permeability for white matter microstructure imaging

using DW-MRI. Here, we especially focus on the potential of random forest and

neural network based models to act as MS imaging biomarkers based on the per-

meability associated with the intra-axonal exchange time τi. The scope of this in-

vestigation covers clinical and preclinical scanner settings and substrates including

in-vivo human and mouse white matter tissue.

Our specific objectives are to:

1. investigate the sensitivity of DW-MRI sequences to the intra-axonal exchange

time τi;

2. develop and assess the performance of a random forest based computational

model with permeability using simulations and clinical data from healthy and

MS patients;

3. develop and assess the performance of a neural network based computational

model with permeability using simulations and clinical data from healthy and

MS patients;

4. experimentally investigate the performance of the random forest model in 2

through direct comparison with histology using preclinical data from a mouse

model of demyelination;
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5. experimentally investigate the performance of the neural network model in 3

through direct comparison with histology using preclinical data from a mouse

model of demyelination;

1.2 Thesis outline and contributions made
This thesis is structured as follows, with contributions made appearing in italic:

• In Chapter 2, we give an overview of the MS pathology, which is followed

by background theory on diffusion MRI and the models in diffusion MRI,

followed by an overview of the machine learning techniques used throughout

this thesis.

• In Chapter 3 we investigate the sensitivity of DW-MRI sequences to the intra-

axonal water exchange time τi. For this, we use Monte Carlo simulations of

DW-MRI signals from substrates mimicking white matter tissue and explore

a range of clinical and preclinical scanner settings. We show that long ∆s

(≥ 300ms) play a crucial role in the sensitivity of DW-MRI sequences to ex-

change time effects. We conclude that, under realistic noise and tissue relax-

ation conditions, clinically viable diffusion sequences with long ∆s (≥ 300ms)

and high b-values ≥ 3000s/mm2 are sensitive to the effect of exchange times

up to 1000ms, a range covering literature estimates for τi in the human and

rat brain tissue [9, 10, 11, 12].

• In Chapter 4 we introduce the first machine learning based computational

model with permeability for white matter microstructure imaging, using a

random forest regressor. We demonstrate the idea by testing the model’s abil-

ity to estimate τi, the intra-axonal volume fraction f , and the intrinsic dif-

fusivity d in simulations and in clinical scans from two healthy and two MS

patients. We use Monte Carlo simulations to generate synthetic DW-MRI

signals for a range of histologically plausible microstructure parameters for

white matter. The computational model then learns a mapping between ro-

tationally invariant features of synthetic DW-MRI signals and microstructure

parameters. We find that our model has an excellent performance in sim-

ulations and a very good in-vivo scan-rescan reproducibility. We conclude



1.2. Thesis outline and contributions made 27

the chapter by showing that the random forest estimates in the two healthy

subjects are within the plausible range for white matter tissue, and that the

estimates in the two MS patients are consistent with expectations from the

pathology of MS lesions (increase in f and τi, and a mild increase in d),

demonstrating the clinical potential of this new computational framework.

• In Chapter 5 we extend our computational model to a neural network ap-

proach and test its feasibility in simulations and in both the healthy and MS

patients in Chatper 4. Similar to the random forest model, the neural network

has a very good performance in simulations, provides plausible in-vivo esti-

mates for white matter tissue and detects trends in line with the MS pathology,

demonstrating the clinical potential of our neural network approach. Addi-

tionally, we find that there is a very good agreement between the healthy

in-vivo estimates of the two machine learning approaches. We conclude by

showing that, although the neural network provides a marginal improvement

over the random forest when estimating τi in simulations with noise, the ran-

dom forest parameters have a better scan-rescan reproducibility for f and

τi.

• From Chapter 6 onwards, we experimentally investigate the performance of

our machine learning based computational framework through direct compar-

ison with histology using preclinical data from a cuprizone mouse model of

demyelination. In Chapter 6, we study the sensitivity to τi of the preclinical

protocol used to acquire the in-vivo mouse data. Additionally, we optimise

and test the random forest model with respect to the new protocol and data.

We conclude that our imaging protocol has good sensitivity to τi ≤ 400 ms,

and that, within this range, the parameters are well estimated by the random

forest, despite the presence of noise and the non-optimised protocol.

• In Chapter 7 we compare the in-vivo estimations of the random forest based

model with electronmicrosopy (EM) data from the same mouse model. In ad-

dition to this, we investigate the potential confounding effect of dispersion

and axonal swelling. We show that we can rule out the confounding effect of
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dispersion and axonal swelling on the estimated difference in τi between the

control and the cuprizone groups, suggesting that demyelination is the main

process underpinning the estimated decrease in τi. We conclude the chapter

by showing that the random forest estimates of f and τi correlate strongly

with EM measurements of intra-axonal volume fraction and myelin thick-

ness (ρτi = 0.82 and ρ f = 0.98), demonstrating the clinical potential of our

computational model as an imaging biomarker for demyelinating pathologies

such as MS.

• In Chapter 8 we investigate the performance of the neural network based

computational model with permeability on the in-vivo cuprizone mouse model

of demyelination. We find that the neural network estimates in the control

group are in good agreement with the random forest estimates, and that both

methods estimate a decrease in f and τi between the control and the cuprizone

groups. These findings are in line with the trends estimated in the MS lesions

in Chapters 4 and 5, whilst also being consistent with expectations from the

pathology of demyelination. We conclude by showing that the neural network

estimates of f and τi correlate well with histological measurements (ρτi =

0.75 and ρ f = 0.70). However, the p-values of the correlation are above the

significance level and above the p-values of the random forest, which show a

much stronger correlation with histology.

• In Chapter 9 we discuss the findings and the conclusions from the previous

chapters, and suggest potential future developments and applications of our

machine learning based computational framework in the clinical and biomed-

ical research environments.



Chapter 2

Background

This chapter provides the background knowledge for the work in this thesis, namely

microstructure imaging using DW-MRI and machine learning methods. The first

section introduces properties of neuronal tissue and then focuses on MS as our

pathology of interest. The second section presents the basic principles of DW-MRI,

which is the imaging modality of interest for this work. Next, we describe how the

diffusion signal is traditionally modelled in order to characterise tissue microstruc-

ture. Finally, we outline the main principles of machine learning, with a focus on

random forests and neural networks, as the two relevant approaches for this work.

2.1 Multiple Sclerosis

2.1.1 Neurons and neural tissue

Neurons are the main component of nervous tissue and play an elementary role in

the human nervous system. The function of neurons is to transmit, process and

receive chemical and electrical signals through the nervous system, building a com-

munication network which is essential for the normal functioning of an organism.

As shown in Figure 2.1, a neuron has three main components: a soma or a body,

which contains the cell nucleus, dendrites, which are small protuberances that col-

lect information from neighbouring axons, and an axon, which is generally a long,

wire-like projection which conducts the neuronal signal towards other nerve cells.

In the human central nervous system, most axons are covered by a protective

membranous layer which enhances the conduction speed of the neuronal signals.

This is called the myelin sheath because it is made of myelin, a substance composed
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Figure 2.1: Illustration of a neuron, showing the soma (cell body), dendrites and axons.
Figure adapted from https://commons.wikimedia.org/wiki/File:Neuron.svg

.

primarily of lipids and proteins. The communication speed between neurons is crit-

ical to the brain’s capacity to perform vital functions, and damages to the myelin

sheath can impair this. The myelin sheath is damaged in several neurological con-

ditions, resulting in movement, cognition and sensorial deficiencies. Damage to

the myelin sheath can occur as a result of two types of disorders: dysmyelination

and demyelination. Dysmyelination is the failure of the organism to produce normal

myelin during the myelin formation process [13], and it occurs in conditions such as

leukodystrophies [14]. Demyelination, on the other hand, is characterised by dam-

age or loss of previously healthy myelin [13], and it occurs in several demyelinating

pathologies, the most well-known of which is MS.

The majority of the myelinated axons are found in white matter, which is one

of the two main types of neural tissue. White matter is composed of bundles of

axons, which connect different regions of grey matter, the other main tissue type.

While white matter contains the axons of the neurons, grey matter contains the neu-

ronal cell bodies, the dendrites and some shorter axons. An important part of the

white matter is the corpus callosum, which is situated in the centre of the brain

and is formed of large axonal bundles connecting different grey matter regions in

the right and the left hemispheres of the brain. The front (genu) and back (sple-
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nium) parts of the corpus callosum connect regions of the grey matter responsible

for decision making, auditory and visual tasks [15]. Relative to motion, these are

complex tasks that do not need instantaneous transmission. This is reflected directly

in their tissue microstructure which is densely packed with small axons and propor-

tionately small myelin sheaths. Conversely, the mid region of the corpus callosum

is responsible for motion, which requires instantaneous, but less complex process-

ing. Consequently, the axons in this region are large and covered in proportionately

large myelin sheaths in order to help the conductivity of the signals [16]. Therefore,

the corpus callosum is described by a high-low-high pattern of axonal density and

low-high-low trend of the axonal radius, as shown by histological studies in human

[16] and other mammals [17, 18].

2.1.2 Pathology of Multiple Sclerosis

MS is a demyelinating and inflammatory disease which causes the breakdown of

the myelin sheaths surrounding the axons in the brain and the spinal cord, forming

areas of demyelinated tissue known as lesions. The majority of myelinated axons

are found in white matter, and thus most MS lesions affect this tissue type. MS

causes the loss of the glial cells which produce and maintain the myelin sheath. This

results in the thinning or loss of the myelin sheath, and, in later stages of the disease,

in axonal loss [19]. Sometimes, in the early stages of the disease, remyelination

takes place in the affected axons, however, eventually a scar-like plaque is build up

around the damaged axons. In addition to the visible, well-characterised lesions,

there are also regions of the tissue called normal appearing white matter (NAWM),

which usually precede the MS lesions and, despite their normal appearance, are

characterised by abnormalities such as axonal injury [20].

The debut of the condition in around 85% of patients manifests through sev-

eral acute neurological episodes followed by functional recovery [21]. This form

of the condition is called relapsing remitting MS (RRMS) and is characterised by

severe inflammation, demyelination and the breakdown of the blood-brain-barrier

[22]. MS usually manifests in the RRMS form for 10-15 years after which the

neurological episodes are replaced by irreversible damage and disability during the

secondary progressive stage of the disease (SPMS). In the remaining 15% of cases,
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MS manifests from the onset as a progressive disorder and is called primary pro-

gressive MS (PPMS).

MS is poorly understood and the cause of the disease is not known. Neverthe-

less, it is believed to be caused either by an immune response or by the failure of the

myelin-producing cells due to a combination of genetic and environmentally driven

factors [23, 24].

2.1.3 Diagnosis and Treatment

Despite not being fatal, MS reduces life expectancy and drastically affects the qual-

ity of life, often resulting in severe disability [19]. The diagnosis of MS is difficult

to confirm, especially in the early stages of the disease, because the symptoms are

common to those of other diseases [25]. The current diagnosis criteria for MS is

based on the revised McDonald criteria, which relies on the detection of MS lesions

using magnetic resonance imaging (MRI) as well as other clinical tests to rule out

other demyelinating diseases [26, 27]. MRI scans are used to detect in space (DIS)

and time (DIT) the developtment of the lesions in the central nervous system of the

patient. Demyelinated regions of the brain tissue appear on MRI scans as white

dots, as shown in Figure 2.2.

Figure 2.2: An MRI image of the brain showing MS lesions in the frontal and parietal lobe.
The lesions are indicated by black arrows and appear as white patches. Image
obtained from [28].
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While an MS diagnosis can also be establlished using histology, which allows

for the close microscopic examination of tissue samples [29], this is an invasive pro-

cess, and very frequently tissue samples are difficult or even impossible to obtain

from the brain. Unlike histology, MRI is a non-invasive, non-ionising technique

which can provide structural information about the tissue [30]. While conventional

MRI techniques can be used to detect MS lesions, the sensitivity and specificity

is often low and can result in an underestimation of the extent of the disease [28].

Recent MRI techniques aim address this problem by allowing the quantification of

relevant structural information about the tissue. Quantitative MRI techniques allow

for a better characterisation and diagnosis of pathologies, including MS, by extract-

ing relevant information from normal and diseased tissue [31]. The most promis-

ing quantitative MRI techniques for MS are: quantitative magnetisation transfer

imaging - shown to be able to detect and quantify subtle brain tissue changes that

correlate with disability [32], diffusion tensor imaging - sensitive to the evolution of

tissue damage within MS lesions [33] , magnetisation sodium MRI - targeting the

pathological deposition of sodium [34], myelin water imaging - measuring changes

in the myelin water fraction [35], quantitative susceptibility mapping - estimating

the iron accumulation in lesions [36].

Several therapies aimed at functional recovery following neurological episodes

and at the prevention of relapses have been developed as management therapies

[19]. Even though there is no cure for MS [37], the current pharmacological man-

agement therapies of RRMS have proven to be helpful. On the other hand, there is

a lack of therapies that can predict and prevent the transition of RRMS to SPMS or

manage PPMS. There are currently several advanced clinical trials for medication

addressed at the former two types of MS, however, the need to develop sensitive

and specific biomarkers to help with the diagnosis and treatment of MS. In this the-

sis, we focus on the use of Diffusion-Weighted MRI for developing sensitive and

specific biomarkers to aid with the understanding, monitoring and diagnosis of MS.
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2.2 Diffusion-Weighted Magnetic Resonance Imag-

ing (DW-MRI)
The microstructure imaging modality that we focus on in this work is DW-MRI. In

this section, we begin by briefly describing the main principles of magnetic reso-

nance imaging, and then focus on DW-MRI, for which we explain how the image

contrast is generated.

2.2.1 Basic principles of Magnetic Resonance Imaging

MRI is a widely used non-invasive and non-ionising imaging technique which gen-

erates high resolution images that allow the probing of internal structures and func-

tions of biological tissue. MRI images are generated using the signal produced by

the interaction between certain atomic nuclei when placed under a magnetic field.

For this interaction to occur, the nuclei must posses an odd number of protons or

neutrons, resulting in a non-zero spin and magnetic moment. Such nuclei are abun-

dantly found biological tissue, especially in the hydrogen atoms of water and fat,

making hydrogen the nucleus of interest in most MRI applications.

The interaction of the nuclei with the magnetic field is due to a physical prop-

erty of the nuclei called nuclear magnetic moment, µ , that arises from the rotation

of the nuclei around their axis. In the absence of a magnetic field, the direction of

µ is random for each nucleus and the cumulative net magnetisation of all the nu-

clei present in the tissue is zero. Once a strong magnetic field, B0, is applied, all

magnetic moments align either parallel or anti-parallel to it, and precess (i.e. rotate)

about the axis of B0 with a frequency ω0 = γB0, known as the Larmor frequency

[38], where γ is a nucleus-dependent ratio known as the gyromagnetic ratio. This

results in a non-zero net magnetisation M, equal to the sum of the nuclei’s individ-

ual magnetic moments µi, M = ∑
n
i=1 µi, which is aligned with B0 and specific to

every tissue type.

Since M is very small in comparison to B0, its signal is non-distinguishable

from that of B0. Therefore, to create a measurable signal, M is tipped in the trans-

verse plane (i.e. perpendicular to B0) using a radiofrequency (RF) pulse. Once

the RF pulse is switched off, the net magnetisation M will start to realign with the
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external magnetic field in order to return to its equilibrium state. This process is

described mathematically through a set of equations known as the Bloch equations

[39]. The process through which M realigns with B0 in the longitudinal plane of B0

is known as longitudinal or T1 relaxation, while the process through which the net

magnetisation decreases in the transversal plane is known as T2 relaxation. Both

relaxation times depend on the applied magnetic field as well as on the tissue type.

For example, for a 1.5T magnetic field, the T1 and T2 relaxations of white matter

are ≈880 ms and ≈70 ms [40]. By measuring the relaxation times, we can infer

details about the tissue domain and produce images that delineate different tissue

types.

The signal we measure during the NMR experiment is the transverse magneti-

sation generated by the RF pulse. Following the RF pulse, M precesses about the

axis of B0 at the Larmor frequency and due to Faraday’s law of induction, this os-

cillating magnetisation induces a measurable oscillating voltage in the receiver coil,

which is the NMR signal. In order to localise the NMR signal and extract informa-

tion about its spatial distribution to construct 3D images, different magnetic field

gradients are used. Three different gradients are used to encode spatial information

in the NMR signal: G= (Gx,Gy,Gz). They are usually applied in three directions:

slice encoding (z direction), frequency encoding (x direction) and phase encoding

(y direction) [41], and are generated by coils inside the scanner. Once the gradients

are applied and spatial information is encoded in the NMR signal, the final step is to

reconstruct the 3D image from the measured raw data. This is done by applying a

two-dimensional inverse Fourier transform to each slice of the volume. The results

of the Fourier transform have both a real and imaginary component, which can be

combined to form both magnitude and phase images.

The sequence, duration and strength of radiofrequency pulses and gradients

that result in a set of images with a particular appearance is commonly referred to

as an ’pulse sequence’ or ’MRI sequence’.

There are several sources of noise that affect MRI images, such as the thermal

noise of the RF coils used to measure the signal [42, 43] or the noise coming from

the spatial reconstruction process. The overall noise in an MRI image is charac-
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terised by a Rician distribution and commonly reported through a metric known as

signal-to-noise ratio (SNR), defined as: SNR = SNF
σ

, where SNF is the true, noise-

free underlying signal and σ is the standard deviation of the noise. For SNRs>5,

the Rician distribution is almost indistinguishable from a Gaussian [44] and thus

models that assume Gaussian noise under this SNR condition remain accurate.

Another key advantage of MRI is its versatility compared to computerised to-

mography (CT) and positron emission tomography (PET), given by the many dif-

ferent types of contrast available. Different contrasts are achieved by using different

sequences of RF pulses and magnetic field gradients, known as MRI sequences. The

most common types of contrast are proton-density, T1, T2, blood oxygenation level

dependent (BOLD) or diffusion-weighted. Each type of contrast reflects different

properties of the tissue: the contrast in BOLD images measures changes in blood

oxygenation, while DW-MRI measures the diffusion of water molecules in tissue.

As the MRI contrast is linked to tissue properties at the microstructural level, one

of the ways to obtain information about these properties is by fitting models to the

MRI signal. Examples of such properties are the cell size or the fraction of intra-

to extracellular space in the underlying tissue. Measuring tissue properties at the

microscopic level is particularly important in research as it allows the close mon-

itoring of disease progression by correlating changes in parameters with disease

symptoms [45]. This type of imaging is especially relevant for pathologies with

unknown cause or cure such as MS.

2.2.2 Diffusion Weighted Imaging

Diffusion theory and contrast

DW-MRI is a quantitative MRI method that measures the diffusion of water

molecules within tissue and generates images using the contrast in diffusion [46].

As 70% of white matter is comprised of water [47], DW-MRI is particularly suited

to imaging this type of tissue.

Diffusion is the process through which particles move randomly from an area

of high concentration to an area of low concentration. In unrestricted mediums

with no concentration gradient, the particles continue to move randomly, a pro-
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Figure 2.3: Microscopic view of a bundle of axons in the white matter. Image: Prof.
George Bartzokis.

cess known as Brownian motion, which was discovered by R. Brown and described

mathematically in the 3-dimensional space by Einstein as:

< R >=
√

6DTd (2.1)

where Td is the diffusion time, D is the diffusion coefficient [48], and R is the

average displacement of a molecule from its start position to its end position after

Td has passed.

However, in biological tissue, unrestricted diffusion is rare due to the barriers

posed by tissue structures such as cell walls or myelin sheaths, which restrict dif-

fusion along certain directions. Instead, the diffusion pattern in biological tissue is

determined by the underlying tissue structure. For example, in the case of the white

matter, which is formed of long thin axons that act like tubes, the diffusion takes

place mainly along the principal axis of the axons and is restricted in the direction

perpendicular to the axons. Figure 2.3 depicts a microscopic view of white matter,

where we can observe the long thin axons along which the water diffuses.

The diffusion pattern along one predominant direction, such as along the length
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of the axons, is called anisotropic. Conversely, when the water molecules encounter

no barriers, such as in the cerebrospinal fluid in the brain ventricles, the pattern

of diffusion is called isotropic. In the extra-axonal space, the water molecules are

hindered by the cell walls, resulting in a movement pattern known as hindered dif-

fusion. Consequently, by measuring diffusion we can infer information about the

underlying tissue structure.

Single diffusion encoding (SDE) sequences

In order to obtain MR images sensitive to diffusion, an additional set of gradients,

known as diffusion sensitising gradients [49], needs to be applied. A standard imag-

ing sequence for achieving this was developed by Stejskal and Tanner [50] and Carr

and Purcell [51], known as ’single diffusion encoding (SDE)’ or ’pulsed gradient

spin-echo’ (PGSE). In this thesis, we will refer to this sequence as SDE, which was

recently agreed upon in the diffusion MRI community [52]. This method applies

two symmetrical diffusion gradients, with equal duration δ and gradient strength G,

usually of rectangular shape and of strength higher than the imaging gradients. The

two gradients are applied on either side of a 180° RF pulse, such that the time from

the start of the first gradient to the start of the second gradient is ∆, as shown in

Figure 2.4. On clinical scanners, the diffusion gradient strength can usually go up

to 40-60 mT/m, while on preclinical or Connectom scanners the gradient strength

is much higher, up to 300 mT/m.

Figure 2.4: Schematic view of a basic single diffusion encoding (SDE) sequence with gra-
dient amplitude G, gradient duration δ and diffusion time ∆.

During the application of the diffusion gradients, the spins in the tissue expe-

rience different precession frequencies depending on their position with respect to
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the gradients. At the end of the diffusion gradient, the spins will have accumulated

a net phase φ1, after which they continue to move randomly due to Brownian mo-

tion. Next, the 180° RF pulse is applied, inverting the phase of the spins. When

the second diffusion gradient is applied, this has the same effect as the first gradi-

ent, causing a second location-dependent net phase φ2, but this time in the opposite

direction. If the spins had not moved at all in between the two diffusion gradients,

the two phase offsets would have cancelled each other and returned to their initial

state. But, since the spins experience Brownian motion between the two gradients,

φ2 cancels only part of φ1, resulting in a net phase offset φ2−φ1 6= 0, which causes

an attenuation of the MR signal [53]. The attenuated signal is diffusion-weighted

as it characterises the amount of diffusion that takes place within tissue along the

direction of the diffusion gradient (i.e. the more the signal drops, the greater the

water diffusion in the direction of the gradient). By applying diffusion gradients

in different directions equally spaced along a sphere, a complete three dimensional

image of water diffusion within the tissue is created [46].

The signal attenuation is controlled by the diffusion weighting or the b-value

of the sequence, which is a combination of the sequence parameters, and is defined

as:

b = γ
2G2

δ
2(∆− δ

3
) (2.2)

where γ is the gyromagnetic ratio of the tissue. The higher the b-value, the higher

the diffusion weighting. For free diffusing molecules, the b-value is related to the

signal attenuation via the equation:

S(b, D) = S0e−bD (2.3)

where S0 is the signal without diffusion weighting and D is the diffusion coefficient.

Since in biological tissue D is affected not just by the diffusivity of the medium, but

also by the tissue environment, it is usually referred to as the ’apparent diffusion

coefficient’ (ADC).
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STEAM sequences

Another DW-MRI sequence is the Stimulated-Echo Acquisition Mode (STEAM).

STEAM sequences can be advantageous over the SDE sequence in Figure 6.2.1 by

allowing the probing of longer diffusion times [54]. This is achieved by splitting

the 180° RF pulse in the SDE sequence into two separate 90° RF pulses, as shown

in Figure 2.5. The first 90° RF pulse flips the net magnetisation in the transversal

plane, where the signal decays with T2 rate until the next RF pulse. Once the second

90° RF pulse is applied, the net magnetisation is flipped back in the longitudinal

plane. During the time between the second and the third 90° RF pulses, known as

the mixing time τm, the signal decays with T1 rate. Then, the third 90° RF pulse tips

the net magnetisation back into the transversal plane, where it again experiences T2

relaxation. In tissue where T1� T2, such as in white matter [40], the signal decays

less during the mixing time τm, allowing for longer diffusion times ∆ to be probed.

In contrast, throughout an SDE sequence, the net magnetisation experiences T2

relaxation throughout the whole diffusion time. Consequently, STEAM sequences

are commonly used in tissue with short T2, such as muscle or cartilage [55], or in

applications where long diffusion times are necessary to ensure sensitivity to certain

microstructure parameters, such as axon diameter [56].

Figure 2.5: Schematic view of Stimulated-Echo Acquisition Mode (STEAM) sequence.

In addition to the two diffusion gradients G, the STEAM sequence includes two
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crusher gradients Gc, used to terminate the signal decay before the next RF pulse,

and two slice-select gradients Gs. The additional gradients have been shown to

introduce an unwanted diffusion-weighting bias which has to be accounted for [54].

In contrast, in an SDE sequence, the effect of the additional gradients is usually

negligible in practice due to their short duration [54].

The diffusion sensitisation of the MRI signal is the first step towards obtaining

tissue microstructure information. The next step is fitting models to the DW-MRI

signal measurements in order to estimate specific tissue parameters. The following

section presents the most widely used tissue models in DW-MRl.

2.3 Modelling the DW-MRI signal
The versatility of DW-MRI as an imaging technique stems not only from the wide

range of contrasts available, but also from the many different ways to model the

diffusion signal in order to extract meaningful information about the underlying

tissue. Analytical models of the DW-MRI signal are fit to MRI measurements in

order to estimate specific tissue parameters from the signal. This section introduces

the most commonly used analytical models of the DW-MRI signal and discusses

their advantages and limitations. In the first part, we introduce the diffusion ten-

sor imaging (DTI) model [57], as the most widely used DW-MRI model [58]. DTI

encodes the cumulative effect of tissue features, but does not fit specific microstruc-

tural features. In the second part of this section, we introduce biophysical or multi-

compartment models, which represent the tissue as a collection of key geometrical

features called ’compartments’ and fit direct microstructural indices such as axon

size or intracellular volume fraction.

2.3.1 Diffusion Tensor Imaging (DTI)

The ADC model in Equation 2.3 assumes free diffusion in an isotropic and ho-

mogeneous environment. However, this does not accurately describe diffusion in

anisotropic tissue such as white matter or muscle fibres. DTI, on the other hand,

uses a 3D Gaussian model to allow for diffusion to vary along different directions

[59], providing a more accurate description of free diffusion in anisotropic environ-

ments. DTI replaces the scalar D from Equation 2.3 with a 3x3 symmetric matrix
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D, known as the diffusion tensor:

D =


Dxx Dyx Dxz

Dxy Dyx Dyz

Dxz Dyz Dzz

 (2.4)

where Dxx,Dyy and Dzz are the diffusivities in the x, y and z directions, and Dxy,Dyz

and Dxz represent the covariances.

The measured signal S is related to the diffusion tensor by:

S = S0exp(−bĜT DĜ) (2.5)

where S0 is the signal with no diffusion weighting, b is the diffusion weighting

(from Eq. 2.2), and Ĝ is the gradient direction.

As D is a symmetric matrix, equation 2.4 has only six unknowns and so in order

to be able to fit this model to the signal, we need at least 6 measurements for the

different gradient directions and an additional 7th in order to measure S0. However,

in practice, the noise in the data means that around 20-30 measures of isotropically

distributed gradients are necessary [60]. The estimates can then be obtained using

a multitude of either linear or non-linear optimisation techniques [57, 61], although

non-linear optimisation has been shown to be less biased [60].

After computing the diffusion tensor D from the data, we can estimate the prin-

cipal directions of diffusion and their corresponding diffusivities by performing an

eigendecomposition of D to find the eigenvectors (e1,e2,e3) and their eigenvalues

(λ1 ≥ λ2 ≥ λ3). The principal eigenvector e1 estimates the dominant fibre direc-

tion in a voxel. The size of the eigenvalues determines the shape of the tensor, as

illustrated in Figure 2.6. The tensor on the left depicts anisotropic diffusion and

is called prolate. In a prolate tensor, one eigenvalue is considerably larger than the

other two, indicating anisotropic diffusion, as we expect to see along the main tracts

in white matter. The middle tensor is called oblate and could, for example, be char-

acteristic of crossing fibres, indicated by the two dominant eigenvalues. The right

most tensor resembles a sphere and has approximately equal eigenvalues, indicat-

ing isotropic diffusion. This can be representative of either grey matter, where the
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diffusion is small, but with no dominant directions, or of cerebrospinal fluid, where

the diffusivity is large and isotropic.

Figure 2.6: Diffusion tensors (from left to right): The prolate tensor characteristic of
anisotropic diffusion, the oblate tensor representative of diffusion along a plane
(for example due to crossing or bending fibres) and the sphere tensor represent-
ing isotropic diffusion.

Another way to describe the diffusion tensor is by deriving rotationally invari-

ant features from the eigendecomposition of D. There are two commonly used ro-

tationally invariant metrics: fractional anisotropy (FA) and mean diffusivity (MD).

MD measures the mean amount of diffusion in a voxel and is equal to:

MD = λ1 +λ2 +λ3, (2.6)

where λi, i = 1,2,3 are the eigenvalues of D. MD is high in the cerebrospinal fluid,

as the water molecules diffuse freely in the absence of barriers, and lower in grey

and white matter as diffusion is restricted by axons and glial cells. FA measures the

fraction of diffusion anisotropy in a voxel. This takes values between 0 and 1 and

is calculated as:

FA =
3
2

√
∑(λi−MD)2

∑λi
(2.7)

FA is low in the cerebrospinal fluid and grey matter as there are no dominant direc-

tions of diffusion, and takes higher values in white matter, where diffusion happens

mainly along the axons.

There are several limitations of this model. Firstly, DTI assumes a trivariate

Gaussian model of diffusion, which does not hold in the axons of white matter

where the water diffusion is restricted [62]. Secondly, even though DTI offers more
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specific information than ADC, it remains too simplistic to allow for the estimation

of more specific microstructure parameters. For example, in the case of the oblate

tensor, the model does not offer sufficient information to determine the main two

fibre directions, as it might be necessary in tractography applications. In addition

to this, while FA and MD do measure changes in tissue microstructure, it remains

impossible to disentangle the contribution of individual parameters such as axon

diameter, permeability or fibre dispersion [63]. Detecting changes in MD and FA is

not always sufficient as different combinations of tissue parameters could have the

same effect on these metrics.

As established in the previous sections, the quantification of tissue parame-

ters is of paramount importance for developing more sensitive and specific imaging

biomarkers. In order to achieve this, there is a need for models that directly relate

the DW-MRI signal to more specific tissue parameters.

2.3.2 Multi-compartment white matter models without ex-

change

Biophysical or multi-compartment models that directly relate tissue specific param-

eters, such as axon radius, to the DW-MRI signal have been proposed to overcome

the limitations of the DTI model. Multi-compartment models build a geometrical

representation of the tissue as a collection of compartments, each representing a

key feature of the underlying tissue microstructure. For example, the axons in the

white matter can suitably be represented by an elongated geometrical shape such

as a cylinder. The fluid-like aspect of the cerebrospinal fluid can be represented

using a sphere, in which water diffuses freely and isotropically, not encountering

any barriers. The complexity of the model can be varied by either adding addi-

tional compartments to represent more features or by choosing a more complex and

accurate geometrical shape for the same features. For example, one can use a zero-

radius cylinder to represent an axon or create a more complex model by adding an

extra parameter to the model - the axon radius. A trade-off arises here between sim-

pler models, which are easier to fit, and more complex models, which have more

parameters and require longer and less clinically-feasible imaging protocols.

A taxonomy of multi-compartment models together with an attempt to rank
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them according to the Bayesian Information Criterion (BIC) [64] is presented by

Panagiotaki et al. [65, 66]. The remaining of this section presents several mod-

els commonly used to fit DW-MRI data, ranging in complexity. Essentially, these

models are specific cases of the taxonomy framework in [65] and we will adopt

this terminology to refer to different compartments: stick for a zero radius cylinder,

cylinder for a non-zero radius cylinder and gamma-distributed cylinders to refer to

a collection of axons with radii drawn from a gamma distribution, ball to refer to an

isotropic tensor and, finally, a zeppelin to refer to a cylindrically symmetric tensor

[65].

One of the first compartment models was introduced by Stanisz et al. [67]

and applied to the bovine optic nerve. This model comprises three compartments:

prolate tensors representing axons, spheres representing glial cells, and hindered

diffusion with exchange for the extracellular space. The model allows for the esti-

mation of microstructure features such as the average axon diameter and length, the

glial cell size and the intra and extra cellular diffusivities. Stanisz et al. apply their

model to the bovine optical nerve, and the parameter estimates were shown to be in

good agreement with histology values [67]. Nevertheless, due to its complexity, the

fitting of the model requires not only a great number of measurements, but also a

high quality dataset with SNR>1000, which is practically impossible to acquire in-

vivo in the clinical setting, illustrating the need for simpler, more clinically viable

models.

The ball and stick model [68] is a much simpler model of the DW-MRI signal

than Stanisz et al.’s three pool model. The ball and stick model assumes that there

are only two compartments, the intracellular (stick) and the extracellular (ball) com-

partments, as shown in Figure 2.7. The intracellular compartment represents the

axons as zero-radius cylinders and has anisotropic diffusion, while the extracellular

compartment has isotropic diffusion, with both compartments having diffusivity D.

The measured signal is calculated as a weighted sum of the signals from each com-

partment, according to the intracellular volume fraction f , computed as the fraction

of the signal due to intra-axonal water. The relationship between the parameters and

the DW-MRI signal expressed as:
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Figure 2.7: Schematic view of the Ball and Stick two-compartment model: the intracellular
space is represented as zero-radius cylinders and the extracellular compartment
as a sphere with isotropic diffusion.

S = S0( f (exp(−bD( ˆfdir ∗ Ĝ)+(1− f )exp(−bD)))) (2.8)

where ˆfdir is the fibre direction and the rest of the symbols are consistent with the

previously defined notation.

While the ball and stick parameters are more descriptive of tissue microstruc-

ture than FA or MD, more informative parameters such as axon diameter continue

to remain elusive. The next set of models relax some of the ball and stick model

assumptions to provide even more specific microstructural features.

The first compartment model that assumes non-zero radius cylinders is the

composite hindered and restricted model of diffusion (CHARMED) [69], which

fixes the distribution of axon diameters and intracellular diffusivity to typical val-

ues for axons in the spinal cord. However, this model still does not allow for the

direct estimation of the axonal size. This limitation led to the development of the

AxCaliber model [70], which extends the CHARMED model and estimates the

axon diameter distribution assuming a known fibre direction. Based on histolog-

ical observations [69], AxCaliber represents axons as parallel cylinders with non-

zero radius following a gamma distribution, as shown in Figure 2.8. Similarly to

Stanisz’s model, the diffusion in the intracellular compartment is restricted. The
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Figure 2.8: Schematic view of the AxCaliber two-compartment model: the intracellular
space is represented as parallel, gamma-distributed, non-overlapping cylinders
and the extracellular compartment as a zeppelin.

second compartment is a zeppelin [65] aligned with the cylinders and represents the

hindered diffusion in the extracellular space. While ex-vivo [70] and in-vivo studies

[71] show that there is a good agreement between the model estimates and histol-

ogy, there are also limitations which prevent the model from being widely used in

clinical in-vivo human studies. Firstly, the data acquisition is very long and uses

high gradient strengths not available in the clinical setting. Secondly, AxCaliber

assumes that the fibre orientation is known, which is an unrealistic assumption in

clinical practice.

Alexander [72] aims to address the limitations of AxCaliber by developing an

optimisation framework (Active Imaging) which produces clinically feasible and

orientationally invariant imaging protocols. Active Imaging is designed to minimise

the variance of axon diameter estimates, and was introduced together with the Ac-

tiveAx model, which represents axons as randomly packed, single-radius cylinders.

The extracellular compartment of ActiveAx is modelled as a zeppelin diffusion ten-

sor, with the principal eigenvector parallel to the cylinders, as shown in Figure 2.9.

ActiveAx permits the estimation of the intracellular volume fraction, the fibre ori-

entation and the axonal diameter index α , a parameter that has been shown to corre-

late with the mean volume-weighted axon diameter. ActiveAx was shown to provide

good ex-vivo monkey brain and in-vivo human brain estimates [73]. Although the
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Figure 2.9: Schematic view of the ActiveAx two-compartment model: the intracellular
space is represented as parallel, non-overlapping, single radius cylinders and
the extracellular compartment as a zeppelin.

model assumes single-radius axons via the α parameter, ActiveAx provides a first

window into more informative tissue microstructure parameters.

The models introduced so far represent axons as straight cylinders, without ac-

counting for bending or fanning, as it is often the case in some parts of the white

matter [74]. While the assumption of straight parallel cylinders holds in regions of

the white matter such as the corpus callosum [16] or the spinal cord [75], this as-

sumption does not hold in other regions of the white matter, in which axonal tracts

can fan out and disperse [76]. One of the first models that accounts for fibre dis-

persion was developed by Jespersen et al [77]. The models calculates the signal

from the intracellular space by integrating over all possible orientations. Never-

theless, despite accounting for fibre dispersion, Jespersen’s model leaves out other

important microstructure parameters such as the axon radius. Another model which

accounts for fibre dispersion is the ’the neurite orientation dispersion and density

imaging’ model (NODDI) [78], which allows for the estimation of the fibre density

and orientation dispersion. NODDI comprises three compartments: a Watson dis-

tribution of sticks for the intra-neurite signal, a zeppelin for the signal outside the

neurites and a ball for the cerebrospinal fluid. This model is commonly employed
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by researchers in in-vivo studies [79, 80] due to the straightforward and clinically

feasible imaging protocol. NODDI has so far been used to characterise healthy

[79, 81] and diseased tissue [80, 82] proving the clinical feasibility of compartment

models. Kaden et al [83] replace the symmetrical Watson distribution of NODDI

with an asymmetric directional distribution known as Bingham, which allows for an

anisotropical distribution along the main direction of dispersion. This is used in or-

der to build a model that better characterises fanning tracts such as the corticospinal

tract.

2.3.3 White matter compartment models with exchange

The multi-compartment models discussed above account for various tissue features,

however, they do not take into account the effect of membrane permeability. The

permeability of the cell membranes influences the diffusion of the water particles

and, it is, therefore, expected to have an effect on the DW-MRI signal. The cell

membrane permeability is usually measured via the intra-axonal water exchange

time τi [6, 84, 85, 86], defined as the average time a water molecule spends inside

the intra-axonal space represented by the white matter axonal fibres [87]. τi is also

known as ’the intracellular water lifetime’ or ’the residence time’, and, throughout

this thesis, we will refer to τi as the intra-axonal exchange time. τi is inversely

related to the permeability k of the cell membrane and can be calculated with:

τi =
V
Ak

,

where V is the cell volume and A is the cell surface area [87, 6, 84, 88].

The first part of this section describes the main analytical models that account

for water exchange between the cell membranes. Nevertheless, deriving accurate

analytical models with exchange is inherently difficult due to the intractability of

the mathematical expressions that incorporate permeability. To address this limita-

tion, there have been alternative numerical approaches which bypass the need for

mathematical expressions, which we outline in the second part of this section.
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Analytical Models

Analytical models that relax the assumption of restricted diffusion and account for

exchange, usually incorporate permeability either in a simplistic way [89, 90] or

under assumptions not valid in white matter [85, 91]. An example of this is the sim-

plified permeability model introduced by Cod and Callaghan [89], which assumes

that once the water particles leave the intracellular space they cannot re-enter the

same compartment. A more recent approach by Grebenkov et al. [90] aims to esti-

mate permeability using high gradients and narrow pulses. Nevertheless, their cur-

rent results are only valid for compartments significantly larger than those present

in white matter.

One of the most well known approaches that explicitly incorporates τi is the

Kärger model [85]. The model assumes two compartments or ’pools’ and accounts

for exchange between them by coupling their signals via the τi parameter. Similar to

the compartment models in the previous section, the total DW-MRI signal is com-

puted as the sum of the signals coming from the two compartments, coupled through

the exchange time τi. Due to its compatibility with data acquired using clinically

feasible protocols (SDE and STEAM), the model is very widely used in practice

[67, 92, 6]. Despite its popularity, the assumptions of the Kärger model do not hold

in white matter tissue, limiting its capacity to accurately describe exchange times in

the brain. The Kärger model assumes that the water pools in the two compartments

are well mixed and it does an account for restricted diffusion, an assumption which

does not hold in white matter. Fieremans et al. [84] show that while the Kärger

model may provide a reasonable description of the DW-MRI signal in the long time

limit (i.e. when τi is much longer than the time it takes to diffuse across the cell) and

when the cells are close to impermeable, the model fails in the case of fast exchange

and results in overestimated exchange times and underestimated permeabilities. In

addition to this, Nilsson et al. [6] use Monte Carlo simulations with restriction and

exchange to show that the Kärger model yields biased estimates of the intra-axonal

volume fraction f for exchange times < 350 ms.

Pfeuffer at al [93] and Dietrich et al [94] address one of the limitations of the

Kärger model by modelling restricted diffusion in the intracellular space. How-
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ever, the lack of an analytical model with exchange for the extracellular space has

prevented significant improvements to the Kärger model for over 20 years.

Recently, the Apparent Exchange Rate model (AXR) [91, 95] was introduced

as an alternative to estimating τi via the Kärger model. AXR combines the intra-

axonal volume fraction f and τi under a single apparent exchange rate parameter

AXR = 1
τi f [1]. Despite preliminary findings demonstrating AXR’s feasibility for

estimating τi in in-vivo human data [95], there are several limitations of the model

which could preclude its use as an in-vivo clinical tool. Firstly, AXR requires imag-

ing sequences with double diffusion encoding, which are less widely available than

the conventional SDE required by the Kärger model. Secondly, AXR preserves

some assumptions not valid in white matter: it assumes that the water is split be-

tween a ’fast’ and a ’slow’ pool and that the diffusion in each compartment is time-

independent [96]. Thirdly, as the volume fraction f is conflated with the exchange

time τi, it is difficult to disentangle the contribution of each parameter. Finally,

the model allows for only two compartments, unless further parameter conflation

occurs [97].

The analytical models illustrated so far encode the relationship between tissue

microstructure parameters and the DW-MRI signal through an analytical expres-

sion. However, for some parameters such as the exchange time or the extracellular

space, there is a lack of tractable mathematical expressions that accurately express

their relationship to the DW-MRI signal. Because of this, the accurate estimation of

such parameters has so far remained elusive and alternative approaches have been

developed, which we present next.

Computational Models

Given the inherent difficulties involved in deriving accurate analytical models of

exchange with permeable axonal membranes, there have been alternative models

which bypass the need for analytical expressions altogether and use simulations to

learn how permeability affects the DW-MRI signal. Rather than deriving an analyt-

ical expression to encode the relationship between τi and the DW-MRI signal, these

models adopt a computational approach and use numerical simulations to study this
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relationship.

A great majority of studies simulating the DW-MRI signals use Monte Carlo

Markov Chain (MCMC) algorithms [6, 84, 98], which are a class of methods used

for sampling from probability distributions using Markov chains. Markov Chains

are stochastic models in which the probability of each event depends only on the

previous event. MCMC chains are used extensively for sampling distributions with

an unknown form as they bypass the need for analytical expressions. MCMC algo-

rithms are very flexible and can be used to simulate the diffusion motion by placing

a sufficiently large amount of spins (or walkers) in a geometrical representation of

the tissue and updating their motion step by step over a period of time. At the end

of each step update, the phase of each spin is computed according to its position

and the sequence settings, and the final signal attenuation is calculated as the sum

of the phases of all spins. For example, Hall et al. [98] study the convergence of

the diffusion signal in highly complex tissue substrates and include effects that an-

alytical models cannot capture. The main drawback of MCMC simulations is their

computational complexity, which renders them unsuitable as real-time techniques.

Nevertheless, this limitation can be mitigated by adopting a database approach, in

which databases of MCMC simulations are generated a priori.

Nilsson et al. [6] build such a computational approach by generating a library

of Monte Carlo simulations of DW-MRI signals and their corresponding ground

truth microstructure parameters (the cell diameter, the intra-axonal exchange time,

the diffusion coefficient and the intra-axonal volume fraction). Then, given a pre-

viously unseen signal (i.e combinations of tissue parameter values not explored in

library), they adopt a nearest-neighbour approach to retrieve the closest matching

signal in the database by finding the entry that minimises the squared difference to

the unseen signal. When comparing the performance of their computational model

with that of the analytical Kärger model, they show that their approach improves

the accuracy of the estimated parameters, except for the exchange time [6]. Never-

theless, their model has several drawbacks. The main limitation is that the nearest-

neighbour algorithm they use is not capable of generalisation (i.e. it cannot infer

the parameter estimates for a new, unseen signal). Their approach does not learn
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the mapping between signals and parameters, but simply creates a dictionary and

retrieves the closest match, which in reality could be very far away from their simu-

lated database. Another limitation stems from using the raw signals to perform the

matching. This is potentially inefficient, as it requires new libraries to be generated

for each acquisition protocol as well as for each fibre orientation.

While the approach of Nilsson et al. simply builds a mapping between syn-

thetic DW-MRI signals and microstructure features, machine learning approaches

can potentially learn this relationship and provide better generalisation, especially

for parameters which only weakly influence the DW-MRI signal [95]. Machine

learning algorithms have been shown to excel in learning to generalise from high-

dimensional data [7], offering a promising new approach for microstructure param-

eter estimation. The next section introduces such machine learning approaches,

with a focus on random forests and neural networks as the algorithms of interest for

this work.

2.4 Machine Learning

Machine learning is a field of artificial intelligence in which algorithms and sta-

tistical models are trained to learn and infer patterns from datasets without using

explicit instructions. A high-level definition of machine learning would describe

it as ’the field of study that gives computers the ability to learn without being ex-

plicitly programmed’ (Arthur Samuel, 1959). During the learning stage, a machine

learning algorithm uncovers hidden insights or patterns in the training data, which

are not always easily detectable by humans. Using the data-driven insights uncov-

ered during training, the machine learning algorithm builds a generalisable model

that can predict to new, previously unseen data.

Through bypassing the need for explicit programming as well as being able

to generalise to previously unseen data, machine learning is particularly suited and

excels in problems for which there are no available solutions using traditional ap-

proaches. Machine learning is also suited for problems for which traditional ap-

proaches do work, but use a long set of rules or require considerable hand-tuning

[99]. Even though the term ’machine learning’ was drafted in the late 1950s, recent
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developments culminating with the rise of deep learning [7] have brought machine

learning at the forefront of technological advances: automatic object identification

[100], speech recognition [101, 102], product recommendations, autonomous driv-

ing, sentiment analysis. Machine learning algorithms have also exceeded human-

level performance in playing games such as Atari or AlphaGo, pushing the bound-

aries of artificial intelligence. In addition to this, machine learning is currently

applied in many areas of medicine and medical imaging: from predicting the effect

of DNA mutations on diseases [103] to automatic X-Ray based diagnosis [104] and

tumor classification [105]. While the progress in the medical field has been slower

compared to others fields such as image recognition, the recent advances in com-

puting power facilitate the application of machine learning to real-time diagnosis

tasks and enhanced analysis of medical images [106].

Machine learning approaches use a large set of data {x1,x2, ...xN}, named a

training set, to optimise the parameters of an adaptive model with respect to a par-

ticular task. The model’s output is a function y(x), whose parameters depend on the

training data and are optimised during the training stage, also known as the learning

phase [107]. The function optimisation is done with respect to a task-dependent

objective or cost function, by employing numerical optimisation techniques such

as gradient descent. The goal of the training process is to increase the generalisa-

tion of the algorithm, defined as the ability to correctly perform the task for which

the model is optimised given previously unseen inputs. Usually, the generalisation

capacity of an algorithm is assessed on an unseen set of data called the test set.

Prior to training, there is usually a need to preprocess the dataset given the

high-dimensionality and variability of real-life data. During preprocessing, all xi

instances of the training set are usually represented in a common space, designed so

that the task at hand is easier to solve and less computationally expensive [107]. For

example, given an image recognition task, the pre-processing stage could consist of

scaling and translating the images in the training set into a single picture size. If

the training set was formed of MRI signals, the pre-processing stage might involve

extracting rotationally invariant features of the signal or normalising them.

Machine learning algorithms can be divided into three broad categories, based
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on whether labels for the dataset are available. By labels, we refer to the correct

task outcome associated with each training example. The first type or learning is

supervised learning, in which the training set labels are made available during train-

ing and used to inform the algorithm on the type of output desired by the user. The

second type of learning is unsupervised learning, in which the training takes place

without any labels being provided. Clustering problems belong to this category,

such as discovering distinct healthy and control groups within a population. More

recently, a third type of learning, known as semi-supervised, has emerged. This

falls in between the first two types as it makes use of both labelled and unlabelled

data. This follows from recent findings that unlabelled data, which are usually easy

to produce, when used in conjunction with labelled data, which are usually more

time-consuming to generate, can lead to an improvement in performance.

Machine learning approaches can also be categorised into classification and

regression algorithms according to the type of task they are designed for. Classifi-

cation algorithms are used to assign inputs to a finite number of categories [107].

An example of this is a digit recognition algorithm which assigns images a unique

label from 0 to 9. Regression algorithms are used to assign inputs to a continuous

variable or to a collection of continuous variables. Following from this categori-

sation, the task of estimating microstucture parameters falls into the category of

regression algorithms.

In this thesis, we adopt a supervised regression approach and the specific ma-

chine learning algorithms that we implement are random forests and neural net-

works, as two of the most widely used regression algorithms in medical imaging. In

the remainder of this chapter, we present in more detail the specific random forest

and neural network algorithms that we implement. For a more in-depth discussion

about the two techniques, we advise the reader to consult [8] for random forest

models, and [107] for neural networks as well as for a more general introduction to

the field of machine learning.

2.4.1 Random Forests

A random forest [108] is an ensemble of decision trees, in which each tree is trained

randomly and independently of each other [109]. Ensemble methods are one of the
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most powerful machine learning approaches, well known for their robustness to

noise and good generalisation [110]. An ensemble model, also known as a strong

learner, is formed of a collection of less powerful algorithms, known as weak learn-

ers. In our case, a random forest acts as a strong learner, while the individual deci-

sion trees act as weak learners. Even though decision trees were introduced in the

1980s, their popularity has resurfaced in the recent years with the rise of ensemble

methods, which have become one of the most widely used algorithms in the medi-

cal imaging field [111, 112, 113, 114, 115]. Depending on the task, random forests

can either be regressors or classifiers. In this thesis, we use only random forests and

decision trees for regression, and the discussion below is focused accordingly.

Decision Trees

A decision tree (DT) is formed of a set nodes and edges grouped hierarchically as a

directed graph with no loops. The nodes of a DT can either be internal or terminal

(also known as ’leaf’ nodes). The internal nodes split the incoming data and pass it

on to the nodes on the lower levels according to a split function which looks for the

best partition of the data. Terminal nodes store a predictor function which outputs

the result of the regression task. The DTs in a random forest are usually binary

trees, in which each internal node has exactly two outcoming edges [110]. Figure

2.10 shows an example of a binary decision tree, which we exclusively use in this

work.

TRAINING. During the learning phase, the training data is passed through the

DT, starting at the root node towards the terminal nodes. At each node, the DT

searches for a partition of the incoming data such that having separate partitions

on either side of the node improves the estimation. If such a partition exists, the

node is split and two child nodes are added on the level below. This procedure is

repeated for every child node until splitting the data into smaller partitions does not

improve the estimation anymore. If no better partition is found, the node becomes

a terminal node. Therefore, the structure of a DT is determined by the complexity

of the training dataset and is set during training.

Conceptually, the training process is equivalent to hierarchically splitting com-
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Figure 2.10: Schematic view of a decision tree.

plex tasks into simpler ones [110]. Mathematically, the training process is guided

by two functions: the split function of each node and the optimisation or cost func-

tion. The split function of each node stores the best partition at that node. The split

function parameters are the features and thresholds according to which the data is

split. The cost function is used to determine the best split at each node. The optimi-

sation function searches for the feature-threshold pairs ( fi, t fi) that produce the best

split.

Here, we use the Classification and Regression Tree (CART) algorithm cost

function, introduced by Breiman [116]. The CART cost function is defined as:

J( fi, t fi) =
mleft

m
MSEleft +

mright

m
MSEright (2.9)

where mleft/right is the number of training instances in the left/right subset and ’MSE’

stands for the ’mean-squared-error’ [99]. The smaller the cost J( fi, t fi), the better

the split. In a regression tree, each node outputs a continuous value equal to the

average of the labels of all training instances associated to a node, and is calculated

as:

ŷnode =
1

mnode
∑

i∈node
y(i) (2.10)
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where mnode is the number of training instances associated to the node and y(i) is the

label of training example i. The MSE in Equation 2.9 for each node is calculated as

the sum of squared differences between the output of the node ŷnode (Eq. 2.10) and

the true labels of the training instances associated with the node:

MSEnode = ∑
i∈node

(ŷnode− y(i))2. (2.11)

The CART optimisation algorithm is part of a class of algorithms called ’greedy’, a

heuristic which aims to find the global optimum by making locally optimal choices

at each stage (i.e. we greedily search for a split that optimises the cost at the each

node without checking whether it also leads to the lowest cost at other levels) [99].

Even though greedy algorithms are not guaranteed to converge to the global opti-

mum, they have been shown to generally converge to a sufficiently good approxima-

tion of the global optimum. Employing a problem solving heuristic such as a greedy

algorithm is needed because finding the optimal tree is an NP-Complete problem,

intractable even for very small training sets [99].

Figure 2.11: Estimations of a regression decision tree. The blue points represent the train-
ing examples (y) and the red line represents the estimated values (ŷ). In a DT,
the estimations are calculated as the average of the training examples associ-
ated with each node. The image is obtained from [99].

There are several criteria according to which training can be stopped. One

criteria is to stop training once the CART algorithm cannot find a split that min-

imises the MSE. This option usually leads to overfitting as the DT can be grown to
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fit the training data perfectly. To prevent this, several other approaches have been

developed. One example is to stop training when the tree depth is grown beyond a

certain value (denoted by the ’max depth’ parameter in Figure 2.11), but there are

additional ways to achieve this and a list of other options can be found in the scikit-

learn online documentation http://scikit-learn.org/stable/documentation.html.

After training is completed, a DT estimates a new value by passing the new

instance through the tree nodes until a terminal node is reached. The estimated

value is computed as the average of all the training instances assigned to that node.

This process is illustrated in Figure 2.11, where the estimated values (the red line)

in each node are the average of the training instances associated with that node.

Figure 2.12: The figure on the left represents the estimations of the regression DT (ŷ) with-
out any constraints on any of its parameters. It can be noticed that the DT fits
perfectly every example, leading to overfitting and reducing its capability to
generalise well. The figure on the right displays the same DT, but with a re-
striction on its min samples leaf parameter, which has the effect of reducing
overfitting. The image is obtained from [99].

OVERFITTING. DTs make very few assumptions about the data, unlike other

simpler models such as linear regression. On one hand, this constitutes an advan-

tage as DTs can sometimes fit idiosyncrasies in the data better. On the other hand,

if the training process is left unconstrained, DTs are able to fit the data perfectly, as

illustrated in the left graph of Figure 2.12. This leads to the DT failing to capture

the general underlying trend. This phenomenon is known as overfitting and refers

to ML algorithms that learn to fit the training data perfectly, including the inherent

noise. This results in a reduced generalisation ability, which means that the algo-

rithm fails to accurately predict new data. Reducing the overfitting of an algorithm

is called regularisation and, in the case of DT, is done by constraining a few pa-



60 2.4. Machine Learning

rameters. Such parameters can be the minimum number of samples before a split

is performed, the minimum samples a leaf must have (min samples leaf in Figure

2.12), the maximum number of leaf nodes or the maximum features evaluated when

splitting each node. The effect of including some of these parameters can be seen

in the right plot of Figure 2.12, where the mean samples leaf parameter has been

set to 10.

The overfitting problem of single DT models led to the development of random

forests, which aim to address this limitation and are outlined in the next section.

Combining DTs into a random forest

As mentioned above, a random forest is a collection of independently trained DTs.

In a regression task, random forests make estimations by averaging the answer of

all individual DTs. Random forests have been shown to improve the generalisation

performance and robustness to noise of single DTs by introducing randomness into

the training process [108]. Randomness is typically introduced in two ways, via

bagging and feature selection.

BAGGING. The first method to introduce randomness in a random forest is

called bagging [110]. The idea behind bagging is that each DT is trained on a differ-

ent subset of the training data, chosen through random sampling with replacement.

Therefore, each sample in the training set can be used more than once during the

training of an individual tree as long as the size of the training set size remains con-

stant. An alternative sampling method is pasting, when the sampling is performed

without replacement.

FEATURE SELECTION. The second method of introducing randomness is by

using only a random subset of features to search for the best partition at each node

[8]. If the same features were used by every node, all decision trees would be

identical. Additionally, if all features were used to search for the best partition, the

performance of the random forest would depend heavily on how well the test data

is described by the training data. For example, if the test data has one feature very

different from the train data, the random forest can ignore this feature in the DTs
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where it is not selected, and will instead use the other more similar features for the

estimation. This aspect is particularly relevant for this work, as we train our random

forests using simulated data but estimate using real data, between which we expect

to see differences.

The two randomness methods ensure that there is a low correlation between

the DTs of a random forest, which has, in turn, been shown to improve the general-

isation capacity of a random forest [108]. In addition to this, the performance of a

random forest is also affected by other properties, the most important of which are

the forest size and the tree depth. As with any machine learning approach, these

parameters need to be optimised in order to improve the generalisation of the RF.

FOREST SIZE. The forest size parameter specifies the number of trees in the

random forest. Increasing the number of decision trees has been shown to improve

the generalisation performance of a random forest [108]. The forest size influences

the smoothness of the decision boundary and of the class posteriors [110], which is

shown in Figure 2.13. The larger the number of trees, the smoother the regression

interpolation. The green line denotes the conditional mean of the predictions and

the redness of the points indicates the value of the posterior distribution (the higher

the confidence, the darker the colour). It can be noticed that as we increase the

number of trees from 1 to 400, the decision boundary becomes smoother. Figure

2.13 also reveals that the confidence is higher for data points closer to the training

points.

Figure 2.13: The effect of the forest size parameter on the class posteriors (red points) and
mean curves (green line), which are smoother as the number of trees in the
forest increases. Image adapted from [110].
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TREE DEPTH. The tree depth parameter specifies the maximum number of

levels that each DT in a random forest can have. Usually this parameter is set

according to the complexity of the training data. A large tree depth might lead to

overfitting if the data is not complex enough, while a small tree depth usually results

in underfitting, as the tree is not large enough to catch the complexity of the data.

FEATURE IMPORTANCES. One of the main advantages of random forests is

their interpretability, which is particularly relevant in fields such as medical imag-

ing. One way to interpret the results of a random forest is by looking at the feature

importances. The importance of a feature is usually computed by looking at how

often the feature is used as a split criteria. Another indication of a feature’s impor-

tance is the level of a DT at which this feature is used. As important features are

likely to appear on the first levels of the DT, the higher the level where a feature

is used as a split criteria, the more important the feature. The interpretability of

random forest is in direct contrast with other machine learning approaches such as

neural networks, which act as black-box models.

To conclude with, random forests are one of the most widely used powerful

machine learning algorithms. We choose random forests over other approaches due

to their robustness to noise, excellent generalisation ability, easy parameter tuning

and interpretability.

2.4.2 Neural Networks

Neural network models are at the forefront of machine learning research after re-

cent advances in deep learning have dramatically improved the state-of-the-art in a

multitude of fields such as object and speech recognition, autonomous driving, drug

discovery, genomics or medical imaging [7]. Conceptually, neural networks aim

to build an intelligent model by replicating the architecture of the brain’s neuronal

networks. Despite their recent increase in popularity, neural networks have been

around for a long time. They were first introduced in 1943, when McCulloch and

Pitt [117] developed the first mathematical model of an artificial neuron, called the

McCulloch and Pitt neuron. However, their progress was limited by a lack of com-

putational power and a need for large datasets for training. The current resurgence
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of interest in neural networks came with the rise of deep learning [7] which pro-

poses the use of neural networks with multiple processing layers (hence the name

’deep’). This was made possible by the exponential increase in computer power

which allows the training of deep networks in a feasible time and by the availability

of large sets of data [99].

Figure 2.14: Schematic view of an artificial neuron. The inputs xi are multiplied with their
weights wi, summed and a bias term b is added. Then, the result is transformed
by a usually non-linear activation function and passed on either as a network
output or as an input to the neurons on the next layer.

ARCHITECTURE. The general idea behind artificial neural networks is to group

artificial neurons in multiple connected layers stacked on top of each other. The el-

ementary unit of a neural network is the artificial neuron, a mathematical function

conceived as a model of biological neurons. Similarly to the synapse mechanism

in the brain, an artificial neuron receives inputs signals from other neurons, pro-

cesses them and then outputs the result to other neurons. The processing is usually

done by calculating a weighted sum of the input signals, adding a bias term and

then applying a non-linear activation function. Figure 2.14 illustrates this process.

Mathematically, this can be written as:

y = f (
n

∑
i

wixi +b),

where xi is the input, wi is the associated weight, b is the bias, f the activation

function and y the final output of the neuron. The role of the activation function f

is to combine and transform the inputs in a non-linear way. Two very commonly

used activation functions in regression tasks are the hyperbolic tangent function or
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’tanh’, f (i) = e2i−1
e2i+1 , and the rectified linear unit or ’ReLu’, f (i) = max(0, i). The

weights and bias terms of each neuron are learnt during training so that they best

represent the data.

Figure 2.15: Schematic diagram of a multilayer perceptron. The feedforward neural net-
work is made up of an input layer, two hidden layers and one output layer.

In a feedforward neural network, the data is transmitted in one direction. The

first layer of a network, called the input layer, receives the network input, processes

it and then passes it on to subsequent layers until the last layer is reached. The last

layer of the network outputs the result of the regression or classification task and

it is called the output layer. The layers in between the input and the output layer

are called hidden layers. A feedforward artificial neural network with at least three

layers of neurons (input, hidden and output layers) is called a multilayer perceptron

Figure 2.15.

While there are motivations for high-level design decision, usually the archi-

tecture of a neural network is set by trial and error. This is because the impact of

design parameters such as the number of neurons and layers remains poorly un-

derstood and, instead, needs to be evaluated empirically on a case by case base
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[118]. The lack of understanding of the effect of different parameters makes neural

networks act like black-box models, with low interpretability.

Although the basic building blocks of a neural network are simple non-linear

mathematical functions, the combined effect of multiple layers and neurons results

in a complex system capable of uncovering hidden structures and storing abstract

representations of the data [119].

TRAINING. Training a neural network refers to the process of adjusting the

weights and biases of each neuron so that the network best represents the data. In

supervised learning, this is done by comparing the outputs of the network with the

true labels via a loss function J, and minimising the difference between the two

using an optimisation algorithm. The optimisation algorithm in a neural network is

an automatic differentiation technique based on the ’chain rule’ of derivation and it

is called backpropagation [120].

During training, the neural network takes a training example, passes it through

the hidden layers and outputs an estimation, which is then compared to the true

label via the loss function J (usually the mean squared error for a regression task).

Next, the error computed by the loss function is propagated backwards, from the

output layer to the input layer, to all neurons. For each neuron, the weight and bias

parameters are changed in proportion to the neuron’s contribution to the overall

error. The update of the weight and bias of each neuron is calculated by computing

the gradient of the loss function with respect to the neuron.

The parameter update is usually computed via gradient descent, an iterative

optimisation approach to find the minimum of a function, here the loss function J.

In gradient descent, the parameters of a function are optimised through iteratively

making small steps in the direction that decreases the loss. The steps are propor-

tional to the negative gradient of the loss function:

pn+1 = pn− γ∇J,

where p is the parameter being updated, γ is the the learning rate (or the step size)

and ∇J is the gradient of the loss function. Minimising the loss function is equiv-
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alent with ensuring that the network estimates are as close as possible to the true

values and, thus, the network learns how to best represent the training data.

There are several variations of the gradient descent algorithm, a comprehensive

review of which is presented in [121]. Our experiments were ran using ’mini-batch

stochastic gradient descent’ and ’Adaptive Moment Estimation’ (Adam) [122], both

modified versions of the gradient descent algorithm, widely used in the neural net-

work community. In the mini-batch stochastic gradient descent, the parameters are

updated using a batch of randomly selected training instances rather than the entire

training set. A batch refers to the subset of instances in the training set. Once all

batches of the training set have been used to update the network parameters, a train-

ing epoch is completed. Unlike conventional gradient descent, Adam adapts the

learning rate during training using exponentially decaying estimates of the mean

and variance of the gradients. This has been shown to improve the robustness of

neural networks in some datasets [122], leading to Adam being widely used in many

state-of-the-art neural networks.

Once training is completed, the performance of a neural network is assessed

on previously unseen data. This is important as it measures not only the ability of

the network to learn the training data (just by memorising it), but also to generalise

the learned trends to new data. Due to their extremely high number of parameters,

neural networks have been shown to be able to perfectly memorise the training data,

including the noise [123], making them extremely prone to overfitting.

REGULARISATION. Regularisation techniques aim to address the overfitting

problem of a machine learning model and improve its generalisation performance.

This is usually achieved by constraining the solution space or by introducing ran-

domness, often at the cost of increasing the training loss [124]. However, regu-

larisation techniques are known to be less effective in the case of neural networks,

most likely due to the their very high number of parameters [123]. Nevertheless,

regularisation is usually still applied as it can result in marginal improvements in

performance [123]. For an in-depth analysis of regularisation techniques the reader

is advised to consult [124]. For the remainder of this sections will focus on the ones

relevant for this work.
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Early stopping is the simplest regularisation technique and it refers to stop-

ping the training process early. This is usually determined by looking at the model

performance on a validation set and interrupting training when the performance no

longer improves. Nevertheless, these are just indicative guidelines and, in practice,

is it often difficult to determine the best point to stop the training process [123].

Other popular regularisation techniques are the L1- or L2-norm regularisation.

As in the case of linear models, this is applied by adding the regularisation term to

the loss function of the model. L1-norm regularisation encourages model sparsity,

while the L2-norm aims to keep the neural network’s weights as small as possible.

Stochastic gradient descent can also be seen as a form of regularisation, as it

introduces randomness into the training process by performing updates in a direc-

tion that is determined by a random subset of training instances. This has sometimes

been shown to improve generalisation, especially when the batch size is small [125].

Finally, the most popular regularisation technique in the deep learning field

is dropout [126]. Despite the simple idea behind it, dropout has been shown to

reduce overfitting in the most complex neural networks. Output works by ’dropping

out’ or ’turning off’ each neuron with a probability p at each training step. Once

training is completed, the neural network uses all neurons for the estimation stage.

Essentially, this results in a different neural network being trained at each step as

different neurons are ’dropped out’ in each training step. While the resulting neural

networks share parameters between them, they are, nevertheless, different [99] and

dropout can be seen as having an ensemble effect. At a neuron level, dropout has

the effect of making individual neurons be less reliant on the other neighbouring

neurons since they can be switched off at any time, resulting in more robust neural

networks [99].

In summary, neural networks are powerful black-box algorithms that have

achieved state-of-the-art performance in a variety of domains. We choose neural

networks over other approaches due to their promising performance and ability to

discover hidden patterns in high-dimensional, complex datasets. We implement

a multilayer perceptron as a starting point for more complex neural network ap-

proaches that are undergoing continuous development.
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2.4.3 Machine learning in DW-MRI microstructure imaging

The application of machine learning methods to DW-MRI is a recent avenue, with

most research studies published over the last five years. Current machine learning

applications to DW-MRI data cover different stages of the imaging pipeline: image

reconstruction [127], super-resolution [128, 129], tractography [130] or parcellation

[131].

Prior to the work presented in this thesis, machine learning had not been used

for the estimation of microstructure parameters. Nilsson et al. [6] attempt to esti-

mate microstructure parameters including τi using a dictionary approach, but with-

out explicitly learning the relationship between DW-MRI signals and microstruc-

ture features. The computational framework presented in this thesis is the first ma-

chine learning approach towards microstructure parameter estimation, as published

in [132].

Since then, a similar approach has been adapted in [133] to map axon diam-

eter from DW-MRI using a random forest trained on matching histological data.

Very recently, Rensonnet et al [134] propose a fingerprinting method to estimate

microstructure properties (axonal density and radius indices) using Monte Carlo

simulations of DW-MRI signals (fingerprints) and demonstrate the potential of the

method on an in-vivo rat model of spinal cord injury. Their approach estimates

microstructure parameters as a combination of fingerprints by solving the inverse

sparse optimisation problem. Another fingerprinting approach is proposed in [135]

to classify DW-MRI voxels in cancer. The authors show that their method can dis-

tinguish between young and old tumours and detect whether a tumour has been

treated with chemotherapy using a mouse model. An additional application of ma-

chine learning for microstructure parameter estimation was proposed by Reisert et

al. [136] based on a Bayesian estimator to disentangle the microscopic cell proper-

ties of the human brain from the effects of the mesoscopic structure.

Another emerging application enabled by the use of machine learning meth-

ods and DW-MRI data is Image Quality Transfer [128]. Alexander et al. propose

to use machine learning algorithms to learn and transfer detailed structural infor-

mation from images in high-quality dataset to enhance lower quality datasets and
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demonstrate the benefits of their method for both connectivity mapping and mi-

crostructure imaging (with NODDI and SMT parameter maps). The concept is ini-

tially illustrated using a random forest regressor [128], and further developed using

a convolutional neural network which enables uncertainty quantification [129].

To the best of our knowledge, there are no studies that attempt the estimation

of the exchange time parameter using machine learning methods.

2.4.4 Summary and motivation for the thesis

In this chapter, we introduce microstructure imaging using DW-MRI and machine

learning, with a focus on the permeability measured via the intra-axonal exchange

time τi. First, we show that permeability based biomarkers are of great interest for

the understanding, monitoring and diagnosis of otherwise poorly understood de-

myelinating pathologies such as MS. Next, we discuss the suitability of DW-MRI

for estimating τi and other specific tissue parameters due to its sensitivity to the

diffusion of water molecules in biological tissue. In addition to this, we present

an overview of the most widely used modelling techniques for analysing DW-MRI

data. Our review covers tissue models both with and without exchange, and dis-

cusses their possible pitfalls. We show that progress in estimating the exchange

time has been limited due to the intractability of the mathematical expressions that

incorporate this parameter. This suggests that there is a need for a different ap-

proach that bypasses analytical expressions. Computational models that learn the

relationship between tissue microstructure parameters and the DW-MRI signal di-

rectly from simulations constitute a promising alternative.

Prior to this work, there has only been one previous attempt to estimate perme-

ability using a computational model and simulations of the DW-MRI signal [6]. The

work, however, uses a dictionary approach that is not able to generalise to new, un-

seen signals. The approach in [6] uses a basic nearest-neighbour algorithm which

simply retrieves the closest matching signal in the simulated library and does not

attempt to learn the relationship between the DW-MRI signals and microstructure

parameters.

Machine learning approaches can overcome these limitations and learn the re-

lationship between signals and tissue parameters as well as generalise to new, un-
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seen signals. More specifically, random forests and neural networks, have shown

extremely promising state of the art results in a wide range of medical imaging ap-

plications [8, 7, 137]. Therefore, in this work, we propose for the first time to use

machine learning for the estimation of microstructure parameters. To demonstrate

this idea, we develop and test the feasibility of machine learning based computa-

tional models with permeability for white matter imaging. Throughout this work,

we will carry out extensive experiments to investigate the performance of such mod-

els in simulations and in-vivo, using clinical and preclinical data. For this, we use

realistic synthetic white matter tissue substrates, healthy volunteers and MS pa-

tients, and a controlled animal model of demyelination. More importantly, we will

directly validate part of our model’s microstructure estimates using ground truth

histological measurements.

Ultimately, this thesis will provide the answer to whether machine learning

based computational models constitute feasible techniques for white matter mi-

crostructure imaging. In the big picture, the findings from this thesis can contribute

towards using machine learning based computational models with permeability as

imaging biomarkers in demyelinating pathologies such as MS.



Chapter 3

Sensitivity of DW-MRI sequences to

permeability effects: A Simulation

Study

In Chapter 2 we discussed the importance of estimating tissue microstructure prop-

erties including the intra-axonal exchange time τi, and we illustrated how DW-MRI

provides a tool with which we can extract this information non-invasively. While

recent work looks at the sensitivity of DW-MRI sequences to axon diameter [138],

their sensitivity to permeability effects remains poorly understood.

This chapter presents for the first time a study of the sensitivity of DW-MRI

sequences to the intra-axonal exchange time τi in white matter. Here, we will fo-

cus on SDE (previously called ’PGSE’) and STEAM sequences since these are the

most widely available and commonly used DW-MRI sequences in the clinical and

preclinical setting. The experiments in this chapter analyse the effect of different

combinations of sequence parameters on the sensitivity to the intra-axonal exchange

time τi in synthetic substrates representative of white matter tissue. Parts of this

work were presented in abstract form at the International Society for Magnetic Res-

onance in Medicine (ISMRM) Annual Meeting 2017 in Honolulu, Hawaii.

3.1 Motivation
As many diffusion studies use off-the-shelf sequences, there is a lack of under-

standing of how different sequence parameters impact the sensitivity to specific mi-
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crostructural features. While automatic optimisation frameworks exist [72], they do

not provide a clear understanding of the output. Numerical simulations, on the other

hand, can help address this problem by offering an insight into how the DW-MRI

signal varies with different sequence parameters and how these parameters affect

the sensitivity to specific microstructural features. Understanding the relationship

between the parameters of a sequence and the sensitivity to a microstructure feature

of interest can also help maximise a scanner’s potential given its hardware con-

straints, as shown by previous work [72, 56, 139]. While recent work looks at the

sensitivity of DW-MRI sequences to axon diameter [138], their sensitivity to the

exchange time τi has not yet been studied.

In this chapter, we aim to analyse the feasibility of DW-MRI sequences for

estimating the intra-axonal water exchange time τi in the brain and spinal cord white

matter, a parameter inversely related to the membrane permeability. Furthermore,

we study the impact that different sequence parameters have on the sensitivity to

the exchange time. For this, we use numerical simulations of the DW-MRI signal to

explore combinations of sequence parameters covering clinically and preclincally

plausible settings. We then calculate the exchange time resolution limit, defined as

the largest identifiable exchange time τmax above which one cannot distinguish from

identical impermeable substrates, for a range of substrates representative of white

matter tissue and under realistic noise conditions.

3.2 Methods
This section describes the model used to represent digital phantoms of white matter

tissue, introduces the sequence parameters of interest, and explains the concept of

sensitivity to exchange time used in this study.

3.2.1 Monte Carlo simulations

For all experiments in this section, we use Monte Carlo simulations of the DW-

MRI signal, generated using the open source Camino simulation framework [140].

Each simulated signal corresponds to a digital phantom that mimics white matter

tissue substrates. A digital phantom is defined through a unique combination of five

parameters: the mean (µR) and standard deviation (σR) of the axon radius gamma-
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distribution, the intrinsic diffusivity of the spins d, the intra-axonal volume fraction

f and the intra-axonal water exchange time τi. Here, the intra-axonal water ex-

change time τi is defined as the average time a water molecule spends inside the

intra-axonal space of the white matter substrate and it is inversely related to the

membrane permeability k. In line with previous work [6, 84, 88], the relationship

between the permeability k and τi is defined through the expression R
2∗τi

(Eq. A),

where R is the axon radius. This and the more general form of the expression are

derived in [87].

While the first four parameters can be passed in directly to the Camino simu-

lation framework, τi is specified via the probability p of a water molecule stepping

through the axonal membrane when it encounters it. The probability p is related

to the permeability k through the expression: p = k
√

6δ t
d (Eq. B), where d is the

intrinsic diffusivity and δ t is the temporal resolution of the simulation. This expres-

sion is obtained by combining the Monte Carlo step length equation s=
√

6dδ t [98]

with the transition probability equation p = k∗s
d as derived in [141]. By combining

equations (A) and (B) above, we obtain p = R
2∗τi

√
6δ t

d as the direct relationship be-

tween the probability p and τi. For impermeable substrates (τi = ∞), p is set to 0

and the water molecule is reflected back into the intracellular space.

To mimic the structure of white matter tissue, we represent each synthetic sub-

strate as a collection of non-abutting, parallel cylinders with radii drawn from a

gamma distribution, a common choice in the literature based on histological mea-

surements [16]. We set the number of gamma-distributed cylinders in each substrate

to 100,000 to avoid variation due to sampling of the distribution [142]. The cylin-

ders are packed randomly in the substrates as described in [98] and are aligned along

the z direction. We set the mean for the gamma distribution of the axonal radii to

µRε{0.2,0.75} µm and the standard deviation to σRε{0.1,0.3} µm, corresponding

to small and large axons according to histology measurements in the human [16],

monkey [18] and rat [71] corpus callosum. In addition to this, we also simulate

substrates with µR = 3.5 µm and σR = 1 µm, corresponding to larger axons which

can be found in the spinal cord according to several post-mortem measurements

[143, 144, 145]. We consider two different values for the intra-axonal volume frac-
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Figure 3.1: Example substrates for Monte Carlo simulations. The histograms in the first
row represent the axon diameter distributions used to generate the synthetic
substrates in the rows below. Figure B) shows a substrate with µR = 0.75 µm
and σR = 0.3 µm, representative for the brain white matter. Figure B) shows a
substrate with µR = 3.5 µm and σR = 1 µm, representative for the spinal cord
white matter.

tion f ε{0.4,0.7}, corresponding to low and high values in the white matter, and we

set the intrinsic diffusivity d to 1.7x10−9 m2s−1 [73]. This results in a total of 6

different digital phantoms, examples of which are shown in Figure 3.1. For each

substrate, we simulate the signals for exchange times τi between 10 ms and 2000

ms, a range which encompasses values of τi expected in the in-vivo human and rat

white matter tissue according to several literature studies [9, 10, 11, 95, 12].

All Monte Carlo simulations are performed using 100,000 spins and 2,000 time

steps in order to ensure that the precision of the unweighted signal (10−10) is several

orders of magnitude smaller than the realistic signal noise [98].
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3.2.2 Pulse Sequences

Throughout this chapter, we simulate different DW-MRI sequences by varying the

following three parameters: the diffusion gradient pulse duration δ , the diffusion

time from the first pulsed gradient to the beginning of the final pulsed gradient ∆,

and the gradient amplitude of the pulsed gradient G. The diffusion gradients are

set perpendicular to the substrate’s cylinders in order to maximise sensitivity to

the water exchange time. We calculate the b-value for the our pulse sequences as

b = γ2δ 2G2(∆−δ/3)2.

To calculate practically achievable sensitivities, we include the effect of T1 and

T2 relaxation in all our experiments. As our simulations probe long values of ∆,

which can be achieved by using STEAM sequences, our signals depend on the echo

time (TE) and the mixing time (TM). We include the effect of transverse relaxation

by normalising the simulated signal S0 by exp(−TE
T2 ), where T2 is the transversal

relaxation time of white matter. In a STEAM sequence, the spins also undergo T1

relaxation during the mixing time TM between the second and third 90◦RF pulses.

Consequently, the measurements made using longer ∆ experience more relaxation,

leading to lower intensities. We include the effect of the T1 relaxation through

scaling the signals S0 by 1/2 ∗ exp(−TM
T1 ), where T1 is the longitudinal relaxation

time of white matter.

3.2.3 Sensitivity and resolution limit

We design several experiments to investigate the sensitivity of diffusion sequences

to the intra-axonal exchange time. Here, we define the sensitivity of a measure-

ment S(τi) to the exchange time as the difference in the DW-MRI signal between

S(τi) and the signal for an equivalent impermeable substrate, S(τi = ∞). This dif-

ference illustrates whether the exchange time effect can be detected in the signal,

i.e. whether it can be distinguished from signals coming from the equivalent im-

permeable substrate. To compute the sensitivity, we calculate the change in signal

for exchange times between 10 ms and 2000 ms for each simulated substrate. As

this effect depends on the amount of noise present, we compare ∆S(τi) with the

standard deviation of the noise for a range of SNRs: SNR=10 as a high level of

noise, SNR=20 as an expected level of noise for pulse sequences with long ∆s, and
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SNR=50 as a low level of noise. For all combination of sequence parameters, we

use the same TE=680 ms, which we use to calculate the standard deviation for all

three SNRs. TM is calculated as the difference between the fixed TE and the ∆ and

δ for each parameter combination.

To illustrate practically detectable ranges of exchange time values, we com-

pute the exchange time resolution limit τmax for different sequence parameters (∆,G

and δ ) assuming an SNR of 20. The resolution limit τmax represents the largest

detectable τi above which one cannot distinguish from identical impermeable sub-

strates (where τi = ∞), i.e. the larger the resolution limit, the larger the range of

permeabilities that can be detected. For example, given a set of sequence parame-

ters and a particular substrate setting, a resolution limit of τmax = 1000 ms would

imply that only substrates with exchange times between 0 and 1000 ms can be dis-

tinguished from equivalent impermeable substrates in the presence of noise. The

resolution limit is computed by determining the largest τi for which the signal dif-

ference ∆S(τi) = |S(τi = ∞)− S(τi)| is above the standard deviation of the noise

σ .

3.3 Results

This section presents the main results that investigate the sensitivity of DW-MRI

sequences to the intra-axonal exchange time τi. The experiments in this section aim

to find the range of exchange times to which we are sensitive in both the clinical

and the preclincal setting, under realistic noise conditions. Additionally, we aim to

identify the key sequence parameters that maximise signal sensitivity to exchange

time and evaluate their impact under realistic noise and tissue relaxation conditions.

The simulations in this section investigate a range of sequence parameter combina-

tions feasible on current human imaging systems: G≤ 200 mT/m, ∆≤ 480 ms and

δ ≤ 40 ms, corresponding to b-values up to 8,400 s/mm2, achievable on high per-

formance hardware such as the Connectome scanner or preclinical scanners. The

experiments here use the tissue model described in the Methods section and assume

T1 = 830 ms and T2 = 70 ms to match standard values in the white matter at 3T

[40].



3.3. Results 77

Figure 3.2: Impact of two different G and δ settings on the sensitivity to the exchange
time for ∆ε{150,300,480} ms. Figure shows the difference in signal ∆S(τi) =
|S(τi = ∞)−S(τi)| for substrates with different mean diameters ((A) µD = 0.4
µm, (B) µD = 1.5 µm, (C) µD = 7 µm) and different intra-axonal volume frac-
tions (0.4 in the left column and 0.7 in the right column). The level of signal
detectability for the three SNR levels (10, 20, 50) is marked by the black lines.

The first subsection looks at how the sensitivity is affected by the choice of G

and δ over a range of different b-values, ∆s and SNRs. The second subsection looks

at the impact ∆ has on the sensitivity range and computes the resolution limit τmax

for different ∆s and under realistic noise conditions (SNR=20). In the third sub-

section, we look at how the b-value impacts the sensitivity when ∆ is fixed and we

compute the resolution limit for different sequence parameter settings. The results

in this section provide an indicative sensitivity range that we expect to find in the

mammalian brain and spinal cord, under clinical and preclinical scanner settings.
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3.3.1 Choice of δ , G

First, in Figure 3.2, we assess the impact of G and δ on the sensitivity to τi. For this,

we simulate two scenarios. First, we look at values of G and δ commonly used in

clinical scanners (G = 40 mT/m and δ = 10 ms - represented by the circle markers).

For the second scenario, we simulate G and δ values achievable in Connectome or

preclinical scanners: G = 200 mT/m and δ = 2 ms (represented by the asterisk

markers). For each scenario, we simulate a range of ∆s achievable in both the

clinical and preclinical setting: ∆ε{150,300,480} ms, corresponding to b-values

{1600,3300,5400} s/mm2. The two combinations of G and δ , (G = 40 mT/m,

δ = 10 ms) and (G = 200 mT/m, δ = 2 ms), have the same b-value weighting (e.g.

when computing the b-value of the sequence, both pairs of G and δ contribute with

the same amount to the b-value). This allows us to study their effect in isolation

from the b-value.

Figure 3.2 shows the results for substrates representing small (row A - µD = 0.4

µm) and large axons in the brain (row B µD = 1.5 µm). In row C, we show the results

for substrates representative of the human spinal cord (µD = 7 µm). The left column

in Figure 3.2 illustrates the results for f = 0.4, while the right column shows the

results for f = 0.7, representing small and large values in the white matter. The

plots in Figure 3.2 show the change in the simulated DW-MRI signal ∆S(τi) =

|S(τi =∞)−S(τi)| (y-axis) against the exchange time τi (x-axis). As the detection of

permeability effects depends on the amount of noise present in the data, we indicate

through black horizontal lines three different noise levels corresponding to SNRs of

10, 20 and 50.

All plots in Figure 3.2 share a common pattern. The difference in the signal

between the permeable and impermeable substrates is initially considerably above

all three different noise levels, after which it flattens out for values of τi above 1000

ms. This suggests that permeability effects are more easily distinguishable for short

exchange times (τi ≤ 1000 ms) than for long exchange times (τi ≥ 1000 ms). Fur-

thermore, for all substrates and all b-values simulated, we notice that there is no

difference in sensitivity between the clinical (circle markers) and preclinical (aster-

isk markers) setting, as shown by the overlapping circle and asterisk markers. This
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Table 3.1: Resolution limit τmax (ms) for a range of ∆s and SNRs.

µD ∆ SNR=10 SNR=20 SNR=50

f = 0.7

0.4 µm
150 ms 10 90 300
300 ms 110 310 1020
480 ms 220 610 1900

1.5 µm
150 ms 20 110 380
300 ms 170 450 1300
480 ms 370 1000 2000

7 µm
150 ms 160 330 1010
300 ms 410 920 2000
480 ms 640 1400 2000

f = 0.4

0.4 µm
150 ms 70 200 510
300 ms 230 530 1300
480 ms 400 880 2000

1.5 µm
150 ms 80 200 550
300 ms 290 670 1880
480 ms 470 1080 2000

7 µm
150 ms 140 300 790
300 ms 350 790 2000
480 ms 560 1280 2000

The table shows τmax (ms) for a range of ∆ and SNRs (10, 20 and 50) and for a b-value
of 5,400 s/mm2. τmax represents the largest exchange time τi above which one cannot
distinguish from an equivalent impermeable substrate. The underlined values represent
sequence parameters for which the full range of exchange times simulated ([10, 2000] ms)
is identifiable, given the noise threshold.

shows that the choice of G and δ is not critical for detecting permeability effects,

and that we can achieve the same sensitivity in both the clinical and preclinical set-

ting as long as the b-value weighting of G and δ is similar. Therefore, for the rest of

the experiments in this chapter, we will ignore the effects of these two parameters.

Figure 3.2 also shows that the sensitivity to exchange time effects increases with

∆ and the b-value in all simulated substrates. We analyse in more detail how the

sensitivity changes according to ∆ and the b-value in the next set of experiments.

The sensitivity ranges in Figure 3.2 are different for each substrate and for each

set of sequence parameters, resulting in a different resolution limit τmax for each

setting. Table 3.1 shows the different resolution limits τmax from Figure 3.2, which

we compute as described in Section 3.2.3. τmax represents the largest detectable τi
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above which one cannot distinguish from identical impermeable substrates (where

τi = ∞) and depends on the substrate and sequence parameters as well as the noise

level. The underlined values in the table represent sequence parameters for which

the full range of exchange times simulated ([10, 2000] ms) is identifiable, given the

noise threshold.

Table 3.1 reveals two trends across the substrate parameters. Firstly, the res-

olution limit increases with the mean axon diameter µd . For all ∆s and SNRs, the

τmax for substrates with µD = 0.4 µm are smaller than for µD = 1.5 µm, which are

in turn smaller than for substrates with µD = 7 µm. For example, when ∆ = 480 ms,

f = 0.7 and SNR=20, the resolution limit τmax goes up from 610 ms to 1000 ms

and then to 1400 ms as the axon diameter increases from µD = 0.4 µm to µD = 2.5

µm, and to µD = 7 µm. The second trend reveals that, for substrates representative

of the brain’s white matter (µDε{0.4,1.5} µm), the resolution limit is higher for

small volume fractions ( f = 0.4) than for large ones ( f = 0.7). The opposite trend

is true for substrates characteristic of the spinal cord (µD = 7 µm), where the ex-

change time has a wider detectable range for large volume fractions ( f = 0.7) than

for small ones ( f = 0.4). We notice that the sensitivity to exchange time effects

increases with ∆ and the b-value: the sequence with the maximum sensitivity range

is the one with the longest simulated ∆ (480 ms) and b-value (5400 s/mm2). For

example, for ∆ = 480 ms and an SNR of 50, the resolution limit τmax is 2000 ms,

covering the full range of exchange times simulated.

3.3.2 Impact of ∆

In this subsection, we investigate the effect ∆ has on the sensitivity to the exchange

time when the b-value is fixed. For this, in Figure 3.3, we show the same substrates

as in Figure 3.2 and compute the sensitivity to exchange time for ∆ ε{150,300,480}

ms, where each ∆ value is represented by the square, diamond and circle markers

respectively. We fix the b-value to 5,200 s/mm2 for all sequence parameter combi-

nations by varying δ accordingly and setting G = 40 mT/m. We observe the same

trends in Figure 3.3 as in the previous section: the longer the ∆, the wider the sen-

sitivity range, and the larger the axonal diameter, the higher the resolution limit.

To gain a better understanding of the impact of ∆ on the resolution limit τmax,
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Figure 3.3: Impact of ∆ on the sensitivity to the exchange time. Figure shows the difference
in signal ∆S(τi) = |S(τi = ∞)−S(τi)| between the substrates in Figure 3.2 and
the identical impermeable substrates. For all three different ∆ settings, G = 40
mT/m and the b-value is set to 5,200 s/mm2 by varying δ . The level of signal
detectability for the three SNR levels (10, 20, 50) is marked by the black lines.

Figure 3.4: Impact of ∆ on the resolution limit τmax for a range of b-values under realistic
noise conditions. τmax represents the largest exchange time τi above which one
cannot distinguish from an equivalent impermeable substrate. Figure shows
the resolution limits for substrates with two different mean axon diameters -
µD = 1.5 µm (row A) and µD = 7 µm (row B) - and two different intra-axonal
volume fractions (0.4 in left column and 0.7 in right column).
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we calculate the τmax for each ∆ value and substrate setting in Figure 3.3. We show

these results in Figure 3.4, where we plot τmax against ∆ as the magenta line. In

addition to this, to cover a wider range of sequence parameters, we also run simula-

tions for ∆ε{20,60} ms and for three additional b-values: 1,000 s/mm2 (red line)

as a low b-value, 3,000 s/mm2 (cyan line) as a moderately high b-value and 8,400

s/mm2 (blue line) as a high b-value, achievable only in preclinical or Connectome

scanners. We only show the results for the substrates with µDε{1.5,7} µm, but we

observe the same trends for the substrate with the smallest axons. All the τmax val-

ues in Figure 3.4 are calculated for an SNR of 20, as the level of noise we expect to

encounter in clinically viable imaging protocols with long ∆s.

Figure 3.4 shows that the sensitivity to exchange time increases with ∆ across

all substrates and that long ∆s are crucial for ensuring a good sensitivity to the

exchange time. For example, when ∆ is very short (20 ms - triangle markers), we

cannot detect the effect of exchange times larger than 200 ms, despite b-values as

high as 8,400 s/mm2. We continue to see this even when ∆ is longer (= 150 ms),

where only exchange times smaller than 500 ms are distinguishable. Increasing ∆

from 150 ms to 300 ms doubles this range, with a τmax ≈ 1000 ms when the b-value

is high (≥ 5,200 s/mm2). For very long ∆s (480 ms - square markers) we can probe

the effect of much longer exchange times, with a resolution limit τmax of 1770 ms

for large axons (µD = 7 µm) and high b-values (8,400 s/mm2) (blue square in the

left plot of Figure 3.4 B). Figure 3.4 also reveals that increasing ∆ does not improve

the sensitivity if the b-value is too small, as shown by the flat slopes of the red

lines. This suggests that sequences with b-values ≤ 1000 s/mm2 (red lines) have

very limited sensitivity to exchange times despite long ∆s (τmax ≤ 190 ms), and

that moderately high b-values (≥ 1000 s/mm2) are necessary to see the effects of

maximising ∆.

In addition to this, Figure 3.4 shows that increasing the b-value also improves

sensitivity to the exchange time. This effect, however, is very small for short ∆s

and becomes significant for long ∆s. For example, in substrates with µd = 1.5 µm,

f = 0.4, when ∆ is very short (∆ = 20 ms), increasing the b-value from 1,000s/mm2

to 8,400s/mm2 increases the resolution limit τmax only very slightly, from 10 ms to
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Figure 3.5: Impact of b-value on the sensitivity to the exchange time. Figure shows the dif-
ference in signal ∆S(τi) = |S(τi = ∞)−S(τi)| between the substrates in Figure
3.2 and the identical impermeable substrates. For all three different b-values,
we fix G= 40 mT/m and ∆= 480 ms and vary δ . The level of signal detectabil-
ity for the three SNR levels (10, 20, 50) is marked by the black lines.

70 ms (Figure 3.4A - triangle symbols in the left plot). On the other hand, when ∆

is long (480 ms), increasing the b-value has a much stronger effect: τmax goes up

from 110 ms to 1300 ms as the b-value increases from 1,000s/mm2 to 8,400s/mm2

(Figure 3.4A - square symbols in the left plot). This suggests that increasing the

b-values improves the sensitivity significantly only for sequences with long ∆. The

next set of experiments looks closer at the effect of the b-value on the resolution

limit of a sequence.

3.3.3 Impact of b-value

In this subsection, we investigate the impact of the b-value on the sensitivity to

exchange time when ∆ is fixed. For this, in Figure 3.5, we fix ∆ to 480 ms and we

show how the sensitivity changes with three different b-values {3000,5200,8400}

s/mm2 using the same substrates as in Figure 3.2. We set G to 40 mT/m and we vary
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Figure 3.6: Impact of the b-value on the resolution limit τmax for a range of ∆s and SNR=20.
τmax represents the largest exchange time τi above which one cannot distinguish
from an equivalent impermeable substrate. Figure shows the resolution limits
for substrates with two different mean axon diameters - µD = 1.5 µm (row A)
and µD = 7 µm (row B) - and two different intra-axonal volume fractions (0.4
in left column and 0.7 in right column).

δ according to each of the three b-values. The trends we observe are consistent with

Figure 3.2: the higher the b-value, the wider the sensitivity range to exchange time

effects. This effect is more pronounced for larger axons (row-wise comparison) and

high volume fraction (column-wise comparison).

Figure 3.6 quantitatively shows the resolution limit with the detectable range of

exchange times for each b-value and substrate in Figure 3.5 (blue square lines). In

addition to this, to study how the impact of the b-value varies with ∆, we also show

the results for three additional fixed ∆ values (300 ms - magenta diamond lines,

150 ms - cyan circle lines, 60 ms - green star lines). Figure 3.6 only shows the

results for the substrates with µDε{1.5,7} µm, but we observe the same trends for

the substrate with the smallest axons. As in the previous subsection, we calculate

τmax for an SNR=20, as the level of noise we expect to encounter in clinical imaging

protocols with long ∆s.

Figure 3.6 reveals that with a long ∆ (480 ms) and a b-value of 5,200 s/mm2,
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achievable on high performance clinical scanners, we can probe the effect of ex-

change times up to 1370 ms in substrates with large axons (µD = 7 µm) and up to

1060 ms in substrates with smaller axons (µD = 1.5 µm). By increasing the b-value

to values easily reachable on preclinical scanners, but outside the range of clinical

scanners (8,400 s/mm2), we can reach values of up to 1770 ms in substrates with

large axons and up to 1370 ms for substrates with smaller axons.

Figure 3.6 also shows that large b-values do not guarantee large sensitivity to

exchange time. For example, the maximum resolution limit τmax for ∆ = 60 ms

(green lines) across all substrates is only 270 ms even when the b-value is 8400

s/mm2 (Figure 3.6B right column). Despite a considerable increase in the b-value

(from 3,000 s/mm2 to 8,400 s/mm2) the resolution limit improves only by a very

small amount (90 ms - 33% increase) and the sensitivity remains very limited. This

is also reflected in the very flat slope of the cyan and green lines, which correspond

to small ∆s. On the other hand, when ∆ is long (≥ 300 ms), increasing the b-

value improves the sensitivity to exchange time considerably. This can be seen

in the much steeper slopes of the blue and magenta lines in Figure 3.6. In this

case, increasing the b-value from 3,000 s/mm2 to 8,400 s/mm2 results in a more

significant increase in τmax, from 880 ms to 1770 ms (right column in Figure 3.6B),

a 101% increase. This suggests that increasing the b-value improves the sensitivity

by a significant amount only when ∆ is already long (∆≥ 300 ms).

In addition to this, Figure 3.6 also reveals that for clinical scanners with b-

values below 5200 s/mm2, the impact of ∆ on sensitivity is greater than that of the

b-value. An example of this is illustrated by the left plot in Figure 3.6B) through

the red and black arrows. Here we can see how pushing an already high b-value

(3000 s/mm2) to the limit of what clinical scanners can achieve (e.g. 5,200 s/mm2)

increases the resolution limit τmax from 300 ms to 390 ms, a 30% improvement

(black arrow). On the other hand, increasing ∆ from 150 ms to 480 ms has a much

higher impact on the sensitivity, driving the resolution limit from 300 ms to 830

ms, an increase of 176% (red arrow). This trend can also be confirmed by a visual

comparison between Figures 3.4 and 3.6, where the slopes of the lines in Figures 3.4

are much steeper than those in Figures 3.6. This suggests that although increasing
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the b-value improves the sensitivity to the exchange time, the impact of ∆ is greater

when maximising sensitivity to τi.

3.4 Discussion

In this chapter, we explore clinical and preclinical combinations of DW-MRI se-

quence parameters and investigate their sensitivity to the intra-axonal exchange time

τi. For this, we use Monte Carlo simulations of the DW-MRI signal generated from

synthetic substrates mimicking white matter tissue characteristic of the mammalian

brain and spinal cord. To calculate practically achievable sensitivities, we include

the effect of T1 and T2 relaxation in all experiments.

Impact of DW-MRI sequence parameters. Our results show that, when maximising

sensitivity to the exchange time, the combination of G and δ is not critical as long

as the overall effect of G and δ on the b-value is the same. This suggests that we

can obtain a similar sensitivity on a clinical scanner, using a low G (40 mT/m) and a

long δ (10 ms), as on a preclinical or Connectome scanner, where G is usually much

higher (e.g. 200 mT/m) and δ is shorter (e.g. 2 ms). Furthermore, we find that the

longer the ∆ and the higher the b-value, the better the sensitivity to τi. We show that,

under realistic noise conditions (SNR=20) and for all tissue substrates, long ∆s (≥

300 ms) are crucial for reaching resolution limits≥ 1000 ms. We also show that the

longest simulated ∆ (480 ms) maximises the resolution limit across all substrates.

Additionally, we find that increasing the b-value also improves sensitivity to the

exchange time, but the effect is significant only for sequences with long ∆s (≥ 300

ms). These results suggest that in order to ensure a good sensitivity to the exchange

time (τmax ≥ 1000 ms), a combination of long ∆ (≥ 300 ms) and moderately high

b-values (≥ 3,000 s/mm2) are needed.

Sensitivity of different substrates. Our simulations show that the resolution limit

τmax (the highest τi that can be distinguished from τi = ∞) increases with the size of

the axons in each substrate. Furthermore, we found that the resolution limit varies

differently with the intra-axonal volume fraction, depending on the mean axonal

diameter µD: for smaller axons (µD = 0.4,1.5 µm), usually found in the brain’s

white matter, τmax decreases with f , while for larger axons (µD = 7 µm), usually
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found in the spinal cord, τmax increases with f .

Implications for clinical and preclinical applications.The analysis in this chapter

reveals that, on clinical scanners, DW-MRI sequences with long diffusion times

(480 ms) are sensitive to exchange times up to 1060 ms in substrates representa-

tive of the brain white matter, and to exchange times up to 1370 ms in substrates

with larger axons, characteristic of the white matter in the spinal cord. On preclin-

ical scanners, which can reach higher b-values, the range of sensitivity is wider:

τmax = 1370 ms for substrates characteristic of brain tissue and τmax = 1770 ms

for substrates characteristic of spinal cord tissue. Substrates with exchange times

greater than τmax are practically indistinguishable from impermeable substrates. We

note that here we considered only ∆ values up to 480 ms and an SNR of 20, and that

the resolution limit is highly dependent on the sequence parameters and the SNR

level. We expect longer ∆s (≥ 480 ms) to increase the resolution limit even further

and simultaneously decrease the SNR due to additional T1 decay. In-vivo estimates

of exchange times are inherently difficult to obtain due to fixation altering the per-

meability of cell membranes. Nevertheless, most literature studies in rat and human

healthy white matter tissue report values of τi under 1000 ms [9, 10, 11, 12], with

smaller values expected in demyelinated tissue, all within the sensitivity range of

the diffusion sequences simulated here. Therefore, our results suggest that carefully

tuned clinical and preclinical DW-MRI sequences have sufficient sensitivity to the

exchange time τi to allow for the probing of values we expect to find in white matter

tissue.

Model considerations In this study, we make several assumptions about the geom-

etry of the tissue such as representing axons as non-abutting parallel cylinders due

to current limitations of our simulation system. This model does not capture the

full complexity of realistic tissue, where potentially confounding effects such as

dispersion or myelin water are present. These could have a confounding effect on

the estimation of the intra-axonal exchange time, especially in the case of disper-

sion, which has been shown by Nilsson et al. [1] to result in an underestimation

of τi. It is possible that the inclusion of such effects would change our results, and

more complex simulations that include dispersion and myelin water are subject to
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ongoing research [146, 147, 148, 86] and form part of future work.

3.5 Conclusions
This chapter presents a simulation study that investigates the sensitivity of DW-

MRI sequences to the intra-axonal exchange time τi in substrates mimicking white

matter in the brain and spinal cord, and aims to find the key parameters that drive

this sensitivity. We find that long ∆s (≥ 300 ms) are crucial for ensuring a good

sensitivity to τi (≥ 500 ms). In addition to this, we show that, under realistic noise

and tissue relaxation conditions, clinically viable DW-MRI sequences with long ∆s

(≥ 300 ms) and high b-values (≥ 3,000 s/mm2) have a sufficiently good sensitivity

to the intra-axonal exchange time to allow for the probing of τi values we expect

to find in white matter tissue (≤ 1000 ms) [9, 10, 11, 12]. Moreover, we show that

DW-MRI sequences with very high b-values (≥ 5000 s/mm2), easily achievable on

preclinical and Connectome scanners, can probe longer exchange times (≥ 1500

ms), which we expect to find in tissue with larger axons such as in the spinal cord

white matter.



Chapter 4

Random forest based computational

models with permeability:

microstructure parameter estimation

in clinical in-vivo human data

The work in Chapter 3 shows that clinically viable DW-MRI sequences with long

∆ have a sufficiently good sensitivity to the intra-axonal exchange time to allow for

the probing of most τi values we expect to find in brain white matter tissue. By de-

veloping models of the white matter tissue and relating them to sensitive DW-MRI

measurements, we can estimate features such as the intra-axonal volume fraction,

the intra-axonal exchange time or the axon diameter. This chapter introduces the

first machine learning based compartment model with permeability for white matter

microstructure imaging, using a random forest and an optimised STEAM protocol.

We test the performance of this novel machine learning based computational frame-

work for microstructure imaging using Monte Carlo simulations of the DW-MRI

signal and in-vivo clinical scans from two healthy and two MS patients.

This work is a collaboration study published in NeuroImage in 2017, intro-

ducing the first machine learning based computational model with permeability for

white matter [132]. My contributions to the paper were the following: the optimisa-

tion of the machine learning model as presented in the Methods and Appendix of the

manuscript, various parts of the synthetic data analysis (correlation analysis, testing
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the model on a simpler substrate), as well as addressing several of the reviewer’s

questions (e.g. additional explanations about the probability-permeability link, dif-

fusion step size calculation, random forest regression Appendix). In addition to this,

I have recoded, re-simulated and re-analysed the entire pipeline, synthetic database

and results of the paper, as well as extended the analysis to further optimise the

model and to analyse the feature importances and, therefore, all the scripts, figures

and results used in this chapter are my own.

4.1 Motivation

The intra-axonal water exchange time τi, a parameter associated with axonal per-

meability, is an important microstructural property of the tissue, which has been

linked with the condition of the myelin sheath surrounding the axons in brain tissue

[1, 2, 3]. Several neurological conditions such as MS cause a breakdown of the

myelin sheath through a process known as demyelination, which may lead to an

decrease in the exchange time as the intra-axonal water molecules encounter less

barriers. Changes in permeability have also been linked with pathologies such as

Parkinsons disease [4] or cancer [5], leading to a widespread interest in develop-

ing permeability-based biomarkers. Due to its sensitivity to the motion of water

molecules within tissue, Diffusion-Weighted MRI (DW-MRI) is potentially able to

estimate τi. However, measuring it has been problematic due to the intractability of

the expressions which accurately incorporate τi into mathematical models.

So far, mathematical models of white matter ignore or assume simplistic mod-

els of permeability [149, 89, 150], while others explicitly incorporate τi but rely on

assumptions that do not hold in human white matter tissue [90, 85]. The Kärger

model [85] is the most widely used analytical model that incorporates permeability

due to its compatibility with data acquired using clinically available sequences such

as SDE and STEAM [6, 40, 92]. However, the model assumes that the two individ-

ual pools of water are well mixed and does not model restrictions, both assumptions

which do not hold in white matter. Consequently, the Kärger model fails when ap-

plied to highly permeable tissue with fast exchange [84]. An alternative analytical

model is the apparent exchange rate (AXR) imaging [91, 95]. However, AXR re-
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quires a specialised sequence (double diffusion encoding [52]) and conflates τi with

the intra-axonal volume fraction f , making it difficult to disentangle the two.

Computational models bypass the need for analytical models and incorporate

permeability by creating a mapping between simulations of the DW-MRI signal

and the ground truth microstructure parameters. Nilsson et al. [6] use Monte Carlo

simulations with known ground truth parameters including permeability to gener-

ate a synthetic library of DW-MRI signals. Given a previously unseen signal, they

estimate permeability using a nearest-neighbour algorithm which retrieves the clos-

est matching DW-MRI signal and its microstructure parameters from the synthetic

library. However, their approach requires new libraries to be generated for each

acquisition protocol and fibre orientation, and the nearest-neighbour algorithm in

general does not have a good generalisation capacity.

Here, we propose a machine learning based computational framework to con-

struct a mapping between microstructural parameters of interest and rotationally

invariant features derived from the DW-MRI data. We use Monte Carlo simulations

to generate synthetic signals from a library of histologically relevant microstructure

parameters. We then train a random forest to learn the mapping between features

derived from synthetic DW-MRI signals and ground truth microstructure param-

eters, including τi, and to generalise smoothly between training examples when

estimating parameters from previously unseen data. We test this new approach in

simulations and in-vivo, and demonstrate its clinical potential using data from two

MS patients.

4.2 Methods

In this section, we first introduce the imaging protocol used to generate the syn-

thetic database and to acquire the in-vivo data in this chapter. Then, we describe

the synthetic data generation and feature extraction as a first step of our computa-

tional model. Next, we introduce the random forest model and explain how this is

integrated within our computational framework. Finally, we outline the synthetic

and in-vivo experiments designed to assess our model’s suitability as a white matter

compartment model with permeability.
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4.2.1 Imaging protocol

For both the synthetic and the in-vivo data, we use a rotationally-invariant STEAM

protocol optimised for a two compartment model with exchange, according to the

framework introduced in [72]. The protocol is optimised assuming biophysically

plausible tissue parameters and exchange is incorporated in the optimisation frame-

work via the Karger model [85]. The optimisation was performed by Nedjati et al.

and more details can be found in [132]. The resulting protocol has 4 shells, with

108 measurements divided equally between the shells and with 4 b=0 measurements

each. STEAM protocols are particularly suited to measuring the exchange time τi

as they allow for the probing of long diffusion times by exploring the longer T1 re-

laxation rate compared to the T2 relaxation of spin-echo SDE protocols. Each shell

in our STEAM protocol has a different ∆, with values ranging from 102 ms to 412

ms. The full set of parameters of the imaging protocol is shown in Table 4.1. The

additional crusher and slice gradients of the STEAM protocol are accounted for in

our simulations.

Shell # b=0 # gradient directions b (s/mm2) |G|(mTm−1) ∆ (s) δ (s) TM (s)

1 4 23 1622 62 0.102 0.0077 0.07
2 4 23 1718 62 0.412 0.0039 0.375
3 4 23 3611 62 0.406 0.0057 0.37
4 4 23 4031 62 0.169 0.0094 0.135

Table 4.1: STEAM protocol parameters, optimised for a two-compartment model with ex-
change using the framework in [72]

4.2.2 Synthetic data

4.2.2.1 Monte Carlo Simulations

The first step in our computational model is to generate a database of Monte Carlo

simulations of the DW-MRI signal from digital phantoms mimicking a wide range

of plausible white matter substrates. For this, we use the imaging protocol in Ta-

ble 4.1 and the open source Camino ([140]; http://camino.cs.ucl.ac.uk) simulation

framework [98].

Each digital phantom is represented by a unique tissue substrate, characterised

as a unique combination of five parameters: the mean µR and the standard deviation
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σR of the axon radii distribution, the intra-axonal volume fraction f , the intrinsic

diffusivity d and the intra-axonal exchange time τi. The exchange time τi repre-

sents the average time a water molecule spends inside the intra-axonal space of

the white matter substrates. Here, the exchange time τi is the parameter through

which we include the effects of the cell membrane permeability k. The intra-axonal

exchange time is inversely related to the membrane permeability through the ex-

pression k = R
2∗τi

, where R is the axon radius [87, 6, 84, 88]. While the first four

substrate parameters (µR,σR, f and d) are input directly into the Camino software,

τi is specified via probability parameter p through the expression: p = R
2∗τi

√
6δ t

d ,

where d is the intrinsic diffusivity and δ t is the temporal resolution of the simula-

tion (detailed in Chapter 3.2.1). p expresses the probability that a spin steps through

a cell membrane when it encounters it (instead of always being reflected backwards

as it is the case for impermeable substrates). For impermeable substrates (τi = ∞),

p is set to 0 and the water molecule is reflected back into the intracellular space.

To model the structure of white matter brain tissue, we build the synthetic sub-

strates as a collection of 100,000 non-abutting, parallel cylinders, with radii sampled

from a gamma distribution, a common choice in the brain literature [16]. We choose

100,000 non-abutting parallel cylinders to avoid the variation due to sampling of the

gamma distribution, as shown by Hall et al. in [142]. To mimic the in-vivo human

brain data used in this chapter, we construct a database of unique tissue substrates

and their corresponding DW-MRI signals by randomly sampling the five parameters

from biophysically plausible ranges: µRε[0.2,5] µm and σRε[min(0.1,µR/5),µR/2]

µm (to ensure that the distributions have a non-zero mode, matching the distri-

butions observed in histology [16]), f ε[0.4,0.7], τiε[2,1000] ms and dε[0.8,2.2]

µm2ms−1. The cylinders are randomly packed in the substrates as described in

[98], with example substrates shown in Figure 4.1. For this range of parameters, the

diffusion step size is calculated as in [98] and is between 0.5 µm and 0.9 µm, de-

pending on the diffusivity of each substrate. To ensure the convergence and the high

precision of the simulated signals, we generate our synthetic database using 100,000

spins and 2,000 time steps [98]. This setting provides a precision of the simulated

signal of 10−10, several order of magnitude smaller than the realistic signal noise
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[98].

Figure 4.1: Example substrates for Monte Carlo simulations, showing variations in both
axonal size distribution and the intra-axonal volume fraction. The histograms
in the first row represent the axon diameter distributions used to generate the
synthetic substrates in the second row. The parameters for the substrate in
Figure A) are µR = 1.88 µm, σR = 0.17 µm and f = 0.44. The parameters for
the substrate in Figure B) are µR = 0.58 µm, σR = 0.24 µm and f = 0.64.

To account for the noise present in the in-vivo data in this chapter, we generate

an additional noisy database. As spins undergo T1 relaxation during the mixing

time TM between the second and third 90◦RF pulses, measurements made using

longer ∆ (and so longer TM) experience more relaxation leading to lower signal in-

tensities and signal to noise ratios (SNR). For the noisy dataset we scale the signals

by exp(TM/T1) using T1 = 0.832 s for white matter at 3T [40]. We then add Rician

noise, choosing the standard deviation of the noise σ so that the SNR of the b=0

images with ∆=0.102 s is 20, which reflects our in-vivo data. This results in two

databases of signals for each geometry: noise-free and noisy (SNR=20).

Each simulated signal, associated with a unique combination of ground truth

microstructure parameters, forms one entry in our synthetic database. During the

next step of our computational model, we extract a set of rotationally invariant fea-
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tures from each simulated signal in our noise-free and SNR=20 databases.

4.2.2.2 Feature extraction

In order to achieve independence from the fibre orientation, we extract a set of 15

rotationally invariant features from each shell of the protocol. The first five features

are derived by fitting a DTI model to the DW-MRI signal, while the final ten are

derived by fitting a 4th order spherical harmonics (SH) model to the same DW-MRI

signal. The 15 rotationally invariant features are presented in more detail in Table

4.2.

Here, we extract the DTI and SH features using the Camino toolkit. This results

in an additional signal-derived and rotationally invariant database, which we use to

train the random forest. As our STEAM protocol has 4 shells, each entry in our

database has 60 features, 15 for each shell. The advantage of this approach is that

the training database is independent of the imaging protocol as long as the TE and

the b-values of each shell match.

Each resulting feature vector, together with the corresponding ground truth

microstructure parameters, represents one entry in the training database for our ma-

chine learning based computational model. The rotationally invariant feature vector

is used for training, while the ground truth tissue parameters act as labels during the

supervised learning task.

4.2.3 In-vivo data

In this chapter, we analyse the data from two healthy volunteers and two MS pa-

tients. The first healthy volunteer is a 32 year old male and the second healthy

volunteer is a 30 year old female. Both healthy volunteers are scanned twice, with

the rescan taking place within a month of the initial scan. The first MS patient is

a 22 year old female with relapsing remitting MS (RRMS), a disease duration of

2 years and expanded disability status scale (EDSS) of 2. The second MS patient

is a 63 year old male with secondary progressive MS (SPMS), a disease duration

of 25 years and EDSS of 6. Both MS patients were scanned once. None of the

MS patients recruited into the study experienced a relapse or a course of corticos-

teroids three months prior to imaging. Written informed consent was obtained for
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Ftr
No.

Feature/
Model

Feature Information

1 λ1 (DTI) First eigenvalue of the diffusion tensor, representing the first main di-
rection of diffusion. Obtained as the first output of the dteig command
in Camino.

2 λ2 (DTI) Second eigenvalue of the diffusion tensor, representing the second main
direction of diffusion. Obtained as the fifth output of the dteig command
in Camino.

3 λ3 (DTI) Third eigenvalue of the diffusion tensor, representing the third main di-
rection of diffusion. Obtained as the ninth output of the dteig command
in Camino.

4 MD (DTI) Mean diffusivity, an estimate of the overall diffusion in a voxel, com-
puted as λ1 +λ2 +λ3.

5 FA (DTI) Fractional anisotropy, an estimate of the anisotropic diffusion in a voxel.

It takes values between 0 and 1 and is computed as: 3
2

√
Σ(λi−MD)2

Σλi

6 I0 (SH) A combination of the SH coefficients ak,i of order k=0 and index i, cal-
culated as I0 = ∑

k
i=−k |ak,i|2, where k=0.

7 I2 (SH) A combination of the SH coefficients ak,i of order k=2 and index i, cal-
culated as I2 = ∑

k
i=−k |ak,i|2, where k=2.

8 I4 (SH) A combination of the SH coefficients ak,i of order k=4 and index i, cal-
culated as I4 = ∑

k
i=−k |ak,i|2, where k=4.

9 mean
ADC
(SH)

This feature is computed by calculating the values of the spherical func-
tions f of the voxel at a set of evenly distributed sample points on a unit
sphere S and taking the mean of these. Obtained directly from the sf-
peaks command in Camino.

10 peak
ADC
(SH)

The maximum value of the spherical functions f over the points of the
unit sphere S (see feature 9 for more details). Obtained as the 10th
output of the sfpeaks command in Camino.

11 λ1 (SH) The first eigenvalue of the Hessian matrix at the peak.

12 λ2 (SH) The second eigenvalue of the Hessian matrix at the peak.

13 anisotropy
(SH)

The anisotropy of the ADC profile f , obtained using the s f anis com-
mand in Camino.

14 skewness
(SH)

The skewness of the ADC profile f , obtained using the s f skewness
command in Camino.

15 kurtosis
(SH)

The kurtosis of the ADC profile f , obtained using the s f kurtosis com-
mand in Camino.

Table 4.2: Table shows the 15 DTI and SH (4th order) features extracted from the DW-MRI
signal and used for training the random forest regressor.
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all participants, and the study was approved by our local research ethics committee.

All scans were acquired and preprocessed by the first authors in [132] using the

STEAM protocol in Table 4.1, on a 3 T Philips Achieva scanner, with a 32-channel

receive-only RF coil, SENSE acceleration factor of 2.5, full k-space acquisition,

and receiver bandwidth of 1948 Hz/pixel. The imaging parameters are: TE=0.068

s, TR=12 s, FOV=256 mm x256 mm, matrix size=128x128, slice thickness=4 mm,

number of slices=40 (except the first scan of the first volunteer, with 30 slices). The

total imaging time is approximately 40 minutes. For the MS patients, a high reso-

lution (1 mm x 1 mm x 3 mm) T2-weighted scan is also acquired for the purposes

of creating a lesion mask.

The images are corrected for eddy currents and motion using the eddy tool in

FSL [151]. The white matter voxels are selected by computing maps of linearity

and planarity from the diffusion tensor fit to the lowest b-value shell. The SNR of

the white matter region in b=0 image of the shell with ∆ = 102 ms is approximately

19 for all subjects. In order to create a synthetic database that closely resembles

our in-vivo data, we add a similar level of Rician noise to the noise-free synthetic

database.

4.2.4 Machine learning

4.2.4.1 Random Forest for microstructure parameter estimation

The model introduced in this chapter uses a random forest to learn a mapping be-

tween microstructure parameters and features of the DW-MRI signal. Due to their

interpretability, robustness to noise and easiness of tuning [110] random forests

are widely used as regression or classification techniques in the medical field

[152, 112, 114, 8]. A random forest is formed of a collection of decision trees and its

output is a weighted average of the estimates produced by each individual decision

tree. Here, each decision tree in the random forest learns a mapping between fea-

ture vectors derived from Monte Carlo simulations of the DW-MRI signal and their

corresponding ground truth microstructure parameters. The final microstructure pa-

rameter estimation of the random forest is obtained by averaging the estimations

from all trees in the forest, as illustrated in Figure 4.2.

Each decision tree (shown in Figure 4.3) is formed of internal (grey circles)
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Figure 4.2: Random forest regressor. The regressor used here is formed of 100 trees and
the final estimation of the tissue parameters is obtained by averaging over the
estimations of each individual decision tree.

and terminal nodes (blue rectangles), connected in a hierarchical fashion by edges

(black lines). Each internal node has one incoming and two outgoing edges and

stores a test or split function that is applied to the incoming data, which, here,

is a multi-dimensional vector with rotationally invariant features of the DW-MRI

signal. According to the result of the test function, the internal node sends the data

along one of its outgoing edges to the nodes on the level below. This process is

repeated until the data reaches a terminal node. Finally, the terminal node takes the

incoming feature vector and outputs estimates of the microstructure parameters of

interest using a predictor function stored inside the node.

Random forest regression has two stages. The first stage is the training stage,

in which the random forest learns a mapping between the input data (here, feature

vectors derived from the diffusion MRI signals) and the parameters to be estimated

(here, tissue microstructure parameters). The second stage is the testing stage, in

which the random forest uses the mapping learned in the training stage to estimate

microstructure parameters from unseen feature vectors.

During the first stage, each decision tree in the random forest is trained si-

multaneously and independently of each other. Each tree in the forest is trained
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Figure 4.3: Regression decision tree. During training, each tree receives a random subset
of labelled feature vectors V, which are used to optimise the parameters of the
tree. Each branch of the tree splits the feature vector into smaller subvectors,
Vi, until the terminal nodes on the lower level are reached. The terminal nodes
store the predictor that relates the incoming data to the estimated microstructure
parameters of interest.

as follows (see Figure 4.3 for reference): the parent node of the tree performs

an initial linear regression to find a relationship between the input feature vec-

tor (V = FV1,FV2, ...,FVn) and the microstructure parameters of interest (e.g.

f ,τi,α,d). Then, the decision tree looks for a partition of the feature vector V

into two subvectors such that having a separate linear regression on each subvec-

tor improves the parameter estimation. The best partition is chosen as the one that

maximises the information gain over the single partition at the root node. If such a

partition exists, the feature vector V is split into two subvectors (V1 & V2) and two

child nodes are added to the original node. This process is then continued for the
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child nodes, and all subsequent nodes, until the estimation cannot be improved any

further. Finally, when the addition of child nodes does not improve the parameter

estimation, the node becomes a terminal node (blue rectangles), and it encodes a

piece-wise linear mapping between the feature vectors and the parameters to be es-

timated. When this stage is reached for all trees in the random forest, the training

finishes. Moreover, in order to improve the performance and robustness of the ran-

dom forest regressor, randomness is typically introduced during training [8]. This

can be done either through bagging [110], which trains each decision tree on a ran-

dom subset of data, or through using only a subset of features to search for the best

partition at each node [116].

During the testing stage, the random forest estimates new tissue parameters

from unseen feature vectors by generalising from the mapping learned during train-

ing. At this stage, we can assess how well the random forest has learned to gener-

alise to new feature vectors that were not seen during training.

4.2.4.2 Random forest implementation

The random forest regressor used here was implemented using the open source

scikit-learn toolkit [153], a widely used software machine learning library for

Python. We use bagging to inject randomness into the random forest and we run

a series of preliminary experiments to determine the number and depth of deci-

sion trees, which we present in the next section. More in-depth implementation

details are available on the scikit-learn website (www.scikit-learn.org). In Figure

4.4, we show how the random forest is integrated within our computational model’s

pipeline. The figure shows a schematic overview of how training, testing and esti-

mation are done.

We train two separate random forest regressors, one on the noisy data set

(SNR=20) and another on the noise-free data set. Following preliminary experi-

ments shown in the next section, the random forests are trained on 10,000 of the

12,500 feature vectors, with the remaining 2,500 previously unseen feature vectors

used for testing. The testing phase allows us to evaluate how well the random for-

est performs by directly comparing the parameter estimations to the known ground

truth values. When estimating from the noise-free feature vectors, we use the ran-
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Figure 4.4: A schematic overview of how training, testing and parameter estimation are
integrated within our computational framework.

dom forest trained on noise-free data. When estimating from the noisy feature vec-

tors, we use the random forest trained on the noisy data. When estimating on the

in-vivo data, which is affected by Rician noise, we use the random forest trained

on the SNR=20 database, as it has similar noise characteristics to the actual in-vivo

data.

We train the random forest to estimate parameters that describe the underly-

ing microstructure properties of the tissue. For the noise-free database, we estimate

the intra-axonal exchange time τi, the intra-axonal volume fraction f , the intrinsic

diffusivity d, as well as a single volume-weighted radius index α [73], which com-

bines the mean axonal radius µR with the standard deviation of the axonal radius σR
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of the substrate. For the database with SNR=20 as well as the in-vivo data, we esti-

mate only f ,τi and d and exclude α due to the lack of sensitivity to this parameter

in the presence of noise and for the gradient strength used, as shown in [138].

4.2.5 Experiments

4.2.5.1 Synthetic experiments

Random forest hyperparameter tuning

It is generally known that the size and the choice of the training set can influ-

ence the performance of the machine learning model. To investigate the optimal

size, we generate a database of 25,000 unique tissue substrates and train the random

forest on training sets of different sizes, ranging from 5,000 to 22,500 and using the

remaining 2,500 as the test set. Experiments in [132] show that the choice of the

training set does not bias the estimations of the random forest as long as there is

sufficient coverage of the parameter range, which we ensure in all our experiments.

To determine the combination of random forest parameters that maximises the

performance of our model, we run a set of preliminary experiments. As accuracy

generally increases with the number of trees [108], we first search for the number

of trees that maximises the performance of the random forest. In order to determine

this, we train different random forests, each with a different number of trees, and

we evaluate their performance by computing the Pearson correlation coefficient R2

between the estimated and the ground truth parameters. Similarly, to determine the

optimal tree depth of each decision tree, we sample a wide range of tree depths and

study how this affects the correlation coefficient.

Parameter estimation

To assess how well the random forest model estimates match the known ground

truth values in the test set, we show correlation scatter plots and compute the Pear-

son correlation coefficient R2 between the estimations of the model and the ground

truth parameter values. R2 measures the linear relationship between two datasets

and takes values between −1 and +1, with ±1 implying an exact positive/negative

correlation and 0 implying no correlation. This is calculated as:
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R2 =
cov(X ,Y )

σX σY
(4.1)

where cov is the covariance of the two variables, and σX and σY are the standard

deviations of the two variables. Furthermore, to investigate any general bias in the

estimations, we show Bland-Altman graphs, which plot the mean of the ground

truth and estimated values against their difference. All points on the correlation

graphs and the Bland-Altman plots are colour-coded with colour bars showing the

percentage error. For better visibility, we limit the colour bar to –50 to 50%, with

points outside this range taking the same colour as the two maximum points.

In addition to this, we also rank the features in both the the noise-free and

SNR=20 synthetic database (DTI and SH features) according to how informative

they are. We analyse the feature importance to determine which features are the

most informative and how this ranking is affected by the presence of noise.

4.2.5.2 In-vivo experiments

Healthy subjects

We generate estimates of the three parameters of interest ( f ,τi and d) across

the white matter voxels of the scans and rescans for the two subjects. We show

parameter maps of f ,τi and d across representative axial, coronal and sagittal slices

of both scan and rescan data.

We use the scan-rescan data from the two healthy subjects to investigate intra-

subject reproducibility at the region of interest (ROI) level. For this, we manually

define regions in the splenium (CC-S) and genu (CC-G) of the corpus callosum

(CC), the left (ALIC-L) and right (ALIC-R) anterior limbs of the internal capsule

and the left (CST-L) and right (CST-R) corticospinal tracts on the scan and rescan

FA maps for both volunteers. The matrix size for these images was 128x128 with

40 slices each except the first scan of the first volunteer, for which 30 slices were

acquired. For full details of the other imaging parameters, see section 4.2.3. We

calculate the mean parameter estimates from the random forest in each ROI for both

the scan and rescan data and compute correlation plots for f ,τi and d individually.

To do this, for each parameter, we pool together the scan and rescan parameter

estimates for both volunteers in each region.
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Figure 4.5: The effect of demyelination on the intra-axonal exchange time. In A we show
a normal axon, with an exchange time τi. In B, we show a demyelinated axon,
where the myelin sheath (in yellow) is damaged, resulting in less barriers en-
countered by the water molecules as they leave the intra-axonal space (in pur-
ple). This is hypothesised to result in a shorter exchange time τi of the demyeli-
nated axon.

MS subjects

To investigate the sensitivity of the random forest to tissue damage in MS le-

sions, an expert clinical researcher marked the lesions on the high resolution T2-

weighted images. We also mark additional ROIs in the contralateral normal ap-

pearing white matter (NAWM) for comparison. The ROI and lesion masks are then

registered to the mean b=0 image from shell 1 of the diffusion-weighted data using

FLIRT [154]. We use this shell for registration as it has the shortest diffusion time

and so provides the best contrast. The matrix size of the MS subjects is 128x128

with 40 slices each. For full details on the other imaging parameters, see section

4.2.3. In the first subject, in the early stages of MS, two of the marked lesions over-

lap the white matter mask completely and are investigated further. For the second

subject, in the late stage of MS, the lesions are much more widespread, overlap-
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ping most of the white matter mask used to select voxels for analysis. However for

this subject, our analysis is limited by the availability of contralateral NAWM for

comparison and thus we only use one lesion in the CST. We then calculate the mean

parameter estimates from both models in the lesions and control ROIs and compare.

We then assess the statistical significance of the difference in estimates between the

lesion and the NAWM using a t-test.

As explained in more detail in the Background chapter, the axons in MS lesions

undergo a process known as demyelination, which is characterised by a breakdown

of the myelin sheath surrounding the axons. This is illustrated in Figure 4.5, and is

intuitively expected to lead to a decrease in the intra-axonal exchange time τi as the

water molecules encounter less barriers when moving from the intra-axonal to the

extra-axonal space (see Figure 4.5 B).

4.3 Results

4.3.1 Synthetic experiments

4.3.1.1 Random forest hyperparameter tuning

Params / Train-
ing set size

5,000 9,000 9,500 10,000 10,500 11,000 12,500 15,000 20,000

f 0.875 0.878 0.880 0.883 0.883 0.880 0.878 0.878 0.880
τi 0.873 0.910 0.943 0.945 0.933 0.928 0.916 0.884 0.851
α 0.800 0.807 0.812 0.815 0.812 0.814 0.808 0.810 0.814
d 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

Table 4.3: Average correlation coefficient (R2) for training sets of different sizes. For ex-
ample, a training set size of 5,000 implies that the random forest regressor is
trained on 5,000 different randomly sampled unique combinations of substrate
parameters and their associated synthetic signals.

Table 4.3 shows the correlation coefficient R2 for f ,τi,α and d for noise-free

training sets of different sizes. Each R2 coefficient was computed by first training

the random forest on dataset of the size indicated by in each column heading and,

once training is finished, calculating the R2 score on a test set of 2,500 previously

unseen noise-free DW-MRI synthetic signals. The results in Table 4.3 show that

for all four parameters of interest, the optimal training set size is 10,000 ( f : R2 =

0.883,τi : R2 = 0.945,α : R2 = 0.815, d : R2 = 0.999). As the training set size
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Figure 4.6: Random forest hyperparameter tuning. The top graph shows the correlation
coefficient between the ground truth and the estimated τi (y-axis) against the
number of trees in the random forest (x-axis). The bottom graph shows the
correlation coefficient between the ground truth and the estimated τi (y-axis)
against the tree depth of each decision tree in the random forest (x-axis).

increases from 5,000 to 10,000 we see marginal improvements in the performance

of the random forest, after which the coefficients start going down again. Following

from this, all experiments in this chapter are ran using a training database of 10,000

synthetic signals.

The second set of experiments in this section focuses on the optimal number

of decisions trees in the forest and the optimal tree depth. As we are interested in

optimising the random forest for parameter estimation on the in-vivo data, we run

this set of experiments on the SNR=20 database, matching the noise level of our

in-vivo data. Figure 4.6 shows the R2 score for τi, as our main parameter of interest,

against the number of trees (top row) and against the tree depth (bottom row). The

R2 score improves by 0.04 when increasing the number of trees from 20 to 120.

Above this value, we see diminishing returns, while the computational complexity



4.3. Results 107

and, consequently, the estimation time increase. For this reason, we set the number

of trees to 120 as the optimal one. For the tree depth, R2 score improves by ≈0.03

when increasing the depth from 10 to 20, reaching a maximum of R2
τi
= 0.97, after

which it plateaus. These results suggest that the optimal hyperparameter setting for

the random forest is 120 decision trees, each of maximum depth 20, a setting which

we will use for the remaining of the experiments in this chapter.

4.3.1.2 Parameter estimation

Figure 4.7 shows correlation scatter plots (top row) and the corresponding Bland-

Altman plots (bottom row) of f ,τi,α, and d for the random forest regressor for the

noise-free database. The data points are colour-coded according to how close the

estimates are to the actual values and the percentage error is shown on the colour

bars. The solid black line in the Bland-Altman plot indicates the mean difference

between ground truth and estimated parameters and the dashed lines show the 95%

limits of agreement.

Figure 4.7: Random forest performance on the noise-free database. The top row shows
the correlation scatter plots comparing the ground truth values of f ,τi,α and
d (x-axis) with estimations from the random forest (y-axis) for the synthetic
noise-free database. The bottom row shows the equivalent Bland-Altman plots
for f ,τi,α and d. The y-axis shows the difference between the ground truth
and the estimations of a parameter, and the x-axis shows the mean of those two
values.

The correlation scatter plots in the first row show a strong correlation between

the ground truth and the estimated parameter values: f : R2 = 0.88,τi : R2 = 0.95,α :

R2 = 0.82 and d : R2 = 0.99. In the corresponding Bland-Altman plots, points are

clustered about the zero difference line, indicating low bias. However, despite the
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absence of noise, the recovery of the parameters is not perfect. In particular, for

f ,τi and α , there is some bias in the estimated values which depends on the ground

truth value. For example, large values of τi are consistently underestimated, while

small values are overestimated.

The noise-free performance provides a benchmark for the best estimation we

can achieve given the data available. Furthermore, these results also show that

the random forest model can estimate, even though less accurately than for other

parameters, the volume-weighted axon radius index α (R2 = 0.82) in the absence

of noise. This shows the potential of such a machine learning based approach to

be extended to other microstructure parameters if there is sensitivity in the data.

Nevertheless, we exclude α from our analysis onwards as it has been shown in

[138] that for the gradient strength (G=62 mT/m) and level of noise present in our

noisy synthetic and in-vivo data (SNR=20), there is no sensitivity to axon diameters

below 6 µm, a range which covers the majority of axons in the brain’s white matter

[16].

Figure 4.8: Random forest performance on the SNR=20 database. The top row shows
the correlation scatter plots comparing the ground truth values of f ,τi,α and
d (x-axis) with estimations from the random forest (y-axis) for the synthetic
SNR=20 database. The bottom row shows the equivalent Bland-Altman plots
for f ,τi,α and d. The y-axis shows the difference between the ground truth
and the estimations of a parameter, and the x-axis shows the mean of those two
values.

Figure 4.8 shows similar plots, but for the synthetic database with SNR=20.
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The results for all parameters are consistent with those obtained from the noise-free

data, although the 95% limits of agreement are slightly wider. Although the mean

difference lines are mostly close to zero, again we see that there is some bias in our

estimates, which depends on the ground truth values. For f (R2 = 0.71), we see

that larger volume fractions are slightly underestimated, whereas low f values are

slightly overestimated. This is also the case for τi (R2 = 0.70). Exchange times of up

to approximately 600 ms are estimated well, after which the estimates level off. d is

again very well estimated (R2 = 0.98), with no significant under or overestimation

bias.

Figure 4.9: Random forest feature importance. Figure shows the 15 most informative fea-
tures for the random forest when trained on the noise-free database (graph A),
and when trained on the SNR20 database (graph B). The features are numbered
from 1 to 60, the first 15 corresponding to the first shell of the protocol in Table
4.1, the next 15 to the second shell and so on. The features in each shell are
arranged according to Table 4.2 . The higher the red bars on the y-axis, the
more important the feature.

Figure 4.9 shows the feature importance results for the noise-free (Fig. A) and

SNR=20 (Fig. B) training scenarios. The feature importances are computed using

the sklearn toolkit in Python. We rank the 60 individual features of the training

set (in our case the DTI and SH features of the DW-MRI signal) according to how

informative they are during the estimation of the microstructure parameters. The

higher the feature importance value on the x-axis, the more important the feature is,

with all feature importance values adding to 1. We number the features from 0 to

59, the first 15 corresponding to the first shell, the next 15 to the second, and so on.

For better visibility, Figure 4.9 only shows the 15 most informative shells. For both

noise scenarios, we find that all features contribute to the parameter estimation by

at least 1%, and that there are no features that contribute to the estimation signifi-
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cantly. For example, even the most informative feature contributes by only ≈0.060

in the noise-free case and by ≈0.055 in the noisy case. This suggests that there

are no significant features driving the parameter estimation. The black lines, which

indicate the standard deviation of the feature importances among the 120 decision

trees, are very wide. This is expected, as the random forest is trained using only

a subset of features to look for the best partition at each node, as discussed in the

Methods section.

The most informative 6 shells in the noise-free scenario are three DTI features

from the shell with the shortest ∆ and three SH features from the shell with the

longest ∆ (Fig. 4.9A). The three DTI features are the second and third eigenvalue

of the diffusion tensor and the fractional anisotropy, and the tree SH features are the

anisotropy, skewness and kurtosis. In the presence of noise (Fig. 4.9B), the six most

informative features remain the same, but their ranking changes, with the features

from the short ∆ shell being ranked ahead of those from the long ∆ shell. This result

can be explained by the presence of noise, which affects the shell with the shortest

∆ the least and has a stronger effect on the shell with the longest ∆. Overall, these

findings suggest that each feature plays a role in the parameter estimation, with no

overall dominant feature. Moreover, as the most informative 6 features belong to the

longest as well as the shortest ∆ shells, this suggests that it is necessary to include a

combination of both long and short ∆ shells in our imaging protocol.

4.3.2 In-vivo experiments

4.3.2.1 Healthy subjects

Figure 4.10 shows scan and rescan parameter maps estimated using the random for-

est across representative sagittal, coronal and axial slices for the first healthy vol-

unteer. An initial visual inspection suggests good agreement between the scan and

rescan parameters, with similar trends observed across all the major white matter

tracts. The values estimated for all parameters are within plausible ranges. Esti-

mates of volume fraction f are in the range 0.44-0.65. The upper bound is slightly

lower than expected, but as suggested by the simulation results in Figure 4.8, large

f tends to be underestimated by the random forest when the data is noisy. How-

ever, we still see the expected high-low-high trend in f across the mid-sagittal CC.
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Figure 4.10: Scan (left) and rescan (right) parameter maps of f ,τi and d estimated by the
random forest model across representative sagittal, coronal and axial slices of
data from volunteer 1.

Estimates of τi are consistently in the range 400-500 ms across the major tracts.

The scan and rescan maps of d are also highly consistent, with estimations for most

voxels in the range 1.4-1.8x10−9 m2s−1.

Figure 4.11 shows equivalent parameter maps and scatter plots for volunteer

2. As for subject 1, the scan and rescan maps for the random forest model show

good visual similarities for all parameters. We see the high-low-high trend in f , and

the estimates of τi and d are consistent between scans as well as between the two

subjects. The values estimated for all parameters are within plausible ranges and

within the same range as for subject 1. Additional Bland-Altman plots of the scan-

rescan parameters published in [132] confirm that there is no bias between scan and

rescan estimates for either of the two volunteers.

In Figure 4.12, we analyse the reproducibility of the estimates across six ROIs.

The ROIs are manually defined in the splenium (CC-S) and genu (CC-G) of the

corpus callosum, the left (ALIC-L) and right (ALIC- R) anterior limbs of the in-

ternal capsule and the left (CST-L) and right (CST-R) corticospinal tracts on the

scan and rescan data for both volunteers. The bottom row in Figure 4.12 shows an

example ROI mask overlaid on the FA image of the scan data for volunteer 2. We
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Figure 4.11: Scan (left) and rescan (right) parameter maps of f ,τi and d estimated by the
random forest model across representative sagittal, coronal and axial slices of
data from volunteer 2.

calculate the mean of the parameter estimates from the random forest in each ROI

for the scan and rescan for both subjects. This results in 24 measurements: 12 from

the 6 ROIs in the scans of the two subjects and 12 from the 6 ROIs in the rescans

of the two subjects. We plot the 12 scan mean parameter estimates against the 12

rescan mean parameter estimates in the top row in Figure 4.12. In addition to this,

we compute the linear correlation coefficient ρ between the scan and rescan mean

estimates. The scan-rescan scatter plots for f ,τi and d in Figure 4.12 show high

reproducibility for f (ρ f = 0.96) and d (ρ f = 0.81), and a good reproducibility for

τi (ρ f = 0.60) at the ROI level.

Finally, we pool together the scan and rescan parameter estimates for both

subjects across the six regions of interest and calculate the mean µ and the standard

deviation σ of each parameter in each region, which we show in Table 4.4. Due

to the small number of voxels and subjects, we calculate the standard deviation in

each region over all patients and scan/rescan altogether without accounting for the

within/between subject variance. We find that the means across the 6 ROIs for f are

in between 0.49 and 0.59. For τi, the ROI means lie in the range 490–606 ms, and

for d, the ROI means are in between 1.6–1.95x10−9 m2s−1. The parameter ranges
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Figure 4.12: The top row shows the correlation of scan-rescan estimates of f ,τi and d
across 6 ROIs for both healthy volunteers. The image in the bottom row shows
the six ROIs overlaid on the FA map of volunteer 2.

are all plausible for human white matter, as discussed further in the next section.

f τi (ms) d (x10−9 m2s−1)

ROI µ(σ) µ(σ) µ(σ)

CC-S 0.59(0.02) 564(54) 1.69(0.22)
CC-G 0.58(0.02) 606(44) 1.95(0.10)
ALIC-L 0.50(0.03) 513(124) 1.60(0.18)
ALIC-R 0.49(0.03) 490(119) 1.63(0.18)
CST-L 0.52(0.03) 564(80) 1.70(0.16)
CST-R 0.52(0.04) 541(85) 1.66(0.15)

Table 4.4: Mean and standard deviation of the random forest estimates of f ,τi and d in all
six ROIs across the scan and rescan of both healthy volunteers.

4.3.2.2 MS subjects

Figure 4.13 shows the parameter maps of the two MS subjects. The top row shows

the estimates for the early stage MS subject, while the bottom row shows the es-

timates for the late stage MS subject. First from the left is an FA image with the

overlaid lesion mask (red areas in squares) and respective normal appearing white

matter tissue (NAWM) (green areas in circles). The remaining three columns are



114 4.3. Results

Figure 4.13: FA image (1st column) and parameter maps of f ,τi and d (2nd ,3rd ,4th

columns) estimated by the random forest model across representative axial,
coronal and sagittal slices of two MS patients. The scan of MS subject 1 in
the top row shows two lesions (red areas in blue squares) in the genu (top
of the scan) and the splenium (bottom of the scan) of the CC. The scan of
MS subject 2 in the bottom row shows one lesion in the CST (red area in the
square). For each lesion, its respective contralateral NAWM mask is shown as
a green area in a circle.

parameter maps from the same slice estimated using the random forest model.

In the case of the early MS subject (top row), an initial visual inspection of pa-

rameter maps suggests that the random forest does not detect any obvious parameter

differences in the lesion in genu (top area in a square), compared to the respective

NAWM tissue (top area in a circle). In contrast, for the lesion in splenium (bottom

area in a square), an initial visual inspection reveals differences when compared to

the NAWM (bottom area in a circle), especially in the parameter maps for τi. τi

estimated using the random forest is reduced relative to the NAWM area, and the

volume fraction is also slightly lower when compared to the contralateral NAWM

region.

In the case of the late MS subject (bottom row), the lesions are much more

widespread, overlapping most of the white matter mask used to select voxels for

analysis, including the genu and the corticospinal tracts. An initial visual inspection

of the whole white matter mask shows more dramatic changes in the parameter

maps compared to the first early stage MS subject. We notice a reduction in f and

τi in the lesion area (red area in a square) compared to the contralateral NAWM

(green area in a circle).

To provide a more quantitative analysis, we calculate the mean and the standard
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MS subject 1 MS subject 2

CC: Genu CC: Splenium CST

Lesion (9) NAWM (7) Lesion (11) NAWM (10) Lesion (43) NAWM (40)

f 0.48(0.03) 0.49(0.03) 0.48(0.02) 0.50(0.03) 0.46(0.01) * 0.50(0.04)
τi 537(66) 491(83) 154(85) * 302(130) 138(92) * 595(50)
d 1.73(0.12) * 1.52(0.16) 1.64(0.21) 1.74(0.23) 1.99(0.07) * 1.77(0.17)

Table 4.5: Mean and standard deviation of the random forest estimates of f ,τi (ms) and
d (x10−9 m2s−1) in MS lesions compared to contralateral NAWM of both MS
patients. Lesion values which are statistically different (p < 0.02) from values
in the corresponding NAWM are marked with the ’∗’ symbol. Row 3 of the table
indicates between brackets the number of voxels in each ROI.

deviation of the parameter estimates in the lesions shown in Figure 4.13 (red areas

in squares), and their respective contralateral NAWM ROIs (green areas in circles).

We show these in Table 4.5. In the genu lesion of MS subject 1, d is higher than in

the NAWM. The difference between f and τi is not statistically significant. For the

lesion in the splenium of MS subject 2, the random forest estimates a mean τi of 154

ms, compared to 302 ms in the contralateral NAWM. For the lesion in the CST of

subject 2, the quantitative analysis confirms the initial visual inspection. The mean

random forest estimates of f drops from 0.50 to 0.46, and τi is reduced from 595

ms in the NAWM to 138 ms in the lesion. We also notice an increase in d, although

for d the change is the same order of magnitude as the standard deviation across the

ROI. Lesion parameter values for which there is a statistically significant difference

(p<0.02) to the values in NAWM are marked with stars.

4.4 Discussion
In this chapter, we have introduced a random forest based computational model that

builds a mapping between features derived from DW-MRI signals and tissue mi-

crostructure parameters, including the intra-axonal exchange time τi. First, we use

synthetic data to maximise the performance of the random forest by choosing the

optimal number of decision trees, tree depth and training set size. Next, we estab-

lish a benchmark performance for our model by testing it on noise-free simulations,

where we find strong correlations between the estimated and ground truth parame-

ters ( f : R2 = 0.88, τi: R2 = 0.95, d: R2 = 0.99). We find that for realistic levels of
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noise (SNR=20), as present in our in-vivo data, the simulation performance is af-

fected, however, the parameters are still well estimated ( f : R2 = 0.71, τi: R2 = 0.70,

d: R2 = 0.98). Furthermore, we apply our model to in-vivo data from two healthy

subjects and show that the random forest estimates sensible microstructure param-

eters. Finally, we generate parameter maps from scans of two MS subjects. In both

subjects, we observe reductions in the random forest estimates of f and τi in lesions

compared to the contralateral NAWM, which is consistent with expectations from

the pathology of MS lesions. We expect τi to reduce due to myelin damage and f

to decrease due to the breakdown of myelin as well as potential axonal loss, both

changes characteristic of the MS pathology.

Simulations. We find that the setting which maximises the performance of the ran-

dom forest is 120 trees of maximum depth 20, together with a training set of 10,000

unique DW-MRI feature vectors and their associated ground truth microstructure

parameters. We show that the random forest model estimates in the noise-free sce-

nario have very strong correlations with the ground truth values, providing an ex-

cellent benchmark performance for our model and imaging protocol ( f : R2 = 0.88,

τi: R2 = 0.95, α: R2 = 0.82, d: R2 = 0.99). We show that the addition of noise

with SNR=20, matching our in-vivo data, does not affect much the estimation of

d (R2 = 0.98), however, it has a stronger effect on the estimation of τi and f ( f :

R2 = 0.71, τi: R2 = 0.70). Finally, we analyse the feature importances and show that

all features contribute in small proportion, without any dominant features to drive

the estimation. A potential explanation for this is that the features are not mutually

independent and contain overlapping information (see Table 4.2), and, therefore,

their importance is also shared. Moreover, we show that three DTI features from

the shell with the shortest ∆ (0.102 s) and three SH features from the shell with the

longest ∆ (0.412 s) are the six most informative shells. A potential explanation for

this could be that the DTI features in the ∆ = 102 s shell are informative for the

estimation of f and d, as they have a better SNR and because the estimation of f

and d does not require long ∆s, while the SH features in the ∆ = 0.412 s shell are

more informative for the estimation of τi because it allows the probing of longer

exchange times.
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In-vivo data. The scan-rescan experiments in healthy subjects show that the ran-

dom forest model has good reproducibility: we observe the same trends across

the scan/rescan parameter maps (e.g. the high-low-high trend in f across the mid-

sagittal CC), together with good linear correlation ρ between scan and rescan pa-

rameters (ρ f = 0.96,ρτi = 0.60,ρd = 0.81). The reproducibility of the random for-

est model is thoroughly compared with that of the Karger model [85], in [132]. The

results show that our random forest model has better reproducibility, in simulations

and in-vivo, at both voxel and ROI level.

The absolute values estimated by the random forest are inherently difficult to

validate. Accurate estimates of τi are not obtainable via histology as tissue fixation

is known to alter cell membrane properties. Nevertheless, an existing study of intra-

to extra-axonal water exchange across the whole in-vivo rat brain using relaxome-

try and contrast agents suggests a mean τi of approximately 550 ms [11], aligning

with our estimates. Furthermore, studies on sphingomyelin membranes (which are

found in axonal membranes) estimate permeabilities of ≈1 x10−6ms−1 [9], which

correspond to exchange times of 300-600 ms for axons with radii of 0.5-1 µm, a

range within which the majority of our τi estimates lie (400-500 ms in the healthy

subjects). The maps of f reveal the characteristic high-low-high trend across the

mid-sagittal CC consistent in both scan and rescan maps, and the estimated values

for this parameter lie in the range [0.4, 0.65], a plausible range for white matter tis-

sue [73]. The upper bound is slightly lower than expected, but as suggested by the

simulation results, large f tends to be underestimated when the data is noisy. The

scan and rescan maps of d are highly consistent. The estimations for most voxels

lie in the range 1.4-1.8 x10−9 m2s−1, which is plausible for white matter tissue.

In MS subjects, we observe reductions in the random forest estimates of f and

τi in lesions compared to NAWM. This is intuitive as the breakdown of myelin in

lesions is likely to make the exchange time shorter compared to the NAWM (as

illustrated in Figure 4.5). The reduction in f is also intuitive as MS lesions are often

characterised by axonal loss [155, 156, 157]. This, together with the breakdown of

the myelin sheath would lead to an increase in the extra-axonal space and a decrease

in the overall intra-axonal volume fraction f . When comparing the NAWM in MS
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subjects to the same ROIs in healthy subjects, we observe that the trend continues,

i.e. we observe reductions in f and τi in the NAWM of MS subjects compared to

the healthy tissue in the two volunteers. For example, we find that in the CC-S of

the healthy subjects, the estimated τi is 564±54 ms, while in the CC-S of the MS

patient τi is 302±130 ms in the NAWM and 154±85 ms in the lesion. It has been

shown previously that NAWM in MS subjects is somewhat damaged compared to

the normal tissue [158] and our results support this suggestion. We also find almost

no difference between the parameters in the lesion and the NAWM tissue for the

first MS subject. This could be because the lesion was relatively new compared

to the other lesion and the damage has not yet fully developed. These are just

preliminary results because the number of both MS and healthy subjects is quite

small. However, the trends are plausible and the estimated parameters sensible.

We show some promising new results, however a larger study of MS patients is

necessary in order to investigate whether the parameters of the random forest model,

in particular τi, could act as suitable biomarkers for detecting and tracking changes

in MS pathology.

Limitations. One of the limitations of the work in this chapter is that the training

uses a simplified model of white matter tissue. Specifically, the model uses long

straight circular cylinders that mimic axon bundles and does not account for myelin

water, curvature of axons, dispersion or crossing fibres. Nevertheless, the general

idea we present here, of computational models based on simulations and machine

learning extends naturally to more complex simulations. Once more realistic sim-

ulations that account for more effects (e.g. undulation [159], dispersion [146, 147]

or myelin water [148, 86]) become available, they can easily be incorporated in the

machine learning framework used in this thesis and form part of future work.

A further limitation of the analysis in this chapter is the size of the healthy

and diseased cohorts. For example, the ROI standard deviation reported in Table

4.4 does not take into account the within/between subject variance and treats the

sample as being independent, despite some of the estimates coming from repeated

measurements. While this choice is motivated by a small number of subjects and

therefore estimates per ROI, this problem can be avoided by increasing the number
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of subjects.

Another limitation is that the machine learning procedure is tested on the same

type of substrates that it was trained on. We note, however, that although the sub-

strate model is the same, the model parameters between the training and the test data

are different so the results demonstrate generalisation to some extent. Once more

complex simulations become available, we can extend the testing of our model to

more diverse simulations. Another important future improvement which accounts

for unfamiliar test data is to incorporate measures of uncertainty as in [129].

The performance of our computational framework is dependent on the sen-

sitivity of the DW-MRI protocol to the parameters of interest. This can be seen

in the simulation results, where for τi greater than 600 ms, the estimation perfor-

mance decreases. Indeed, the findings in Chapter 3 show that for the ∆,G and the

b-value of our STEAM protocol, we can only distinguish exchange time effects

for τi around 650-700 ms in substrates representative of the brain white matter tis-

sue (see Figure 3.4A). Another parameter that only weakly influences the DW-MRI

signal is the volume-weighted axon radius index α . We show that in the noise-free

scenario our random forest model can estimate the axon radius index α reasonably

well (R2 = 0.82). However, the addition of noise (SNR=20) severely affects the

protocol’s sensitivity to this parameter [138], and Nedjati et al. [132] show that

the random forest is only able to distinguish between small and large axons in the

presence of noise. The parameter maps of α are extremely noisy and the repro-

ducibility is very low. The sensitivity of the signal and hence the reproducibility of

our parameter estimates can potentially be improved by optimising the acquisition

protocol further, e.g. by increasing the maximum diffusion time or gradient strength

to provide better contrast (also subject to SNR constraints) or using the random for-

est model in the protocol optimisation instead of the Karger model. This limitation,

though critical for the performance of our model, is intrinsic to the sensitivity of the

data rather than to the machine learning based computational framework introduced

in this thesis.
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4.5 Conclusions
In this chapter, we introduce the first machine learning based computational model

with permeability for white matter microstructure imaging, using a random for-

est regressor that builds a mapping between rotationally invariant features of DW-

MRI signals and microstructure parameters. We demonstrate the idea by testing the

model’s ability to estimate the intra-axonal exchange time τi, the intra-axonal vol-

ume fraction f and the intrinsic diffusivity d in simulations and in clinical data from

two healthy and two MS patients. Using realistic simulations, we show that our

model has a very good benchmark performance and, even though the performance

is affected by the presence of noise, the parameters continue to be well estimated.

Using in-vivo data from the healthy subjects, we show that our computational model

has good scan-rescan reproducibility and provides parameter estimates within the

plausible range for human white matter tissue. Using the in-vivo data from the two

MS subjects, we show that the random forest estimates in MS lesions are in line with

the expected MS pathology (significant decrease in f and τi and a small increase in

d), demonstrating the clinical potential of this new technique.

The computational modelling approach we use here opens doors to estimating

a wide range of other parameters for which mathematical models are intractable

such as undulation or properties of the extracellular space. Although the map-

ping we learn is specific to randomly packed, parallel, non-abutting cylinders and

a STEAM protocol, the approach easily extends to other tissue configurations and

pulse sequences as well as to other machine learning algorithms. In the next chapter,

we explore our machine learning computational framework’s extensibility to neural

networks.



Chapter 5

Neural network based computational

models with permeability:

microstructure parameter estimation

in clinical in-vivo human data

In the previous chapter we introduced the first machine learning based computa-

tional model with permeability for white matter microstructure imaging. To demon-

strate the idea, we use a random forest and test the model on two healthy and two

MS patients. An advantage of the computational framework introduced in this the-

sis is that it can easily be adapted to other machine learning approaches. In this

chapter, motivated by the promising results shown by neural networks in many do-

mains including medical imaging [7], we extend our computational framework to

incorporate a neural network model, which we test on the synthetic and in-vivo

clinical data in Chapter 4.

5.1 Motivation
While random forests have many advantages such as interpretability, easiness of

tuning and robustness to noise [108], recent advances in deep learning [7] have

shown that neural networks can outperform conventional machine learning algo-

rithms in medical imaging tasks such as Image Quality Transfer [129]. Prompted

by these recent advances, we aim to test the feasibility of neural networks for mi-
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crostructure parameter estimation. For this, we implement a simple and widely used

neural network model, a multilayer perceptron (MLP), and assess its performance

on the synthetic and in-vivo clinical human data in Chapter 4.

One of the advantages of neural networks over other machine learning models

is that their architecture can easily be adapted to include other optimisation objec-

tives in order to enhance the overall performance of the model. For example, a

neural network architecture can be modified to include local information (in con-

volutional neural networks), which, for our task, is available when estimating from

in-vivo scans. In addition to this, neural network architectures can be modified

to perform domain adaptation. This is usually employed in scenarios when there

are differences between the training and the test data. This is particularly relevant

for our task, as our model is trained on simplified simulations of the in-vivo data.

Therefore, neural networks can potentially be used to bridge the gap between sim-

ulations and in-vivo data. In this thesis, we start by developing a simple neural

network model and by assessing its performance in the field of microstructure pa-

rameters estimation. Extending the analysis to more complex architectures such as

domain adaptation and convolutional neural networks, which are undergoing con-

tinuous development, forms part of future work.

5.2 Methods
In this section, we first provide a brief outline of the imaging protocol and the

datasets used for the experiments in this chapter. Next, we describe the architecture

of our neural network model. Finally, we outline the synthetic and in-vivo experi-

ments designed to test the performance of the model.

5.2.1 Imaging protocol and data

For both the synthetic and the in-vivo data, we use the STEAM imaging protocol

introduced in the previous chapter (Ch. 4). The protocol is optimised for a two

compartment model with exchange and includes 4 b-shells with the ∆ ranging from

102 ms to 412 ms. Full details of the protocol can be found in Table 4.1.

For the data analysis, we use the synthetic and the in-vivo datasets described

in Chapter 4. Our synthetic data is formed of 12,500 unique rotationally invari-
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ant signal-derived feature vectors and their associated ground truth microstructure

parameters. The feature vectors are extracted from Monte Carlo simulations of the

DW-MRI signal from substrates mimicking human white matter. More details about

the dataset are provided in Section 4.2.2. We generate two synthetic databases, one

from the noise-free DW-MRI simulations and another one by adding Rician noise

with a standard deviation σ corresponding to an SNR of 20, matching the level of

noise present in our in-vivo data. Our in-vivo dataset is formed of scan-rescan data

from two healthy volunteers and scan data from two MS patients. For more details

regarding the data acquisition and preprocessing, see Section 4.2.3.

5.2.2 Machine learning

5.2.2.1 Neural networks for microstructure parameter estimation

The neural network used in this chapter is a multilayer perceptron (MLP), which is

a feed-forward neural network, formed of an input layer, a number of middle layers

called hidden layers and an output layer as illustrated in Figure 5.1. In our case,

the input layer takes as an input the rotationally invariant feature vector of the DW-

MRI signal, and then passes it on to the hidden layers for processing until the output

layer is reached. The output layer is formed of 3 neurons, each one providing an

estimation of one of the three tissue parameters of interest ( f ,τi and d).

During training, the network learns a mapping between microstructure param-

eters and features of the DW-MRI signals. The neural network learns the correct

mapping during training by minimising the sum of the mean squared error (MSE)

between the ground truth microstructure parameters y and the estimated parameters

ŷ over the training set: MSE = 1
n ∑

n
i=1(yi− ŷi)

2, where n is the size of the training

set. To minimise the MSE, the neural network parameters are adjusted after each

epoch of training by computing the gradient of the error with respect to each param-

eter. The network stops learning once the MSE stops decreasing after each epoch

of training. Once the training is finished, we use the optimised neural network for

estimating tissue microstructure parameters from unseen feature vectors.
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Figure 5.1: Schematic illustration of the neural network used in this chapter. The neural
network is formed an input layer, three hidden layers and an output layer. The
input layer takes as input the feature vector, which is then passed on and pro-
cessed by the hidden layers. The output layer is formed of three neurons, one
for the estimation of each of the three tissue parameters of interest ( f ,τi and d).

5.2.2.2 Implementation details

We implement the neural network using the open source Keras toolkit [160] with

Tensorflow backend [161]. We employ a common protocol for the training of the

network. We minimise the loss using stochastic gradient descent for 100 epochs

with learning rate 0.07, decay 1e-6, and momentum 0.9. We use a 3 hidden layer

architecture with 150, 75 and 75 hidden neurons with ’tanh’ (hyperbolic tangent)

activations and dropout 0.7. The number of layers was chosen empirically, by start-

ing with one layer and increasing the number of layers until no improvement in

performance on the validation set could be seen. This is common practice in the

machine learning field due to the absence of a theoretical framework for choosing

the number of layers of a neural network. We select the best performing architec-

ture as the one that minimises the mean squared error on a validation set formed of

2,000 DW-MRI synthetic signals.

We train the neural network to estimate three microstructure parameters of

interest: the intra-axonal volume fraction f , the intra-axonal exchange time τi and
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the intrinsic diffusivity d. For this, we use our synthetic database of 12,500 signal-

derived feature vectors and their associated ground truth tissue parameters acting

as labels during the supervised learning task. We use 10,000 feature vectors for

training and 2,500 for testing. We train two neural networks, one using the noise-

free database and another using the SNR=20 database. For the in-vivo estimation,

we use the neural network on the SNR=20 database as the one that most closely

resembles the in-vivo data.

5.2.3 Experiments

5.2.3.1 Synthetic experiments

To assess how well the neural network parameter estimates match the known ground

truth values in the test set, we show correlation plots and compute the correlation

coefficient R2 between the model estimations and the ground truth parameter values.

The R2 score measures the linear relationship between two datasets and takes values

between −1 and +1, with ±1 implying an exact positive/negative correlation and

0 implying no correlation. This is calculated as in Equation 4.1. Furthermore,

to investigate any general bias in the estimations, we show Bland-Altman graphs,

which plot the means of the ground truth and estimated values against the difference

between them. Points on the correlation and Bland-Altman plots are colour-coded

with colour bars showing the percentage error. For better visibility, we limit the

colour bar to –50 to 50%, with points outside this range taking the same colour as

the two maximum points.

We compute the correlation scatter plots and the Bland-Altman plots for both

the noise-free and SNR=20 databases. The noise-free scenario provides a bench-

mark for the best estimation we can achieve given the data available, while the

SNR=20 performance provides an indication of the estimation under noise condi-

tions matching those in the in-vivo data.

5.2.3.2 In-vivo experiments

Healthy subjects

We generate estimates of three microstructure parameters of interest ( f ,τi and

d) across white matter voxels in the scans and rescans for the two healthy subjects.
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We show parameter maps of f ,τi and d across representative axial, coronal and

sagittal slices of both scan and rescan data. We use the scan-rescan data from the

two healthy volunteers to investigate intra-subject reproducibility for six manually

defined ROIs: the splenium (CC-S) and genu (CC-G) of the corpus callosum, the

left (ALIC-L) and right (ALIC-R) anterior limbs of the internal capsule, and the left

(CST-L) and right (CST-R) corticospinal tracts. We calculate the mean parameter

estimates from the neural network in each ROI for both the scan and rescan data and

show correlation scatter plots and Bland-Altman plots for f ,τi and d individually.

For highly reproducible parameters the points on a Bland-Altman plot should be

closely clustered about the zero difference line. In addition to this, we show the

equivalent mean parameter estimates from the random forest model in Chapter 4

to assess comparatively the reproducibility of the two machine learning algorithms.

Finally, we show neural network and random forest parameters maps of f ,τi and d

across the same axial slice of the second volunteer.

MS subjects

To investigate the sensitivity of the neural network to tissue damage in MS

lesions, we analyse the model estimates in lesions marked by an expert clinical

researcher. We also mark additional ROIs in the NAWM for comparison. In the

first subject, in the early stages of MS, two of the marked lesions overlap the white

matter mask completely and are investigated further. For the second subject, in the

late stage of MS, the lesions are much more widespread, overlapping most of the

white matter mask used to select voxels for analysis. However for this subject, our

analysis is limited by the availability of contralateral NAWM for comparison and

thus we only use one lesion in the CST. For both subjects, we assess the statistical

significance of the difference in estimates between the lesion and the NAWM using

a t-test. Finally, we compare the mean parameter estimates from both machine

learning models in the lesions and NAWM ROIs.
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Figure 5.2: Figure shows how the training and the validation error change with each epoch
of training.

5.3 Results

5.3.1 Synthetic Experiments

Figure 5.2 shows how the training and the validation mean squared errors change

with each epoch of training. The training error (blue curve) shows that the error

drops significantly during the first 50 epochs of training, after which it continues to

decrease, but by smaller amounts, suggesting that the neural network is still learn-

ing. The validation error is commonly used to asses whether the network learns to

generalise from the training data or whether it is overfitting. Since the validation set

is unseen during training, if the validation error decreases we can say that the model

generalises better to new data. Conversely, if the validation error starts to increase,

this suggests that the model is learning the training data too closely and is unable

to generalise to new unseen data, a process known as overfitting. The validation er-

ror curve (orange) in Figure 5.2 drops significantly during the first 50 epochs, after

which it decreases mildly and finally flattens out around epoch 100. This suggests

that the first 100 training epochs improve the performance of the neural network,

after which the performance stays constant. Consequently, we set the number of

training epochs to 100.

Figure 5.3 shows correlation scatter plots (top row) and the corresponding

Bland-Altman plots (bottom row) of f ,τi and d for the neural network in the noise-

free scenario. The data points are colour-coded according to how close the es-
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Figure 5.3: Neural network performance on the noise-free database. The top row shows
correlation scatter plots comparing the ground truth values of f ,τi and d with
the neural network estimations. The bottom row shows the equivalent Bland-
Altman plots for f ,τi and d. The y-axis shows the difference between the
ground truth and the estimated values and the x-axis shows their mean.

timates are to the actual values and the percentage error is shown on the colour

bars. The solid black line in the Bland-Altman plot indicates the mean difference

between the ground truth and the estimated parameters and the dashed lines show

the 95% limits of agreement. The correlation scatter plots in the first row show

a strong correlation between the ground truth and the estimated parameter values:

f : R2 = 0.81,τi : R2 = 0.95 and d : R2 = 0.99. In the corresponding Bland-Altman

plots, points are clustered around the zero difference line, indicating low bias. How-

ever, despite the absence of noise, the recovery of the parameters is not perfect. In

particular, for f and τi, there is some bias in the estimated values which depends on

the ground truth value. Similar to the random forest model, the neural network over-

estimates small values of τi and f , and underestimates large values. The noise-free

performance provides a benchmark for the best estimation we can achieve given the

data available.

Figure 5.4 shows similar plots, but for the synthetic database with SNR=20.

The results for all parameters are consistent with those obtained from the noise-free

data, however, the 95% limits of agreement are slightly wider due to the presence

of noise. Although the mean difference lines are very close to zero, we again see
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Figure 5.4: Neural network performance on the SNR=20 database. The top row shows
correlation scatter plots comparing the ground truth values of f ,τi and d with
the neural network estimations. The bottom row shows the equivalent Bland-
Altman plots for f ,τi and d. The y-axis shows the difference between the
ground truth and the estimated value and the x-axis shows their mean.

the same bias as in the noise-free case, but more pronounced. For f (R2 = 0.71),

we see that large volume fractions tend to be underestimated slightly whereas low

volume fractions are slightly overestimated. This is also the case for τi (R2 = 0.74).

Exchange times of up to approximately 700 ms are estimated well, after which the

estimates level off. The 700 ms upper limit is 100 ms higher than for the random for-

est, for which the estimates level off around 600 ms. This is reflected quantitatively

in the R2 score for τi, which is 0.04 greater than the random forest equivalent. d is

again very well estimated (R2 = 0.98), with no significant under or overestimation

bias.

SNR=20 SNR=∞

f τi d f τi d

NN 0.71 0.74 0.98 0.88 0.95 0.99

RF 0.71 0.70 0.98 0.81 0.95 0.99

Table 5.1: Neural network (NN) and random forest (RF) correlation coefficients (R2 scores)
for the synthetic databases (noise free and SNR=20).

Table 5.1 summarises the performance of the neural network and random forest

(from the previous chapter) on the noise-free and SNR=20 databases. In the noise-
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free scenario, the neural network and the random forest have the same performance

in the case of τi and d. The neural network estimates f better than the random forest

in the noise-free scenario, however, this difference in performance is cancelled by

the presence of noise (SNR=20).

5.3.2 In-vivo Experiments

5.3.2.1 Healthy subjects

Figure 5.5: Scan (left) and rescan (right) parameter maps of f ,τi and d estimated by the
neural network model across representative sagittal, coronal and axial slices of
data from volunteer 1.

Figure 5.5 shows scan and rescan parameter maps estimated by the neural net-

work across representative sagittal, coronal and axial slices for the first healthy vol-

unteer. The parameter maps reveal a good agreement between the scan and rescan

estimations and very similar trends across the major white matter tracts. The values

estimated for all parameters are within plausible ranges for the human white matter.

Estimates of the volume fraction f are in the range 0.4-0.65. The upper bound is

slightly lower than expected, but, as suggested by the simulation results in Figure

5.4, large f tends to be underestimated when the data is noisy. However, we still

see the expected high-low-high trend in f across the mid-sagittal CC. Estimates of

τi are consistently in the range 450-650 ms across the major tracts. The scan and

rescan maps of d are also highly consistent, with estimations for most voxels in the
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range 1.4-2 x10−9 m2s−1.

Figure 5.6: Scan (left) and rescan (right) parameter maps of f ,τi and d estimated by the
neural network model across representative sagittal, coronal and axial slices of
data from volunteer 2.

Figure 5.6 shows equivalent parameter maps and scatter plots for volunteer

2. As for subject 1, the scan and rescan maps for the neural network model show

good visual similarities for all parameters. We see the high-low-high trend in f , and

the estimates of τi and d are consistent between scans as well as between the two

subjects. The values estimated for all parameters are within plausible ranges, and

within the ranges of subject 1 estimates.

In Figure 5.7, we analyse the reproducibility of the estimates across the six

ROIs in the white matter. We calculate the mean of the parameter estimates from

the neural network in each ROI for the scan and rescan for both subjects. This

results in 24 measurements: 12 from the 6 ROIs in the scans from the two subjects

and 12 from the 6 ROIs in the rescans of the two subjects. The top row of Figure

5.7A shows scatter plots of scan versus rescan estimates of f ,τi and d. The bottom

row of Figure 5.7A shows the equivalent Bland-Altman plots, which show the mean

of the scan and rescan parameter estimates against their difference. Dashed lines

indicate the 95% limits for each method. Results from the neural network model

(blue circles) and the random forest in the previous chapter (pink circles) are shown

on the same plots.
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Figure 5.7: A): The top row shows the correlation of scan-rescan estimates of f ,τi and d
across 6 regions of interest for both healthy volunteers. The bottom row shows
the equivalent Bland-Altman plots. B) The six regions of interest used in the
analysis overlaid on the FA map of volunteer 2.

The neural network shows good reproducibility for all parameters at the ROI

level. There is good agreement between the estimates of the two machine learning

approaches. The neural network estimates of τi are slightly higher than those of the

random forest. However, the differences are all within one standard deviation from

the ROI mean (as computed in Table 5.2 below) and in line with the synthetic data

results which show that the neural network estimates of τi level off around 700 ms

while those of the random forest level off around 600 ms. For f and d, the range of

estimated values is the same for the two machine learning approaches.

For f and τi, the data points for the random forest are closer to the zero line than

the data points for the neural network model. For f , the 95% limits of agreement

between scan-rescan are [-0.048, 0.043] for the neural network and [-0.029, 0.022]

for the random forest, narrower by 44%. For τi, the scan-rescan 95% limits of

agreement are [-110, 127] ms for the neural network, while those of the random

forest are 27% narrower ([-89, 84] ms). These results indicate that the scan-rescan

random forest estimates of f and τi show better agreement than those of the neural

network. For d, the data points from both the neural network and random forest

show a very similar spread about the zero line, indicating that the methods have

equivalent reproducibility.
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Figure 5.8: Parameters maps showing the estimates of f ,τi and d across a representative
axial slice of subject 2, generated using the random forest (left column) and
the neural network (middle column). The right column shows the difference
between the random forest and the neural network parameter map. This column
reveals that, on average, the random forest estimates higher values for f and
lower values for τi and d than the neural network.

Figure 5.8 shows parameter maps across the same axial slice of volunteer 2 for

the random forest (left column) and for the neural network (middle column). A vi-

sual inspection reveals that there is a very good agreement between the estimates of

two approaches as well as between the detected white matter trends (i.e. low-high-

low f trend in the splenium of the CC). The τi maps reveal that both approaches

estimate very fast exchange (red) in the same regions at the edge of the white mat-

ter mask, where we expect partial volume effects. On average, the random forest

estimates higher values of f and lower values of τi and d compared to the neural

network.
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Finally, we pool the scan and rescan parameter estimates for both subjects

across the six ROIs, across which we calculate the mean µ and the standard devi-

ation σ of each parameter. We show these results in Table 5.2. We find that the

means across the 6 ROIs for f are between 0.49 and 0.59. For τi, the ROI means

lie in the range 541–651 ms. For d the ROI means are between 1.64–2.01 x10−9

m2s−1. The parameter ranges are all plausible for human white matter, as discussed

further in the next section.

f τi (ms) d (x10−9 m2s−1)

ROI µ(σ) µ(σ) µ(σ)

CC-S 0.59(0.05) 606(101) 1.79(0.21)
CC-G 0.55(0.06) 651(39) 2.01(0.09)
ALIC-L 0.51(0.09) 571(175) 1.64(0.20)
ALIC-R 0.49(0.09) 541(144) 1.69(0.19)
CST-L 0.53(0.08) 623(95) 1.82(0.17)
CST-R 0.52(0.09) 610(112) 1.76(0.17)

Table 5.2: Mean and standard deviation of the neural network estimates of f ,τi and d in all
six regions of interest across the scan and rescan of both healthy subjects.

5.3.2.2 MS subjects

Figure 5.9 shows the parameter maps of the MS subjects. The top row shows the

estimates for an early stage MS subject, while the bottom row shows the estimates

for a late stage MS subject. First from the left is an FA image with the overlaid

lesion mask (red areas in squares) and the contralateral NAWM (green areas in

circles). The remaining three columns are parameter maps from the same slice

estimated using the neural network model.

In the case of the early MS subject (top row), an initial visual inspection of

the parameter maps suggests that the neural network does not detect any obvious

parameter differences in the lesion in the genu (top area in a square), compared to

the respective NAWM tissue (top area in a circle). In contrast, for the lesion in the

splenium (bottom area in a square), an initial visual inspection reveals differences

in f and τi when compared to the NAWM (bottom area in a circle), especially in

the parameter maps for τi. The neural network estimates of τi are reduced relative

to the NAWM area, and the volume fraction is also slightly lower when compared
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Figure 5.9: FA image (1st column) and parameter maps of of f ,τi and d (2nd ,3rd ,4th

columns) estimated by the neural network model across representative axial,
coronal and sagittal slices of two MS patients. The scan of MS subject 1 in the
top row shows two lesions (red areas in blue squares) in the genu (top of the
scan) and the splenium (bottom of the scan) of the CC. The scan of MS subject
2 in the bottom row shows one lesion in the CST (red area in the square). For
each lesion, its corresponding contralateral NAWM mask is shown as a green
area in a circle.

to the contralateral NAWM region. In the case of the late MS subject (bottom row),

an initial visual inspection of the whole white matter mask reveals more dramatic

changes in the parameter maps compared to the early stage subject. It can be noticed

that τi estimates in the body of the CC are lower than in other regions of the MS

subjects. This could be explained by partial volume effects due to the CSF in the

adjacent ventricles, especially as the ventricles become enlarged as can be seen in

the late MS subject in the bottom row. We notice a reduction in f and τi in the lesion

area (red area in a square) compared to the contralateral NAWM (green area in a

circle). For both subjects, the trends are in perfect agreement with those estimated

by the random forest model in the previous chapter.

To provide a more quantitative analysis, we calculate the mean and the standard

deviation for all parameter estimates in the lesions shown in Figure 5.9 and their

respective contralateral NAWM, which we show in Table 5.3. In addition to this,

to aid comparison between the estimates of the two machine learning approaches,

we include the results of the random forest model (from Table 4.5). For the CC-G

lesion in the first MS subject, the only statistically significant difference estimated

is in d, which is higher in the lesion than in NAWM. The differences in f and τi
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MS subject 1 MS subject 2

CC: Genu CC: Splenium CST

NN Lesion NAWM Lesion NAWM Lesion NAWM

f 0.48(0.02) 0.49(0.02) 0.47(0.04) 0.49(0.05) 0.45(0.01) * 0.50(0.01)
τi 531(78) 497(92) 91(84) * 267(180) 204(180) * 616(50)
d 1.88(0.13) * 1.61(0.19) 1.74(0.19) 1.83(0.26) 2.14(0.03)* 1.87(0.20)

RF Lesion NAWM Lesion NAWM Lesion NAWM

f 0.48(0.03) 0.49(0.03) 0.48(0.02) 0.50(0.03) 0.46(0.01) * 0.50(0.04)
τi 537(66) 491(83) 154(85) * 302(130) 138(92) * 595(50)
d 1.73(0.12) * 1.52(0.16) 1.64(0.21) 1.74(0.23) 1.99(0.07) * 1.77(0.17)

Table 5.3: Mean and standard deviation of the neural network (top table) and random forest
(bottom table) estimates of f ,τi and d in MS lesions compared to contralateral
NAWM of both MS patients. Lesion values which are statistically different (p <
0.02) from values in the contralateral NAWM are marked with the ’∗’ symbol
and highlighted in bold.

are not statistically significant. For the CC-G lesion of the same subject, the mean

τi estimate in the CC-S lesion is 91 ms, compared to 267 ms in the contralateral

NAWM, confirming the initial visual inspection of the parameter maps. For the

second, late-stage MS subject, the neural network estimates a reduction in f from

0.50 to 0.45, and a significant drop in τi, from 616 ms in the NAWM to 204 ms in the

lesion. We also notice an increase in d, although for d the change is the same order

of magnitude as the standard deviation across the ROI. Lesion parameter values for

which there is a statistically significant difference (p<0.02) to the values in NAWM

are marked with stars.

Both the neural network and the random forest detect the same pairs of le-

sions/NAWM with statistically significant differences. The absolute values of the

mean estimates are also very close between the two machine learning approaches,

with only very minor differences, all smaller than the standard deviation of the

mean. We also observe no significant differences in the magnitude of the standard

deviations between the neural network and the random forest, for the majority of pa-

rameters across both subjects. There is only one instance in the CST lesion, where

the standard deviation of the neural network estimates of τi is twice as large as that

of the random forest. However, this could be explained by the small number of
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voxels in this particular region.

5.4 Discussion

Synthetic experiments We find that the neural network estimates in the noise-free

scenario have very strong correlations with the ground truth values, providing an

excellent benchmark performance for our model and imaging protocol f : R2 = 0.81,

τi: R2 = 0.95, d: R2 = 0.99. We show that the presence of noise with SNR=20,

matching that of our in-vivo data, has a negligible effect on the estimation of d

(R2 = 0.98), and a stronger effect on the estimation of τi and f ( f : R2 = 0.71, τi:

R2 = 0.74). Nevertheless, the performance of the neural network is still sufficiently

good, with values of τi up to approximately 700 ms estimated well and centred

around the diagonal line (Figure 5.4).

In-vivo experiments. The scan-rescan experiments in healthy subjects show that

the neural network has good reproducibility with highly consistent trends across

the white matter (e.g. the high-low-high trend in f across the mid-sagittal CC).

As discussed in the previous chapters, the absolute values of the estimations are

inherently difficult to validate, especially in the case of τi. Existing studies report

values of τi between 300 and 600 ms for axons with radii of 0.5–1 µm. The mean

estimated τi in the healthy subjects’ ROIs lie at the higher end of this range, with the

CC-S and CST-L means above 600 ms (CC-S: µ = 651±39 ms, CST-L: µ = 623±

95 ms). This could be explained by the presence of axons larger than 1 µm in the

actual human white matter tissue [16], in which we expect longer values of τi, as the

water molecules take longer to leave the intra-axonal space. The maps of f reveal

the characteristic high-low-high trend across the mid-sagittal CC, consistent in both

scan and rescan maps. The estimated values for this parameter lie in the range [0.4,

0.65], a plausible range for white matter tissue [73]. Similar to the random forest

results, the upper bound is slightly lower than expected, but as suggested by the

simulation results, large f tends to be underestimated when the data is noisy. The

scan and rescan maps of d are highly consistent. The estimations for most voxels

lie in the range 1.4-2 x10−9 m2s−1, which is plausible for white matter tissue.

In MS subjects, we observe trends in line with the expectations of demyelinat-
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ing pathologies: a significant reduction in f and τi in the lesions compared to the

NAWM. We expect to see a decrease in the exchange time as the water molecules

encounter less barriers when leaving the intra-axonal space due to the destruction

of the myelin layer that surrounds the axons. In addition to this, we also expect to

see a decrease in f due to the destruction of the myelin sheath and potential axonal

loss characteristic of MS lesions [155, 156, 157]. When comparing the NAWM in

MS subjects to the same ROIs in healthy subjects (presented in Table 5.2) we ob-

serve that the trends continue and the neural network estimates a decrease in f and

τi. This is in line with expectations that there is underlying damage in the NAWM

compared to healthy tissue [158]. For example, we find that in the CC-S of the

healthy subjects, the mean estimated τi is 606 ms, while in the CC-S of the MS

patient the mean τi is 267 ms in the NAWM and 91 ms in the lesion. In line with the

results in Chapter 4, we find negligible differences between the parameters in the

lesion and the NAWM tissue for the first MS subject which can potentially be ex-

plained by the early stage of the disease. As in the case of the random forest, these

are just preliminary results because the number of both MS and healthy subjects is

small. However, the trends are plausible and the estimated parameters sensible.

Random forest comparison. The performance of the neural network and ran-

dom forest on synthetic data with realistic levels of noise (SNR=20) is very sim-

ilar. Both approaches show no general estimation bias, and a local overestima-

tion/underestimation bias for small/large values of f and τi. We observe no differ-

ence between the correlation coefficients for f and d between the two machine

learning approaches. In the case of τi, the R2 score of the neural network is

slightly higher than that of the random forest: R2 = 0.74 for the neural network

and R2 = 0.70 for the random forest. By visually inspecting the correlation plots,

we can see that the neural network estimates well exchange times up to 700 ms,

after which the estimates level off (Figure 5.4). The estimates of the random forest,

on the other hand, level off around 600 ms (see Figure 4.8). These results suggest

that the neural network learns the relationship between the noisy synthetic DW-MRI

signals and the exchange time slightly better than the random forest.

In our in-vivo analysis, we find a very good agreement between the estimates
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of the neural network and the random forest. For the scan-rescan data of the healthy

subjects, the mean f and d estimates of the two approaches are within the same

range. For τi, the neural network estimates are slightly higher in some ROIs than

those of the random forest. The neural network estimates mean τi values up to

700 ms, while the random forest estimates mean values up to 600 ms. This can be

explained by our simulation results, which show that the estimates of the random

forest level off around 600 ms, while those of the neural network level off at 700

ms. Nevertheless, the differences between the two machine learning approaches are

within one standard deviation of the mean. Moreover, a visual inspection of the

parameter maps for the two approaches reveals a very good agreement between the

two (e.g. the same areas of very fast exchange in the axial slice of the brain).

For the MS subjects, the two approaches detect the same statistically significant

changes between the lesions and NAWM for both subjects. In addition to this, there

is a very good agreement between the ROI mean estimates of the neural network

and of the random forest, with all differences within a standard deviation from the

mean. When comparing the reproducibility of the two approaches (Figure 5.7), we

find that the two methods have equivalent reproducibility for d, while for f and τi,

the random forest has a better reproducibility. For τi, the 95% agreement lines in

the Bland Altman plots are slightly narrower for the random forest (by 27%). A

potential explanation for this could be that the random forests estimates cannot be

outside the parameter values in the training data, while the estimations of the neural

network are unbounded. This results in wider ranges over which the neural network

scan-rescan estimates can differ, potentially reflected in wider 95% agreement lines.

5.5 Conclusions

In this chapter, we extend our computational framework in Chapter 4 to a neural

network approach. We demonstrate the idea by testing the model’s ability to es-

timate f , τi, and d in simulations and in clinical data from two healthy and two

MS patients. First, using simulations mimicking white matter tissue, we show that

the neural network has a very good benchmark performance, and that despite the

presence of noise, the parameters are still well estimated. For τi, the neural network
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estimates well exchange times up to 700 ms, providing a slight improvement over

the equivalent random forest results in the presence of noise (R2=0.74 for the neural

network vs R2=0.70 for the random forest). Next, using in-vivo scans of healthy and

MS subjects, we show that our neural network model provides parameter estimates

within the plausible range for human white matter tissue and in line with expecta-

tions from the MS pathology (a significant decrease in f and τi and a mild increase

in d). The in-vivo estimations of the neural network are in very good agreement

with the random forest estimations, with all differences within a standard deviation

from the mean. Furthermore, we show that the two machine learning approaches

have similar reproducibility when estimating d, while in the case of f and τi, the

random forest has a better reproducibility than the neural network.

These are just preliminary results because the number of both MS and healthy

subjects is quite small. However, the trends measured by both machine learning

approaches are plausible and the estimated parameters sensible. We show some

promising new results, however a larger study with available histological data is

necessary in order to investigate whether the parameters estimated by our compu-

tational framework, in particular τi, could act as suitable biomarkers for detecting

and tracking changes in MS pathology. We aim to address this issue in the next

chapters, by testing our computational framework on a controlled mouse model of

demyelination with available histological data.



Chapter 6

Random Forest based computational

models with permeability: Mouse

model of demyelination - Sequence

sensitivity, optimisation and synthetic

testing

The previous two chapters introduced machine learning based white matter models

with permeability, using a random forest (Chapter 4) and a neural network (Chapter

5) approach. We demonstrate, using Monte Carlo simulations and in-vivo healthy

and MS patient data, that this is a promising new approach for permeability estima-

tion, providing good reproducibility and plausible parameter estimates for human

white matter tissue.

In order to be able to quantitatively investigate the performance of our compu-

tational framework, we design experiments that use a preclinical cuprizone mouse

model of demyelination, which is extensively used in the MS literature due to its

similarity to the processes occurring in MS lesions [162]. We then compare the

estimates of our random forest and neural network models to available histological

data.

These experiments are presented in the following three chapters. The first

chapter (Chapter 6) presents the synthetic experiments which investigate the sen-
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sitivity of the preclinical mouse imaging protocol, optimise the random forest per-

formance with respect to the protocol, and test the simulation performance of the

random forest given the new protocol and synthetic dataset. The second chapter

(Chapter 7) experimentally investigates the in-vivo performance of the random for-

est through a direct comparison with histological electronmicroscopy (EM) data

from the same mice. The third chapter (Chapter 8) presents an experimental study

of the synthetic and in-vivo performance of the neural network model using the

preclinical mouse data.

The overall purpose of the three chapters is to experimentally investigate ma-

chine learning based computational models with permeability using a controlled

mouse model of demyelination through a direct comparison with histology.

Parts of this work are featured in the recently submitted paper to NeuroImage:

Machine learning based white matter models with permeability: An experimental

study in cuprizone treated in-vivo mouse model of axonal demyelination I. Hill et

al. [163].

6.1 Motivation

In Chapter 4 we introduce for the first time a machine learning approach using a

random forest and a database of rotationally invariant features for the in-vivo es-

timation of axonal permeability. The study in [132], covering part of the results

in Chapter 4, shows that our random forest computational model outperforms the

most widely used analytical model with exchange [92, 6, 40], the Kärger model

[85], in both synthetic and in-vivo human data, by providing more reproducible and

robust estimates of τi. In addition to this, the model also improves on previous

computational models with permeability by being independent of fibre orientation

and through using a machine learning approach capable of generalising to new un-

seen data. However, the new approach is tested in-vivo only qualitatively, using

just two healthy and two MS patients, and needs further validation. Furthermore,

the study hypothesises that τi is linked with demyelination in MS lesions, and does

not show whether other underlying processes such as axonal swelling or orientation

dispersion affect the estimates. The work in this Chapter, together with Chapter 7,
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aims to address these issues and experimentally validate the random forest approach

introduced in Chapter 3.

The aim of this chapter is threefold. Firstly, we aim to investigate the sensitivity

to the exchange time of the SDE protocol used to acquire the mouse in-vivo data

in order to ensure there is enough information in the data. Secondly, as the SDE

protocol uses an explorative range of sequence parameters, we aim to select the most

informative shells (i.e. b-values and directions) with respect to the exchange time to

optimise the performance of our model. We also investigate how the performance of

the random forest is affected by the level of noise and by the number of shells used

for training. Thirdly, we test the performance of the random forest in the noise-free

and SNR=40 case using a previously unseen synthetic test set. While the noise-

free dataset provides a benchmark performance for our model, the SNR=40 case

provides an indicative performance of the model on the in-vivo mouse data, which

is affected by similar levels of noise. To run the experiments in this chapter, we use

Monte Carlo simulations mimicking white matter substrates representative of the

mouse in-vivo data we analyse in Chapter 7.

6.2 Methods
This section introduces the diffusion imaging protocol and synthetic data used in

this chapter. Next, it outlines the sensitivity analysis experiments, the shell selection

procedure and the training and testing of the random forest.

6.2.1 Diffusion imaging protocol

We use the same SDE protocol for the synthetic data in this chapter as for the in-

vivo data in the next two chapters. We do not use a STEAM protocol as in the pre-

vious two chapters as the preclinical dataset in the remaining chapters was aquired

using a protocol that was originally designed to maximise signal reconstruction ac-

curacy under realistic time constraints [164]. Our imaging protocol has 25 shells,

each with one b=0 measurement and a different combination of diffusion gradient

strength G and diffusion gradient separation ∆, as summarised in Table 6.1. The

resulting protocol has 345 measurements in total, diffusion gradient duration δ = 5

ms, |Gmax|= 500 mTm−1 and shell b-values as shown in Table 6.1. Additional pro-
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tocol details are as follows: T E = 33.6 ms, T R = 2 s, FOV = 16x16 mm, matrix

size = 160x160, number of slices = 5, slice thickness = 0.5 mm.

G (mT/m)
∆ (ms) 10.8 13.1 15.4 17.7 20 # grad dirs

150 358 445 533 620 707 16

200 620 775 930 1086 1241 16

300 1384 1733 2083 2432 2781 8

400 2489 3110 3731 4352 4973 11

500 3892 4862 5833 6803 7773 13

Table 6.1: SDE parameters with the corresponding nominal b-values in s/mm2.

6.2.2 Synthetic data

To construct our computational model, we first generate two synthetic databases:

one formed of simulated DW-MRI signals and one formed of rotationally invariant

features derived from the simulated signals. Each entry in the database corresponds

to a unique digital phantom which mimics the in-vivo data and for which the ground

truth microstructure parameters are known. Each synthetic database is used to train

a machine learning algorithm, here a random forest, to build a mapping between the

signal or features and the corresponding ground truth microstructure parameters.

6.2.2.1 Synthetic signals database

We use Monte Carlo simulations of the DW-MRI signal to build our synthetic train-

ing database. The signals are generated using the open source Camino ([140];

http://camino.cs.ucl.ac.uk) simulation framework [98] together with the imaging

protocol in Table 6.1. Each simulated signal corresponds to a digital phantom which

mimics in-vivo mouse brain white matter. The digital phantoms are represented by

synthetic substrates that model white matter as a collection of 100,000 non-abutting,

parallel cylinders with gamma-distributed radii, a common choice in the brain litera-

ture [16]. The cylinders are randomly packed in the substrates as described in [98],

with example substrates shown in Figure 6.1. We construct a database of 11,000

unique tissue substrates and their corresponding DW-MRI signals by randomly sam-

pling from a range of histologically plausible substrate parameters for white matter
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tissue [16, 71]. A white matter synthetic substrate is defined through five parame-

ters: the mean µRε[0.2,1] µm and the standard deviation σRε[min(0.1,µR/5),µR/2]

µm of the axon radii distribution, the intra-axonal volume fraction f ε[0.4,0.7], the

intra-axonal exchange time τiε[2,1000] ms and the intrinsic diffusivity dε[0.8,2.2]

µm2ms−1. To ensure the convergence and the high precision of the simulated sig-

nals, we generate our synthetic database using 100,000 spins and 2,000 time steps

[98]. The permeability of a substrate is specified within the Camino simulation

framework via the probability parameter p. This parameter expresses the proba-

bility that a spin steps through a membrane encountered during the random walk

(instead of always being reflected backwards as it is the case for impermeable sub-

strates). Similarly to the other Chapters, the relationship between τi and p is given

by the expression p = R
2∗τi

√
6δ t

d , where d is the intrinsic diffusivity, R is the axon

radius and δ t is the temporal resolution of the simulation.

To maximise the performance of our machine learning regressor, we aim to

build a training database that resembles as closely as possible the in-vivo data.

For this, we generate an additional set of synthetic signals to account for the noise

present in the in-vivo data. We add Rician noise with a standard deviation σ corre-

sponding to an SNR of 40, which reflects the noise level of the b=0 images with the

longest ∆.

6.2.2.2 Synthetic features database

In addition to the signals database, we construct a rotationally invariant feature

database as introduced in Table 4.2 from Chapter 4. We compute the DTI and the

4th order SH fit for each shell from the synthetic signals using the Camino toolkit

[140]. We then derive 15 rotationally invariant features for each shell and build

an equivalent rotationally invariant synthetic database. The first five signal-derived

features are calculated from the DTI fit and are the three eigenvalues λ1,λ2,λ3, the

mean diffusivity (MD) and the fractional anisotropy (FA). The remaining ten fea-

tures are derived from the SH fit: the mean, peak, anisotropy, skewness and kurtosis

of the apparent diffusion coefficient together with the peak dispersion and simple

combinations of the first, second and fourth order spherical harmonics.
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Figure 6.1: Histograms of two example axon diameter distributions used to generate syn-
thetic substrates for our Monte Carlo simulations (first row). Figure also shows
four digital tissue substrates corresponding to the two example axon diameter
distributions and two different intra-axonal volume fractions: 0.4 (second row)
and 0.7 (third row).

6.2.3 Machine learning

6.2.3.1 Random Forest

Following from Chapter 4, we build a random forest regressor that learns a map-

ping between the synthetic training database of DW-MRI signals/features and the

ground truth microstructure parameters of the corresponding substrates. The map-

ping is learnt through a greedy splitting process of the input space (the synthetic

signals/features) guided by the associated tissue parameters provided as labels dur-

ing training.

There are two important parameters that need to be optimised to improve the
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learning performance of a random forest: the number of trees and the maximum tree

depth. The number of trees determines the smoothness of the decision boundary,

and the tree depth parameter specifies the maximum levels that each decision tree

can have. Too large a value can lead to overfitting while too low a value can lead

to underfitting, depending on the complexity of the data. Here, we run preliminary

experiments and optimise these two parameters for our task in order to maximise

the performance of our model.

6.2.3.2 Training and testing

We implement a random forest regressor using the scikit-learn open source Python

toolkit [153]. Following preliminary experiments, we build a random forest with

200 trees of maximum depth 20 and bagging, as the setting the maximises the

performance of the model. More general implementation details can be found at

http://scikit-learn.org/. We train the random forest for a multi-parameter regression

task: we estimate the intra-axonal exchange time τi together with the intra-axonal

volume fraction f and the intrinsic diffusivity d. We do not fit the axon radius index

[73] due to the lack of sensitivity of the signal to this parameter for our imaging

protocol [138].

The dimensionality of our synthetic databases is 345 for the each signal in the

database and 375 for each feature vector. We set the size of the training set to 10,000

as we did not find any improvements in performance above this number. The length

of each synthetic training sample is reduced further during training according to the

number of shells selected in each training scenario. We train and test the random

forest on the synthetic databases using the associated ground truth parameters as

labels for the supervised regression task. When predicting the parameter maps for

the in-vivo data, we train the random forest using the noisy databases as they are

a more accurate representation of the in-vivo data. We split our synthetic database

into a training set of 10,000 randomly selected signal/feature vectors and a test set

formed of the remaining previously unseen 2,500 signal/feature vectors. As shown

in [132], the random forest is not biased by the random selection of the training data

as long as there is sufficient coverage of the parameter range, which we also ensure.

We adopt two different training scenarios for our experiments. The first one
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uses the raw signal database for training, and the second one uses the rotationally

invariant feature database obtained as in Section 6.2.2.2. While the first approach

builds a direct mapping between the raw signals and the ground truth microstructure

parameters, the second approach introduces an additional step of model fitting and

constructs a mapping between the DTI and SH features of the raw signals and the

microstructure parameters of interest.

6.2.4 Experiments

6.2.4.1 Sensitivity analysis

To ensure there is enough information in the data, we investigate the sensitivity of

our SDE protocol to the intra-axonal exchange time by looking at the range of τi

values for which the DW-MRI signal can be distinguished from that of an imper-

meable substrate. For this, we consider two synthetic substrates representative of

mouse white matter tissue, with the following properties: the mean axonal diameter

µD = 0.4 µm and µD = 2 µm, mimicking small and large axons in the CC [71],

the intra-axonal volume fraction f =0.7 [71], and the intrinsic diffusivity d = 1.2

µm2ms−1 [165]. These substrates are a good representation of our in-vivo mice data,

as shown by the histological measurements of µD in the next Chapter, all within the

range of the gamma-distributions above. Using the Camino toolbox, we generate

synthetic signals for each substrate and different values of δ ,∆,G, corresponding

to the shells in our SDE protocol. The diffusion gradients are set perpendicular to

the cylinders in the substrate to maximise sensitivity to τi. We investigate whether

exchange time effects can be detected in the signal by looking at the difference in

the normalised DW-MRI signal between impermeable (τi = ∞) and permeable sub-

strates. Moreover, we analyse the effect of noise by looking at a range of different

SNRs: SNR=∞, SNR=40 and SNR=20, where SNR=40 corresponds to the level of

noise present in our in-vivo data. By using synthetic substrates representative of our

in-vivo data and the same imaging protocol, we expect the analysis in this section

to provide an indicative range of exchange time values for which there is reasonable

sensitivity in our in-vivo data.
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6.2.4.2 Shell selection

As our imaging protocol uses an explorative range of imaging parameters, we select

the shells that maximise the performance of our random forest model with respect

to τi. For this, we evaluate the performance of our random forest model for every

possible combination of 4, 9 and 16 shells out of the 25 in our protocol. We first

evaluate combinations of 4 shells using as a benchmark the number of shells of

the STEAM protocol in Chapter 4 optimised [72] for a two-compartment model

with exchange and biophysically plausible tissue parameters. As there are 12,650

possible combinations of 4 shells, we train the random forest 12,650 times, once on

each different shell combination. Then, for each training scenario corresponding to

a unique combination of shells, we compute the correlation coefficient R2 for f , τi

and d between the ground truth and the estimated values in the test set. Finally, we

sort the different shell combinations according to their R2 score for τi, and choose

the combination with the highest score as the one that maximises the performance

of the model.

Furthermore, we investigate the effect of increasing the number of shells used

for training. For this, we also look at combinations of 9 shells, as the minimum

number of shells required to sample independently every unique G and ∆ value in

our SDE protocol. Additionally, we look at combinations of 16 shells as a middle

value between the 9-shell and the full protocol scenario. For this analysis, we use the

synthetic feature-based dataset described in Section 6.2.2.2. Finally, we investigate

the effect of noise on the performance of our model. For this, we look at a range

of different SNRs: SNR=∞, SNR=40 and SNR=20, where SNR=40 corresponds to

the level of noise present in our in-vivo data.

6.2.4.3 Synthetic experiments

To assess the quality of the random forest estimates after training is completed,

we compute the Pearson correlation coefficient R2 between the ground truth values

and the random forest estimates of the parameters in the previously unseen test

set. To evaluate any potential bias in the estimates, we use Bland-Altman plots

showing the mean of the ground truth and estimated parameter values against their

difference. We first analyse the performance of the model on the noise-free synthetic
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databases to establish a benchmark given our data and imaging protocol. Next, we

apply our machine learning model to the SNR=40 database as an indicative in-

vivo model performance. For each experiment, we analyse both training scenarios

outlined in Section 6.2.2 (signal-based and feature-based) to test whether there are

any differences in performance between the two approaches.

6.3 Results

6.3.1 Sensitivity Analysis

Figure 6.2 shows the range of exchange time values for which the DW-MRI signal

S(τi) can be distinguished from that of an impermeable substrate S(τi = ∞) in the

presence of noise. For this, we calculate the change in signal |S(τi = ∞)− S(τi)|

between a permeable S(τi) and an equivalent impermeable S(τi = ∞) substrate. To

illustrate practically achievable sensitivities, we plot this difference against three

noise levels, denoted by the black plane: SNR=∞ (1st column), SNR=40 (2nd col-

umn) and SNR=20 (3rd column). Figure 6.2A illustrates the results for a substrate

mimicking large axons in the white matter (µD = 2 µm), while Figure 6.2B corre-

sponds to a substrate with smaller axons (µD = 0.4 µm). The second column shows

that, for substrates with large axons (row A) and an SNR of 40, matching that of our

in-vivo data, it is possible to distinguish exchange time effects for τi ≤ 400 ms. For

substrates with small axons (row B), we can distinguish only permeable substrates

with exchange times up to τi ≤ 250 ms. As expected, when the SNR drops to 20,

it becomes harder to distinguish between impermeable and permeable substrates.

This trend can be observed in the 3rd column, where the range for distinguishable

permeable substrates narrows from τiε[0,400] ms to τiε[0,200] ms for large axons,

and from τiε[0,250] ms to τiε[0,140] ms for small axons.

6.3.2 Shell selection

As our original 25-shell SDE protocol uses an explorative range of imaging param-

eters, we optimise it with respect to the exchange time by choosing the shells most

sensitive to τi (see Section 6.2.4.2 for further details). In Figure 6.3, each point on

the x-axis represents one unique shell combination and the corresponding y-axis

value indicates the R2 score when the random forest is trained on that particular
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Figure 6.2: Exchange time ranges over which impermeable and permeable substrates can
be distinguished for different noise levels and tissue substrates. Figure shows
the difference in the DW-MRI normalised signal between impermeable (τi =∞)
and the equivalent permeable (τiε[2,1000] ms) substrates. Figure 6.2A) shows
results for a substrate with intra-axonal volume fraction f =0.7 and mean axonal
diameter µD = 2 µm, representing large axons in the mouse brain. Figure 6.2B)
illustrates the results for a substrate with f =0.7 and µD = 0.4 µm, mimicking
small axons in the brain. The level of signal detectability is displayed for three
SNR levels (∞, 40 and 20), represented by the black planes, below which any
change in signal is undetectable.

shell combination. For example, the x-axis in Figure 6.3A will have 12,650 points,

each one corresponding to one of the 12,650 unique 4-shell combinations. As we

are interested in the performance of the model with respect to τi (1st column), we

rearrange the shell combinations in increasing order according to their R2 for τi.

This results in a monotonically increasing curve for τi, as seen in the first column.

For f (2nd column) and d (3rd column), we keep the x-axis ordering consistent with

the results for τi in the 1st column.

The R2 scores curves in the 1st column of Figure 6.3 show that only a limited

number of shell combinations have a good correlation coefficient and are optimal

for estimating τi, while the R2 scores in the 2nd and 3rd column show that the

majority of shell combinations provide good estimates of f and d. For example, in

the noise-free (blue curves) 4-shell case in the top row, we notice that the difference

in R2 score for τi between the best and the worst performing shell combinations

is approximately 0.5. In contrast, this difference is much narrower for f and d:

0.2 for f and 0.1 for d. We observe the same trends for SNR=40 (orange) and

SNR=20 (green), however, the differences in R2 scores between the worst and the

best performing shell combinations are smaller due to the presence of noise.
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Figure 6.3: Performance of the random forest model trained on different combinations of 4
(A) and 9 (B) shells. In the first column, each curve shows the R2 score (y-axis)
of the random forest trained on a different combination of shells (x-axis). The
shell combinations are sorted in increasing order according to their R2 score.
The second and third columns show the R2 scores for f and d, which are sorted
according to the order of the first column. We show the results for three levels
of noise: SNR = ∞ (blue curve), SNR=40 (orange curve) and SNR=20 (green
curve). The R2 score for τi is calculated only for values ≤ 400 ms as this is the
range over which we are sensitive to this parameter (see Section 6.3.1).

By comparing the best R2 scores on the blue curves in Figure 6.3A and Figure

6.3B, we can see that there is no difference in performance in the noise-free scenario

between using the best combination of 4 or 9 shells. However, this changes with

the addition of noise. For example, for SNR=40 (orange curves) the R2 score of the

best 9-shell combination is 0.67, 0.07 higher than for the best 4 shells. This trend is

similar for SNR=20 (green curves), with a difference of 0.1 between 9 and 4 shells.

For the 16-shell scenario, we found no improvement in performance over using 9

shells.

Figure 6.3 also shows the effect of noise on the estimation of each parameter.

As expected, the addition of noise results in lower R2 scores, a trend that holds for

all parameters and across the 4 and 9-shell case. However, the estimation of τi is

the most affected by the presence of noise: the maximum correlation coefficient

drops from 0.82 in the noise-free case to 0.67 for SNR=40 and even further to 0.52

for SNR=20. For f (2nd column), the effect of noise is considerably smaller: R2
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drops from 0.99 for SNR=∞ to 0.94 for SNR=20. The estimation of the intrinsic

diffusivity d is very robust to noise: the correlation coefficients remaining very

high (0.99) even when training the model on the SNR=20 dataset. Furthermore,

we found that all the top 100 combinations contain the two highest b-value shells

(6,803 smm−2 and 7,773 smm−2 ) with the two longest ∆s. Additionally, we find

that high b-value shells only maximise the performance of the random forest in

combination with low b-value shells (775 and 930 smm−2). For SNR=40 (orange

curves), which we use when predicting on the in-vivo data, we found that the best

combination of 9 shells sorted by b-value is [620, 775, 930, 1241, 1384, 2489, 4973,

6803, 7773] smm−2 with an R2 score of 0.67, and the best combination of 4 shells

is [775, 930, 6803, 7773] smm−2 with an R2 score of 0.60. Since we are looking to

optimise our framework for in-vivo estimation on the mouse data, we will run the

in-vivo experiments using the best 9-shell combination in the SNR=40 scenario, as

the noise level which matches our in-vivo data.

6.3.3 Synthetic experiments

Figure 6.4 shows the random forest results obtained using the feature (top row) and

the signal (bottom row) noise-free databases. To assess the quality of our fit, we

display the results using Bland-Altman plots and colour each data point according

to how close the estimates are to the ground truth values. To aid visual interpre-

tation, we cap the percentage error at ±50%. The mean difference between the

ground truth and the estimated values is shown by the black line and the 95% up-

per and lower limits of agreement by the dashed lines. For all three parameters of

interest, we observe no overall estimation bias as the estimates are spread equally

around the zero-difference black line. However, for τi, the parameter recovery is

not perfect and the Bland-Altman plots show an overestimation bias for small val-

ues of τi and an underestimation bias for large values. The R2 scores show a strong

correlation between the estimates of our model and the ground truth parameter val-

ues: R2
τi
= 0.82/0.84 (features/signals database), R2

f =0.99 (both databases), and

R2
d = 0.99 (both databases). When assessing the models performance with respect

to the two training databases (features/signals), we observe no significant differ-

ence between the two approaches. The R2 scores remain unchanged for f and d
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and show only a minor difference for τi: R2
f eatures = 0.82 / R2

signals = 0.84. The ad-

vantages of each approach are discussed further in the next section. The noise-free

results in Figure 6.4 provide a benchmark performance of the model given our data

and imaging protocol.

Figure 6.4: Bland-Altman plots for the random forest estimates of f , τi and d using the
features (top row) and signals (bottom row) noise-free simulated database. To
aid visual interpretation, the plots are colour-coded with the percentage error
capped at ±50%.

Figure 6.5 shows the equivalent results for SNR=40. The presence of noise

results in wider limits of agreement and affects differently the prediction of each

parameter. The mean difference lines for all three parameters remain at zero, show-

ing no general bias in the estimates. Intra-axonal volume fraction and diffusivity

continue to be very well estimated and their correlation coefficients are only very

mildly affected by the presence of noise: R2
f = 0.97 and R2

d = 0.99, equal for both

training databases. In contrast to this, the presence of noise has a stronger effect on

the estimation of τi, resulting in a lower R2 score and a more pronounced overes-

timation/underestimation bias for small and large values respectively. Despite this,

we find that the random forest works well within the sensitivity range computed in

Section 6.3.1, with a sufficiently good correlation coefficient between the models

estimates and ground truth for τi ≤ 400 ms (R2=0.68). Outside this indicative sen-

sitivity range, the correlation coefficient is very weak: R2= 0.07 for τi ≥ 400 ms. In
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line with the noise-free case, we continue to see no significant difference between

the signal and the feature approach: R2
f eatures = 0.67 / R2

signals = 0.68.

Figure 6.5: Bland-Altman plots for the random forest estimates of f , τi and d using the
features (top row) and signals (bottom row) simulated database with SNR=40,
matching the noise level in our in-vivo data. To aid visual interpretation, the
plots are colour-coded with the percentage error capped at ±50%.

6.4 Discussion
Sensitivity analysis. Our sensitivity analysis shows that our imaging protocol has

good sensitivity for exchange times in the range τiε[0,400] ms for substrates with

large axons (µD = 2 µm) and in the range τiε[0,250] ms for substrates with small

axons (µD = 0.4 µm), under noise conditions matching that of our in-vivo data

(SNR=40). Generally speaking, the noise in the data affects the sensitivity differ-

ently, depending on the mean axon diameter in the substrate. For substrates with

large axons (µD = 2 µm), the sensitivity halves from τiε[0,400] ms for SNR=40

to τiε[0,200] ms for SNR=20. For substrates with smaller axons (µD = 0.4 µm),

decreasing the SNR from 40 to 20 has a smaller effect on the sensitivity range, re-

ducing it by 44% from τiε[0,250] ms to τiε[0,140] ms. Furthermore, we found that

the larger the axons in the substrate, the better the sensitivity range. Substrates with

µD = 2 µm have a sensitivity range wider by 60% for SNR=40 and by 43% for

SNR=20 than substrates with µD = 0.4 µm.
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Shell selection. To optimise the performance of the machine learning model, we

explore the wide range of parameters in our SDE protocol and select the best com-

bination of 4 and 9 shells. We show that for our in-vivo data with SNR=40 the

number of shells that maximises the performance of the model is 9, with the b-

values [620, 775, 930, 1241, 1384, 2489, 4973, 6803, 7773] smm−2 and an R2

score of 0.67. When analysing the best combinations of 4 and 9 shells, we ob-

serve that they sample every value of ∆ in our sequence, resulting in a combination

of low and high b-value shells. This finding is in accordance with the optimised

STEAM protocol in Chapter 4, which contains two long ∆ and two short ∆ shells.

Additionally, this result is also in line with the feature importance results from the

same chapter, which show that both long and short ∆ shells are informative for the

parameter estimation. All in all, these results suggest that to maximise sensitivity

to the intra-axonal exchange time, it is necessary to include a combination of short

and long ∆s.

We show that noise is an important factor for the performance of our model.

We find that in the noise-free case, it is sufficient to use only 4 shells, as introducing

more shells does not improve the model performance. However, in the presence

of noise, we find that increasing the number of shells from 4 to 9 improves the R2

score between the estimated and the ground truth τi. A potential explanation for

this is that the addition of noise corrupts the information in each shell, and having

more shells to corroborate information from helps the random forest model learn

better. Our analysis also reveals that increasing the number of shells above 9 does

not offer any additional benefits even in the presence of noise. Moreover, we show

that noise has a stronger effect on the estimation of τi, for which the R2 score drops

from≈0.85 in the noise-free case to≈0.5 for SNR=20. The estimation of f and d is

considerably more robust: R2
noise− f ree=0.99 versus R2

SNR=20=0.94 for f and no drop

for d. This suggests that SNR plays an important role in a protocol’s suitability for

permeability estimation using our approach.

Synthetic data experiments. The random forest model estimates in the noise-free

case have very strong correlations with the ground truth values, providing an excel-

lent benchmark performance for our model and imaging protocol (f: R2=0.99, τi:
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R2=0.84 d: R2=0.99). We show that the addition of noise with SNR=40, matching

our in-vivo data, does not affect much the estimation of f and d ( f : R2=0.97, d:

R2=0.99), however, it has a stronger effect on the estimation of τi. In line with our

sensitivity results, for τi < 400 ms the effect is present, however, the performance

is still sufficiently good (R2=0.68), while for τi > 400 ms the performance of the

model is severely affected (R2=0.07).

In addition to this, we compare for the first time the signal and feature train-

ing approaches and show that there is no significant difference in the our model’s

performance according to which database is used for training. This is a significant

result as it shows that when extracting the rotationally invariant features from the

raw signals we do not lose information that is essential for training our model. Con-

sequently, we can use the feature database without affecting the performance of our

model. The advantage of a rotationally invariant feature approach is that it does not

require the generation of a new library for every new acquisition protocol as long

as the b-values and the TE of the protocols match. Nevertheless, as we will discuss

in the next chapter, caution should be applied with this approach when the acqui-

sition protocol uses high gradient strengths (G ≥ 300 mT/m) and the SNR is low,

such as conditions often found in the preclinical setting, and, then, using signals

database might be the preferable choice. On the other hand, in the clinical setting,

imaging protocols have much lower gradient strengths and sufficient SNR to fit the

DTI and SH model parameters in the feature extraction approach, and consequently,

we expect the rotationally invariant feature approach to be a better choice (as used

in Chapters 4 and 5). Irrespective of the training approach, we expect our model’s

performance to be similar.

Limitations. In addition to the general limitations of our computational frame-

work as discussed in Chapter 4.4, the specific limitation in this and the following

two chapters is the sensitivity of our imaging protocol to τi in the presence of noise,

which is not ideal, as shown in our simulation experiments. Although we performed

some level of optimisation by choosing the most optimal shells in our large explo-

rative protocol, the sensitivity might have been better if we optimised the protocol

with respect to τi prior to imaging, as for the STEAM protocol in Chapters 4. Nev-
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ertheless, even with the protocol we use we can estimate values of τi ≤ 400 ms,

which we expect to be sufficient for the in-vivo mouse application we used in this

study. The machine learning model here can also easily be adapted to incorporate

more specialised diffusion encoding sequences such as OGSE for more sensitivity

to axon diameter [138] or STEAM for longer diffusion times [166]. An advan-

tage of our computational framework is that it can easily incorporate changes in the

imaging protocol.

6.5 Conclusions
In conclusion, this study looks at the sensitivity to the exchange time of the explo-

rative preclinical SDE protocol used to acquire the in-vivo preclinical mouse data

in order to ensure that there is sufficient information in the data. Using simulations

closely matching our in-vivo data, we show that the imaging protocol has good sen-

sitivity to τi ≤ 400 ms, which we expect to be sufficient for our mouse model, based

on reported literature values [10, 9, 11]. Then, we optimise the performance of our

random forest model by choosing the most informative shells with respect to τi and

show that it is necessary to include a combination of short and long diffusion times

to maximise the performance of our model, consistent with the optimised STEAM

protocol in Chapters 4 and 5. Finally, we establish a benchmark performance for

our model by testing it on noise-free simulations, where we find strong correlations

between the estimated and ground truth parameters ( f : R2 = 0.99, τi: R2 = 0.84,

d: R2 = 0.99). We find that, for levels of noise matching that of the in-vivo mouse

data (SNR=40), the simulation performance is affected, however, the parameters

are still well estimated within the sensitivity range ( f : R2 = 0.97, τi: R2 = 0.68, d:

R2 = 0.99). In the next chapter, we apply our random forest model to a cohort of

16 mice, 8 healthy controls and 8 cuprizone treated mice with induced demyelina-

tion. Additionally, we seek further validation of our computational framework by

directly comparing the estimates of our model with available histological data from

the same mice.



Chapter 7

Random Forest based computational

models with permeability:

microstructure parameter estimation

in preclinical mouse model of

demyelination

In the previous chapter we have studied the sensitivity of the SDE protocol used for

the in-vivo mouse data in this chapter and optimised the performance of the random

forest model using simulations closely matching our in-vivo data.

In this chapter we investigate the in-vivo performance of the random forest

model optimised in Chapter 6, using a cuprizone mouse model of demyelination

with available histological data.

Some of the experiments in this chapter are performed with help from re-

searchers at the Institut du Cerveau et de la Moelle epiniere, ICM, Paris, France,

who carried out the scanning of the mice and the histological analysis. Parts of this

work are featured in the recently submitted paper to NeuroImage: Machine learning

based white matter models with permeability: An experimental study in cuprizone

treated in-vivo mouse model of axonal demyelination. I. Hill et al. [163].
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7.1 Motivation

The random forest approach for permeability estimation, covered in Chapter 4 and

introduced for the first time in [132], is tested in-vivo only qualitatively and using

just two healthy and two MS patients. As this is a novel approach to microstructure

parameter estimation, more in-vivo validation is needed in order to investigate the

clinical potential of the random forest model estimates, in particular τi, to act as

a suitable biomarker for detecting and tracking changes in MS pathology. In-vivo

validation of the exchange time is, however, extremely challenging, and accurate

measurements of τi are not obtainable through histology due to tissue fixation al-

tering the membrane permeability. Moreover, MS pathology is known to simulta-

neously cause other changes in the underlying tissue, such as axonal loss or axonal

swelling, making it more difficult to measure the effect of τi in isolation. Another

challenging aspect of the in-vivo estimation of the exchange time is the presence of

dispersion, which has been shown to cause an underestimation of τi [1].

In this chapter, we address several of the limitations outlined above. For this,

we use a highly controlled mouse cuprizone model of demyelination, commonly

used as an animal model of MS [162]. Our in-vivo data consists of a cohort of

16 mice, 8 healthy wild-type (WT) mice and 8 cuprizone treated mice (CPZ) with

available histological data. Using electron microscopy (EM) measurements of the

mean axon diameter form the same mice, we investigate the potential confounding

effects of axonal swelling and axonal loss. Furthermore, we look at the potential

effect of dispersion by computing NODDI ODI and DTI maps. As accurate his-

tological measurements of τi are not available, we analyse the correlation between

the random forest estimates of τi and EM measurements of myelin thickness, which

has recently been shown in a simulation study to correlate strongly with the ex-

change time [86]. We additionally compare the random forest estimates with EM

measurements of the intra-axonal exchange time τi.

The aim of this chapter is to provide further validation of the random for-

est based computational model introduced in Chapter 4 by comparing the in-vivo

random forest estimates from DW-MRI data with available histological data. An

additional aim of this chapter is to investigate the potential confounding effects of
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dispersion and axonal swelling on the estimation of τi.

7.2 Methods
This section outlines the in-vivo rat data acquisition, as well as the sample prepara-

tion procedure for the electron microscopy (EM) analysis. In the experiments sub-

section, we introduce the in-vivo DTI, NODDI and random forest experiments, and

we outline the procedure for calculating the histological measurements of myelin

thickness, gratio, axon diameter and intra-axonal volume fraction.

7.2.1 Mouse data

7.2.1.1 In-vivo data acquisition

For the in-vivo data, sixteen 8-week old C57BL/6J female mice were imaged. All

animal experiments were performed in accordance with the European Council Di-

rective (88/609/EEC). Eight mice were fed 0.2% cuprizone for 6 weeks, which

corresponds to a demyelination without recovery phase, and eight healthy age-

matched wild-type (WT) mice of the same background were fed a normal chow

diet and used as controls. All mice are scanned on a BrukerBioSpec 11.7T scan-

ner (the data used in this study are available in the public domain and can be found

at https://zenodo.org/record/996889#.WgH5E9vMx24 [167]) using the protocol de-

scribed in Section 6.2.1 Table 6.1.

We post-processed the images by correcting for eddy currents using FSL-eddy

[151]. No motion artefacts were observed. We restrict our analysis to white matter

voxels within the CC as they match the assumption of non-abutting parallel cylin-

ders in our learnt white matter model. To select the CC voxels, we compute maps

of linearity (CL), planarity (CP) and sphericity (CS) [168] from the DTI fit to the

lowest b-value shell with SNR 40. We created the CC maps by selecting the voxels

with CL>0.3, CP<0.4, CS<0.5 and fractional anisotropy (FA)>0.3.

7.2.1.2 Histology samples

The WT (n=8) and CPZ (n=8) animals are sacrificed by deep anaesthesia and per-

fused intracardially with 1% paraformaldehyde and 2.5% glutaraldehyde in phos-

phate buffer 0.12 M, pH 7.4 at the end of the 6-week CPZ treatment. The extracted
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brains are then post-fixed overnight at 4◦C in the same fixative and rinsed in phos-

phate buffer. Ten 100 µm-thick sagittal sections are cut with a vibratome (Thermo

Scientific Microm HM 650 V Vibration microtome). The very first section clos-

est to the brain midline is considered as #1 and sections #1, #4, #7, and #10 are

selected. Sections are post-fixed with 1% osmium tetroxide in water for 1 hour

at room temperature (RT◦), rinsed 3x5 min with water and contrasted en bloc for

1 hour at RT◦ with 2% aqueous uranyl acetate. After rinsing, sections are pro-

gressively dehydrated with 50%, 70%, 90%, and 100% ethanol solutions for 2x5

min each. Final dehydration is achieved by immersing the sections twice in 100%

acetone for 10 min. Embedding is performed in epoxy resin (Embed 812, EMS,

Euromedex, France) overnight in 50% resin / 50% acetone at 4◦C followed by 2x2

h in pure resin at RT◦, and polymerization is achieved at 56◦C for 48 h in a dry

oven. Semi-thin sections (0.5 µm-thick) are collected with an ultramicrotome UC7

(Leica, Leica Microsystmes SAS, France) and stained with 1% toluidine blue in 1%

borax buffer. Ultra-thin sections (70 nm-thick) are contrasted with Reynolds lead

citrate (Reynold ES, 1963), and observed with a transmission electron microscope

(HITACHI 120 kV HT 7700), operating at 70 kV. Images (2048x2048 pixels) are

acquired with an AMT41B camera (pixel size: 7.4 µm x 7.4 µm).

7.2.2 Experiments

7.2.2.1 In-vivo imaging experiments

Before generating in-vivo parameter maps using our trained machine learning

model, we first perform a data quality match to check that the in-vivo data is well

represented by our synthetic training database. In addition to this, we investigate

any potential bias in our in-vivo estimates of τi due to changes in the orientation

dispersion by computing maps of the NODDI orientation dispersion index (ODI)

[78] using the NODDI Matlab (The MathWorks, Inc, Natick, MA) Toolbox. Using

the Camino toolbox, we additionally generate DTI maps at b=1500 s/mm2 of axial

diffusivity (AD), fractional anisotropy (FA) and radial diffusivity (RD) as measures

of tissue properties that can be compared with already published works in cuprizone

model [169, 170, 171].

Using the random forest trained on the noisy database, we generate parameter
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maps for the CCs of the 16 mice for three parameters of interest: τi, f and d. To

investigate the differences between the two groups (CPZ and WT), we compute

box-and-whisker plots of region-specific comparisons between WT (8 mice) and

CPZ (8 mice) for the DTI and NODDI metrics as well as for the random forest

estimates. Statistical significance is assessed by a two-tailed t-test, considering p-

values< 0.05. We run these experiments using the signals database. The Camino

feature extraction of the in-vivo data did not produce histologically plausible results

for the shells with very high gradient strengths (G > 300 mT/m) in our protocol,

and we therefore exclude this approach from the analysis in this section and discuss

the potential explanations for this in the Discussion section of this chapter.

7.2.2.2 Correlation with post-mortem analysis

From the electron microscopy (EM) samples obtained as described Section 7.2.1.2,

we estimate the mean and standard deviation of the gratio, myelin thickness, ax-

onal diameter and the intra-axonal volume fraction of the WT and CPZ mice. The

stereological analysis is performed in isolated regions of the CC (genu, body and

splenium), where 4 random sections with uniform distance are quantified per an-

imal (Figure 7.1B), with 30 randomly located images per region and per animal

acquired at 62000X magnification. For volume fraction (VF) we proceed according

to the Delesse principle [172]: volume fractions are calculated by dividing the total

number of points hitting the structure (P(Y )) by the total number of points hitting

the reference volume (P(re f )), following the equation:

V F(Y,re f ) =
∑

m
i=1 P(Y )i

∑
m
i=1 P(re f )i

A grid of 36 regularly spaced crosses (Figure 7.1E) is generated with Fiji, an

open-source platform for biological image analysis [173]. Each of the 36 crosses

represents an area of 0.5 µm2. Axonal fibres are judged to be in transverse section by

the orientation of axonal microtubules. Stereological analysis provides Myelin Vol-

ume Fractions (MV F), Axon Volume Fractions (AV F), and the total Axon Volume

Fractions (tAV F), which includes both myelinated and unmyelinated axons. Total

Axon Count (tAxCount) is manually quantified. The gratio of myelinated fibres is

then calculated according to the following equation:
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Figure 7.1: Schematic pipeline of the stereological analysis to compute gratios and axonal
diameters in the CC of the mice. First, ten sagittal sections are cut from medial
to lateral lines (A) and four sections are selected for analysis (B). The genu,
body and splenium are then extracted (C), and for each of the three ROIs 30
random regions are selected for stereological analysis using point grids (D).
The point grids are then overlaid onto a tissue sample as illustrated in Figure E,
where each of the 36 crosses represents an area of 0.5 µm2. The point grids in
E are used for quantification of the WT and CPZ mice.

gratio =

√
AV F

MV F +AV F

The mean axon diameters (DAX) are calculated as follows:

DAX = 2∗
√

tAV F ∗ surface
π ∗ tAxCount

The surface is the area of each cross (0.5 µm2). The outliers induced by the non-

perpendicular axons in the images are not taken into consideration. From the gratio

and the DAX , myelin thickness is computed as:

myelin thickness =
DAX
2gratio

(1−gratio)

We compare the estimates of the random forest with the EM measurements by com-
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puting the group-wise mean in the CC ROIs of the myelin thickness and intra-axonal

volume fraction (VF) and looking at the correlation between these and the random

forest estimations for τi and f .

7.3 Results

7.3.1 In-vivo imaging experiments

Figure 7.2: Comparison between the in-vivo (left) and simulated (right) signal intensity
as a function of the angle between diffusion gradients and the cylindrical fibres
axis θ (in degrees), for different diffusion gradient strengths (G1−5 = 150−500
mT/m) and two ∆s: 10.8 ms (blue lines) and 20.0 ms (green lines). The dashed
black line in the experimental data represents the noise level.

To show that our in-vivo data is well represented by our synthetic training

database, we perform a data quality match (Figure 7.2). We plot the signal intensity

as a function of the angle between the diffusion gradients and the cylindrical fibres

axis θ (in degrees), for different diffusion gradient strengths (G1−5 = 150− 500

mT/m) and for ∆ = {10.8,20.0}ms. The experimental data in Figure 7.2 represents

a randomly chosen voxel in the centre of the splenium of a WT mice, and the simu-

lated data represents the signal in our synthetic database that minimises the residuals

between the simulated and the in-vivo signal. We find a very good match between

the simulated and in-vivo DW-MRI signals, demonstrating that our training data set

is a good representation of the in-vivo mouse data.

Figure 7.3 shows examples of DW-MRI b=0 images for a WT (Fig. 7.3A) and
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for a CPZ (Fig. 7.3B) mouse. We can observe the appearance of the CC in the CPZ

scan is different from the WT, showing the effect of demyelination.

Figure 7.3: Representative DW-MRI b=0 images of: A) a WT mouse scan in our cohort
and B) a CPZ mouse scan in our cohort. C) ROIs of the CC overlaid on the
zoomed in b=0 image of the WT mouse scan. The three ROIs are genu (G-CC),
body (B-CC) and splenium (S-CC). The yellow square indicates the region in
which the CC is found.

Figure 7.3C) shows the three ROIs of the CC overlaid on the b=0 image of the

WT scan. We manually define three ROIs on the CC masks of each mouse scan:

splenium (S-CC), body (B-CC) and genu (G-CC). We then calculate the mean pa-

rameter estimates for NODDI (ODI), DTI (AD, RD, FA) and random forest ( f ,τi,d)

in each ROI for every mouse, and study the differences between the WT and the

CPZ groups. We present these results in the remaining of this section.

Figure 7.4A) shows CC maps for NODDI and DTI parameters for one ex-

emplar healthy WT mouse (first column) and one exemplar CPZ mouse (second

column). A visual inspection of the CC maps reveals no significant changes in ODI

and AD, together with a significant increase in RD and decrease in FA.

We observe the same trends in the DTI and NODDI parameters at group level,

as shown in Figure 7.4B). We illustrate the difference between the WT group

(Nmice = 8) and the CPZ group (Nmice = 8) through box and whisker plots in the

three ROIs of the CC: G-CC, B-CC and S-CC. We find the estimates of ODI in

the two groups to be between 0.15 and 0.29, suggesting very low dispersion, in line

with recently reported literature values [174]. Moreover, we find no statistically sig-

nificant difference in NODDI ODI between the two groups in the three regions of
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Figure 7.4: A) Parametric maps of the CC in a healthy WT mouse (first column) and a CPZ
mouse (second column) obtained from conventional DTI at b=1500 s/mm2 and
from NODDI ODI. B) Box and whisker plots of region-specific comparison
between WT (Nmice=8) and CPZ (Nmice = 8). DTI metrics (AD, RD, FA) are
evaluated within the genu (G-CC), body (B-CC) and splenium (S-CC) of the
CC. Statistical significance is assessed by using a 2-tailed t-test with equal vari-
ance and significance level: ∗ = 0.01,∗∗= 0.005,∗∗∗= 0.001. ’n.s.’ stands for
non-significant.

the CC, a finding that is also in line with [174]. The DTI estimates show negligible

changes in AD, a significant increase in RD and a significant decrease in FA.

The in-vivo random forest estimates of f ,τi and d obtained using the raw sig-

nal database are presented in Figure 7.5. The parametric CC maps shown in Figure

7.5A) correspond to the same WT mouse (first column) and CPZ mouse (second

column) in Figure 7.4A). The CC maps show a statistically significant decrease in

f (first row) and τi (second row), and no significant change in d (third row). The

values estimated for all parameters are within plausible ranges for rat white matter
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Figure 7.5: A) Parametric maps with the random forest estimates for f , τi and d in the CC
of a healthy WT mouse (first column) and a CPZ mouse (second column). B)
Box and whisker plots of region-specific comparison between WT (Nmice = 8)
and CPZ (Nmice = 8). Random forest estimates for f , τi and d are computed in-
dependently for all voxels within the genu (G-CC), body (B-CC) and splenium
(S-CC) of the CC. Statistical significance was assessed by using a 2-tailed t-
test with equal variance and significance level: ∗= 0.01,∗∗= 0.005,∗∗∗= 0.001.
’n.s’ stands for non-significant

.

tissue. For the control group, estimates of volume fraction f are in the range 0.42-

0.46, estimates for τi are consistently in the range 330-400 ms, and the estimates

for d lie in between 1-1.3 x10−9m2s−1. To provide a more quantitative analysis, we

plot the box and whisker plots of region-specific parameter comparisons between

the WT and the CPZ group over the three CC ROIs (Figure 7.5B). The trends ob-

served visually in Figure 7.5A) hold for the group-wise quantitative comparison

(WT versus CPZ): we observe statistically significant decreases in f and τi and a

negligible increase in d. These trends are consistent across all three regions of the

CC. The mean and standard deviations of the random forest parameter estimates for

each ROI are reported in Table 7.1.

7.3.2 Correlation with post-mortem analysis

The histological EM measurements in the splenium, body and genu of the CC over

the cohort of WT (blue) and CPZ (black) mice are reported in the bar plots of Fig-
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f τi (ms) d x10−9(m2s−1)

WT CPZ WT CPZ WT CPZ

G-CC 0.440 (0.006) 0.429(0.003)*** 375 (7) 347 (15) *** 1.15 (0.017) 1.11 (0.042)

B-CC 0.431 (0.002) 0.425(0.0041)*** 372 (9) 327 (10) *** 1.10 (0.046) 1.14 (0.032)

S-CC 0.444 (0.006) 0.429 (0.003)*** 374 (14) 313 (12) *** 1.12 (0.071) 1.18 (0.065)

Table 7.1: Mean and standard deviation of the random forest estimates for f ,τi and d in
the three CC ROIs for the WT and CPZ group. CPZ regions that are statistically
different from WT regions are marked with * for p < 0.01, ** for p < 0.005 and
*** for p < 0.001

Figure 7.6: Histology results. The mean and the standard deviation of the EM measure-
ments in the splenium, body and genu of the CC for the cohort of WT (blue)
and CPZ (black) mice: the gratio (A), myelin thickness (B), mean axonal diam-
eter (C) and intra-axonal volume fraction (D).

ure 7.6. Our histological data shows no axonal size changes (Figure 7.6C) and no

significant axonal loss (data not shown here) between the two cohorts. The axonal

diameter measurements in Figure 7.6C) do not take into account the commonly ac-

cepted shrinkage factor of 30% [71, 175], after which the differences between the

two groups continue to remain statistically non-significant. We also find a statisti-

cally significant decrease in myelin thickness (Figure 7.6B) correlated with an in-

crease in the gratio (Figure 7.6A) and a decrease in the intra-axonal volume fraction



170 7.3. Results

(Figure 7.6D).

Next, we study the correlation between these changes and the estimates of the

random forest model and we show the results in Figure 7.7. We assess the statistical

significance of the linear correlation between τi and myelin thickness from EM with

a two-tailed t-test by looking at the mean and the standard deviation of each CC ROI

of the WT (blue squares) and CPZ (black circles) group (Figure 7.7A). We find a

pearson linear correlation coefficient ρ of 0.82 and a p-value < 0.05 for τi, showing

a good correlation between the random forest estimates of the exchange time from

DW-MRI (y-axis) and histological measurements of myelin thickness (x-axis). As

the p-value is less than the significance level of 0.05, it indicates the acceptance of

the hypothesis that there is a statistically significant correlation between the EM and

random forest estimates.

Figure 7.7: Linear correlations between: A) the intra-axonal exchange time from DW-MRI
(y-axis) the myelin thickness from EM (x-axis) and B) the intra-axonal volume
fraction from DW-MRI (y-axis) and EM (x-axis). Each point represents the
mean over one region of the CC for the WT (blue squares) and CPZ (black
circles) group. Error bars indicate the standard deviation over the region.

Similarly, we investigate the statistical significance of the linear correlation

between intra-axonal volume fraction f as estimated from DW-MRI (y-axis) and

EM measurements (x-axis) (Figure 7.7B). We find a Pearson correlation coefficient

ρ of 0.98 and a p-value< 0.001, showing a strong significant correlation between

the random forest estimates and the histological measurements of the intra-axonal

volume fraction.
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7.4 Discussion

Feature extraction. When extracting the rotationally invariant features from our

synthetic signals, we obtain meaningful values for all shells in the synthetic data.

When we apply the same method to in-vivo data, the feature extraction becomes

difficult and does not give meaningful results for shells with high gradient strength

(above 300 mT/m) and high b-values. We believe that this difference is most likely

due to the effect of fibre dispersion, present in the in-vivo data but not included in

our simulations. As the gradient strength increases, the dispersed fibres would cause

larger drops in the signal, as can also be seen in (Figure 7.2), where we notice that

the drop in the signal intensity relative to the gradient direction is less prominent in

the synthetic signals than in the in-vivo data.

In-vivo experiments. Our data quality match shows that our synthetic training data

is a good representation of the in-vivo data. Our DTI results show an increase in

RD and a decrease in FA between the two groups. This could be explained by the

breakdown of the myelin layer which allows water to diffuse more in the radial di-

rection, leaving AD unchanged and having the overall effect of reducing FA. These

changes in DTI metrics are in agreement with those reported in several literature

studies of the CPZ mouse model of demyelination [169, 170, 171]. Nevertheless,

the DTI metrics provide only indirect measures of the underlying microstructural

changes in the CPZ model.

Our random forest estimates of τi, on the other hand, provide a more direct and

specific measure of permeability. We find that our estimations of τi in the healthy

mice compare well with literature values. Our random forest estimates of τi in the

control group are consistently in the range 350-400 ms, lower than in the human

data in Chapter 4, where most τi estimates lie in the range 400-500 ms. This could

be explained by the size of the axons in the human versus the mouse white matter.

As the axon diameter range in the human white matter is larger than that of rodents

[176], this can intuitively result in longer exchange times as the water molecules

have to travel longer before leaving the intra-axonal space. Another potential ex-

planation is the lower sensitivity of the SDE protocol in this chapter compared to

the STEAM protocol in Chapter 4, which may lead to lower estimates of the intra-
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axonal exchange in the SDE estimates. Studies on sphingomyelin membranes found

in axonal membranes suggest values between 300 ms and 600 ms for axons with

radii between 0.5 and 1 µm [9]. Contrast agent and relaxometry studies in the rat

brain estimate the intracellular water exchange lifetime in the rat brain to be be-

tween 200 ms [10] and 550 ms [11]. As accurate histology measurements of τi are

not available, we compare our estimates of τi with EM measurements of myelin

thickness. We compute myelin thickness from myelinated axons only, and it in-

cludes both the effect of demyelination induced by CPZ and some remyelination

that happens spontaneously in the CPZ model [177]. We find a strong correlation

between the random forest estimates of τi and myelin thickness (ρτi = 0.82). This

is in very good agreement with a recently published simulation work investigating

the link between exchange time and myelin thickness [86]. For d, our random for-

est estimates lie in the range 1-1.3 x10−9m2s−1, an expected range for the mouse

CC [165], and our estimates of f correlate very strongly with the EM intra-axonal

volume fraction measurements (ρ f = 0.98).

When comparing the two groups, we observe the following general trends:

a statistically significant decrease in the intra-axonal volume fraction f and in the

intra-axonal exchange time τi, together with a negligible increase in the intrinsic dif-

fusivity d. We expect f to be lower in the CPZ group as there is an increase in the

extracellular space due to the breakdown of myelin. Demyelination is also thought

to cause a decrease in the intra-axonal exchange time as the water molecules en-

counter less barriers when moving from the intracellular to the extracellular space.

In line with this, the random forest estimations of τi in the CPZ group are signifi-

cantly lower than in the WT group.

While estimating myelin thickness would allow a direct comparison with his-

tology, it would only apply to pathologies and stages of disease characterised by a

change in the thickness of the myelin sheath. Estimating τi lends itself to a wider

range of diseases in which changes in permeability are driven by other factors than

myelin thickness. For example, τi in the NAWM of MS patients may change de-

spite the normal appearance of the tissue and the myelin sheath. By measuring τi

in NAWM, we can potentially gain an earlier window into the disease, prior to the
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onset of myelin breakdown. Furthermore, in other diseases such as cancer, shown to

affect permeability, the cells may be not be covered in a myelin sheath if the tumour

is not in the brain.

The strong correlation between myelin thickness and the estimated τi sug-

gests that demyelination could be one of the main factors behind our measured

decrease in τi. To strengthen this hypothesis, we analyse the potential confound-

ing effect of other underlying processes. Our AD measurements from the DTI fit

suggest that, if undulation or beading effects are present, they have a negligible

effect [178, 159, 179]. We additionally rule out the effect of dispersion by mea-

suring NODDI ODI and showing that the differences between the two groups are

not statistically significant. Previous work investigating the impact of dispersion

on axonal permeability estimation shows that the presence of orientation dispersion

would probably result in an underestimated values of τi [1]. Here, we estimate

dispersion in the CC of our in-vivo data using NODDI ODI, and our results (Fig-

ure 7.4) show that there is no significant change in this parameter between the WT

and CPZ groups. This, together with the non-significant change in AD from DTI,

suggests that although dispersion may be present in the CC, there is no significant

change between the WT and CPZ groups. If dispersion would change significantly

between the two groups, we would expect a significant change in ODI and AD.

Based on this argument, we are confident that the significant changes in τi that we

measure (Figure 7.5) are not driven by dispersion. We also rule out the potential

confounding effect of axonal swelling by looking at the statistically non-significant

changes in axonal diameter as measured by EM. This, together with the measured

changes in RD, FA and the random forest estimations of τi suggest that demyeli-

nation is the main process underpinning our DW-MRI contrast. In particular, our

histological data strongly supports τi as a biomarker directly related to the thickness

of the myelin sheath, which suffers degeneration in demyelinating diseases such as

MS.
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7.5 Conclusions
In this chapter, we apply our random forest model on in-vivo data consisting of a co-

hort of 8 CPZ mice and 8 healthy age-matched WT mice. In the control group, we

find that the model estimates sensible microstructure parameters matching values

found in literature for healthy rat brain white matter. In the demyelinated group, the

random forest estimates a statistically significant decrease in τi in all three regions

of the CC (splenium/body/genu) of the CPZ group (µτi = 313ms/327ms/347ms)

compared to the WT group (µτi = 374ms/372ms/375ms), in line with our expec-

tations that τi is lower in regions where the myelin sheath is damaged, as axonal

membranes become more permeable. Furthermore, we use NODDI ODI and EM

measurements of axon diameter to rule out the confounding effect of dispersion and

axonal swelling on the estimated difference in τi between the two groups. When

comparing the model estimates with histology data from the same mice, we find

a strong correlation between the in-vivo random forest estimates of τi and the EM

measurements of myelin thickness (ρτi = 0.82), in line with a recently published

study [86], and between the random forest estimates and EM measurements of intra-

axonal volume fraction (ρ f = 0.98).

Overall, these results, together with the findings in Chapter 6, demonstrate, in

simulations and in vivo, the feasibility of random forest based compartment models

with permeability as a potential biomarker for demyelinating pathologies such as

MS.



Chapter 8

Neural network based computational

models with permeability:

microstructure parameter estimation

in preclinical mouse model of

demyelination

In the previous two chapters we presented an experimental study investigating

the performance of a random forest based compartment model with permeability

through direct comparison with histology from a mouse model of demyelination.

This chapter presents an experimental study of the neural network model in-

troduced in Chapter 5 on the same preclinical mouse model. Parts of this work

were selected for an oral presentation at the high-profile Combined Educational-

Scientific Session ’Machine Learning for Magnetic Resonance in Medicine’ at the

International Society for Magnetic Resonance in Medicine (ISMRM) Annual Meet-

ing 2018 in Paris, France. The abstract was one of the five abstracts selected to

illustrate the most novel applications of machine learning to MRI data.

8.1 Motivation
The neural network approach for microstructure parameter estimation introduced

in Chapter 5 shows promising results, with in-vivo estimates of f , τi and d within
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plausible ranges for human white matter and trends in line with the expected MS

pathology. However, as this is a new approach, more quantitative validation of this

technique is necessary to assess the suitability of neural network based models for

microstructure imaging.

In this chapter, we aim to experimentally investigate the feasibility of neural

network based computational models with permeability for microstructure imaging

by comparing the in-vivo estimates with histological data from a cuprizone mouse

model of demyelination. In line with the previous chapter, we compare our esti-

mates of τi with EM measurements of myelin thickness, which has been shown to

correlate strongly with the intra-axonal exchange time [86]. This is intuitive as the

myelin layer surrounding the axons acts as a barrier to the water molecules leaving

the intra-axonal space, hence its thickness is likely to influence directly the average

time it takes the water molecules to leave the intra-axonal space, as measured by τi.

For the intra-axonal volume fraction f , we compare the neural network estimates

with direct electronmicroscopy (EM) measurements of f from the same mice.

8.2 Methods

8.2.1 Imaging protocol and data

For both the synthetic and the in-vivo data acquisition, we use the SDE imaging pro-

tocol (see Table 6.1) and databases from Chapter 6. Our synthetic data is formed of

12,500 unique Monte Carlo simulations of the DW-MRI signal and their associated

ground truth microstructure parameters. The synthetic substrates used to generate

the DW-MRI signals mimic the in-vivo mouse data. More details about the dataset

are provided in Section 6.2.2. We generate two synthetic databases, one for the

noise-free scenario and another by adding Rician noise with a standard deviation

σ corresponding to an SNR of 40, matching the level of noise present in our in-

vivo data. Our in-vivo dataset is formed of DW-MRI scans of sixteen 8-week old

C57BL/6J female mice. Eight of the mice were fed 0.2% cuprizone for 6 weeks

(CPZ), which corresponds to a demyelination without recovery phase, and eight

healthy age-matched wild-type (WT) mice of the same background were fed a nor-

mal chow diet and used as controls. Using electronmicroscopy (EM) data from the
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same mice, we estimate the mean and standard deviation of the myelin thickness,

axonal diameter and intra-axonal volume fraction. For more details regarding the

acquisition, preprocessing and histology, see Section 7.2.1.

8.2.2 Neural network

We implement the neural network using the open source Keras toolkit [160] with

Tensorflow backend [161]. We minimise the loss using ADAM [122] for 100 epochs

with learning rate 0.001. We use a 3 hidden layer architecture with 300, 150 and

75 neurons with ’ReLU’ activations and dropout 0.4. We select the best performing

architecture as the one that minimises the mean squared error on a validation set

formed of 2,000 DW-MRI synthetic signals.

We train the neural network to estimate three microstructure parameters of

interest: the intra-axonal volume fraction f , the intra-axonal exchange time τi and

the intrinsic diffusivity d. For this, we use our synthetic database of 12,500 DW-

MRI signals and their associated ground truth tissue parameters acting as labels

during the supervised learning task. We use 10,000 synthetic signals for training and

2,500 for testing. We train two neural networks, one using the noise-free database

and another using the SNR=40 database. The noise-free trained neural network

provides a benchmark performance of our model under ideal noise conditions, while

the neural network trained on the SNR=40 database provides an indication of the

performance we might expect to see under realistic noise conditions. For the in-vivo

estimation, we train the neural network on the SNR=40 database as the one the most

closely resembles the in-vivo data.

8.2.3 Experiments

For the experiments in this chapter, we train the neural network using the DW-MRI

signal databases for the synthetic and in-vivo data since the features extraction of

the high G shells (G > 300 mT/m) did not produce reasonable results. However, we

do not expect to see any significant differences between the two training approaches

according to the results in Sections 6.3.3.
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8.2.3.1 Synthetic experiments

To assess the quality of the neural network estimates after training is completed,

we compute the Pearson correlation coefficient R2 between the ground truth values

and the parameter estimates in the previously unseen test set. To evaluate any po-

tential bias in the estimates, we use Bland-Altman plots showing the mean of the

ground truth and estimated parameter values against their difference. We first anal-

yse the performance of the model on the noise-free synthetic databases to establish

a benchmark given our data and imaging protocol. Next, we apply our machine

learning model to the SNR=40 database for a more accurate approximation of the

performance we expect given the noise present in our in-vivo data.

8.2.3.2 In-vivo experiments

Using the neural network trained on the noisy database, we generate parameter

maps for the CCs of the 16 mice for three parameters of interest: τi, f and d.

To investigate the difference between the two groups (CPZ and WT), we compute

box-and-whisker plots of region-specific comparisons between WT (8 mice) and

CPZ (8 mice) for the DTI and NODDI metrics as well as for the neural network

estimates. Statistical significance is assessed by a two-tailed t-test, considering p-

values< 0.05. We run these experiments using the signals database. We compare

the mean ROI τi and f estimates of the neural network with EM measurements

of myelin thickness and intra-axonal volume fraction from the same mice. For

more details on how the EM measurements of myelin thickness and the intra-axonal

volume fraction are computed, see Section 7.2.2.2 in the previous chapter.

8.3 Results

8.3.1 Synthetic experiments

Figure 8.1 shows how the training and the mean squared errors of the training (blue

curve) and the validation set (orange curve) change after each epoch during train-

ing. The training error (blue curve) drops significantly during the first 20 epochs,

after which it decreases in smaller amounts, suggesting that the neural network is

still learning. The change in the validation error indicates whether the network is

generalising well to new data or whether it is overfitting. If the validation error
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Figure 8.1: Figure shows how the training and the validation error change with each epoch
of training.

decreases we can say that the model is learning to generalise better to new data.

Conversely, an increase in the validation error suggests that the network is learning

the training data too closely (or overfitting) and does not generalise well to new

data. The validation error curve (orange) in Fig 8.1 drops significantly during the

first 20 epochs, after which it decreases mildly and finally flattens out around epoch

100. This suggests that the first 100 training epochs improve the performance of the

neural network, after which the performance stays constant. Consequently, we set

the number of training epochs to 100.

Figure 8.2: Bland-Altman plots for the neural network estimates of f , τi and d using the
noise-free simulated database. To aid visual interpretation, the plots are colour-
coded with the percentage error capped at ±50%.

Figure 8.2 shows the neural network results obtained using the noise-free syn-

thetic database. To assess the quality of our fit, we display the results using Bland-

Altman plots and colour each data point according to how close the estimates are
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to the ground truth values. To aid visual interpretation, we cap the percentage error

at ±50%. The mean difference between the ground truth and the estimated values

is shown by the black line and the 95% upper and lower limits of agreement by

the dashed lines. For all three parameters of interest, we observe no overall estima-

tion bias as the estimates are spread equally around the zero-difference black line.

However, for τi, short exchange times (τi < 500 ms) are overestimated and large

exchange times are underestimated (τi > 500 ms). This results in wider 95% up-

per and lower limits of agreement (dotted lines) than for f and d. The recovery of

this parameter is not perfect, nevertheless, the correlation coefficient is still strong

R2
τi
= 0.83. Exchange times up to 700 ms are estimated well, after which τi is con-

sistently underestimated. For f and d, we find a very strong correlation between the

ground truth and the estimates of the neural network (R2
f = 0.98, R2

d = 0.99) with

no significant estimation bias.

Figure 8.3: Bland-Altman plots for the neural network estimates of f , τi and d using the
SNR=40 simulated database. To aid visual interpretation, the plots are colour-
coded with the percentage error capped at ±50%.

Figure 8.3 shows the equivalent results for SNR=40. The presence of noise

results in wider limits of agreement for τi and d and affects differently the prediction

of each parameter. The mean difference lines for all three parameters remain at

zero, showing no general bias in the estimates. Intra-axonal volume fraction and

diffusivity continue to be very well estimated and their correlation coefficients are

only very mildly affected by the presence of noise: R2
f = 0.96 and R2

d = 0.99. The

limits of agreement for f remain unchanged from the noise-free case, while for d

only the upper limit changes very slightly, from 0.05 to 0.07. This suggests that

despite the presence of noise, the neural network continues to estimate well f and
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d. In contrast to this, the presence of noise has a stronger effect on the estimation

of τi, resulting in a lower overall R2 score (0.63 versus 0.83 in the noise-free case),

together with a slightly more pronounced overestimation/underestimation bias for

small and large values respectively. Despite this, we find that the neural network

works well within the sensitivity range computed in Section 6.3.1, with a very good

correlation coefficient between the models estimates and ground truth for τi ≤ 400

ms (R2=0.75). Outside this indicative sensitivity range, the correlation coefficient is

very weak: R2= 0.13 for τi ≥ 400 ms.

SNR=40 SNR=∞

f τi d f τi d

NN 0.96 0.75 0.99 0.98 0.83 0.99

RF 0.97 0.68 0.99 0.99 0.84 0.99

Table 8.1: Neural network (NN) and random forest (RF) correlation coefficients (R2 scores)
for the synthetic databases (noise free and SNR=40).

Table 8.1 summarises the performance of the neural network and random for-

est (from Chapter 6) on the noise-free and SNR=40 databases. In the noise-free

scenario (SNR=∞), the neural network and the random forest have the very sim-

ilar performances. Under noise conditions matching our in-vivo data (SNR=40),

the neural network outperforms the random forest in the estimation of τi, with a

correlation coefficient higher by 0.07 than that of the random forest.

8.3.2 In-vivo experiments

The in-vivo neural network estimates of f ,τi and d obtained using the raw signal

database are presented in Figure 8.4. In Figure 8.4A we show parametric maps

of the CC across a representative sagittal slice for an examplar healthy WT mouse

(first column) and one exemplar CPZ mouse (second column). A simple visual

inspection of the CC maps reveals a decrease in f and τi, together with a very

mild increase in d between the WT and CPZ mice. The values estimated for all

parameters are within plausible ranges for rat white matter tissue. For the control

group, estimates of volume fraction f are in the range 0.4-0.46, estimates for τi

are consistently in the range 330-400 ms, and the estimates for d lie in between

1-1.3 x10−9m2s−1. To provide a more quantitative analysis, we plot the box and
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Figure 8.4: A) Parametric maps with the neural network estimates for f , τi and d in the CC
of a healthy WT mouse (first column) and a CPZ mouse (second column). B)
Box and whisker plots of region-specific comparison between WT (Nmice = 8)
and CPZ (Nmice = 8). Parameter estimates for f , τi and d are computed inde-
pendently for all voxels within the genu (G-CC), body (B-CC) and splenium
(S-CC) of the CC. Statistical significance was assessed by using a 2-tailed t-
test with equal variance and significance level: ∗= 0.01,∗∗= 0.005,∗∗∗= 0.001.
’n.s’ stands for non-significant.

whisker plots of region-specific parameter comparisons between the WT and the

CPZ group over the three CC ROIs (Figure 8.4B). The trends observed visually in

Figure 8.4A) hold for the group-wise quantitative comparison (WT versus CPZ).

For f and τi, we observe statistically significant decreases in all three regions of the

CC (p-val < 0.001). For d, the changes between WT and CPZ are smaller than for

the other two parameters and depend on the ROI. In the G-CC, we find a statistically

insignificant change, while in the B-CC and S-CC, the increase in d is statistically

significant (p-valG−CC < 0.005 and p-valS−CC < 0.001). The mean and standard

deviations of the neural network parameter estimates for each ROI are reported in

Table 8.2.

Next, we study the correlation between the changes in f and τi as estimated

by the neural network and the EM estimates of the intra-axonal exchange time and

myelin thickness respectively. We assess the statistical significance of the linear

correlation between τi and myelin thickness from EM with a two-tailed t-test by
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f τi (ms) d x10−9(m2s−1)

WT CPZ WT CPZ WT CPZ

G-CC 0.443 (0.006) 0.423 (0.009)*** 376 (7) 353 (11) *** 1.10 (0.022) 1.11 (0.029)

B-CC 0.432 (0.005) 0.404 (0.006)*** 363 (6) 327 (8) *** 1.10 (0.027) 1.17 (0.031)***

S-CC 0.431 (0.011) 0.400 (0.008)*** 359 (13) 320 (11) *** 1.10 (0.055) 1.19 (0.055)**

Table 8.2: Mean and standard deviation of neural network estimates for f ,τi and d in the
three CC ROIs for the WT and CPZ group. CPZ regions that are statistically
different from WT regions are marked with * for p < 0.01, ** for p < 0.005 and
*** for p < 0.001

looking at the mean and the standard deviation of each CC ROI of the WT (blue

squares) and CPZ (black circles) group (Figure 8.5A). For τi and myelin thickness,

we find a linear correlation coefficient ρ of 0.75 and a p-value of 0.08. Despite the

good correlation coefficient between the neural network estimates of the exchange

time from DW-MRI (y-axis) and histological measurements of myelin thickness

(x-axis), the p-value above the significance level 0.05 indicates that the correlation

between the two set of measurements is not statistically significant.

Figure 8.5: Linear correlations between: A) the exchange time from DW-MRI (y-axis) and
myelin thickness from EM (x-axis) and B) the intra-axonal volume fraction
from DW-MRI (y-axis) and EM (x-axis). Each point represents the mean over
one region of the CC for the WT (blue squares) and CPZ (black circles) group.
Error bars indicate the standard deviation over the region

Similarly, we investigate the statistical significance of the linear correlation

between intra-axonal volume fraction f as estimated from DW-MRI(y-axis) and EM

measurements (x-axis) (Figure 8.5B). We find a Pearson correlation coefficient ρ of

0.70 and a p-value of 0.1, showing a good correlation between the neural network
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estimates and the histological measurements of the intra-axonal volume fraction.

Despite this, the p-value of this correlation is above the significance level of 0.05.

Figure 8.6: Box and whisker plots of region-specific comparison between the WT esti-
mates of the neural network in this chapter and the random forest in Chapter 7.
Statistical significance was assessed by using a 2-tailed t-test with equal vari-
ance and significance level: ∗ = 0.01,∗∗= 0.005,∗∗∗= 0.001. ’n.s’ stands for
non-significant.

Finally, we compare the estimates of the neural network with those of the ran-

dom forest from Chapter 7. For this, we show box and whisker plots of region-

specific parameter comparisons between the neural network (NN) and random for-

est (RF) for the healthy control WT group. We show the results in Figure 8.6. We

assess statistical significance by using a two-tailed t-test, and we indicate p-values

< 0.001 with ’***’, p-values < 0.005 with ’**’ and p-values < 0.01 with ’**’ and

p-values > 0.01 indicating non-statistically significant differences with ’n.s.’. The

figure reveals a very good agreement between the two machine learning approaches,

with no significant differences for f and τi for any ROIs in the CC. For d, we ob-
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serve no significant differences in B-CC and S-CC, and a small difference in G-CC.

Looking closer at estimated values in this region, we find that the mean random for-

est estimate is higher by only 2.7% percent than the neural network estimate (1.14

versus 1.1). Unlike the other regions, the estimates in the G-CC are very closely

clustered around the mean, which results in a p-value below the significance level,

despite the very small difference in the mean.

8.4 Discussion

Synthetic experiments. The neural network model estimates in the noise-free case

have very strong correlations with the ground truth values, providing an excel-

lent benchmark performance for our model and imaging protocol (f: R2=0.98, τi:

R2=0.83 d: R2=0.99). We show that the addition of noise with SNR=40, matching

our in-vivo data, does not affect much the estimation of f and d ( f : R2=0.96, d:

R2=0.99), however, it has a stronger effect on the estimation of τi. In line with our

sensitivity results, for τi < 400 ms the effect is present, however, the performance is

still good (R2=0.75), while for τi > 400 ms the performance of the model is severely

affected (R2=0.13).

In-vivo experiments. As discussed in the previous chapter, the absolute values of

the estimates are very difficult to validate, especially for τi. Despite this, we find

that the neural network estimations of τi in the healthy mice compare well with the

values reported in previous studies. Our estimates of τi for the WT group are be-

tween 330-400 ms, a range which lies within the 300-600 ms reported estimates of

the exchange time in several literature studies discussed in the previous chapters.

We find a good correlation between the neural network estimates of τi and myelin

thickness (ρτi = 0.75). Despite this, the p-value of the correlation is slightly above

the 0.05 significance level (p-val = 0.08), indicating a weaker correlation than in

the case of the random forest (p-val < 0.05). For f , the availability of EM mea-

surements of intra-axonal volume fraction allow for a direct comparison. We find

a good correlation between the estimates of the neural network and the histological

data (ρ f = 0.70). Similarly to τi, the p-value of the correlation is above the signif-

icance level (p-val = 0.1), in contrast with the random forest estimates of f which
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correlate very well with histological data (ρ f = 0.98, p-val < 0.001). For d, the

neural network estimates lie in the range 1-1.3 µm2ms−1, an expected range for the

mouse CC [165].

When comparing the two groups, we observe the following general trends: a

statistically significant decrease in the intra-axonal volume fraction f and in the

intra-axonal exchange time τi over all CC ROIs, together with an increase in the

intrinsic diffusivity d, negligible in the genu and significant in the splenium and

body. Our neural network model estimates a decrease in f and τi between the WT

and the CPZ group, in line with expected trends in demyelinated tissue. In the

case of diffusivity, we notice a slight increase across the body and the genu. This

could be explained by an increase in radial diffusivity as the water moves more

freely along the radial direction due to demyelination. Indeed, our radial diffusivity

measurements from the DTI fit in Figure 7.4 from Chapter 7 show that there is an

increase in the diffusivity along the radial direction.

Random forest (RF) versus neural networks (NN) for microstructure imaging.

When comparing the performance of the two machine learning approaches, we find

that for simulations mimicking our in-vivo data (SNR=40), the neural network out-

performs the random forest in the estimation of τi (neural network: R2 = 0.75 vs.

random forest: R2 = 0.68). For f and d, the differences between the two algorithms

are negligible (neural network/random forest: R2
f = 0.96/0.97 and R2

d = 0.99/0.99).

Moreover, we find a very good agreement between the two approaches for f and τi

(see Fig. 8.6), with all differences above the statistically significant level. Never-

theless, when comparing the neural network and the random forest estimates of f

and τi with electronmicroscopy data from the same mice, we find that the random

forest estimates correlate better with histological data.

It is generally accepted that the performance of neural networks is extremely

challenging to explain due to their black-box nature [180]. Recent research

[123, 181, 182] shows that neural networks can sometimes learn perfectly the train-

ing data due to their high effective capacity [123]. In other words, due to their

high number of parameters, neural networks act as powerful regressor that learn

the training data very well [7, 181], sometimes including idiosyncrasies that do not
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apply to slightly different test data [183].

While the high learning capacity of neural networks can be an advantage when

the test data is very similar to the training data, the model performance is affected

when there are differences between the train and the test datasets, resulting in arbi-

trary changes in the predictions [182]. Indeed, our case corresponds to the former

scenario as our training data is formed of synthetic simulations of the DW-MRI

signal, while the test data is formed of real in-vivo DW-MRI signals. Even though

our simulations closely mimic the in-vivo data, we expect some of the underlying

tissue properties not accounted for in our simulations (e.g. undulation, dispersion)

to result in subtle differences between the synthetic training signals and in-vivo test

signals. Such subtle, imperceptible differences in the input data have been shown to

lead to arbitrary and profound changes in a neural network’s output [182, 123], as

the model learns aspects of the training data that do not generalise to the test data.

Therefore, the expected differences between synthetic and real DW-MRI signals

may cause arbitrary alterations of our neural network’s in-vivo estimations, which

could impact negatively the correlation of the network’s estimates with histological

measurements.

Indeed, our results show that when the test data is very similar to the training

data, as it is the case with the synthetic SNR=40 database, the neural network gen-

eralises very well, exceeding the performance of the random forest. On the other

hand, when the test data has small perturbations not accounted for in the training

data, as it is the case with our in-vivo data (e.g. effect of dispersion), the neural

network estimates correlate less well with histological data than the random for-

est estimations. These results are in line with other literature studies which show

that sometimes more complex models such as neural networks perform less well

on real datasets than simpler models [184, 183]. A potential explanation for this

is that complex models with a high-number of parameters learn the training data

too closely, including aspects which do not generalise well outside the training set,

leading to a type of overfitting [185].

One way to address this limitation and improve the generalisation capacity of

a neural network is through ensembling, where a collection of neural networks are
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trained and their predictions combined, similarly to the decision trees in the random

forest. Ensembling has been shown to improve the generalisation capacity of a

single machine learning model [186] and is used extensively to achieve state-of-

the-art performance in many domains [187]. Formed of a collection of decision

trees, random forests are ensemble methods and, therefore, expected to generalise

better than single models [108]. This constitutes a potential explanation for the

better correlation of our random forest results with histological data. In addition

to ensembling techniques, there are several other neural network architectures (e.g.

generative adversarial networks) which have the potential to address the limitations

of our multilayer perceptron. These are subject to ongoing research [188, 181, 182]

and form part of future work, as discussed in the next chapter.

8.5 Conclusions

To conclude, this chapter assesses the performance of a neural network based com-

putational model with permeability using an in-vivo mouse model of demyelination.

Our results show that, in simulations, the neural network outperforms the random

forest when estimating τi (neural network: R2 = 0.75, random forest: R2 = 0.68),

in line with the findings in Chapter 5. Next, we apply our model to the in-vivo

data, consisting of a cohort of 8 CPZ mice and 8 healthy age-matched WT mice,

and we find that the model estimates sensible microstructure parameters for rat

white matter and detects trends consistent with expectations from the pathology

of demyelination (significant decreases in f and τi and a mild increase in d). We

compare the model’s estimates of τi and f with EM measurements from the same

mice and find a good correlation between the in-vivo estimates of τi and myelin

thickness (ρτi = 0.75), and between the neural network estimations and EM mea-

surements of f (ρ f = 0.70). However, we find that the p-value of the correlations

between the estimations and the histological data is above the significance level of

0.05 (p-valτi
= 0.08 and p-valτi

= 0.1), in contrast to the random forest estimates in

Chapter 7, which show a strong, statistically significant correlation with histology.

Overall, the results in this the last three chapters suggest that, in simulations,
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the neural network model provides marginally better estimates of τi than the ran-

dom forest approach. In-vivo, both machine learning approaches provide plausible

parameter estimates for white matter tissue and detect the same expected trends

between the control and demyelinated cuprizone groups: a significant decrease in

f and τi and a small increase in d. Despite this, the neural network estimates do

not correlate as well with histology measurements as the random forest estimates,

which show strong correlations with electronmicroscopy measurements of f and

myelin thickness. In addition to this, we previously show (in Chapter 5) that the

random forest estimates of f and τi also have better reproducibility than the neural

network estimates. All this suggests that random forest based computational mod-

els are a more suitable choice for machine learning based models with permeability

for white matter microstructure imaging than simple multilayer perceptrons neural

network models. Nevertheless, the field of neural networks is subject to continuous

research and new architectures might provide additional improvements over other

machine learning algorithms such as random forests, as we will discuss in the next

chapter.





Chapter 9

Conclusions and future work

This chapter discusses the contributions of this thesis from a general perspective

and details possible future extensions based on the current work.

9.1 Summary
The aim of this thesis was to develop and test the feasibility of machine learn-

ing based computational models with permeability for white matter microstructure

imaging. The motivation of this research was to contribute towards the development

of imaging biomarkers for MS and other demyelinating pathologies.

Current mathematical models with permeability, such as the Karger model [85]

or AXR [95], are based on assumptions that do no hold in the brain white matter

tissue, while mathematical expressions that accurately incorporate permeability re-

main intractable. Computational models bypass the need for mathematical expres-

sions by using simulations with available ground truth microstructure parameters to

learn how permeability affects the DW-MRI signals. Machine learning algorithms

are particularly suited for this task as they have been shown to be very good at

discovering intricate structures in high-dimensional data, improving on the state-

of-the-art in a multitude of domains including medical imaging [7]. To date, the

performance of machine learning methods for microstructure parameter estimation

such as intra-axonal exchange time τi has not been investigated. The experiments

in this thesis were therefore designed with the following specific objectives:

1. To build a machine learning based computational framework that learns a

mapping between synthetic DW-MRI signals and microstructure parameters,
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including τi, using a random forest and a neural network approach.

2. To assess the performance of the machine learning computational models on

noise-free and synthetic data to obtain indicative benchmark performances.

3. To asses the in-vivo performance of the machine learning computational

framework and study its feasibility as an imaging biomarker for demyelinat-

ing pathologies, with a focus on MS.

4. To experimentally investigate the performance of the random forest and the

neural network based computational models when compared to histology.

The conclusions of the investigations in this thesis are discussed below.

9.1.1 Evaluating the performance of the random forest and the

neural network models on synthetic data

Synthetic DW-MRI signals with available ground truth microstructure parameters

are necessary to asses the performance of our machine learning computational mod-

els under idealised and realistic noise conditions.

We use noise-free simulations to establish a benchmark performance for our

models given the data available and under ideal noise conditions (SNR=∞). We

show that both the random forest and the neural network approaches have an excel-

lent benchmark performance, with strong correlation coefficients (≥0.83) and no

general estimation bias for all parameters of interest.

We use the noisy databases to obtain an indication of the model performance

under realistic noise conditions, matching those of our in-vivo data. As expected,

we show that the model performance is affected by the presence of noise, especially

for parameters such as τi , which only weakly influence the DW-MRI signals under

clinical scanner settings [95]. This results in wider 95% limits of agreement be-

tween the ground truth and the estimated values and lower correlation coefficients

than in the noise-free case, especially for τi. Moreover, we show in Chapters 5 and

8, that the neural network provides a marginal improvement over the random forest

when estimating τi: the R2 correlation coefficient is higher by 0.04 for the STEAM

protocol in Chapter 4 and 0.07 for the SDE protocol in Chapter 6 than the R2 score
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of the random forest. This suggests that the neural network learns the relationship

between the synthetic simulations and τi better than the random forest in the pres-

ence of noise. This is most likely explained by the high effective learning capacity

of neural networks due to their extremely high number of parameters, which enables

them to learn all idiosyncrasies of a training set [123]. Despite the small differences

between the two, the performance of both approaches is still sufficiently good, with

correlation coefficients above 0.68 for all parameters of interest across both models.

In addition to the effect of noise, the performance of the model also depends on

the sensitivity of the DW-MRI signal to the parameters of interest. Indeed, we see

this being reflected in the estimation of τi, where the correlation coefficients over

the [0, 1000] ms range are higher when using the optimised STEAM protocol than

when using the non-optimised SDE protocol. This finding is also in line with the

our sensitivity study in Chapter 3, where we show that long ∆s, as in the optimised

STEAM protocol, play a crucial role in the sensitivity to the exchange time.

9.1.2 Evaluating the in-vivo performance of the random forest

and the neural network models on healthy and demyeli-

nated tissue

In order to investigate the in-vivo performance of our machine learning based com-

putational framework, we analyse the parameter estimates from in-vivo data from

clinical human scans (Chapters 4 and 5) and preclinical mouse scans (Chapters 6-8).

In the healthy in-vivo data, our machine learning based computational model

provides estimates of f , τi and d within plausible ranges for white matter tissue,

and that compare well with literature values. In addition to this, we show that our

computational framework estimates expected trends across the white matter, such

as the high-low-high trend in f across the mid-sagittal CC. Using scan-rescan data

from two healthy subjects, we show in Chapter 5, that both the random forest and

the neural network models have good reproducibility.

We use in-vivo data from diseased tissue (MS lesions and cuprizone-induced

demyelination) to study the feasibility of our computational model as an imaging

biomarker for demyelinating pathologies. We find that our machine learning based
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computational framework estimates trends consistent with expectations from the

pathology of demyelinated tissue, demonstrating the clinical potential of this new

technique. Both the random forest and the neural network based models estimate a

significant decrease in f and τi between healthy and diseased tissue, in both human

and mouse data. These results agree with expectations from the pathology of MS

lesions, where the breakdown of myelin would make axons thinner and, thus, more

permeable, as well as reduce the intra-axonal volume fraction. We seek further

validation of the trends estimated in f and τi through a direct comparison with

histological data, as detailed in the following subsection.

When comparing the two machine learning approaches, we find that there is

a very good agreement between the in-vivo control estimates of the random forest

and the neural network, which we show in Chapters 5 and 8. Additionally, both

approaches estimate the same trends across the white matter, such as the high-low-

high trend in f . Nevertheless, the random forest scan-scan rescan estimates show a

better reproducibility than the neural network for f and τi, while for d the methods

have equivalent reproducibility.

9.1.3 Evaluating the performance of the random forest and the

neural network models when compared to histology

In Chapters 7 and 8, we perform a direct comparison between the random forest

and the neural network in-vivo estimates of f and τi with histology measurements

of f and myelin thickness from a cuprizone mouse model. While estimates of f are

directly obtainable from histology, accurate estimates of τi are not accessible via

histology. Instead, we compare our estimates of τi with myelin thickness, which

has recently been shown to correlate well with τi in simulations [86], in line with

previous literature studies hypothesising the link between the two [1, 2, 3].

We show in Chapter 7 that the random forest estimates of f and τi are in strong

agreement (ρτi = 0.82, ρ f = 0.98) with our EM histology measurements of myelin

thickness and intra-axonal volume fraction. In addition to this, we show that poten-

tially confounding factors such as axonal swelling and dispersion have a negligible

effect on the estimated differences between the control and the demyelinated group.

In Chapter 8, we find that there is a good correlation between the neural network
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estimates of f and τi and histology (ρτi = 0.75, ρ f = 070), however, the correlations

are less strong than for the random forest and above the statistically significant level.

A potential explanation for this is that the neural network learns the simulated data

better than the random forest, as supported by our synthetic data results in section

9.1.1, but does not generalise as well when there are slight differences between the

training (i.e. the synthetic data) and the test set (i.e. the in-vivo data), consistent

with findings in several other literature studies [182, 181, 185]. On the other hand,

ensemble methods, such as random forests, have been shown to improve the gener-

alisation ability of single models, such as neural networks [186] or a single decision

trees [108], which further explains the better in-vivo performance of our random

forest model. Nevertheless, due to recent advances in the field of transfer learning,

which focuses on improving the performance of neural networks when there are

differences between the train and the test set, new network architectures that aim to

address this issue have become available [189, 187] and form part of future work.

The results in this thesis show for the first time, quantitatively and in-vivo, the

clinical potential of machine learning based computational models with permeabil-

ity as a suitable biomarkers for the detection and tracking of changes in demyeli-

nating pathologies such as MS. Additional improvements in the tissue model, the

diffusion sequence and the machine learning approach could further increase the

microstructure parameter estimation accuracy and form part of future work, as de-

tailed in the next and final section of this thesis.

9.2 Future work
There are several improvements and general future directions that could further im-

prove the accuracy of microstructure parameters estimations using machine learning

based computational models of white matter with permeability.

9.2.1 Tissue models

One limitation of the present work is the simplifying set of assumptions of the white

matter synthetic substrates used in the Monte Carlo simulations. Due to current

limitations in our simulation system, we make several assumptions about the ge-
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ometry of the tissue such as representing axons as non-abutting parallel cylinders

that mimic axon bundles without accounting for the effects of myelin water, dis-

persion, crossing fibres or the undulation, which are usually present in the in-vivo

tissue. Previous work investigating the impact of dispersion on axonal permeability

estimation shows that the presence of orientation dispersion could result in under-

estimated values of τi [1], and, therefore, could affect our estimates. Although in

Chapter 7 we conclude that we can rule out the effect of dispersion on our esti-

mation of the difference in τi, the absolute values of the estimations might still be

affected. Consequently, including the effect of dispersion in the simulations may

be essential for improving the accuracy of the intra-axonal exchange time. More

generally, from a machine learning perspective, using more realistic simulations

will also narrow down the gap between the synthetic and in-vivo data and make the

generalisation between the two databases more accurate.

Another limitation that stems from using one type of tissue model is that we test

the machine learning approaches on the same type of substrates that it was trained

on. We note, however, that despite using the same tissue model, the model param-

eters between the training and the test data are different so the results demonstrate

generalisation to some extent. Developing a different tissue model would require

substantial further development of our simulation system and is outside the scope

of this work. Future work should aim to train and test the machine learning model

on more diverse realistic simulations, which are subject to ongoing research and ac-

count for different effects such as myelin water [148, 86], axonal undulation [159],

dispersion [146, 147], neurons and glial cells [179]. Such effects, once included in

the simulations, can easily be incorporated in the machine learning framework used

in this paper and may improve the performance of our computational framework.

9.2.2 Diffusion sequences

The simulation study in Chapter 3 covers several clinical and preclinical combina-

tions of DW-MRI sequence parameters without fully exploring the parameter space

within the physical constrains of a scanner. In addition to this, we do not vary all

degrees of freedom at the same time. Future work can produce a more detailed anal-

ysis, similar to the work in [138], by fully exploring the space of each parameter
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and varying multiple parameters at the same time.

The success of our computational framework depends on the sensitivity of the

DW-MRI protocol to our parameters of interest. The sensitivity of the imaging

protocol in Chapter 6 to the exchange time in the presence of noise is not ideal.

Even though the sensitivity range covers a range of exchange time values that we

expect to find in the mouse white matter, the accuracy of the estimates could po-

tentially be improved by optimising our protocol with respect to τi as done in [132]

or by increasing the maximum diffusion time, in line with our findings from Chap-

ter 3. One of the main advantages of our computational framework is that it can

easily be adapted to incorporate not only more complex simulations, but also more

specialised diffusion encoding sequences such as AXR [95] or OGSE for more sen-

sitivity to axon diameter [138], or STEAM sequences for longer diffusion times, as

shown in Chapter 4.

9.2.3 Validation

An important step in the development of new tissue models, which was not per-

formed for the clinical studies in Chapters 4 and 5, is experimental validation. The

gold standard for validating in-vivo microstructure parameter estimates is to com-

pare them with histology. However, within the clinical setting, histological samples

are extremely invasive and painful, and sometimes impossible to obtain from certain

areas of the brain.

In an attempt to overcome this limitation, we use a preclinical mouse model

with available histological data. While we obtain histology measurements of f ,

accurate estimates of the intra-axonal exchange time τi are not obtainable via his-

tology as tissue fixation is known to alter membrane permeability. Here, we try

to bypass this limitation and compare our estimates of τi with histological mea-

surements of myelin thickness, which has been shown to correlate well with τi in

simulations [86]. Nevertheless, our validation is not ideal and we propose to adress

this limitation in the future by using permeable microstructural phantoms, which

have recently become available [190, 191]. While microstructural phantoms offer

some degree of validation, they cannot capture the entire microstructural complex-

ity of in-vivo tissue, and validating estimates of τi remains an intrinsically difficult



198 9.2. Future work

task.

9.2.4 Machine learning approaches

Throughout the thesis, one secondary theme has been to compare the performance

of random forests and multilayer perceptron neural networks when estimating mi-

crostrucuture parameters including the intra-axonal exchange time. We find that

while the neural network learns the relationship between noisy simulations and τi

better than the random forest, the in-vivo estimations of the neural network are less

reproducible (Chapter 5) and correlate less well with histology than those of the ran-

dom forest (Chapter 8). There are several approaches that may improve the in-vivo

performance of the neural network and which form part of future work.

One technique which has been shown to improve the generalisation perfor-

mance of single neural networks is ensembling [186, 187], which trains indepen-

dently a collection of neural networks and combines their predictions for the fi-

nal output of the ensemble. Neural networks ensembles are a promising approach,

which have been shown to improve the generalisation performance of single neu-

ral network models [186] and have been successfully applied to a wide range of

domains including medical imaging and diagnosis [187, 192, 193]. Another set of

techniques which may improve the performance of our neural network based model

belongs to the transfer learning field, which aims to improve a network’s ability to

generalise to conditions that are different from the ones encountered during train-

ing, such as when the network is trained on simulations but is used to estimate on

real data. Two of the most popular approaches are domain confusion and adversar-

ial training, which use both the synthetic and real data during training in order to

improve the robustness of the neural network to modifications in the test data. This

field is currently at the forefront of machine learning research and a list of the most

successful techniques so far can be found in [189].

Each of the two machine learning approaches used throughout this thesis has

its own advantages and disadvantages. The main advantage of neural networks

in the context of this thesis is that their architecture can be adapted and extended

to address one of the main limitations on the current work: the gap between the

synthetic and the in-vivo data through transfer learning techniques. This can be
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done by adopting newly introduced architectures such as generative adversarial net-

works, convolutional neural networks or domain adaptation semi-supervised archi-

tectures. As transfer learning is undergoing continuous development, future work

implementing these approaches has great potential to improve our current results.

However, neural networks are known for being prone to overfitting and difficult

to tune [126], while random forests are known for being very robust, easy to tune

and interpretable, making them one of the most widely used machine learning al-

gorithms in medical imaging [110]. Therefore, the choice of the machine learning

model needs to be carefully assessed according to each scenario.

Another important future direction, applicable to both machine learning ap-

proaches, is the inclusion of uncertainty measures, as in [194], to highlight areas

of the brain where the model estimates are less reliable due to unfamiliar signals.

This is especially important for the potential clinical applications of our computa-

tional framework as it ensures informed treatment and diagnosis decisions for white

matter pathologies.

Our machine learning based computational framework can easily be adapted

to any of the machine learning approaches outlined above, opening the pathway to

a plethora of new emerging machine learning techniques.

9.2.5 Applications

Developing imaging techniques which provide information about microstructural

features has many potential applications, both in biomedical research for a better

understanding of brain pathologies, as well as in the clinical setting for their diag-

nosing and monitoring. The machine learning based computational framework we

use here opens the doors to estimating a wider range of microstructure parameters

for which mathematical models remain intractable such as undulation or properties

of the extracellular space. The estimations of these otherwise intractable param-

eters offers not only clinically useful information, but accounting for their effects

may also improve the estimation of other microstructure parameters such as the

axon diameter, which is usually overestimated by compartment models [73].

The extension of our white matter model with permeability to clinical systems

can potentially be important for numerous white matter pathologies of the human
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nervous system. In this thesis, we preliminary show that our approach may be suit-

able for clinical and biomedical research applications through a qualitative study

on two healthy and two MS patients, where we show that our approach provides

parameter estimates consistent with expectations from the pathology of MS lesions.

We further consolidate this hypothesis by demonstrating our framework’s clinical

potential as a biomarker for MS in a cuprizone mouse model of demyelination,

which is extensively used in the MS literature due to its close similarity to the de-

myelination and remyelination processes occurring in MS lesions [162].

The applicability of our approach extends to other myelin damaging patholo-

gies such as spinal cord injury or leukodystrophies due to the hypothesised correla-

tion between τi and the condition of the myelin sheath [1, 2, 3]. In addition to this,

the clinical applications of our framework can also be extended to other pathologies

such as Parkinson’s disease or cancer, which have been shown to cause a change in

the permeability of the tissue [4, 5]. The current key limitation is the reduced sen-

sitivity to the intra-axonal exchange time of clinically available imaging protocols

and the simplifying assumptions of the tissue model . Nevertheless, with the con-

tinually improving SNR in clinical scanners and the availability of more realistic

simulations, the number of potential clinical and biomedical research applications

of machine learning based computational models is likely to increase in the future.
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Ståhlberg, and Sara Brockstedt. On the effects of a varied diffusion time

in vivo: is the diffusion in white matter restricted? Magnetic resonance

imaging, 27(2):176–187, 2009.

[13] Julia M Edgar and I Griffiths. White Matter Structure: A Microscopists View.

Diffusion MRI: From Quantitative Measurement to In-vivo Neuroanatomy,

75, 2009.
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