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Multiple imputation (MI) is increasingly popular for handling multivariate missing data. Two general ap-
proaches are available in standard computer packages: MI based on the posterior distribution of incomplete
variables under a multivariate (joint) model, and fully conditional specification (FCS), which imputes miss-
ing values using univariate conditional distributions for each incomplete variable given all the others, cycling
iteratively through the univariate imputation models. In the context of longitudinal or clustered data, it is
not clear whether these approaches result in consistent estimates of regression coefficient and variance com-
ponent parameters when the analysis model of interest is a linear mixed effects model (LMM) that includes
both random intercepts and slopes. In the current paper, we compared the performance of seven different
MI methods for handling missing values in longitudinal and clustered data in the context of fitting LMMs
with both random intercepts and slopes. We study the theoretical compatibility between specific imputation
models fitted under each of these approaches and the LMM, and also conduct simulation studies in both the
longitudinal and clustered data settings. Simulations were motivated by analyses of the association between
body mass index (BMI) and quality of life (QoL) in the Longitudinal Study of Australian Children (LSAC).
Our findings showed that the relative performance of MI methods vary according to whether the incom-
plete covariate has fixed or random effects and whether there is missingnesss in the outcome variable. We
showed that compatible imputation and analysis models resulted in consistent estimation of both regression
parameters and variance-components via simulation. We illustrate our findings with the analysis of LSAC
data.
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1 Introduction

Longitudinal and cluster-correlated data arise in many public health settings where data are collected from
(i) individual participants repeatedly over time and (ii) from groups of individuals that are clustered within
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natural units e.g, medical practices, geographical locations. Both of these settings have the common char-
acteristic of correlated measurements either within an individual or within a cluster of individuals. Mixed-
effects models are frequently used in the analysis of correlated data. However, the validity of the results
obtained from such analyses may be compromised if some covariate values are missing (Laird, 1988).

Multiple imputation (MI) has become a popular tool for dealing with missing data in recent years (Rez-
van et al., 2015). MI involves the generation of multiple copies of imputed datasets where missing values
are replaced by imputed values sampled from their posterior predictive distribution (or an approximation
to this) given the observed data. Each completed dataset is analyzed using the statistical model for the
epidemiological question of interest, and the resulting estimates and standard errors are combined using
Rubin’s rules (Rubin, 1987). The theoretical basis of MI methods has been developed under the assump-
tion that data are missing at random (MAR), which requires that the probability of data being missing does
not depend on the unobserved data, conditional on the observed data (Sterne et al., 2009). If the data are
MAR, a correctly implemented MI method can produce unbiased and asymptotically efficient estimates of
regression parameters and their standard errors. Correct implementation requires compatibility between
the imputation and analysis models. Formally, a set of conditional models are called compatible if there
exists a joint density function that generates them (Meng, 1994).

Two general approaches for implementing MI in the presence of multiple incomplete variables are avail-
able in the literature: MI based on the joint posterior distribution of incomplete variables, often referred
to as joint modeling (JM) (Schafer, 1997), and fully conditional specification (FCS; also known as se-
quential regression and MI using chained equation (MICE)) (Raghunathan et al., 2001; Van Buuren et al.,
2006). The JM approach assumes that the incomplete variables follow a multivariate distribution, usually a
multivariate normal distribution in which case the method is referred to as multivariate normal imputation
(Schafer, 1997). FCS, on the other hand, imputes missing values using univariate conditional distribu-
tions for each incomplete variable given all the other variables in the imputation model, cycling iteratively
through the univariate imputation models (Raghunathan et al., 2001; Van Buuren et al., 2006). Both the
JM and FCS approaches were originally proposed for imputing missing values in cross-sectional settings
with independent observations, and subsequently various extensions have been proposed in the literature
to accommodate longitudinal and correlated data.

MI methods developed to impute missing values in both the cluster-correlated and longitudinal data
settings include a joint multivariate linear mixed effects model (LMM) approach (JM-MLMM) (Schafer
and Yucel, 2002), implemented in the pan software in R. There is also an FCS adaptation of Schafer and
Yucel’s approach (FCS-LMM) implemented in the mice.impute.2lpan function of the mice package in R
(Van Buuren and Groothuis-Oudshoorn, 2011). Both the JM-MLMM and FCS-LMM approaches assume
a constant residual variance across all clusters. Subsequently, Yucel and Van Buuren et al. extended the
JM-MLMM and FCS-LMM approaches to allow for heteroscedastic (cluster-specific) random covariance
matrices and residual error variances, respectively (Yucel, 2011; Van Buuren et al., 2011), hereby denoted
as JM-MLMM-het and FCS-LMM-het. Both JM-MLMM and JM-MLMM-het, and their FCS adaptations
(FCS-LMM and FCS-LMM-het), assume normal distributions for the incomplete variables. In practice,
incomplete variables may be a mixture of continuous and categorical variables, so the assumption of nor-
mality may not be realistic. Goldstein et al. proposed an extension of the JM-MLMM approach which
uses latent normal (LN) variables to impute a mixture of discrete, normal and non-normal continuous vari-
ables, referred to herein as JM-MLMM-LN (Goldstein et al., 2009). Asparouhov and Muthén suggested a
method similar to JM-MLMM-LN where all variables in the imputation models are treated as outcomes,
regardless of missing data pattern, hereby denoted as full joint (JM-FJ) model (Asparouhov and Muthén,
2010). More recently, Goldstein et al. proposed a further extension of JM-MLMM-LN where the imputa-
tion model is defined as the product of the substantive model and the joint distribution of the covariates, to
ensure congeniality (substantive model compatible, denoted JM-SMC) (Goldstein et al., 2014) . The JM-
MLMM-LN and JM-SMC approaches have been implemented in the REALCOM and Stat-JR software
packages, respectively (see http://www.bristol.ac.uk/cmm/software/) and both were later adopted in the R
software package jomo (Quartagno and Carpenter, 2016). The jomo implementations for JM-MLMM-LN
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and JM-SMC allow a random covariance matrix and hence are denoted as JM-MLMM-LN-het and JM-
SMC-het. Similar efforts have been made to extend both the FCS-LMM and FCS-LMM-het methods to
impute categorical data using either generalized LMM (GLMM)-based MI methods (Resche-Rigon and
White, 2016; Zhao and Yucel, 2009) or LN variables (FCS-LMM-LN and FCS-LMM-LN-het) (Enders
et al., 2017).

In the special case of longitudinal data collected at equal intervals, standard cross-sectional imple-
mentations of MVNI and FCS can be employed to impute missing values by treating the time-dependent
longitudinal measurements as distinct variables (Schafer, 1997; Van Buuren et al., 2006); we denote these
as JM-MVN and FCS-Standard, respectively. These single-level MI methods can also be used for cluster-
correlated data by including cluster-specific indicator variables to capture the within-cluster correlation –
known as ‘fixed cluster imputation’ (Reiter et al., 2006).

Although similar MI methods can be used to impute missing values in both longitudinal and clustered
data settings, the performance of these methods may differ according to the intra-subject/intra-cluster asso-
ciation between outcome and incomplete variables in the analysis model particularly in the situation when
both the outcome and covariates associated with random effects contain missing values. In the longitudinal
setting, random slopes (i.e., random coefficients for covariates) are usually associated with the time vari-
able only, which is generally fully observed, but covariates with random slopes in the context of clustered
data may be incomplete. Furthermore, it is unclear how important these differences are in practice as cur-
rently available comparisons of the various MI methods in the literature are limited to either clustered or
longitudinal data settings with little theoretical consideration.

In the context of cluster-correlated data, Grund et al. compared two different modeling strategies with
JM-MLMM: (i) a multivariate LMM with a so-called reverse random coefficients model assuming that
the outcome is fully observed (this model regresses covariates on the outcome with the outcome having
random effects if the covariate has them in the analysis model) for imputing missing data in covariates
and (ii) a multivariate LMM with random intercepts only (thus ignoring random slopes in the outcome
model) for imputing missing data in both covariates and outcome (Grund et al., 2016). They noted that
the reverse random coefficients model provided unbiased estimates of the regression and variance compo-
nents, but the second model performed poorly for the estimation of the random slope variance. Similar
findings were also observed by Enders and colleagues (Enders et al., 2016) who compared JM-MLMM,
FCS-LMM-het and fixed cluster imputation when both the outcome and covariates contain missing data.
They reported that the FCS-LMM-het approach exhibited better performance than the other methods es-
pecially when both the outcome and covariate were incomplete in a random intercept and slope analysis
model. Audigier and colleagues (Audigier et al., 2018) recently compared a number of methods including
fixed cluster imputation, JM-MLMM, FCS-LMM-het, and JM-MLMM-LN-het in the context of cluster-
correlated data and reported that all of these methods provided reliable estimation of the regression pa-
rameters but JM-MLMM and fixed cluster imputation approaches severely under-estimated the variance
components. No such comparison in the context of longitudinal data, where the analysis model of interest
is a random intercept and time-slope model, is available in the literature. Recently, we compared 12 dif-
ferent MI approaches for imputation of incomplete longitudinal data where the analysis model of interest
is a LMM with subject-specific random intercept only (Huque et al., 2018). We showed that both standard
MI methods (JM-MVN and FCS-Standard) and LMM-based approaches (JM-MLMM, JM-MLMM-LN,
FCS-LMM and FCS-LMM-LN), provided consistent estimates of the regression and variance component
parameters. However, these results may not be generalizable to a random intercept and slope analysis
model. Moreover, all the above comparisons are empirical and no theoretical justification for the observed
sub-optimal results is available.

The motivation for this study was an analysis of the Longitudinal Study of Australian Children (LSAC)
that explored (a) the association between body mass index (BMI) and health related quality of life (QoL)
for children over time and (b) whether the association between early BMI and QoL in later life varied
across geographical location. Attrition and non-response make these data a natural candidate for analysis
using MI, but no clear guideline was available on the selection of the appropriate MI method. In the current
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paper, we study the properties of available MI methods, both theoretically and via simulations based on
these examples, and we also perform an analysis of the LSAC data. As both BMI and QoL are continuous
measures, we restrict our comparisons to the approaches where all variables in the MI model are continu-
ous. This simplifies the study of theoretical compatibility between specific imputation models fitted under
each of these MI approaches and the analysis model and reduces the number of competitive MI methods,
as under this restriction the MI methods with latent normal variables (JM-MLMM-LN, FCS-LMM-LN and
FCS-LMM-LN-het) are identical with those that treat all the variables as continuous (JM-MLMM, FCS-
LMM, and FCS-LMM-het, respectively). Our study of compatibility confirms that MI approaches result in
consistent estimates of regression parameters when the imputation model is compatible with the analysis
model. The results from the LSAC data analysis are also in agreement with those seen in the simulation
study.

The structure of the article is as follows: Section 2 describes LSAC and the analysis models of interest.
Sections 3 and 4 present a theoretical exploration of the compatibility of different MI methods and a linear
mixed model with random intercept and slopes as analysis model in the context of longitudinal and cluster-
correlated data, respectively. Section 5 describes and presents the results of our simulation study. The
application to the LSAC data is presented in Section 6. We conclude with a general discussion in Section
7. The Web Appendices give detailed proofs, as needed.

2 Methods

2.1 Analysis models of interest

Let yi = (yi1, yi2, . . . , yini
)T be the ni-repeated measures of a continuous outcome for individual i ∈

(1, 2, ..., n), and xi = (xi1, xi2, ..., xini
)T and ti = (ti1, ti2, ..., tini

)T represent repeated measures of
a continuous covariate and the measurement times, respectively. Suppose the association between the
repeated measured outcome and covariates can be expressed using the following LMM

yi|xi, ti = β0 + β1xi + β2ti + b0i + b1iti + εi, i = 1, 2, ...n (1)

where β = (β0, β1, β2) is the vector of fixed-effects, bi = (b0i, b1i) ∼ N(0,G) denotes the random
effects vector and εi = (εi1, εi2, ..., εini

) ∼ N(0,Φi = σ2
εiI), where I is the ni×ni identity matrix. The

LMM in (1) typically assumes that the residual error, εi and random effects bi are independent of each
other. Thus the marginal distribution of yi is MVN(µyi

= β0 + β1xi + β2ti,Σyi = ZiGZ
T
i + Φi),

where Zi = (1, ti)
T is a ni × 2 matrix with the first column having all elements equal to 1. This LMM

models the longitudinal trajectory for each subject over time.
A similar model can also be applied to clustered data where the effect of some covariates on the outcome

are allowed to vary from cluster to cluster. In the clustered data setting, the LMM with a random intercept
and slope might take the following form

yi|x1i,x2i = α0 + α1x1i + α2x2i + a0i + a2ix2i + ξi, i = 1, 2, ...m; (2)

where x1i and x2i are vectors of measurements of covariates x1 and x2, respectively within cluster
i ∈ (1, 2, ...m), assumed to be associated with the outcome, yi.

The estimation of parameters for the above LMMs can be carried out in similar fashion if all the vari-
ables in the model are complete. However, in the presence of incomplete data in the covariates the above
two classes of models could differ: in the longitudinal setting, the covariate associated with the random
slope, the measurement times t is generally observed, while in the clustered data settings, the covariate
(x2) associated with a random slope may be incomplete. To assess the performance of the MI approaches
in these distinct situations where an LMM with random intercepts and slopes is the analysis model of inter-
est, we evaluated their performance under the following four scenarios: in the case of a longitudinal study
where (i) only the covariate x is incomplete and (ii) both the covariate x and outcome y are incomplete;
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and in the context of clustered data where (iii) only the covariate x2 is incomplete and (iv) both covariate
x2 and outcome y are incomplete.

In the next two sections we study the theoretical properties of various MI methods available for imputing
longitudinal and clustered data, in particular, we examine the potential for compatibility of each imputation
model with the analysis model of interest.

3 MI methods for missing data in longitudinal settings

In longitudinal studies, data from the same individuals are collected repeatedly over time. Longitudinal
data can be arranged in the wide format (new variable for each repeated measurement) if measurements
occur at the same time-points for all individuals (i.e., the dataset is balanced) or in the long format (where
repeated measurements are stacked). The wide format data can be imputed using standard cross-sectional
imputation models (JM-MVN and FCS-Standard) by assuming the repeated assessments of the same vari-
able are distinct variables, while imputation with the long format data requires use of multilevel imputation
models.

3.1 JM-MVN

JM-MVN can be applied if we have balanced longitudinal data by treating all the repeated measurements
of time-dependent variables as distinct. This method assumes a multivariate normal distribution for all of
the incomplete variables. More specifically, assume that both the time-dependent covariates and outcome
for individual i ∈ (1, 2, ..., n) measured on T occasions, where t = (1, 2, ....T ) represents the vector of
time-points when the measurements took place. If both covariate x and outcome y are incomplete, then
JM-MVN assumes that (y1,y2, ...,yT ,x1,x2, ...,xT ) ∼ N(µ,Σ) where µ and Σ are the mean and an
unstructured variance-covariance matrix, respectively.

We study the congeniality between JM-MVN and the analysis model (1) in the setting where the covari-
ate xi also follows a LMM defined as

xi|ti = γ0 + γ1ti + u0i + u1iti + εi, (3)

where εi ∼ N(0,Υ) and ui = (u0i,u1i) ∼ N(0,D), where Υ and D are the covariance matrices
currently left unspecified. As both the conditional distributions of (yi|xi, ti) and (xi|ti) are Gaussian,
the joint distribution of (yi,xi|ti) is also Gaussian. Since we are assuming that the data are collected for
an equal number of visits at fixed time intervals for all individuals, the joint distribution of (y,x|t)T =
(y1, y2, ...yT , x1, x2, ...xT |1, 2, ..T ) is normal and given by(

y
x
|t
)

= N

(
µ =

(
β0 + β1(γ0 + γ1t) + β2t

γ0 + γ1t

)
,Σ =

(
β1Σxβ

T
1 + Σy β1Σx

Σxβ1 Σx

))
.(4)

[see the Appendix A.1 for proof]. Therefore, the joint distribution assumed by JM-MVN in scenario (ii) is
compatible with the joint distribution implied by analysis model (1).

Scenario (i), where there is missing data only for x, is a special case of scenario (ii), hence JM-MVN
will be compatible with analysis model (1) for this scenario too.

3.2 JM-MLMM

Instead of treating repeated measurements as distinct variables, Schafer and Yucel suggested using a mul-
tivariate LMM for imputing several incomplete longitudinal variables (Schafer and Yucel, 2002). Under
scenario (ii) this method imputes missing data from the following multivariate LMM:(

xi
yi
|ti
)

=

(
β0(x) + β1(x)ti + b0(x)i + b1(x)iti + ε(x)i
β0(y) + β1(y)ti + b0(y)i + b1(y)iti + ε(y)i

)
(5)
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where
(
b0(x)i b1(x)i
b0(y)i b1(y)i

)
∼ N(0,Ψ) and

(
ε(x)i
ε(y)i

)
∼ N [0, (Σ ⊗ I)]. The covariance matrix Ψ has

dimension 4 × 4 and the Kronecker product notation indicates that the ε(x)i and ε(y)i are independently
distributed asN(0,Σ). With some algebra we can show that analysis model (1) can be obtained as a special
case of the conditional model for the outcome given the covariate, x, under the bivariate joint distribution
defined in (5) [see Appendix A.2 for proof]. Hence the JM-MLMM model would be compatible with the
analysis model of interest under scenario (ii).

Under scenario (i) i.e., when only covariate x contains missing data, the imputation model under JM-
MLMM is given by

xi|yi, ti = β0(x) + β1(x)yi + β2(x)ti + b0(x)i + b1(x)iti + ε(x)i (6)

where ε(x)i ∼ N(0,Σ(x)) and b(x)i = (b0(x)i, b1(x)i) ∼ N(0,Ψ(x)) with Σx|y = ZiΨ(x)Z
T
i +Σ. Thus,

under scenario (i), JM-MLMM would be compatible with the substantive model if both of the conditional

models xi|yi, ti and yi|xi, ti lie in the subspace determined by the joint model
(
xi
yi
|ti
)

. It can be

shown that imputation model (6) is compatible with analysis model (1) if βT
1(x)Σ

−1
x|y = β1Σ

−1
y [see the

Appendix A.2 for proof]. Similar conditions for two linear regressions to be compatible when the target
joint distribution is bivariate normal have also been noted (Zhu and Raghunathan, 2015) and (Liu et al.,
2014). The current paper extends those results to the context of LMM.

3.3 JM-FJ

Asparouhov and Muthén suggested an alternative to the JM-MLMM-LN (Goldstein et al., 2009) where the
data are imputed using an unrestricted model, where all variables in the imputation models are treated as
outcome, regardless of missing data pattern, hereby denoted as full joint (JM-FJ) model (Asparouhov and
Muthén, 2010) . The JM-FJ method under both scenario (i) and (ii) is given by yi

xi
ti

 =

 β0(y) + b(y)0i + ε(y)i
β0(x) + b(x)0i + ε(x)i
β0(t) + b(t)0i + ε(t)i

 , (7)

where

 b(y)0i
b(x)0i
b(t)0i

 ∼ N(0,Ωu) and

 ε(y)i
ε(x)i
ε(t)i

 ∼ N(0,Ωε). This model imposes the same random-

effect structure for all variables, decomposing the variance into within and between-individual components.
In longitudinal studies, data are often collected at fixed time intervals for all individuals, and therefore, it
may not be sensible to assume between-individual variability for the time variable (or corresponding latent
variable). The JM-FJ approach has a large number of parameters and convergence is often difficult to
achieve. Moreover, it can be shown that the joint distribution implied by JM-FJ (7) is not compatible with
the substantive model (1) [see Appendix A.3 for proof]. This uncongeniality is due to the fact that the JM-
FJ does not accommodate the variability in the slope across individuals. Because of this non-congeniality,
in our simulation studies we also examine whether assuming heteroscedastic covariance matrices in the
imputation model may improve the estimation of the variance components by allowing for subject-specific
correlations (JM-FJ-het).

3.4 JM-SMC

Goldstein, Carpenter and Browne (2014) extended JM-MLMM-LN to handle missing data in both covari-
ates and outcomes in multilevel models while ensuring that the imputation model is compatible with the
substantive model (Goldstein et al., 2014). We refer to this as the substantive-model-compatible joint mod-
eling approach (JM-SMC). In this formulation, the joint imputation model is defined as a product of the
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joint distribution of covariates and the analysis model (i.e., conditional model for the outcome given the

covariates). Specifically, the JM-SMC approach defines the joint distribution of
(
xi
yi
|ti
)

as

(
xi
yi
|ti
)

= (yi|xi, ti)× (xi|ti) , (8)

where (xi|ti = β0(x) +β(x)ti+b0(x)i+b1(x)iti+ε(x)i) with b(x) ∼ N(0, θu) and ε(x)i ∼ N(0,Θε).
The JM-SMC thus ensures compatibility under both scenarios (i) and (ii). Similarly to JM-FJ, in our
simulation we also assume heteroscedastic covariance matices for the imputation using JM-SMC, and we
labeled this JM-SMC-het.

3.5 FCS-Standard

Similarly to JM-MVN, FCS-Standard can be applied only in the setting with regular measurement time-
points, by treating all the repeated measurements of time-dependent variables as distinct variables. Specif-
ically, this approach involves a conditional imputation model for each time-and-variable-specific measure-
ment given the remaining measurements and variables. When considering only continuous outcome and
covariates, as in this manuscript, FCS-Standard is implemented using linear regression models without
interactions between covariates for the univariate imputation models. In this situation, FCS-Standard and
JM-MVN are equivalent (see proposition 1 of (Hughes et al., 2014)). Given we have shown that JM-MVN
is compatible with analysis model (1) under model (3) for the incomplete covariate, FCS-Standard will
also be compatible with the analysis model (1) in both scenarios under these conditions.

3.6 FCS-LMM

Instead of treating repeated measurements as distinct variables, the FCS-LMM method uses a LMM for
imputing missing values in each incomplete time-dependent variable given all the others, cycling iteratively
through the univariate imputation models. Specifically, the Gibbs sampler cycles through the univariate
LMMs assuming homogeneous within-subject variance, which is a special case of a multivariate LMM (5).
That is, it uses the same imputation models as JM-MLMM with only one variable considered incomplete
at a given iteration. Under scenarios (i) and (ii), this method will be compatible with the analysis model if
the compatibility condition (derived in 3.2) is satisfied.

3.7 FCS-LMM-het

Similarly to FCS-LMM, FCS-LMM-het imputes each time dependent incomplete variable using a LMM.
However, this method allows a subject-specific residual error variance. Under this approach, the imputation
model for covariate x associated with the i′th subject of interest is given by

(xi|yi, ti, bi) = N
(
β0i(x) + β1i(x)yi + β2i(x)ti,Σix|y = σ2

ixIni

)
, (9)

where β0i(x) = β0(x)+b0(x)i, β1i(x) = β1(x)+b1(x)i and β2i(x) = β2(x)+b2(x)i. Note the FCS-LMM-het
approach assumes random slopes for each variable in the imputation model. Analysis model (1) can be
re-written as

(yi|xi, ti, bi) = N
(
(β0 + b0i) + β1xi + (β2 + b1i)ti,Σy|x = σ2

yIni

)
Using similar arguments as with FCS-LMM, it can be shown that under scenario (i) FCS-LMM-het would
be compatible with the analysis model if both the conditional model xi|yi, ti and yi|xi, ti lie in the

subspace determined by the joint model
(
xi
yi
|ti
)

. It can thus be shown that the imputation model (9)

is compatible with the analysis model (1) if βT
1i(x)Σ

−1
ix|y = β1Σ

−1
y , which is very similar to the condition
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derived in (3.2). Hence, this method will be compatible with the analysis model (1) under both scenarios
(i) and (ii), if the above compatibility condition is satisfied.

In summary, for longitudinal studies, we anticipate that all of the above methods, except the JM-FJ, will
provide consistent estimates of regression and variance components.

4 MI models for missing data in cluster-correlated data.

In the cluster-correlated settings data are arranged in a long format by stacking data from each cluster. The
MI methods that can be carried out are i) standard JM and FCS approaches using a total of m-1 indicator
variables representing allocation of m clusters as a fixed factor in the model (fixed cluster imputation)
(Reiter et al., 2006; Enders et al., 2016), or ii) a multilevel imputation method.

The use of indicator variables in fixed cluster imputation preserves the difference in intercept between
clusters. However, an interaction between the indicator variables and the incomplete variables will also
be needed to accommodate the random slope variation if the covariate(s) associated with random slopes
are incomplete. However, such analysis requires estimation of a large number of parameters and hence is
computationally demanding and often infeasible particularly with large number of clusters of small sizes
(Enders et al., 2016). In contrast, the multilevel imputation approach is more appealing as it can be easily
implemented for random intercept and slope models and is computationally faster than the fixed cluster
imputation approach. Therefore, in this paper we will only study the theoretical and empirical properties
of the multilevel imputation approach, although we return to fixed cluster imputation in the discussion
section.

4.1 JM-MLMM

Similarly to the approach for longitudinal data, JM-MLMM uses a joint LMM for all incomplete vari-
ables. However, the formulation of the LMM will differ with respect to whether the incomplete variables
are associated with random slopes or fixed effects. For example, when covariate x1 and outcome y are
incomplete the following JM-MLMM model is assumed for the incomplete variables:(

x1i

yi
|x2i

)
=

(
α0(x1) + α1(x1)x2i + a0(x1)i + a2(x1)ix2i + ε1i
α0(y) + α1(y)x2i + a0(y)i + a1(y)ix2i + ε2i

)
Thus, similarly to the longitudinal settings [Appendix A.2], there is compatibility with the analysis

model. As the above imputation model is similar to the longitudinal case (with t replaced by x2), we do
not consider it further. However, when covariate x2 and outcome y are incomplete (scenario (iv)) the joint
model for the incomplete variables using JM-MLMM is(

x2i

yi
|x1i

)
=

(
α0(x2) + α1(x2)x1i + a0(x2)i + ε3i
α0(y) + α1(y)x1i + a0(y)i + ε4i

)
This JM-MLMM imputation model does not accommodate the random slope for the incomplete variable
and is therefore incompatible with the analysis model [the proof is omitted as it is similar to the proof
provided for the incompatibility of the JM-FJ model]. Similarly to the longitudinal setting, it can be shown
that when either x1 or x2 contains missing values but the outcome is fully observed (scenario (iii)) JM-
MLMM would be compatible with the analysis model (2).

4.2 JM-FJ

The JM-FJ model for cluster-correlated data assumes the following joint model for (y,x1,x2) irrespective
of missing data in y, x1 or x2 yi

x1i

x2i

 =

 β0(y) + b(y)0i + ε(y)i
β0(x1) + b(x1)0i + ε(x1)i

β0(x2) + b(x2)0i + ε(x2)i

 (10)
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Similarly to JM-FJ for longitudinal data (see section 3.3) it can be shown that the joint distribution implied
by JM-FJ (10) is not compatible with the analysis model (2) in either scenario (iii) or (iv).

4.3 JM-SMC

As for the analysis model (1), by construction the JM-SMC approach will also be compatible with analysis
model (2) irrespective of whether missing data is in the outcome or covariates.

4.4 FCS-LMM

This method uses identical imputation models to those under JM-MLMM (see section 4.1) with only one
variable considered missing at a given iteration, and is compatible with the analysis model (2) irrespective
of whether covariate(s) and/or the outcome are incomplete (i.e., for scenario (iii) and (iv)) if the compati-
bility condition (derived in 3.2) is satisfied.

4.5 FCS-LMM-het

The imputation model followed by FCS-LMM-het in the clustered data setting will be compatible with the
substantive model of interest under both scenarios (iii) and (iv). The proof is similar to that provided in
section 3.7 and is given in Appendix A.4.

In summary, considering all of the above methods for cluster-correlated data, we anticipated that the
JM-FJ and both JM-MLMM and JM-FJ would provide biased estimates of the variance components under
scenario (iii) and (iv), respectively.

5 Simulation study

In this section we describe the simulation studies that were used to assess the relative performance of
the MI methods described in Sections 3 and 4 in the settings of longitudinal and clustered data. Our
simulation studies are based on data from the kindergarten (K) cohort of children in LSAC (n=4983), who
were aged 4-5 years when recruited in 2004. LSAC is a nationally representative study that examines
the development and wellbeing of Australian children. Following recruitment, data have been collected
every two years (referred to as waves of data collection) using face-to-face interviews, questionnaires and
direct anthropometric measurements. The study is ongoing with six waves of data currently available. The
detailed study procedure has been described elsewhere (LSAC). Here we consider two target analyses: (a)
a longitudinal example: association between BMI-z score and QoL in children over time and (b) a cluster
example: whether BMI-z score at wave 5 predicts the QoL at wave 6 after accounting for clustering by
neighbourhood. Specifically, for analysis (a) we fitted a model similar to model (1) with QoL as a time-
varying outcome, BMI-z score a time-varying covariate and age (in years) of the child as the time variable,
with child-specific random intercepts and time-slopes. For analysis (b) we fitted a model similar to (2)
with child QoL at wave 6 as the outcome (y), child BMI-z score at wave 5 as the exposure of interest (x2)
and socio-economic index for areas (SEIFA) as a covariate, with both fixed and random effects for area
(x1). The missingness patterns among these variables in the LSAC dataset have been described elsewhere
(Huque et al., 2018).

5.1 Longitudinal data

For the longitudinal example, we generated 1000 datasets of 5000 children assessed at 6 waves of follow-
up. Three covariates at baseline: mother’s education, language spoken at home and family socio-economic
position; as well as three time-dependent variables: age, BMI z-score and the outcome, QoL for each child
were generated. The details of the simulation setup are given below:
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1. Whether English is the main language spoken at home (hlang) and maternal education (medu: whether
or not completed year 12) for each child were generated using binomial distributions with probabilities
0.9 and 0.6 respectively.

2. The household socio-economic position (hsep) at baseline was generated using the following regres-
sion model:

hsepi = −0.8 + 1.0×medui + 0.2× hlangi + νi, i = 1, 2, ..., 5000.

where νi ∼ N(0, 0.92).

3. Child age in years (cage) for the ith child in the jth wave (cageij) was generated according to the
following model

cageij =
1

12
{48 + (waveij − 1)× 24 + ϑi}+ vij , j = 1, 2, ..., 6.

where ϑi = N(11, 1.52), is the distribution of age (in months) of the participant at the recruitment
and vij = N(0, 22) is the random variation in age at the time of assessment.

4. The time-varying exposure, cbmiij was then generated using the LMM

cbmiij = γ0 + γ1cageij + u0i + u1icageij + Υij ,

where γ = (γ0, γ1) is the vector of fixed-effects, ui = (u0i,u1i) ∼ N(0,D) denotes the ran-
dom effects vector with the following specification for the parameters: γ = (−0.60, 0.10)T, D =(
D00 D01

D10 D11

)
=

(
0.49 −0.015
−0.015 0.005

)
, where D00 = var(u0i), D01 = cov(u0i,u1i), D11 =

var(u1i), and Υi = (Υi1,Υi2, ...,Υini
) ∼ N(0, 0.52).

5. Finally, the continuous outcome variable, child QoL, cqolij was generated according to

cqolij = β0 + β1cbmiij + β2cageij + b0i + b1icageij + εij ,

where β = (β0, β1, β2) is the vector of fixed-effects, bi = (b0i, b1i) ∼ N(0,G) denotes the random

effects vector. We set β = (1.00,−0.20,−0.10)T, G =

(
0.36 −0.012
−0.012 0.004

)
and residual error

variance, εi = (εi1, εi2, ..., εini
) ∼ N(0, 0.662).

All of the above parameter values were based on the LSAC data.
For each simulated dataset we considered two scenarios where (i) only the exposure of interest (cbmi)

and (ii) both the exposure of interest (cbmi) and the outcome (cqol) were subject to missingness at each
wave under an MAR mechanism. Specifically we used the following models to create missing data in cbmi
and cqol, respectively

logit{Pr(R1ij = 1)} = θ1 + θ2cqolij + θ3cageij
logit{Pr(R2ij = 1)} = θ4 + θ5cageij + θ6hsepij

where R1ij = 1(R2ij = 1) if cbmiij(cqolij) is observed and 0 if missing. The coefficients θ =

(θ1, ..., θ6)T were chosen to ensure approximately 30% of the exposure (cbmi) and outcome (cqol) were
missing.
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5.2 Clustered data

In order to evaluate the performance of the above MI methods in clustered settings, we generated 1000
datasets, each with eight variables: area identification number, socio-economic status for areas (SEIFA),
mother’s education (medu), language spoken at home (hlang), family socio-economic position (hsep), child
sex (csex), BMI z-score (cbmi) and QoL (cqol). We considered 300 areas (clusters), where the number of
children in each area varied between 2 to 25. Our simulated dataset mimicked the LSAC dataset not only
in terms of cluster size and the number of clusters, but also with regards to the relationship between the
covariates. The analysis of interest was whether the relationship between child BMI z-score at wave 5
and QoL at wave 6 varied across all areas. In all of the simulated datasets variables were simulated in a
sequential manner as follows:

1. Sex (csex), English language background (hlang) and mother’s education (medu: whether or not
completed year 12) for each child were generated using binomial distributions with probabilities 0.5,
0.9 and 0.6 respectively.

2. Child age in years at wave 5 was generated using the following model

cageij =
1

12
{144 + ϑij} j = 2, 3, ..., 25.i = 1, 2, ...300

where ϑij = N(11, 1.52) is the distribution of age (in months) of the jth child at recruitment from
area i.

3. The main exposure variable of interest, cbmi was generated based on child’s age and sex using the
following linear regression model

cbmiij = (−1.0 + d0i) + 0.11 ∗ cageij + 0.05 ∗ csexij + ψij ,

where ψij ∼ N(0, 1) and d0i ∼ N(0, 0.152)

4. SEIFA at each area was generated as a standard normal variable.

5. Family socio-economic position (hsep) was generated based on SEIFA, mother’s education and lan-
guage using the following linear regression model

hsepij = −4.7 + 0.8 ∗meduij + 0.01 ∗ SEIFAi + 0.01 ∗ hlangij + φij

where φij ∼ N(0, 0.92).

6. Finally the outcome, cqol score, was generated using the LMM

cqolij = (0.05 + b0i) + (−0.2 + b1i) ∗ cbmiij + 0.25 ∗ SEIFAi + eij

with eij ∼ N(0, 0.92),
(
b0i
b1i

)
∼ N(0,G) andG =

(
0.16 0.00
0.00 0.04

)
.

All of the above parameter values were based on LSAC data. The exception was that we slightly
inflated the magnitude of the regression and variance-component parameters in the outcome model in
order to accentuate the differences in the estimated parameters from the MI methods.

For each simulated dataset we considered two scenarios: (iii) only the exposure of interest cbmi and
(iv) both the exposure cbmi and outcome cqol were missing under an MAR mechanism. Specifically,
we fitted the following models to create missing data in cbmi and cqol, respectively
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logit{Pr(R3ij = 1)} = −2.2 + 1.0 ∗ cqolij + 0.2 ∗ SEIFAi − 0.2 ∗ hsepij
logit{Pr(R4ij = 1)} = −2.5 + 0.2 ∗ SEIFAi − 0.3 ∗ hsepij

where R3ij = 1(R4ij = 1) if cbmi(cqol) is observed and 0 if missing.

6 Performance of the MI method

We applied all the imputation methods described in section 3 and 4 to the simulated and LSAC datasets.
In light of the seven main choices for the specification of multiple imputation method namely i) the MAR
assumption, ii) form of the imputation model, (iii) set of variables included in the imputation model, iv)
passive imputation v) order of the variables vi) number of iterations and vii) number of multiply imputed
datasets (Van Buuren and Groothuis-Oudshoorn, 2011), we generated data under MAR and included the
same set of predictors across all the imputation methods. Specifically, we included socio-economic position
as an auxiliary variable, in addition to all analysis variables, and considered the same order of imputation
variables for all the methods (if applicable). Thirty imputations were generated for each approach to limit
Monte Carlo (imputation-related) error for the regression coefficient of interest to approximately 5 percent
of its standard error. However, for each method, we set the number of burn-in iterations and number
of between imputations to the default values of current software implementations and finally the form
of the imputation models varies according to the specific imputation method. We compared estimated
regression coefficients, standard errors (both average of the model-based and the empirical standard error)
and variance-component estimates from the various imputation approaches and an available data analysis,
which excluded records with missing data in any analysis variable. Bias and coverage probability of the
estimated regression coefficients from each of the approaches and from an available data analysis compared
to the values used to generate the data are also presented. In each case, the sampling properties of the
estimators were estimated from the 1000 simulated datasets.

6.1 Simulation results

The simulation results for the longitudinal example with missing values under scenarios (i) and (ii) across
the 1000 simulated datasets are displayed in Table 1 and 2, respectively. It is clear from Table 1 and 2
that the available data analysis resulted in biased estimation of the regression coefficients and variance
components along with inadequate coverage probabilities.

All of the MI approaches except JM-FJ provided similar estimation of regression parameters and cover-
age probabilities in both scenarios. Slight under-coverage of the regression parameters was obtained from
JM-FJ and JM-SMC, which assume homoscedastic variances. However, somewhat contrasting results
were obtained when imputed assuming heteroscedastic covariance matrices for both of these methods. The
JM-FJ was more biased and led to underestimation of coverage probabilities while JM-SMC performed
better compared with its homoscedastic counterpart.

All of the MI methods except JM-FJ-het provided unbiased estimates of the variance components in
the longitudinal setting when only the covariate contained missing values (scenario (i)). However, greater
differences were observed across the imputation methods for the estimation of the variance components
when both covariate and outcome contained missing values (scenario (ii)). In this scenario (ii) (Table 2),
large biases in the variance associated with random slopes were obtained for the JM-MLMM, JM-FJ, JM-
FJ-het and FCS-LMM approaches. The large bias in the variance associated with random slopes with the
JM-MLMM and FCS-LMM approaches is likely an artefact of dividing by a population value that is close
to zero, hence we are hesitant to emphasize this finding.
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Following a reviewer’s suggestions, we also evaluated the performance of these methods in the case
of smaller samples with 1000 individuals followed for 5 consecutive period under both scenarios (i) and
(ii). The results, displayed in Tables B1 and B2 in the Appendix B, are qualitatively similar to those with
the larger sample size under scenario (i). But under scenario (ii) large biases associated with random
slopes variance estimates were obtained for all the methods except JM-MVN, FCS-standard and JM-SMC
approaches. Among the MI methods, JM-MVN and FCS-Standard provided the least biased estimates for
the fixed effects and variance components. The estimated coverage probabilities for both of these methods
were very close to the nominal value of 0.95, in both scenarios. Among the LMM-based imputation
approaches, FCS-LMM-het and JM-SMC-het provided the best performance for estimating regression
parameters and variance components.

The simulation results for clustered data with missing values under scenarios (iii) and (iv) across the
1000 simulated datasets are displayed in Tables 3 and 4, respectively. Similarly to the longitudinal set-
ting, in the clustered data setting, the available data analysis resulted in biased estimation of the regression
coefficients and variance components, and inadequate coverage probabilities. All of the MI approaches
provided similar estimates of the regression coefficients and their estimated coverage probabilities were
very close to the nominal value of 0.95 for both scenarios. Slight under-coverage of the confidence inter-
val for the regression coefficient of cbmi was obtained from JM-FJ, JM-FJ-het and JM-MLMM especially
under scenario (iv). Somewhat greater differences were observed across the imputation methods for the
estimation of variance components both in scenario (iii) and (iv). In scenario (iii), i.e. when only the
covariate with the random effect contained missing values, JM-FJ and JM-FJ-het resulted in biased estima-
tion of the random slope variances. On the other hand, in scenario (iv) JM-FJ, JM-FJ-het and JM-MLMM
all produced biased estimation of the random slope variances. In both scenarios, JM-SMC, FCS-LMM and
FCS-LMM-het produced unbiased estimates of the regression and variance component parameters.

As with the longitudinal data we also evaluated the performance of these methods under scenario (iii)
and (iv) using a relatively small number of clusters (n=100) with smaller cluster sizes (each cluster con-
tained between 2 and 10 observations randomly). The results are displayed in Table B3 and B4, respec-
tively. All of the MI methods except JM-FJ in both scenarios and JM-MLMM in scenario (iV) provided
slight under-coverage of the confidence interval. Large biases in the estimation of the random slope param-
eters were observed for both FCS-LMM and FCS-LMM-het, especially in scenario (iv), leaving JM-SMC
as the best methods when the number of cluster in the sample is small.

6.2 Application to the LSAC data

The results for the analysis models (a) and (b) applied to the LSAC data are given in Tables 5 and 6
respectively. Available data analysis provides slightly lower estimates of the regression coefficients in the
case for analysis model (b) compared with the estimates from MI methods. However, for analysis model
(a) the estimated regression coefficients from the available data analysis are very similar to those from
the MI approaches. These results are in line with those seen in the simulation study. However, JM-FJ in
analysis model (a) and both JM-FJ and JM-MLMM in analysis model (b) produced lower estimates of the
variance components than the other MI approaches.

7 Discussion

LMMs are frequently used in the analysis of longitudinal and clustered data in order to account for within-
individual and within-cluster correlation, respectively. Although several MI methods are available for
imputing missing values in longitudinal and cluster-correlated data in the current software, little guidance
is available on which is the most appropriate method. The comparison of MI methods for the analysis
of correlated data using LMM with random intercepts and slopes in the context of compatibility, a pre-
requisite of valid MI, is very limited in the literature. In the current paper, we compared seven different
MI methods (JM-MVN, JM-MLMM, JM-FJ, JM-SMC, FCS-Standard, FCS-LMM, FCS-LMM-het) for
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handling missing values in longitudinal and clustered data in the context of fitting LMM with both random
intercepts and slopes. We derived expressions for each of the MI methods to examine the compatibility of
these MI methods with a LMM that include both random intercepts and slopes. We showed that compatible
imputation and analysis models resulted in consistent estimation of both regression parameters and variance
components via simulation. We have summarized our results in Table 7.

The results from our theoretical exploration revealed that the relative performance of the MI methods
may be expected to vary according to whether the incomplete covariate has fixed or random effects and
to the missingnesss in the outcome variable. Specifically, we showed that JM-MVN and FCS-Standard
approaches are compatible with the LMM in the context of longitudinal data if measurements occur at the
same time-points for all individuals. We also showed that JM-MLMM is compatible with, but that JM-FJ
is incompatible with the analysis model of a LMM with random intercepts and slopes. Both the FCS-
LMM and FCS-LMM-het methods are compatible with a LMM with random intercepts and slopes. Our
comparison also revealed that the newly available substantive model compatible joint modeling (JM-SMC)
approach holds great promise for the imputation of longitudinal data. Our simulation study supported our
theoretical results. We observed, however, that JM-FJ-het provided sub-optimal performance, especially in
the case of longitudinal data, which might be due to a small number of individuals per cluster (observation
per individual) in our example, as shown in Audigier et al. (2018). We also observed that JM-SMC-het
provided better estimates for the regression parameters and coverage than JM-SMC, apparently because
subject-specific associations were better estimated under the heteroscedastic covariance matrices.

Our results regarding clustered data were similar to those for longitudinal data with a couple of excep-
tions. We found JM-MLMM was compatible with a LMM with a random intercepts and slopes analysis
model if only the covariate contains missing data. The JM-MLMM, however, became non-compatible
with a LMM with random intercepts and slopes if both the outcome and random-slope covariate contained
missing data. Along with others (Enders et al., 2016), we noted that fixed effect imputation methods are
computationally expensive particularly with a large number of clusters, hence may not be very useful in
practice. In general, our findings are consistent with those of (Enders et al., 2016) who showed that JM-FJ
and JM-MLMM produce biased estimation of the variance components while the FCS-LMM-het approach
provided consistent estimates in the context of clustered data. Some of our theoretical results extend the
results obtained by Resche-Rigon and White (Resche-Rigon and White, 2016) who considered a LMM
with only a random intercept.

It is always difficult to draw general conclusions from a single simulation study, but we believe this study
provided a good setting for a comparison of MI methods with both theoretical and empirical evaluation.
The simulations were designed to represent real world data with a moderate amount of missingness under
MAR. Undoubtedly, future simulation studies and further exploration of methods will be useful in a num-
ber of ways. In this study, we restricted our attention to data that are MAR. Often longitudinal data does
not satisfy the MAR assumption. In general, the MAR assumption cannot be tested but various sensitivity
analysis methods (e.g., selection models, pattern-mixture model and NARFCS) are proposed in very spe-
cialized context and no such analysis methods is currently available for the context when both longitudinal
covariates and outcomes are missing. Forexample, pattern-mixture models are available in the context of
longitudinal outcomes but not for the context when both longitudinal covariates and outcomes are missing.
The NARFCS approach, arising from the pattern-mixture paradigm, has been developed recently to handle
multivariable missingness in cross-sectional settings(Tompsett et al., 2018; Moreno-Betancur et al., 2017;
Leacy, 2016) and these could in principle be applied for longitudinal data in the wide format or with the
cluster-indicator method in the scenarios we explored. However, these methods have not yet been extended
to the context of multilevel imputation models for general multivariable missingness in longitudinal unbal-
anced data or clustered data (linear mixed models). Hence there were no obvious methods to add to our
evaluation. In order to simplify the theoretical calculations and avoid mis-specification of the imputation
models we restricted our comparisons to models and methods that assume normality. Although there has
been some discussion of compatibility for non-normal data in the context of general location models, such
models are only available for single level data (Seaman and Hughes, 2018). The study of compatibility
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of multilevel models that include non-normal data is beyond the scope of the present paper as Gaussian
random effects are usually assumed in the proposed models and in the available software implementa-
tion. However, our results for MI involving normal variables might also hold for non-normal data. We
had previously shown that both JM-MVN and FCS-standard showed good performance in the context of
imputing binary variables (Huque et al., 2018). Quartagno et al. recently showed that the JM-SMC and
FCS-standard methods performed equally well in the context of imputing non-normal data (Quartagno and
Carpenter, 2019).

In summary, we found that if measurements occur at the same time-points for all individuals in lon-
gitudinal studies, the JM-MVN and FCS-Standard approaches may be the best approaches for imputing
longitudinal data. We also found that LMM-based approaches (JM-MLMM, JM-SMC-het, FCS-LMM-het,
FCS-LMM) can be used if measurement doesn’t occur at the same time points or the imputation model
struggles to converge due to many repeated measurements. In the clustered data setting, we recommend
using the LMM-based approaches JM-SMC, FCS-LMM or FCS-LMM-het to handling missing data as
they performed well in the estimation of regression parameters and variance components. Although mul-
tilevel imputation models are slightly more complex compared with standard cross-sectional imputation
methods and require specialized software, our comparison revealed that they are a reasonable choice for
imputing missing covariate and outcome data where the analysis of interest is a linear mixed effect model
with random intercepts and slopes.
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Appendix

A Compatibility of the methods

A.1 JM-MVN

Suppose we are interested in substantive model (1). Now assume that the covariate xi also follows the
following LMM

xi|ti = γ0 + γ1ti + u0i + u1iti + εi, (11)

where εi ∼ N(0,Υ) and ui = (u0i,u1i) ∼ N(0,D). As both the distribution of (yi|xi, ti) and (xi|ti)
are Gaussian. The joint distribution (yi,xi|ti) can be written as (Gelman et al., 2013)(

yi
xi
|ti
)

= N

((
β0 + β1(γ0 + γ1ti) + β2ti

γ0 + γ1ti

)
,

(
β1Σixβ

T
1 + Σiy β1Σix

Σixβ1 Σix

))
, (12)

where Σix = ZiDZ
T
i + Υ and Σiy = ZiGZ

T
i + Φ with Zi = (1, ti)

T. If data are collected for an
equal number of visits and fixed time interval between successive visits for all individuals, then the joint
distribution of (y,x|t) can be written as(

y
x
|t
)

= N

((
β0 + β1(γ0 + γ1t) + β2t

γ0 + γ1t

)
,

(
β1Σxβ

T
1 + Σy β1Σx

Σxβ1 Σx

))
. (13)

A.2 JM-MLMM

scenario i: If only covariates have missing data, the substantive and the imputation models for the ith

subject can be written as

(yi|xi, ti) ∼ N(β0 + β1xi + β2ti,Σiy) (14)

and

(xi|yi, ti) ∼ N(β0(x) + β1(x)yi + β2(x)ti,Σix|y) (15)

These two models are compatible if β’s, β(x)’s, Σiy|x and Σix|y lie on the subspace of the joint model
determined by (12) (under the assumption that covariate xi also follows a LMM (11)).

Therefore the conditional distribution (xi|yi, ti) from the above joint distribution can be written as

(xi|yi, ti) = N
(
Σix|y

[
βT
1 Σ−1iy (yi − (β0 + β2ti)) + Σ−1ix (γ0 + γ1ti)

]
,Σix|y = (βT

1 Σ−1iy β1 + Σ−1ix )−1
)

(16)

Now equating (15) and (16) we have:

βT
1(x)Σ

−1
ix|y = βT

1 Σ−1iy

Hence the substantive model will be compatible to the imputation model under JM-MLMM if βT
1(x)Σ

−1
x|y =

βT
1 Σ−1y .

scenario ii: Both covariate and outcome have missing data
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JM-MLMM assumes following joint distribution when both outcome and covariates have missing data(
xi
yi
|ti
)

=

(
β0(x) + β1(x)ti + b0(x)i + b1(x)iti + ε1i
β0(y) + β1(y)ti + b0(y)i + b1(y)iti + ε2i

)
=

(
µix1
µiy1

)
+

(
Zib(x)i
Zib(y)i

)
+

(
ε1i
ε2i

)

where Zi = (1, ti) and
(
b(x)i
b(y)i

)
∼ N

((
0
0

)
,ψ =

(
ψ11 ψ12

ψ21 ψ22

))
and(

ε1i
ε2i

)
∼ N

((
0
0

)
,Σ =

(
Σ11 Σ12

Σ21 Σ22

))
Thus the joint distribution of (yi and xi conditional on ti) can be written as (Resche-Rigon and White,

2016)

(
xi
yi
|ti
)
∼ N

((
µix1
µiy1

)
,

(
Ziψ11Z

T
i + Σ11I Ziψ12Z

T
i + Σ12I

Ziψ12Z
T
i + Σ12I Ziψ22Z

T
i + Σ22I

))
,

where µix = β0(x) + β1(x)ti and µiy = β0(y) + β1(y)ti.
Now the conditional expectation and conditional variance are

E[yi|xi, ti] = µiy1 + (Ziψ12Z
T
i + Σ12I)(Ziψ11Z

T
i + Σ11I)−1(xi − µix1) (17)

and

V ar[y1i|xi, ti] = (Ziψ22Z
T
i + Σ22I)− (Ziψ12Z

T
i + Σ12I)(Ziψ11Z

T
i + Σ11I)−1(Ziψ12Z

T
i + Σ12I) (18)

Now, for simplicity in algebra we omitted notation I associated with variance covariance matrices in
the following equations

(Ziψ12Z
T
i + Σ12)(Ziψ11Z

T
i + Σ11)−1 = (Ziψ12Z

T
i + Σ12)(Σ−111 − Σ−111 Ziψ11(I +ZT

i Σ−111 Ziψ11)−1ZT
i Σ−111 )

= (Ziψ12Z
T
i + Σ12)(Σ−111 − Σ−111 Zi(ψ

−1
11 +ZT

i Σ−111 Zi)
−1ZT

i Σ−111 )

= (Ziψ12Z
T
i + Σ12)(Σ−111 − Σ−111 Ziψ11Z

T
i (Σ11 +Ziψ11Z

T
i )−1)

= Ziψ12Z
T
i Σ−111 −Ziψ12Z

T
i Σ−111 Ziψ11Z

T
i (Σ11 +Ziψ11Z

T
i )−1 +

Σ12Σ−111 − Σ12Σ−111 Ziψ11Z
T
i (Σ11 +Ziψ11Z

T
i )−1

= (Ziψ12Z
T
i Σ−111 (Σ11 +Ziψ11Z

T
i )−Ziψ12Z

T
i Σ−111 Ziψ11Z

T
i −

Σ12Σ−111 Ziψ11Z
T
i )(Σ11 +Ziψ11Z

T
i )−1 + Σ12Σ−111

= (Ziψ12Z
T
i − Σ12Σ−111 Ziψ11Z

T
i )(Σ11 +Ziψ11Z

T
i )−1 + Σ12Σ−111

= (I − Σ12Σ−111 )Ziψ12Zi(Σ11 +Ziψ11Z
T
i )−1 + Σ12Σ−111

= (Σ11 − Σ12)Σ−111 Ziψ11Z
T
i (Σ11 +Ziψ11Z

T
i )−1 + βxI

where βx = Σ12Σ−111 .
Thus the conditional mean is given as

E[yi|xi, ti] = µy1 + ((Σ11 − Σ12)Σ−111 Ziψ11Z
T
i (Σ11 +Ziψ11Z

T
i )−1 + βxI)(xi − µx1)

= (µy − βxµx)1 + βxxi + (Σ11 − Σ12)Σ−111 Ziψ11Z
T
i (Σ11 +Ziψ11Z

T
i )−1(xi − µx1)

= (µy − βxµx)1 + βxxi + (Σ11 − Σ12)Σ−111 Zib(x)i

= (β0(x) + β1(x)ti + βxxi)1 + (Σ11 − Σ12)Σ−111 Zib(x)i − βxµx,
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where b(x)i is the estimates of random slope corresponding to the model xi = µ(ix) +Zib(x)i + εi.
Thus the conditional expectation of yi depends on xi and random slopes of ti on xi. Now can obtain

the the substantive model if (Σ22 − Σ12)Σ−122 = I or Σ12 = 0, as we have

E[yi|xi, ti] = (β0(y) + β1(y)ti + βxxi)1 + b0(x)i + b1(x)iti − βxµx.

Thus the JM-MLMM impute missing values from a joint model which is more general than joint model
implied by substantive model. Hence JM-MLMM is compatible with the analysis model.
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A.3 Joint modelling: FJ

The JM-MLMM-LN approach assumes a multivariate linear random intercept model for the joint distribu-
tion of x, y and z where z is a latent normal variable for time ti

 yi
xi
ti

 =

 β0(y) + b(y)0i + ε(y)i
β0(x) + b(x)0i + ε(x)i
β0(t) + b(t)0i + ε(t)i


=

 µx
µy
µt

+

 b(x)0i
b(y)0i
b(t)0i

+

 ε(x)i
ε(y)i
ε(t)i



where

 b(y)0i
b(x)0i
b(t)0i

 ∼ N
 0

0
0

 ,

 ψ11 ψ12 ψ13

ψ21 ψ22 ψ23

ψ31 ψ32 ψ33

 and

 ε(y)i
ε(x)i
ε(t)i

 ∼ N
 0

0
0

 ,

 Σ11 Σ12 Σ13

Σ21 Σ22 Σ23

Σ31 Σ32 Σ33


Thus the joint distribution between (yi, xi and ti) can be written as

 yi
xi
ti

 ∼ N
 µ11

µy1
µt1

 ,

 ψ11J + Σ11I ψ12J + Σ12I ψ13J + Σ13I
ψ12J + Σ12I ψ22J + Σ22I ψ23J + Σ23I
ψ13J + Σ13I ψ23J + Σ23I ψ33J + Σ33I

 .

To ease in exposition let wi =

(
xi
ti

)
and consequently the joint distribution between yi and wi can

be written as

(
yi
wi

)
∼ N

((
µ1 ⊗ 1
µ2 ⊗ 1

)
,

(
ψ11 ⊗ J + Σ11 ⊗ I ψ12 ⊗ J + Σ12 ⊗ I
ψ21 ⊗ J + Σ21 ⊗ I ψ22 ⊗ J + Σ22 ⊗ I

))
,

where 1 is ni-vector of ones, J is a ni × ni matrix of ones, and I is the identity matrix of size ni

and µ1 = µy , µ2 =

(
µx
µz

)
, ψ11 = ψ11, Σ11 = Σ11,ψ21 = (ψ12)T =

(
ψ21

ψ31

)
,Σ21 = (Σ12)T =(

Σ21

Σ31

)
and

ψ22 =

(
ψ22 ψ23

ψ32 ψ33

)
, Σ22 =

(
Σ22 Σ23

Σ32 Σ33

)
.

Now the conditional expectation yi given wi is

E[yi|wi] = µ1 ⊗ 1 +
(
ψ12 ⊗ J + Σ12 ⊗ I

) (
ψ22 ⊗ J + Σ22 ⊗ I

)−1 (
vi − µ2 ⊗ 1

)
(19)
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Now(
ψ12 ⊗ J + Σ12 ⊗ I

) (
ψ22 ⊗ J + Σ22 ⊗ I

)−1
=

(
ψ12 ⊗ J + Σ12 ⊗ I

) (
−(nψ22 + Σ22)−1ψ22(Σ22)−1

)
⊗ J

+(Σ22)−1 ⊗ I
= −ψ12(nψ22 + Σ22)−1ψ22(Σ22)−1 ⊗ nJ + Σ12(Σ22)−1 ⊗ I
−Σ12(nψ22 + Σ22)−1ψ22(Σ22)−1 ⊗ J + ψ12(Σ22)−1 ⊗ J

= (−nψ12(nψ22 + Σ22)−1ψ22 − Σ12(nψ22 + Σ22)−1ψ22

+ψ12)(Σ22)−1 ⊗ J + Σ12(Σ22)−1 ⊗ I
= (−nψ12 − Σ12 + ψ12(ψ22)−1(nψ22 + Σ22))

(nψ22 + Σ22)−1ψ22(Σ22)−1 ⊗ J + Σ12(Σ22)−1 ⊗ I
= (−nψ12 − Σ12 + nψ12(ψ22)−1ψ22 + ψ12(ψ22)−1Σ22)

(nψ22 + Σ22)−1ψ22(Σ22)−1 ⊗ J + Σ12(Σ22)−1 ⊗ I
= (ψ12(ψ22)−1Σ22)− Σ12)(nψ22 + Σ22)−1ψ22(Σ22)−1 ⊗ J

+Σ12(Σ22)−1 ⊗ I
= (ψ12Σ22 − Σ12ψ22)(nψ22 + Σ22)−1(Σ22)−1 ⊗ J

+Σ12(Σ22)−1 ⊗ I
= α(ni)⊗ J + β ⊗ I,

where β = (βy, βt) = Σ12(Σ22)−1 and α(ni) = (ψ12Σ22 − Σ12ψ22)(nψ22 + Σ22)−1(Σ22)−1.
Hence,

E[yi|wi] = µ1 ⊗ 1 + (α(ni)⊗ J + β ⊗ I)
(
wi − µ2 ⊗ 1

)
Now considering the identity and from the fact that vec(wi) = wi, we can show that

E[yi|wi] = µ1 ⊗ 1 + vec(J(wi − µ2 ⊗ 1)α(ni)
T) + (wi − µ2 ⊗ 1)βT)

= µy1 + ni(w̄i − µ2)⊗ 1α(ni)
T + (wi − µ2 ⊗ 1)βT

Thus we have

E[yi|xi, ti] = β0(y) + ni(x̄i − µx)α(ni)
T + ni(t̄i − µt)α(ni)

T + (xi − µx)βx + (ti − µt)βt

And the conditional variance is

var[yi|wi] =
(
ψ11 ⊗ J + Σ11 ⊗ I

)
−
(
ψ12 ⊗ J + Σ12 ⊗ I

) (
ψ22 ⊗ J + Σ22 ⊗ I

)−1 (
ψ12 ⊗ J + Σ12 ⊗ I

)
= η(ni)⊗ J + δ ⊗ I

where η(ni) = ψ22−ψ12(Σ11)−1Σ12 + (niψ
21 + Σ21)(niψ

11 + Σ11)−1(ψ11(Σ11)−1Σ12−ψ12) and
δ = Σ22 − Σ12(Σ11)−1Σ12

As the joint distribution implied by JM-MLMM-LN doesn’t contain the conditional substantive model
(1) as the corresponding conditional model, hence it would not be compatible.
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A.4 JM-MLMM for cluster-correlated data

Suppose we are interested in substantive model (2), with slight abuse of notations we can write the sub-
stantive model as

yi|x1i,x2i = α0i + α1x1i + α2ix2i + ξi, (20)

where α0i = α0 + a0i, α2i = α2 + a2i and ξi ∼ N(0,Σiy = σ2
ξI). Now suppose that the covariate x2

follows the following LMM:

x2i|x1i = δ0i + δ1ix1i + ηi, (21)

where ηi ∼ N(0,Σix2 = σ2
ηiI) As both of the (yi|x1i,x2i) and (x2i|x1i) are Gaussian, their joint

distribution will also be Gaussian and can be written as(
yi
x2i
|x1i

)
= N

((
α0i + α1x1i + α2i(δ0i + δ1ix1i)

δ0i + δ1ix1i

)
,

(
α2iΣixα

T
2i + Σiy α2iΣix

Σix2α2i Σix2

))
, (22)

Now the conditional distribution of (x2i|x1i,yi) can be written as

(x2i|x1i,yi) = N
(
Σix2|y

[
αT
2iΣ
−1
iy (yi − (α0i + α1x1i)) + Σ−1ix2

(δ0i + δ1ix1i)
]
,Σix2|y = (αT

2iΣ
−1
iy α2i + Σ−1ix2

)−1
)

(23)

When only covariates x2 contains missing data, the imputation model followed by JM-MLMM is given
as

x2i|x1i,yi = α0i(x2) + α1(x2)x1i + α2i(x2)yi + ξ(x2)i, (24)

This imputation model will be compatible to the substantive model if Σ−1ix2|yα2i(x2) = Σix2|yα
T
2iΣ
−1
iy
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B Additional Results
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