
Biases for Emergent Communication in
Multi-agent Reinforcement Learning

Tom Eccles
DeepMind

London, UK
eccles@google.com

Yoram Bachrach
DeepMind

London, UK
yorambac@google.com

Guy Lever
DeepMind

London, UK
guylever@google.com

Angeliki Lazaridou
DeepMind

London, UK
angeliki@google.com

Thore Graepel
DeepMind

London, UK
thore@google.com

Abstract

We study the problem of emergent communication, in which language arises
because speakers and listeners must communicate information in order to solve
tasks. In temporally extended reinforcement learning domains, it has proved hard
to learn such communication without centralized training of agents, due in part to
a difficult joint exploration problem. We introduce inductive biases for positive
signalling and positive listening, which ease this problem. In a simple one-step
environment, we demonstrate how these biases ease the learning problem. We
also apply our methods to a more extended environment, showing that agents
with these inductive biases achieve better performance, and analyse the resulting
communication protocols.

1 Introduction

Environments where multiple learning agents interact can model important real-world problems,
ranging from multi-robot or autonomous vehicle control to societal social dilemmas [4, 27, 23].
Further, such systems leverage implicit natural curricula, and can serve as building blocks in the
route for constructing aritficial general intelligence [22, 1]. Multi-agent games provide longstanding
grand-challenges for AI [17], with important recent successes such as learning a cooperative and
competitive multi-player first-person video game to human level [14]. An important unsolved problem
in multi-agent reinforcement learning (MARL) is communication between independent agents. In
many domains, agents can benefit from sharing information about their beliefs, preferences and
intents with their peers, allowing them to coordinate joint plans or jointly optimize objectives.

A natural question that arises when agents inhibiting the same environment are given a communication
channel without an agreed protocol of communication is that of emergent communication [34, 37, 8]:
how would the agents learn a “language” over the joint channel, allowing them to maximize their
utility? The most naturalistic model for emergent communication in MARL is that used in Reinforced
Inter-Agent Learning (RIAL) [8] where agents optimize a message policy via reinforcement from the
environment’s reward signal. Unfortunately, straightforward implementations perform poorly [8],
33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

ar
X

iv
:1

91
2.

05
67

6v
1 

 [
cs

.M
A

] 
 1

1 
D

ec
 2

01
9



driving recent research to focus on differentiable communication models [8, 30, 35, 12], even though
these models are less generally applicable or realistic.

RIAL offers the advantage of having decentralized training and execution; similarly to human
communication, each agent treats others as a part of its environment, without the need to have access
to other agents’ internal parameters or to back-propagate gradients “through” parameters of others.
Further, agents communicate with discrete symbols, providing symbolic scaffolding for extending to
natural language. We build on these advantages, while facilitating joint exploration and learning via
communication-specific inductive biases.

We tackle emergent communication through the lens of Paul Grice [10, 31], and capitalize on the
dual view of communication in which interaction takes place between a speaker, whose goal is to be
informative and relevant (adhering to the equivalent Gricean maxims), and a listener, who receives a
piece of information and assumes that their speaker is cooperative (providing informative and relevant
information). Our methodology is inspired by the recent work of Lowe et al. [25], who proposed a
set of comprehensive measures of emergent communication along two axis of positive signalling and
positive listening, aiming at identifying real cases of communication from pathological ones.

Our contribution: we formulate losses which encourage positive signaling and positive listening,
which are used as auxiliary speaker and listener losses, respectively, and are appended to the RIAL
communication framework. We design measures in the spirit of Lowe et al. [25] but rather than using
these as an introspection tool, we use them as an optimization objective for emergent communication.
We design two sets of experiments that help us clearly isolate the real contribution of communication
in task success. In a one-step environment based on summing MNIST digits, we show that the
biases we use facilitate the emergence of communication, and analyze how they change the learning
problem. In a gridworld environment based on search of a treasure, we show that the biases we use
make communication appear more consistently, and we interpret the resulting protocol.

1.1 Related Work
Differentiable communication was considered for discrete messages [8, 30] and continuous mes-
sages [35, 12], by allowing gradients to flow through the communication channel. This improves
performance, but effectively models multiple agents as a single entity. In contrast we assume agents
are independent learners, making the communication channel non-differentiable. Earlier work on
emergent communication focused on cooperative “embodied” agents, showing how communication
helps accomplish a common goal [8, 30, 6], or investigating communication in mixed cooperative-
competitive environments [26, 3, 15], studying properties of the emergent protocols [21, 18, 25].

Previous research has investigated independent reinforcement learners in cooperative settings [36],
with more recent work focusing on canonical RL algorithms. One version of decentralized Q-learning
converges to optimal policies in deterministic tabular environments without additional communi-
cation [19], but does not trivially extend to stochastic environments or function approximation.
Centralized critics [26, 9] improve stability by allowing agents to use information from other agents
during training, but these violate our assumptions of independence, and may not scale well.

2 Setting
We apply multi-agent reinforcement learning (MARL) in partially-observable Markov games (i.e.
partially-observable stochastic games) [33, 24, 11], in environments where agents have a joint
communication channel. In every state, agents take actions given partial observations of the true
world state, including messages sent on a shared channel, and each agent obtains an individual reward.
Through their individual experiences interacting with one another and the environment, agents learn
to broadcast appropriate messages, interpret messages received from peers and act accordingly.

Formally, we consider an N -player partially observable Markov game G [33, 24] defined on a
finite state set S , with action sets (A1, . . . ,AN ) and message sets (M1, . . . ,MN ). An observation
function O : S × {1, . . . , N} → Rd defines each agent’s d-dimensional restricted view of the true
state space. On each timestep t, each agent i receives as an observation oit = O(St, i), and the
messages mj

t−1 sent in the previous state for all j 6= i. Each agent i then select an environment action
ait ∈ Ai and a message action mi

t ∈ Mi. Given the joint action (a1
t , . . . , a

N
t ) ∈ (A1, . . . ,AN )

the state changes based on a transition function T : S × A1 × · · · × AN → ∆(S); this is a
stochastic transition, and we denote the set of discrete probability distributions over S as ∆(S). Every

2



agent gets an individual reward rit : S × A1 × · · · × AN → R for player i. We use the notation
at = (a1

t , . . . , a
N
t ), mt = (m1

t , . . . ,m
N
t ), and ot = (o1

t , . . . o
N
t ). We write mī,t for (m1

t , . . . ,m
N
t ),

excluding mi
t, and Mī for (M1, . . . ,MN ), excludingMi.

In our fully cooperative setting, each agent receives the same reward at each timestep, rit =

rjt ∀i, j ≤ N , which we denote by rt. Each agent maintains an action and a message policy
from which actions and messages are sampled, ait ∼ πi

A(·|xit) and mi
t ∼ πi

M (·|xit), and which can in
general be functions of their entire trajectory of experience xit := (m0, o

i
1, a

i
1, ..., a

i
t−1,mt−1, o

i
t).

These policies are optimized to maximize discounted cumulative joint reward J(πA,πM ) :=
EπA,πM ,T

[∑∞
t=1 γ

t−1rt
]

(which is discounted by γ < 1 to ensure convergence), where πA :=

{π1
A, ..., π

N
A },πM := {π1

M , ..., π
N
M}. Although the objective J(πA,πM ) is a joint objective, our

model is that of decentralized learning and execution, where every agent has its own experience in the
environment, and independently optimizes the objective J with respect to its own action and message
policies πi

A and πi
M ; there is no communication between agents other than using the actions and

message channel in the environment. Applying independent reinforcement learning to cooperative
Markov games results in a problem for each agent which is non-stationary and non-Markov, and
presents difficult joint exploration and coordination problems [2, 5, 20, 28].

3 Shaping Losses for Facilitating Communication
One difficulty in emergent communication is getting the communication channel to help with the task
at all. There is an equilibrium where the speaker produces random symbols, and the listener’s policy
is independent of the communication. This might seem like an unstable equilibrium: if one agent
uses the communication channel, however weakly, the other will have some learning signal. However,
this is not the case in some tasks. If the task without communication has a single, deterministic
optimal policy, then messages from policies sufficiently close to the uniform message policy should
be ignored by the listener. Furthermore, any entropy costs imposed on the communication channel,
which are often crucial for exploration, exacerbate the problem, as they produce a positive pressure
for the speaker’s policy to be close to random. Empirically, we often see agents fail to use the
communication channel at all; but when agents start to use the channel meaningfully, they are then
able to find at least a locally optimal solution to the communication problem.

We propose two shaping losses for communication to alleviate these problems. The first is for positive
signalling [25]: encouraging the speaker to produce diverse messages in different situations. The
second is for positive listening [25]: encouraging the listener to act differently for different messages.
In each case, the goal is for one agent to learn to ascribe some meaning to the communication, even
while the other does not, which eases the exploration problem for the other agent.

We note that most policies which maximize these biases do not lead to high reward. Much information
about an agent’s state is unhelpful to the task at hand, so with a limited communication channel
positive signalling is not sufficient to have useful communication. For positive listening, the situation
is even worse – most ways of conditioning actions on messages are actively unhelpful to the task,
particularly when the speaker has not developed a good protocol. These losses should therefore not
be expected to lead directly to good communication. Rather, they are intended to ensure that the
agents begin to use the communication channel at all – after this, MARL can find a useful protocol.

3.1 Bias for positive signalling
The first inductive bias we use promotes positive signalling, incentivizing the speaker to produce
different messages in different situations. We add a loss term which is minimized by message policies
that have high mutual information with the speaker’s trajectory. This encourages the speaker to
produce messages uniformly at random overall, but non-randomly when conditioned on the speaker’s
trajectory.

We denote by πi
M the average message policy for agent i over all trajectories, weighted by how often

they are visited under the current action policies for all agents. The mutual information of agent i’s
message mi

t with their trajectory xit is:

I(mi
t, x

i
t) = H(mi

t)−H(mi
t|xit) (1)

= −
∑

m∈Mi

πi
M (m) log(πi

M (m)) + Exi
t

∑
m∈Mi

πi
M (m|xit) log(πi

M (m|xit)) (2)

3



We estimate this mutual information from a batch of rollouts of the agent policy. We calculate
H(mi

t|xit) exactly for each timestep from the agent’s policy. To estimate H(πm), we estimate πm
as the average message policy in the batch of experience. Intuitively, we would like to maximize
I(mi

t, x
i
t), so that the speaker’s message depends maximally on their current trajectory. However,

adding this objective as a loss for gradient descent leads to poor solutions. We hypothesize that this is
due to properties of the loss landscape for this loss. Policies which maximize mutual information are
deterministic for any particular trajectory xit, but uniformly random unconditional on xit. At such
policies, the gradient of the term H(πi

M (·|xit)) is infinite. Further, for any c < log(2) the space of
policies which have entropy at most c is disconnected, in that there is no continuous path in policy
space between some policies in this set.

To overcome these problems, we instead use a loss which is minimized for a high value forH(πi
M )

and a target value forH(πi
M |si). The loss we use is:

Lps(π
i
M , si) = −E

(
λH(πi

M )− (H(mi
t|xt)−Htarget)

2
)
, (3)

for some target entropy Htarget, which is a hyperparameter. This loss has finite gradients around
its minima, and for suitable choices of Htarget the space of policies which minimizes this loss is
connected. In practice, we found low sensitivity to Htarget, and typically use a value of around
log(|A|)/2, which is half the maximum possible entropy.

Algorithm 1 Calculation of positive signalling loss
1: πMi ← 0.
2: Lps ← 0.
3: Target conditional entropyHtarget.
4: Weighting λ for conditional entropy.
5: for b=1; b ≤ B; b++ do # Batch of rollouts.
6: Observations oit for 1 ≤ t ≤ T .
7: Actions ait for 1 ≤ t ≤ T .
8: Other agent messages mt,̄i from Mī for 1 ≤ t ≤ T .
9: Initial hidden state hi0.

10: Action set Ai, message setMi, observation space Oi, hidden state space Hi.
11: Message policy πi

M : Oi ×Ai ×Hi ×Mī 7→ Mi.
12: Hidden state update rule hi : Oi ×Ai ×Hi ×Mī 7→ Hi.
13: for t = 1; t ≤ T; t++ do
14: hit ← hi(oit, a

i
t−1, h

i
t−1,mt−1,̄i).

15: pit ← πi
M (oit, h

i
t−1,mt−1,̄i).

16: πM ← πM + πi
t/(T ×B).

17: Hi
t ←

∑
m∈Mi pit(m) log(pit(m)).

18: Lps ← Lps + λ(Hi
t −Htarget)

2.
19: end for
20: end for
21: H =

∑
m∈Mi π(m) log(π(m)).

22: Lps ← Lps + T ×B ×H.

3.2 Bias for positive listening

The second bias promotes positive listening: encouraging the listener to condition their actions on the
communication channel. This gives the speaker some signal to learn to communicate, as its messages
have an effect on the listener’s policy and thus on the speaker’s reward. The way we encourage
positive listening is akin to the causal influence of communication, or CIC [15, 25]. In [15], this was
used as a bias for the speaker, to produce influential messages, and in [25] as a measure of whether
communication is taking place. We use a similar measure as a loss for the listener to be influenced by
messages. In [15, 25], CIC was defined over one timestep as the mutual information between the
speaker’s message and the listener’s action. We extend this to multiple timesteps using the mutual
information between all of the speaker’s previous messages on a single listener action – using this
as an objective encourages the listener to pay attention to all the speaker’s messages, rather than
just the most recet. For a listener trajectory xt = (o1, a1,m1, . . . , ot−1, at−1,mt−1, ot), we define

4



x′t = (o1, a1, . . . , at−1, ot) (this is the trajectory xt, with the messages removed). We define the
multiple timestep CIC as:

CIC(xt) = H(at|x′t)−H(at|xt). (4)

= DKL

(
(at|xt)||(at|x′t)

)
(5)

We estimate this multiple timestep CIC by learning the distribution πi
A(·|x′t). We do this by per-

forming a rollout of the agent’s policy network, with the actual observations and actions in the
trajectory, and zero inputs in the place of the messages. We fit the resulting function πi

A(·|x′t) to
predict πi

A(·|xt), using a cross-entropy loss between these distributions:

Lce(xt) = −
∑
a∈Ai

πi
A(a|xt) log(πi

A(a|x′t)), (6)

where we backpropagate only through the πi
A(a|xt) term. For a given policy πi

A, this loss is
minimized in expectation when πi

A(·|x′t) = E(πi
A(·|x′t)). Thus πi

A is trained to be an approximation
of the listener’s policy unconditioned on the messages it has received. The multi-timestep CIC can then
be estimated by the KL divergence between the message-conditioned policy and the unconditioned
policy:

CIC(xt) ≈ DKL(πi
A(·|xt)||πi

A(·|x′t)). (7)

For training positive listening we use a different divergence between these two distributions, which
we empirically find achieves more stable training. We use the L1 norm between the two distributions:

Lpl
(xt) = −

∑
a∈Ai

∣∣πi
A(a|xt)− πi

A(a|x′t)
∣∣. (8)

Algorithm 2 Calculation of positive listening losses

1: Observations oit for 1 ≤ t ≤ T .
2: Actions ait for 1 ≤ t ≤ T .
3: Other agent messages mt,̄i from Mī for 1 ≤ t ≤ T .
4: Initial hidden state hi0 = h′0.
5: Action set Ai, observation space Oi, hidden state space Hi.
6: Action policy πi

A : Oi ×Ai ×Hi ×Mī 7→ Ai.
7: Hidden state update rule hi : Oi ×Ai ×Hi ×Mī 7→ Hi.
8: Lce ← 0.
9: Lpl ← 0.

10: for i = 1; t ≤ T; t++ do
11: hit ← hi(oit, a

i
t−1, h

i
t−1,mt−1,̄i).

12: pit ← πi
A(oit, h

i
t−1,mt−1,̄i).

13: h′t ← hi(oit, a
i
t−1, h

′
t−1,0).

14: pit ← πi
A(oit, a

i
t−1, h

′
t,0).

15: Lce ← Lce +
∑

a∈A stop_gradient(pit(a)) log(pit(a)).
16: Lpl ← Lpl +

∑
a∈A |pit(a)− stop_gradient(pit(a))|.

17: end for

4 Empirical Analysis
We consider two environments. The first is a simple one-step environment, where agents must sum
MNIST digits by communicating their value. This environment has the advantage of being very
amenable to analysis, as we can readily quantify how valuable the communication channel currently
is to each agent. In this environment, we provide evidence for our hypotheses about how the biases
we introduce in Section 3 ease the learning of communication protocols. The second environment is
a new multi-step MARL environment which we name Treasure Hunt. It is designed to have a clear

5



performance ceiling for agents which do not utilise a communication channel. In this environment,
we show that the biases enable agents to learn to communicate in a multi-step reinforcement learning
environment. We also analyze the resulting protocols, finding interpretable protocols that allow us
to intervene in the environment and observe the effect on listener behaviour. The full details of the
Treasure Hunt environment, together with the hyperparameters used in our agents, can be found in
the supplementary material.

4.1 Summing MNIST digits
In this task, depicted in Figure 1, the speaker and listener agents each observe a different MNIST
digit (as an image), and must determine the sum of the digits. The speaker observes an MNIST digit,
and selects one of 20 possible messages. The listener receives this message, observes an independent
MNIST digit, and must produce one of 19 possible actions. If this action matches the sum of the
digits, both agents get a fixed reward of 1, otherwise, both receive no reward. The agents used in this
environment consist of a convolutional neural net, followed by an multi-layer perceptron and a linear
layer to produce policy logits. For the listener, we concatenate the message sent to the output of the
convnet as a one-hot vector. The agents are trained independently with REINFORCE.

Figure 1: Summing MNIST environment. In this example, both agents would get reward 1 if a = 9.

The purpose of this environment is to test whether and how the biases we propose ease the learning
task. To do this, we quantify how useful the communication channel is to the speaker and to the
listener. We periodically calculate the rewards for the following policies:

1. The optimal listener policy πlc , given the current speaker and the labels of the listener’s
MNIST digits.

2. The optimal listener policy πlnc
, given the labels of the listener’s MNIST digits and no

communication channel.
3. The optimal speaker policy πsc , given the current listener and the labels of the speaker’s

MNIST digits.
4. The uniform speaker policy πsu , given the current listener.

We calculate these quantities by running over many batches of MNIST digits, and calculating the
optimal policies explicitly. The reward the listener can gain from using the communication channel is
Pl(πs) = R(πlc , πs)−R(πlnc , πs), so this is a proxy for the strength of the learning signal for the
listener to use the channel. Similarly, Ps(πs) = R(πl, πsc) − R(πl, πsu) is how much reward the
speaker can gain from using the communication channel, and so is a proxy for the strength of the
learning signal for the speaker.

The results (Figure 2) support the hypothesis that the bias for positive signalling eases the learning
problem for the listener, and the bias for positive listening eases the learning problem for the speaker.
When neither agent has any inductive bias, we see both Pl and Ps stay low throughout training, and
the final reward of 0.1 is exactly what can be achieved in this environment with no communication.
When we add a bias for positive signalling or positive listening, we see the communication channel
used in most runs (Table 1), leading to greater reward, and Ps and Pl both increase. Importantly,
when we add our inductive bias for positive listening, we see Ps increase initially, followed by Pl.
This is consistent with the hypothesis that the positive listening bias bias produces a stronger learning
signal for the speaker; then once the speaker has begun to learn to communicate meaningfully, the
listener also has a strong learning signal. When we add the bias for positive signalling the reverse is
true – Pl increases before Ps. This again fits the hypothesis that speaker’s bias produces a stronger
learning signal for the speaker.

We also ran experiments with the speaker getting an extra reward for positive listening, as in [15].
However, we did not see any gain from this over the no-bias baseline; in our setup, it seems the

6



Figure 2: (a) Both biases lead to more reward. (b,c, d) Listener and speaker power in various settings. Listener
power increases first with positive signalling, and speaker power increases first with positive listening.

speaker agent was unable to gain any influence over the listener. We think that there is a natural
reason this bias would not help in this environment; for a fixed listener, the speaker policy which
optimizes positive listening has no relation to the speaker’s input. Thus this bias does not force the
speaker to produce different messages for different inputs, and so does not increase the learning
signal for the listener.

Biases Proportion of good runs CI Final reward of good runs
No bias 0.00 0.00-0.07 N/A

Social influence 0.00 0.00-0.07 N/A
Positive listening 0.88 0.76-0.94 0.92± 0.03
Positive signalling 0.98 0.90-1.00 0.99± 0.00

Both 1.00 0.93-1.0 0.98± 0.01
Table 1: Both biases lead to consistent discovery of useful communication. We define a good run to be one with
final average reward greater than 0.2. Averages are over 50 runs for each setting.

4.2 Treasure Hunt
We propose a new cooperative RL environment called Treasure Hunt, where agents explore several
tunnels to find treasure 1. When successful, both agents receive a reward of 1. The agents have a
limited field of view; one agent is able to efficiently find the treasure, but can never reach it, while the
other can reach the treasure but must perform costly exploration to find it. In the optimal solution,
the agent which can see the treasure finds it and communicates the position to the agent which can
reach it. Agents communicate by sending one of five discrete symbols on each timestep. The precise
generation rules for the environment can be found in the supplementary material.

The agents used in this environment are Advantage Actor-Critic methods [29] with the V-trace
correction [7]. The agent architecture employs a single convolutional layer, followed by a multi-layer
perceptron. The message from the other agent is concatenated to the output of the MLP, and fed into
an LSTM. The network’s action policy, message policy and value function heads are linear layers.

1Videos for this environment can be found at https://youtu.be/eueK8WPkBYs and https://youtu.
be/HJbVwh10jYk.

7

https://youtu.be/eueK8WPkBYs
https://youtu.be/HJbVwh10jYk
https://youtu.be/HJbVwh10jYk


Figure 3: Treasure hunt environment. Figure 4: Positive signalling and listening biases leads
to more reward.

Biases Proportion good CI Final reward (good runs) Final reward
No bias 0.28 0.18-0.42 14.67± 0.29 12.45± 0.48

Positive signalling 0.84 0.71-0.92 14.69± 0.18 14.22± 0.36
Positive listening 0.64 0.50-0.76 14.95± 0.20 13.94± 0.44

Both 0.94 0.84-0.98 15.41± 0.14 15.14± 0.33
Table 2: Proportion and average reward of good runs. Values are means over 50 runs with 95% confidence
intervals, calculated using Wilson approximation in the case of Bernoulli variables.

Run Mean time (unmodified) Mean visit time (modified)
Median 100.6± 14.7 36.1± 3.3

Best 85.4± 14.1 41.3± 7.9
Table 3: Visit time to tunnel, with and without modified messages. Values are means over 100 episodes with
95% confidence intervals.

Our training follows the independent multiagent reinforcement learning paradigm: each agent is
trained independently using their own experience of states and actions. We use RMSProp [13] to
adjust the weights of the agent’s neural network. We co-train two agents, each in a consistent role
(finder or collector) across episodes.

The results are shown in Table 2. We find that biases for positive signalling and positive listening
both lead to increased reward, and adding either bias to the agents leads to more consistent discovery
of useful communication protocols; we define these as runs which get reward greater than 13, the
maximum final reward in 50 runs with no communication. With or without biases, the agents still
frequently only discover local optima - for example, protocols where the agent which can find treasure
reports on the status of only one tunnel, leaving the other to search the remaining tunnels. This
demonstrates a limitation of these methods; positive signalling and listening biases are useful for
finding some helpful communication protocol, but they do not completely solve the joint exploration
problem in emergent communication. However, among runs which achieve some communication, we
see greater reward on average among runs with both biases, corresponding to reaching better local
optima for the communication protocol on average.

We also ran experiments with the speaker getting an extra reward for influencing the listener, as in
[15]. Here, we used the centralized model in [15], where the listener calculates the social influence of
the speaker’s messages, and the speaker gets an intrinsic reward for increasing this influence. We did
not see a significant improvement in task reward, as compared to communication with no additional
bias.

We analyze the communication protocols for two runs, which correspond to the two videos linked in1.
One is a typical solution among runs where communication emerges; we picked this run by taking the
median final reward out of all runs with both positive signalling and positive listening biases enabled.
Qualitatively, the behaviour is simple – the finder finds the rightmost tunnel, and then reports whether
there is treasure in that tunnel for the remainder of the episode. The other run we analyze is the one
with the greatest final reward; this has more complicated communication behaviour. To analyze these
runs, we rolled out 100 episodes using the final policies from each.

8



First, we relate the finder’s communication protocol to the actual location of the treasure on this
frame; in both runs, we see that these are well correlated. In the median run, we see that one symbol
relates strongly to the presence of treasure; when this symbol is sent, the treasure is in the rightmost
tunnel around 75% of the time. In the best run, where multiple tunnels appear to be reported on by the
finder, the protocol is more complicated, with various symbols correlating with one or more tunnels.
Details of the correlations between tunnels and symbols can be found in the supplementary material.

Next, we intervene in the environment to demonstrate that these communication protocols have
the expected effect on the collector. For each of these pairs of agents, we produce a version of the
environment where the message channel is overridden, starting after 100 frames. We override the
channel with a constant message, using the symbol which most strongly indicates a particular tunnel.
We then measure how long the collector takes to reach a square 3 from the bottom, where the agent is
just out of view of the treasure. In Table 3, we compare this to the baseline where we do not override
the communication channel. In both cases, the collector reaches the tunnel significantly faster than in
the baseline, indicating that the finder’s consistent communication is being acted on as expected.

5 Conclusion
We introduced two new shaping losses to encourage the emergence of communication in decentralized
learning; one on the speaker’s side for positive signalling, and one on the listener’s side for positive
listening. In a simple environment, we showed that these losses have the intended effect of easing the
learning problem for the other agent, and so increase the consistency with which agents learn useful
communication protocols. In a temporally extended environment, we again showed that these losses
increase the consistency with which agents learn to communicate.

Several questions remain open for future research. Firstly, we investigate only fully co-operative
environments; does this approach can help in environments which are neither fully cooperative nor
fully competitive? In such settings, both positive signalling and positive listening can be harmful
to an agent, as it becomes more easily exploited via the communication channel. However, since
the losses we use mainly serve to ensure the communication channel starts to be used, this may be
as large a problem as it initially seems. Secondly, the environments investigated here have difficult
communication problems, but are otherwise simple; can these methods be extended to improve
performance in decentralized agents in large-scale multi-agent domains? There are a few dimensions
along which these experiments could be scaled – to more complex observations and action spaces,
but also to environments with more than two players, and to larger communication channels.

References
[1] Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever, and Igor Mordatch. Emergent

complexity via multi-agent competition. In 6th International Conference on Learning Repre-
sentations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings, 2018.

[2] Daniel S. Bernstein, Shlomo Zilberstein, and Neil Immerman. The complexity of decentralized
control of Markov Decision Processes. In UAI ’00: Proceedings of the 16th Conference in
Uncertainty in Artificial Intelligence, Stanford University, Stanford, California, USA, June 30 -
July 3, 2000, pages 32–37, 2000.

[3] Kris Cao, Angeliki Lazaridou, Marc Lanctot, Joel Z Leibo, Karl Tuyls, and Stephen Clark.
Emergent communication through negotiation. arXiv preprint arXiv:1804.03980, 2018.

[4] Yongcan Cao, Wenwu Yu, Wei Ren, and Guanrong Chen. An overview of recent progress in the
study of distributed multi-agent coordination. IEEE Trans. Industrial Informatics, 9(1):427–438,
2013.

[5] Caroline Claus and Craig Boutilier. The dynamics of reinforcement learning in cooperative mul-
tiagent systems. In Proceedings of the Fifteenth National Conference on Artificial Intelligence
and Tenth Innovative Applications of Artificial Intelligence Conference, AAAI 98, IAAI 98, July
26-30, 1998, Madison, Wisconsin, USA., pages 746–752, 1998.

[6] Abhishek Das, Théophile Gervet, Joshua Romoff, Dhruv Batra, Devi Parikh, Michael Rab-
bat, and Joelle Pineau. Tarmac: Targeted multi-agent communication. arXiv preprint
arXiv:1810.11187, 2018.

9



[7] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu,
T. Harley, I. Dunning, S. Legg, and K. Kavukcuoglu. IMPALA: Scalable Distributed Deep-RL
with Importance Weighted Actor-Learner Architectures. ArXiv e-prints, February 2018.

[8] Jakob Foerster, Ioannis Alexandros Assael, Nando de Freitas, and Shimon Whiteson. Learning to
communicate with deep multi-agent reinforcement learning. In Advances in Neural Information
Processing Systems, pages 2137–2145, 2016.

[9] Jakob N. Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon
Whiteson. Counterfactual multi-agent policy gradients. In Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of
Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in
Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages
2974–2982, 2018.

[10] H Paul Grice. Utterer’s meaning, sentence-meaning, and word-meaning. In Philosophy,
Language, and Artificial Intelligence, pages 49–66. Springer, 1968.

[11] Eric A. Hansen, Daniel S. Bernstein, and Shlomo Zilberstein. Dynamic programming for
partially observable stochastic games. In Proceedings of the 19th National Conference on
Artifical Intelligence, AAAI’04, pages 709–715. AAAI Press, 2004.

[12] Matthew John Hausknecht. Cooperation and communication in multiagent deep reinforcement
learning. PhD thesis, University of Texas at Austin, Austin, USA, 2016.

[13] G. Hinton, N. Srivastava, , and K. Swersky. Lecture 6a: Overview of mini–batch gradient
descent. Coursera, 2012.

[14] Max Jaderberg, Wojciech M. Czarnecki, Iain Dunning, Luke Marris, Guy Lever, Antonio García
Castañeda, Charles Beattie, Neil C. Rabinowitz, Ari S. Morcos, Avraham Ruderman, Nicolas
Sonnerat, Tim Green, Louise Deason, Joel Z. Leibo, David Silver, Demis Hassabis, Koray
Kavukcuoglu, and Thore Graepel. Human-level performance in first-person multiplayer games
with population-based deep reinforcement learning. CoRR, abs/1807.01281, 2018.

[15] Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro A Ortega,
DJ Strouse, Joel Z Leibo, and Nando de Freitas. Intrinsic social motivation via causal influence
in multi-agent rl. International Conference of Machine Learning, 2019.

[16] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[17] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, and Eiichi Osawa. Robocup:
The robot world cup initiative. In Agents, pages 340–347, 1997.

[18] Satwik Kottur, José MF Moura, Stefan Lee, and Dhruv Batra. Natural language does not
emerge’naturally’in multi-agent dialog. arXiv preprint arXiv:1706.08502, 2017.

[19] Martin Lauer and Martin A. Riedmiller. An algorithm for distributed reinforcement learning in
cooperative multi-agent systems. In Proceedings of the Seventeenth International Conference
on Machine Learning (ICML 2000), Stanford University, Stanford, CA, USA, June 29 - July 2,
2000, pages 535–542, 2000.

[20] Guillaume J. Laurent, Laëtitia Matignon, and Nadine Le Fort-Piat. The world of Indepen-
dent learners is not Markovian. International Journal of Knowledge-Based and Intelligent
Engineering Systems, 15(1):55–64, March 2011.

[21] Angeliki Lazaridou, Karl Moritz Hermann, Karl Tuyls, and Stephen Clark. Emergence of
linguistic communication from referential games with symbolic and pixel input. arXiv preprint
arXiv:1804.03984, 2018.

[22] Joel Z. Leibo, Edward Hughes, Marc Lanctot, and Thore Graepel. Autocurricula and the
emergence of innovation from social interaction: A manifesto for multi-agent intelligence
research. CoRR, abs/1903.00742, 2019.

10



[23] Joel Z. Leibo, Vinícius Flores Zambaldi, Marc Lanctot, Janusz Marecki, and Thore Graepel.
Multi-agent reinforcement learning in sequential social dilemmas. In Proceedings of the 16th
Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2017, São Paulo, Brazil,
May 8-12, 2017, pages 464–473, 2017.

[24] Michael L. Littman. Markov games as a framework for multi-agent reinforcement learning. In
In Proceedings of the Eleventh International Conference on Machine Learning, pages 157–163.
Morgan Kaufmann, 1994.

[25] Ryan Lowe, Jakob Foerster, Y-Lan Boureau, Joelle Pineau, and Yann Dauphin. On the pitfalls
of measuring emergent communication. arXiv preprint arXiv:1903.05168, 2019.

[26] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive environments. In Advances in Neural
Information Processing Systems, pages 6379–6390, 2017.

[27] Laëtitia Matignon, Laurent Jeanpierre, and Abdel-Illah Mouaddib. Coordinated multi-robot
exploration under communication constraints using decentralized markov decision processes.
In Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, July 22-26, 2012,
Toronto, Ontario, Canada., 2012.

[28] Laëtitia Matignon, Guillaume J. Laurent, and Nadine Le Fort-Piat. Independent reinforcement
learners in cooperative markov games: a survey regarding coordination problems. Knowledge
Eng. Review, 27(1):1–31, 2012.

[29] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lilli-
crap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In International conference on machine learning, pages 1928–1937,
2016.

[30] Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in multi-
agent populations. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[31] Stephen Neale. Paul grice and the philosophy of language. Linguistics and philosophy,
15(5):509–559, 1992.

[32] Malcolm Reynolds, Gabriel Barth-Maron, Frederic Besse, Diego de Las Casas, Andreas
Fidjeland, Tim Green, Andria Puigdomenech, Sébastien Racanière, Jack Rae, and Fabio
Viola. Open sourcing Sonnet - a new library for constructing neural networks. https:
//deepmind.com/blog/open-sourcing-sonnet/, 2017.

[33] L. S. Shapley. Stochastic games. Proceedings of the National Academy of Sciences of the
United States of America, 39(10):1095–1100, 1953.

[34] Luc Steels. Evolving grounded communication for robots. Trends in cognitive sciences,
7(7):308–312, 2003.

[35] Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. Learning multiagent communication
with backpropagation. In Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona,
Spain, pages 2244–2252, 2016.

[36] Ming Tan. Multi-agent reinforcement learning: Independent versus cooperative agents. In Ma-
chine Learning, Proceedings of the Tenth International Conference, University of Massachusetts,
Amherst, MA, USA, June 27-29, 1993, pages 330–337, 1993.

[37] Kyle Wagner, James A Reggia, Juan Uriagereka, and Gerald S Wilkinson. Progress in the
simulation of emergent communication and language. Adaptive Behavior, 11(1):37–69, 2003.

11

https://deepmind.com/blog/open-sourcing-sonnet/
https://deepmind.com/blog/open-sourcing-sonnet/


A Environment details

To generate a map for the treasure hunt environment, we:

1. Create a rectangle of grey pixels with height 18 and width 24.

2. Draw a black tunnel on the second row up, including all but the leftmost and rightmost
pixels.

3. Draw a black tunnel on the second row down, including all but the leftmost and rightmost
pixels.

4. Pick 4 starting positions on the top horizontal tunnel for vertical tunnels. These are randomly
selected among sets of positions which are all at least 3 pixels apart (so no tunnel is visible
from another). Draw black tunnels from these positions to 2 pixels above the bottom tunnel.

5. Place the yellow treasure at the bottom of a random tunnel.

6. Place one agent uniformly at random in the top tunnel, and one uniformly at random in the
bottom tunnel.

The episode length is 500 timesteps. The agents have 5 actions, corresponding to the 4 directions
and a no-op action. They can move in the black tunnels and onto the treasure, but not onto the grey
walls. The agent observation is a 5× 5 square, centered on the agent. When an agent moves onto the
treasure, both agents receive reward 1, and the treasure respawns at the bottom of a random tunnel.

The RGB values of the colors of the pixels in the observations are:

• Blue self: (0, 0, 255).

• Red partner agent: (255, 0, 0).

• Grey walls: (128, 128, 128).

• Black tunnels: (0, 0, 0).

• Yellow treasure: (255, 255, 0).

B Treasure hunt communication protocols

In this section, we give more details on the communication protocols in Treasure Hunt. First, we give
full details of the correlations between messages and treasure location in the two runs discussed in
the main text. These are the median and the best runs in terms of final reward, in the setting where we
use both positive signalling and positive listening biases. We generated 100 episodes using the final
policies for the 2 agents, and recorded the treasure locations and symbols on each timestep. Each cell
shows the probability of each treasure location, given that the speaker transmits a particular symbol.

In Table 4, we see that symbol 2 is particularly meaningful, fairly reliably indicating the presence of
treasure in the final tunnel. In Table 5, we see that three symbols appear to be used; 0 and 2 correlate
with righthand tunnels, and 3 with lefthand ones.

S P(T = 1|S) P(T = 2|S) P(T = 3|S) P(T = 4|S)
0 0.12± 0.01 0.08± 0.01 0.35± 0.03 0.46± 0.03
1 0.36± 0.02 0.35± 0.02 0.22± 0.01 0.07± 0.01
2 0.06± 0.01 0.05± 0.00 0.14± 0.01 0.75± 0.02
3 0.32± 0.01 0.35± 0.02 0.24± 0.01 0.09± 0.01
4 0.27± 0.01 0.28± 0.02 0.24± 0.01 0.20± 0.01
Table 4: Message tunnel correlations for median Treasure Hunt run.

12



S P(T = 1|S) P(T = 2|S) P(T = 3|S) P(T = 4|S)
0 0.08± 0.01 0.12± 0.01 0.32± 0.02 0.48± 0.02
1 0.15± 0.01 0.31± 0.02 0.31± 0.02 0.22± 0.01
2 0.12± 0.01 0.15± 0.01 0.29± 0.02 0.44± 0.02
3 0.56± 0.03 0.19± 0.02 0.16± 0.02 0.09± 0.02
4 0.23± 0.02 0.32± 0.02 0.27± 0.02 0.18± 0.02

Table 5: Message tunnel correlations for best Treasure Hunt run.

We also show the correlations between messages and listener actions, in Tables 6 and 7. In both cases,
these are as expected from the correlations between tunnels and messages; we see the listener move
more in the direction which the messages correlate with.

S P(Noop|S) P(Up|S) P(Right|S) P(Down|S) P(Left|S)
0 0.00± 0.00 0.14± 0.01 0.46± 0.01 0.34± 0.01 0.05± 0.00
1 0.00± 0.00 0.20± 0.00 0.05± 0.00 0.49± 0.00 0.26± 0.00
2 0.00± 0.00 0.48± 0.01 0.32± 0.01 0.17± 0.01 0.03± 0.00
3 0.00± 0.00 0.78± 0.00 0.04± 0.00 0.09± 0.00 0.09± 0.00
4 0.00± 0.00 0.14± 0.00 0.03± 0.00 0.73± 0.00 0.09± 0.00

Table 6: Message action correlations for median Treasure Hunt run.

S P(Noop|S) P(Up|S) P(Right|S) P(Down|S) P(Left|S)
0 0.01± 0.00 0.49± 0.01 0.28± 0.01 0.11± 0.00 0.10± 0.01
1 0.01± 0.00 0.37± 0.01 0.07± 0.00 0.38± 0.01 0.17± 0.00
2 0.01± 0.00 0.25± 0.01 0.23± 0.01 0.42± 0.01 0.09± 0.00
3 0.01± 0.00 0.47± 0.01 0.04± 0.01 0.27± 0.01 0.21± 0.01
4 0.00± 0.00 0.26± 0.01 0.07± 0.00 0.52± 0.01 0.14± 0.00

Table 7: Message action correlations for best Treasure Hunt run.

C Network details and hyperparameters
C.1 MNIST sums experiments
In the MNIST sums environment, the agent architecture used was from an existing MNIST classifier;
we did not optimize this, as the goal was to investigate the effect of communication biases rather than
to achieve optimal performance. This architecture is:

• A convolutional neural network, with 2 layers, which have 32 and 64 channels respectively.
Both layers have kernel size 5, stride 1, and rectified linear unit (ReLU) activations. We use
max pooling, with stride and kernel 2.

• One hidden linear layer with 1024 neurons, with ReLU activations.

We used the Adam optimizer [16], with a learning rate of 0.0003 and parameters β1 = 0.9, β2 =
0.999, ε = 10−8. These layers were implemented using the Sonnet library [32]. The agents were
trained using REINFORCE; the total loss for each agent consists of the REINFORCE loss, entropy
regularization, and the biases for positive signalling (Lps) and positive listening, (Lpl and Lce).

For the listener agent, the message is concatenated to the flattened output of the convolutional net
before the hidden linear layer.

The final hyperparameters used for the 5 settings were:

To select the hyperparameters for the no bias setting, we performed a joint sweep over action and
message entropy bonuses, consider a range of values from 0.0 to 0.3 for each. No values were found
which improved over the no communication policy; the final values reported here are those which
worked best in the other settings.

13



Hyperparameter No bias PS PL Both SI
Batch size 32 32 32 32 32

Action policy entropy bonus 0.03 0.03 0.03 0.03 0.01
Message policy entropy bonus 0.03 0.0 0.03 0.0 0.01

Target message entropyHtarget N/A 1.0 1.0 N/A N/A
Weight of Lpl N/A N/A 0.01 0.01 N/A
Weight of Lps N/A 0.1 N/A 0.1 N/A
Weight of Lce N/A N/A 0.001 0.001 0.001
λ for Lps N/A 3.0 N/A 3.0 N/A

Table 8: Hyperparameters for final MNIST experiments.

In the positive listening setting, we performed sweeps:

• Over the weight of Lpl, using values in (0.01, 0.03, 0.1, 0.3).
• Over the entropy costs for messages and actions, using values (0.01, 0.03, 0.1).
• Over the weight of Lce, using values of (0.0, 0.001, 0.01, 0.1); aside from 0, which unsur-

prisingly produced worse results, there was no significant difference in the results of these
runs.

In the positive signalling setting, we performed sweeps:

• Jointly over the weight of Lps and λ, using values in (0.01, 0.03, 0.1) for Lps, and
(0.01, 0.03, 0.1) for the product λLps.

In the setting with both biases, we ran no additional sweeps, simply combining the hyperparameters
from the best runs with positive signalling and positive listening.

In the social influence setting, we performed sweeps:

• Over the weight of the social influence reward, using values (0.01, 0.03, 0.1, 0.3, 1.0, 10.0).
• Over the entropy costs for messages and actions, using values (0.01, 0.03, 0.1).

For all hyperparameter sweeps, we ran 5 runs, and picked the setting with the highest average final
reward. For the final sets of hyperparameters, we then ran 50 runs.

C.2 Treasure Hunt experiments

In our experiments, we use 32 parallel environment copies for the Asynchronous Advantage Actor-
Critic algorithm [29] with the V-trace correction [7]. The total loss for each agent consists of the
A3C loss, including entropy regularization, and the biases for positive signalling (Lps) and positive
listening, (Lpl and Lce). The two agents have the same architecture, which consists of:

• A single convolutional layer, using 6 channels, kernel size of 1 and stride of 1.
• A multi-layer perceptron with 2 hidden layers of size 64.
• An LSTM, with hidden size 128.
• Linear layers mapping to policy logits for the action and message policies, and to the baseline

value function.

The message from the other agent is concatenated to the flattened output of the convolutional net
before the hidden linear layer.

We used the RMSProp optimizer [13] for gradient descent, with a initial learning rate of 0.001,
exponentially annealed by a factor of 0.99 every million steps. The other parameters are η = 0.99,
and ε = 10−6.

The final hyperparameters used for the 5 settings were:

In the no communication setting, we performed sweeps:

• Over the entropy costs for actions, using values (0.001, 0.003, 0.006, 0.01).

14



Parameter No comms No bias PS PL Both SI
Batch size 16 16 16 16 16 16

Action entropy regularization 0.006 0.006 0.006 0.006 0.006 0.006
Message entropy regularization N/A 0.0 0.0 0.0 0.0 0.0
Target message entropyHtarget N/A N/A 0.8 N/A 0.8 N/A

Weight of Lpl N/A N/A 0.003 N/A 0.003 N/A
Weight of Lce N/A N/A N/A 0.01 0.01 0.01
Weight of Lps N/A N/A 0.001 0.001 N/A N/A
λ for Lps N/A N/A 3.0 N/A 3.0 N/A

Weight of Lsi N/A N/A N/A N/A N/A 0.01
Table 9: Hyperparameters for final Treasure Hunt experiments.

• Over the sizes of the MLP layers, using values (32, 64, 128).
• Over the sizes of the LSTM hidden size, using values (64, 128).

We then fixed these parameters for the other settings.

In the positive listening setting, we performed sweeps:

• Over the weight of Lpl, using values in (0.001, 0.003, 0.01).
• Over the weight of Lce, using values of (0.0, 0.001, 0.01).

In the positive signalling setting, we performed sweeps:

• Jointly over the weight of Lps and λ, using values in (0.001, 0.003, 0.01) for Lps, and
(0.001, 0.003, 0.01) for the product λLps.
• Over the target entropyHt, using values in (0.4, 0.8, 1.6).

In the setting with both biases, we ran no additional sweeps, simply combining the hyperparameters
from the best runs with positive signalling and positive listening.

In the social influence setting, we performed a sweep over the weighting of the reward for social
influence to the speaker, using values in (0.01, 0.03, 0.1, 0.3, 1.0).

For all hyperparameter sweeps, we ran 5 runs, and picked the setting which exceeded the no-
communication baseline most frequently, terminating runs early if the result was clear. For the final
sets of hyperparameters, we then ran 50 runs.

D Multi-step CIC ablation
In the positive listening bias for the listener, we use the multiple timestep CIC. Recall that for a listener
trajectory xt = (o1, a1,m1, . . . , ot−1, at−1,mt−1, ot), we define x′t = (o1, a1, . . . , at−1, ot) (this
is the trajectory xt, with the messages removed). We define the multiple timestep CIC as:

CIC(xt) = H(at|x′t)−H(at|xt). (9)

We could also choose to use the single timestep CIC, defined in [15, 25] as the mutual information
between the speaker and the listener’s actions. Defining x′′t = (o1, a1,m1, . . . , at−1, ot) – which is
the trajectory with only the final message removed – this would be:

CIC(st) = H(at|x′′t )−H(at|xt). (10)

Similarly to in the multiple timestep CIC, we estimate the single timestep CIC by learning the
distribution πi

A(·|x′t). We do this by performing a rollout of the agent’s policy network, with the
actual observations and actions in the trajectory, including all message except the final one, which
is zeroed out. We fit the resulting function πi

A(·|x′′t ) to predict πi
A(·|xt), using a cross-entropy loss

between these distributions.

The single-timestep CIC can then be estimated by:

CIC(xt) ≈ DKL(πi
A(·|xt)||πi

A(·|x′′t )). (11)

15



Figure 5: One step CIC does not lead to better results than no speaker-side bias.

As with the multi-timestep CIC, we used the L1 loss for

Lpl
(xt) = −

∑
a∈Ai

∣∣πi
A(a|xt)− πi

A(a|x′t)
∣∣. (12)

Using the single timestep CIC, with or without positive signalling, we did not find improvements
over a baseline with no speaker-side bias – see Figure 5.

E Statistical methodology
All confidence intervals shown are 95% confidence intervals. For confidence intervals of Bernoulli
variables – the proportion of runs with reward above a certain threshhold – we use the Wilson
approximation. For graphs depicting average performance over multiple runs, we first take the mean
reward per run in 100 time windows over training. The interval shown is the 95% confidence interval
for this mean.

16


	1 Introduction
	1.1 Related Work

	2 Setting
	3 Shaping Losses for Facilitating Communication
	3.1 Bias for positive signalling
	3.2 Bias for positive listening

	4 Empirical Analysis
	4.1 Summing MNIST digits
	4.2 Treasure Hunt

	5 Conclusion
	A Environment details
	B Treasure hunt communication protocols
	C Network details and hyperparameters
	C.1 MNIST sums experiments
	C.2 Treasure Hunt experiments

	D Multi-step CIC ablation
	E Statistical methodology

