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Abstract

We derive a Nitsche-based formulation for fluid-structure interaction (FSI) problems with contact.
The approach is based on the work of Chouly and Hild [SIAM Journal on Numerical Analysis. 2013;51(2):1295–
1307] for contact problems in solid mechanics. We present two numerical approaches, both of them
formulating the FSI interface and the contact conditions simultaneously in equation form on a joint
interface-contact surface Γ(t). The first approach uses a relaxation of the contact conditions to allow for
a small mesh-dependent gap between solid and wall. The second alternative introduces an artificial fluid
below the contact surface. The resulting systems of equations can be included in a consistent fashion
within a monolithic variational formulation, which prevents the so-called “chattering” phenomenon. To
deal with the topology changes in the fluid domain at the time of impact, we use a fully Eulerian ap-
proach for the FSI problem. We compare the effect of slip and no-slip interface conditions and study the
performance of the method by means of numerical examples.



1 Introduction

Contact problems have to be considered in many physical processes in engineering, medicine and nature. To
name only a few consider for example the contact of balls and races in roller bearings, While an extensive
amount of literature exists for the numerical simulation of contact in a purely solid mechanics context (see
for example Wohlmuth [65] for an overview), i.e. disregarding the gas or liquid that mostly lies between
contacting structures, much less works can be found considering full fluid-structure interaction with contact.
The flow between contacting surfaces might however be of great importance for the contact dynamics. In
the example of heart valves, the pulsating blood flow is even the driving force that enables opening and
closure [4, 49]. In the case of ball bearings, fluid forces in the lubricant between ball and bearing may have
a significant influence on the performance and wear of the bearing [50, 11].

Contact between different structures is typically formulated by means of variational inequalities [65]. In
the context of full fluid-structure interaction (FSI), first results and algorithms can be found using either an
artificial penalty force [63] or Lagrange multipliers [54, 27, 4] to obtain a well-posed and computationally
feasible variational formulation.

However, these approaches have certain drawbacks: The use of a penalty force prevents real contact.
The force is typically an artificial force and involves the choice of penalty parameters. If they are chosen
too small, the structures might overlap in a numerical simulation. If they are chosen too large, the contact
dynamics might be significantly perturbed [33]. In the case of Lagrange multipliers, additional variables are
introduced on the contacting surfaces and an inf-sup condition is needed to ensure the well-posedness of the
system. To tackle the variational inequality numerically, classical methods are based on active-set strategies
including additional loops, which means in particular that the system of equations has to be solved several
times in each time step. There are several possibilities to overcome these issues. Instead of an active-set
strategy, semi-smooth Newton methods can be used to solve the system of equations [45]. In order to avoid
additional variables, dual mortar methods, for example based on biorthogonal Lagrange multipliers, have
been introduced [47].

Another possibility is to use Nitsche’s method [57] to incorporate the contact conditions. This approach
is based on an equivalent re-formulation of the contact conditions in equality form, which goes back to Alart
and Curnier [1] and has been used in many works for the iterative solution of variational inequalities since
then (see e.g. [45, 47]). In the case of the contact of an elastic body with a wall, the mechanical contact
conditions on the contact surface ΓC(t) read

dn ≤ 0, σs,n(d) ≤ 0, σs,n(d)dn = 0,

where dn denotes the solid displacement in normal direction and σs,n(d) is the normal stress component. It
can be shown that these conditions are equivalent to the equality

σs,n(d) = − 1

γ
max{0, dn − γσs,n(d)} on ΓC(t), (1)

for arbitrary γ > 0 (see e.g., [1]). This equality can be incorporated weakly in the variational formulation
using Nitsche’s method. While this technique has originally been used as a solution technique for the iterative
solution of variational inequalities, it has only recently been considered and analysed as a discretisation
technique by Chouly and co-workers [19, 22, 21], including a complete analysis of the related discretisation
errors.

The Nitsche approach has the advantage that it is fully consistent. Furthermore, no additional variables
have to be introduced and no additional loop within each time-step is needed. Numerical convergence has
been proven in a series of papers for friction-free and frictional contact [22, 24, 20]. Following these results,
Burman and co-workers used the re-formulation (1) to derive a Galerkin Least Squares formulation in equality
form for the obstacle problem [18] and a Galerkin Least Squares and a Lagrange multiplier formulation for
membrane contact [17].

All these studies disregard however the fluid that usually lies between the contacting structures. The aim
of the present paper is to derive a Nitsche-based formulation for FSI with contact. To this purpose, we will
introduce Lagrange multipliers on the FSI interface which can then be eliminated following the arguments
reported by Burman & Hansbo in [16].

The mathematical modeling of contact in an FSI context brings along a further issue: It is unclear,
whether the incompressible Navier-Stokes equations with standard boundary conditions are an appropriate
model in the fluid part, when it comes to contact. Theoretical studies show, that for a smooth, rigid solid
body, no contact with an exterior wall can happen, when no-slip conditions are used on the interface and
the outer boundary of the fluid domain, see Hillairet [43] and Hesla [42] in 2 space dimensions and Hillairet
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et al. [44, 36] in 3 space dimensions. This changes, when slip- or Navier-slip conditions are used on both
the interface and the wall [36] or when the boundary of the solid is non-smooth [35, 64]. Gerard-Varet
and Hillairet [35] found in a model example that it comes to contact for a solid with a C1,α-parametrised
boundary for α < 1/2, while no contact happens for α ≥ 1/2. In the context of fluid-structure interactions,
the regularity of the solid boundary depends on the solid displacement d, for which such regularity can
usually not be guaranteed.

For a full FSI problem with a thin-walled structure, a no-collision result has been shown by Grandmont
and Hillairet [38] in the no-slip case. For an overview on further results regarding existence of fluid-structure
interaction problems, we refer to Grandmont et al. [39]. Recently, Muha & Čanić [56] showed the well-
posedness of a fluid-structure interaction system with slip-conditions.

Motivated by these theoretical results, we will study both no-slip and slip conditions on the FSI interface
Γ(t) in this work. It will turn out that the latter transits naturally into a “no-friction” condition when it
comes to contact, while the prior leads to frictional contact. In this work, we will therefore consider friction-
free contact, when a slip-condition is used on Γ(t) and the specific frictional contact condition that follows
from the transition of the interface conditions, when a no-slip condition is used on Γ(t). For recent works on
the incorporation of different friction laws (in particular Coulomb and Tresca friction), we refer to Chouly
and co-workers [24, 20]. Moreover, we will study only contact of a deformable elastic structure with a fixed
and straight wall for simplicity. Efficient algorithms to treat contact between more complex structures can
be found, for example, in Puso [60], Yang et al. [66] and Chouly, Mlika & Renard [23, 55].

Concerning the governing equations, we focus on linear model equations for the fluid and solid part,
i.e., the incompressible Stokes equations in the fluid and linear elasticity in the solid sub-domain. These
simplifications must be seen as a first step towards the derivation of Nitsche-based contact formulations
for complex FSI-contact problems. We consider, however, the case of a moving interface, which is a major
challenge from the numerical point of view and leads to a non-linear FSI system, already in absence of
contact.

The change of topology in the fluid domain causes additional numerical difficulties. Standard numerical
approaches as the Arbitrary Lagrangian Eulerian method are not able to deal with topology changes, as
the map from the reference domain to the Eulerian domain degenerates necessarily in this situation. The
dynamics shortly before the impact can only be handled robustly when a Eulerian description of the fluid
equations is used.

In the last years, several numerical approaches have been developed that are able to deal with topology
changes. The methods can be split into two categories, according to the coordinate systems that are used for
the solid system: Fully Eulerian approaches, where also the structure equations are formulated in Eulerian
coordinates [29, 26, 61, 33, 41]; and Euler-Lagrangian techniques, where Lagrangian coordinates are used for
the solid equations [58, 8, 67, 51, 27, 37, 13, 2, 53], such as in the Immersed Boundary or Immersed Finite
Element methods.

Regarding the Euler-Lagrangian techniques, one can further distinguish between methods using Lagrange
multipliers for the coupling of fluid and structure (Legay et al. [51], Gerstenberger & Wall [37]) and methods
based on Nitsche-techniques (Hansbo et al. [40], Burman & Fernández [13], Alauzet et al. [2], Massing et
al. [53], Kamensky et al. [49]). For the latter, a theoretical stability and convergence analysis has been
derived [13]. The reader is referred to Boilevin-Kayl et al. [9] for a comparative study on the accuracy of
some of these approaches.

The FSI approach we use here is based on the monolithic Fully Eulerian approach (Dunne & Ran-
nacher [29], Cottet et al. [26], Richter [61], Frei & Richter [33], Hecht & Pironneau [41]). As the com-
plete system of equations is formulated in Eulerian coordinates, the incorporation of contact conditions is
straight-forward by means of variational principles. While some of the early works in this context suffered
from stability and accuracy issues, see e.g. Dunne [28], accurate and robust discretisation and stabilisation
techniques have been developed recently (Frei & Richter [32, 34, 33], Hecht & Pironneau [41]). We remark,
however, that the algorithms we derive to incorporate contact can be combined in a straight-forward way
with different FSI coupling techniques, e.g. Fictitious Domain or Immersed Boundary methods.

Concerning discretisation, we allow both for unfitted and fitted finite element approaches. For the unfitted
case, so-called “ghost penalty” stabilisations can be used to guarantee the coercivity of the system [12, 13].
In order to simplify the presentation, we concentrate on fitted discretisations in this work and will comment
on the unfitted case in a remark. In the numerical examples at the end of this paper, we will use the fitted
locally modified finite element method [32].

The remainder of this paper is organised as follows: In Section 2, we first introduce the equations and
the contact model. Before tackling the full contact problem, we derive a variational formulation for a model
problem of a virtual obstacle within the fluid domain in Section 3, where we already have to deal with
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Figure 1: Illustration of an FSI problem without contact (left sketch). The domain affiliation in the current
state can be determined by mapping back to the initial configuration, which is shown on on the right.

inequalities, but without any topology changes in the fluid domain. Then, we investigate contact with an
exterior wall in Section 4. We show a stability result in Section 5 and present detailed numerical studies
in Section 6, investigating the influence of contact parameters, interface conditions and different contact
formulations as well as convergence under mesh refinement. We conclude in Section 7.

2 Model

We begin by presenting the models for the fluid part, the solid part and the fluid-structure interaction on
one hand in Section 2.1 and on the other hand the contact model in Section 2.2. For both models, Nitsche-
based variational formulations are introduced. Different possibilities to combine the two models will then be
presented in Sections 3 and 4.

2.1 Fluid-structure interaction without contact

We consider a fluid-structure interaction problem that is given on an overall domain Ω ⊂ R2 which is split
into a (variable) sub-domain Ωf (t) occupied by a viscous fluid, a sub-domain Ωs(t) occupied by an elastic
solid and a lower-dimensional interface Γ(t) separating them, such that

Ω = Ωf (t) ∪ Γ(t) ∪ Ωs(t).

The boundary of the fluid domain is partitioned as follows ∂Ωf (t) = Γfsi(t) ∪ ΓDf ∪ ΓNf , where Γfsi(t) stands

for the fluid-solid interface. As regards the solid boundary, we assume that ∂Ωs(t) = Γ(t)∪ ΓDs ∪ ΓNs , where
the boundary part Γ(t) = Γfsi(t) ∪ ΓC(t) is decomposed into the terms of Γfsi(t) and the contact zone ΓC(t)
(see Figure 1 for a configuration without contact and the left sketch of Figure 2 for a configuration with
contact). The restriction to two dimensions is made only to simplify the presentation. The models and
the methods derived in this paper can be generalised conceptually in a straight-forward way to three space
dimensions.

In this work we will use a Eulerian description for the complete FSI problem. As already mentioned
in the introduction this is not necessary for the contact algorithms derived below, but one convenient way
to deal with (possible) topology changes in the fluid domain Ωf (t). In an Eulerian description, the solid
sub-domain and the interface are implicitly defined by the (unknown) solid displacement d

Ωs(t) =
{
x ∈ Ω

∣∣T (x, t) ∈ Ωs(0)
}
, Γ(t) =

{
x ∈ Ω

∣∣T (x, t) ∈ Γ(0)
}
, (2)

where T : Ω(t) → Ω is a bijective map, that is given by T (x, t) = x − d(x, t) in the solid domain Ωs(t) and
by an arbitrary (smooth) extension in Ωf (t) = Ω \ (Ωs(t) ∪ Γ(t)). For the details, we refer to the textbook
of Richter [62] or to Frei [30].

In the variable fluid sub-domain Ωf (t), we consider the linear incompressible Stokes equations

∂tu− div σf (u, p) = ff , div u = 0,

where the Cauchy stress tensor σf is defined by

σf (u, p) = νf
(
∇uT +∇u

)
− pI,

u denotes the fluid velocity, p stands for pressure and νf > 0 is a constant viscosity. In the solid-subdomain
Ωs(t), we assume a linear elastic material

∂tḋ− div σs(d) = fs, ∂td = ḋ,
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where the Cauchy stress tensor σs is given by

σs(d) = 2µsE(d) + λstr(E(d))I, E(d) =
1

2

(
∇d+∇dT

)
,

ḋ = ∂td denotes the solid velocity and λs, µs > 0 are positive constants.
For the coupling across the fluid-solid interface Γfsi(t), the continuity of velocities and normal stresses

ḋ = u, σf (u, p)n = σs(d)n on Γfsi(t) (3)

is typically considered for viscous fluids, where n = ns denotes the outer normal vector of the solid domain
Ωs(t). We recall that, since in this section there is no contact in the solid (i.e., ΓC(t) = ∅), we have
Γ(t) = Γfsi(t). When it comes to contact, it is however questionable, whether the no-slip condition in (3) is
still a reasonable approximation of the underlying physics, see the discussion on the no-collision paradox in
the introduction. Therefore, we will study slip-conditions in this work as well (see Section 4.3), where the
continuity across Γfsi(t) is only imposed for the normal velocity

u · n = ḋ · n, τTσfn = 0, σfn = σsn on Γfsi(t). (4)

In order to close the system of equations, we define exterior boundary conditions for the fluid and solid

u = 0 on ΓDf , σf (u, p)n = 0 on ΓNf

d = 0 on ΓDs , σs(d)n = 0 on ΓNs

and the initial conditions

u(x, 0) = u0(x)in Ωf (0), d(x, 0) = d0(x), ḋ(x, 0) = ḋ0(x)in Ωs(0).

We introduce the finite element spaces Vh,Qh andWh on a quasi-uniform family of triangulations (Th)h>0

and use Nitsche’s method to combine the equations and interface conditions into a monolithic variational
formulation (see e.g. Hansbo et al. [40], Burman & Fernandez [13]). The monolithic system of equations
reads in the no-slip case: Find u(t) ∈ Vh, p(t) ∈ Qh, d(t) ∈ Wh, such that ḋ = ∂td and

Afsi, no-slip(u, p, d, ḋ)(v, q, w) = (ff , v)Ωf (t) + (fs, w)Ωs(t)
∀v, q, w ∈ Vh ×Qh ×Wh, (5)

where

Afsi, no-slip(u, p, d, ḋ)(v, q, w) : =
(
∂tu, v

)
Ωf (t)

+ af (u, p; v, q) +
(
∂tḋ, w

)
Ωs(t)

+ (σs(d),∇w)Ωs(t)
−
(
Tf (u, p, ḋ), w − v

)
Γ(t)
−
(
ḋ− u, σf (v,−q)n

)
Γ(t)

(6)

and

af (u, p; v, q) := (σf (u, p),∇v)Ωf (t) + (div u, q)Ωf (t) + S(p, q).

The numerical fluid traction on the interface is defined by Tf (u, p, ḋ) := σf (u, p)n−γfsi(ḋ−u). The Nitsche
parameter is chosen as γfsi := γ0

fsiνfh
−1. The term S(p, q) stands for a pressure stabilisation term that is

non-zero in case that the discrete fluid spaces do not fulfil a discrete inf-sup condition. Note that at the FSI
interface, we have used the following relation for the interface terms arising from integration by parts

(σsn,w)Γ(t) − (σfn, v)Γ(t) = (σfn,w − v)Γ(t) + (JσnK, w)Γ(t), (7)

where we have dropped the dependencies of σf and σs for better readability. In the absence of contact, the
jump of the stresses defined by

JσnK := σsn− σfn, (8)

vanishes everywhere on Γ(t). Furthermore, we have added the term

−
(
ḋ− u, σf (v,−q)n

)
Γ(t)

as in Burman & Fernandez [13] for stability reasons.
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Using a slip-condition at the FSI interface, the variational formulation reads: Find u ∈ Vh, p ∈ Qh, d ∈
Wh, such that ḋ = ∂td and

Afsi, slip(u, p, d, ḋ)(v, q, w) = (ff , v)Ωf (t) + (fs, w)Ωs(t)
∀v, q, w ∈ Vh ×Qh ×Wh,

where

Afsi, slip(u, p, d, ḋ)(v, q, w) :=
(
∂tu, v

)
Ωf (t)

+ af (u, p; v, q) +
(
∂tḋ, w

)
Ωs(t)

+ (σs(d),∇w)Ωs(t)

−
(
Tf (u, p, ḋ) · n, (w − v) · n

)
Γ(t)
−
(

(ḋ− u) · n, nTσf (v,−q)n
)

Γ(t)
.

(9)

2.2 Contact model without fluid

We assume that the solid is at a positive distance to the boundary at initial time and that contact can only
happen with the lower wall (see Figure 2, left sketch, where the situation at contact is shown)

Γw =
{

(x1, x2) ∈ ∂Ω
∣∣ x2 = 0

}
.

We denote the outer normal vector of the fluid domain Ωf (t) at Γw by nw = −e2. Moreover, let g0(x2) > 0
be the function describing the initial distance of a point (x1, x2) ∈ Γ(t) to the wall Γw.

When contact with Γw occurs on a part ΓC(t) ⊂ Γ(t), suitable contact conditions are (see e.g. [1],[45])

d · nw ≤ g0, σs,nw := nTwσsnw ≤ 0, (d · nw − g0)σs,nw = 0 on Γ(t). (10)

The first inequality in (10) ensures that the solid can not pass though Γw, the second inequality describes
that the normal stress is zero (in the absence of contact) or negative (during contact) and the third condition
is a complementarity condition that guarantees that at least one of the inequalities is “active”.

For arbitrary γC > 0 the first line in (10) is equivalent to (see e.g., [1])

σs,nw(d) = −γC [Pγ(σs,nw(d), d)]+, (11)

where [f ]+ := max{f, 0} and

Pγ(λ, d) := d · nw − g0 −
1

γC
λ. (12)

It remains to specify a contact condition for the tangential stresses. The simplest possibility is to consider
frictionless contact

τTwσsnw = 0 on ΓC(t). (13)

Choosing γC = γ0
Cµsh

−1, the variational formulation reads: Find d(t) ∈ Wh such that ḋ = ∂td and(
∂tḋ, w

)
Ωs(t)

+ (σs(d),∇w)Ωs(t)
+ γC ([Pγ(σs,nw , d)]+, w · nw)Γ(t) = (fs, w)Ωs(t)

∀w ∈ Wh. (14)

We will discuss the tangential contact conditions in the context of fluid-structure interaction with contact
below.

We close this section by mentioning that Chouly, Hild & Renard [22] proposed a more general contact
formulation that makes use of the consistency of the term

(γC [Pγ(σs,nw(d), d)]+ + σs,nw(d), σs,nw(w))Γ(t) .

For θ ∈ [−1, 1], the contact term can be generalised to

γC
(
[Pγ(σs,nw(d), d)]+, w · nw

)
Γ(t)
− θ (γC [Pγ(σs,nw(d), d)]++σs,nw(d), σs,nw(w))Γ(t)

= (1− θ)γC ([Pγ(σs,nw(d), d)]+, w · nw)Γ(t) + θ (γC [Pγ(σs,nw(d), d)]+, Pγ(σs,nw(w), w))Γ(t)

− θ (σs,nw(d), σs,nw(w))Γ(t) .

(15)

For θ = 0, we recover the formulation (14). Besides that, the case θ = 1 is of particular interest, as it
yields a symmetric formulation, for which a stability result has been shown[21].

5



Ωs

Ωf

ΓC Γw

Γfsi

Ωf

Γo

Ωs

Γ

Figure 2: Left : Body in contact with the wall Γw. Right : Virtual obstacle line Γo within the fluid domain
Ωf .

3 Virtual obstacle within the fluid domain

Before considering full fluid-structure interaction with contact, we present our approach for a simplified
model problem, where the movement of the solid is constraint by a virtual obstacle within the fluid domain,
which is invisible to the fluid. This setting allows us to consider the numerical treatment of the interface
conditions without accounting for the issues related to topology changes within the fluid. In Section 4, we
will then show how this numerical setting can be extended to model contact of the solid with an exterior
wall.

The setting of the model problem is shown on the right sketch of Figure 2. The fluid domain contains
a horizontal obstacle line Γo which is invisible to the fluid, but an obstacle to the solid. One may consider
for example a perfectly rigid thin membrane, that is laterally fixed and perfectly permeable for the fluid,
but not for the solid, or a magnetic field below the obstacle that prevents the solid from crossing the line.
We assume for simplicity that the obstacle line is parallel to the fluid boundary and denote its distance by
α > 0. The initial distance of the FSI interface Γ(0) to the obstacle line is then given by

gα(x2) := g0(x2)− α.

We assume that gα ≥ 0.
When considering fluid-structure interactions, the body is pre-loaded before it reaches the obstacle by

means of the balance of normal forces

σsn = σfn on Γ(t). (16)

If the interface Γ(t) reaches the obstacle Γo, the additional constraint d · nw ≤ gα has to be fulfilled. This
gives rise to an additional surface force, that acts in the direction −nw = e2 (normal to Γo)

JσnK−λnw = 0 on Γ(t). (17)

Note that we distinguish between the normal and tangential vectors of the wall nw, τw and the normal and
tangential vector of the FSI interface n, τ . The vectors are equal on ΓC(t), where the body is in contact with
the wall, but different in the absence of contact.

The variable λ defined through (17) can be seen as a Lagrange multiplier, which is zero in absence of
contact with the obstacle line (due to (16)) and can become negative during contact. This is described by
the complementarity conditions

d · nw ≤ gα, λ ≤ 0, (d · nw − gα)λ = 0. (18)

Splitting into normal and tangential contributions, (17) reads

nTwJσnK− λ = 0, τTw JσnK = 0 on Γ(t). (19)

Using the same trick as in Section 2.2, (18) is equivalent to

λ = −γC [Pγ(λ, d)]+ on Γ(t), (20)

with Pγ defined in (12).
Eliminating the Lagrange multiplier by using (19), this reads

λ = −γC [Pγ(Jσn(u, p, d)K, d)]+ on Γ(t), (21)

where we have used the abbreviations

σs,n := nTwσsn, σf,n := nTwσfn, JσnK := nTwJσnK.
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The natural formulation in the discrete setting is to consider the numerical stresses Tf in (8) and in (17). Let
us derive these conditions first for the no-slip case. Adding the additional surface force to the FSI-Nitsche
formulation (5), the discrete variational formulation reads

AFSI, no-slip(u, p, d, ḋ)(v, q, w)− (λnw, w)Γ(t) = (ff , v)Ωf (t) + (fs, w)Ωs(t)
∀v, q, w ∈ Vh ×Qh ×Wh.

(22)

Due to the additional Nitsche interface terms in (17), this formulation includes the interface condition

Jσ̃n(u, p, d)K− λ = 0 on Γ(t), (23)

where the numerical stress jump in the FSI-Nitsche formulation across the interface is given by

Jσ̃n(u, p, d)K := σs,n(d)− Tf (u, p, ḋ) · nw. (24)

Eliminating the Lagrange multiplier by means of (23), the identity (20) reads

λ = −γC [Pγ(Jσ̃n(u, p, d)K, d)]+ on Γ(t). (25)

For the definition of the numerical stresses in the slightly more complicated case of slip-interface conditions,
we refer to Section 4.3. We will in the following analyse both contact formulations (21) and (25) and in
particular their effect on the weakly imposed interface conditions. In order to avoid too much repetition,
we use a general formulation that includes the Lagrange multiplier λ = λ(u, p, d), keeping in mind that
λ(u, p, d) will be either chosen as the jump of normal stresses Jσn(u, p, d)K or the jump of normal discrete
stresses Jσ̃n(u, p, d)K.

Using (20), the variational formulation reads:

Variational Formulation 1. Find u(t) ∈ Vh, p(t) ∈ Qh, d(t) ∈ Wh such that ḋ = ∂td and

Afsi,∗(u, p, d, ḋ)(v, q, w) + γC ([Pγ(λ, d)]+, w · nw)Γ(t)

= (ff , v)Ωf (t) + (fs, w)Ωs(t)
∀v, q, w ∈ Vh ×Qh ×Wh,

(26)

where the bilinear form is one of the forms Afsi, no-slip or Afsi, slip defined in (6) and (9), respectively, and
the contact parameter is chosen γC = γ0

Cµsh
−1, as in [19].

3.0.1 Weakly imposed interface conditions

Let us now analyse which interface conditions on Γ(t) are implicitly included in Variational Formulation 1.
For simplicity, we analyse the formulation with the bilinear form Afsi, no-slip corresponding to no-slip condi-
tions. Therefore, we integrate by parts in (26) and consider only the interface terms by formally neglecting
the bulk and inter-element terms. For better readability, we drop all the dependencies of σf and σs. Col-
lecting all terms with the fluid test function v, we obtain

−σfn+ σfn− γfsi(ḋ− u) = −γfsi(ḋ− u) = 0 on Γ(t), (27)

i.e. the kinematic condition ḋ = u. Next, we collect the interface terms for the solid part w and split into
a normal part (w · nw) and a tangential part (w · τw). We recall that since the boundary Γw is flat, the
extension to Γ(t) of its tangential and normal vectors are trivial. For the tangential part, we obtain as usual
for Nitsche-based FSI

τTwσsn− τTwσfn+ γfsi(ḋ− u) · τw = 0 on Γ(t). (28)

For the normal part, we have

σs,n − σf,n + γfsi(ḋ− u) · nw + γC [Pγ(d, λ)]+ = 0 on Γ(t).

Let us first consider the case that the contact force is not active. We obtain, as in the standard FSI-Nitsche
formulation

JσnK + γfsi(ḋ− u) · nw = 0.

7



If the contact force is active, we get

0 = JσnK + γfsi(ḋ− u) · nw + γC(d · nw − gα)− λ =

{
γC(d · nw − gα) + γfsi(ḋ− u) · nw, λ = JσnK
γC(d · nw − gα), λ = Jσ̃nK

(29)

In the first case, this is a combination of the ”active“ contact condition d · nw = g and the continuity of
velocities. As the continuity of velocities is imposed from the fluid side (27), this is not an issue for the
model problem considered here. It will however lead to problems, when we consider contact of the solid with
the lower wall Γw in Section 4. There, the second formulation, based on the discrete stresses (23) will be
needed. As can be seen in (29), the pure contact condition d · nw = g is valid from the solid side during
contact.

4 Fluid-structure interaction with contact

In this section, we consider contact of the solid body with the lower fluid boundary Γw. The formulation
of a macroscopically relevant computational formulation without introducing the full physical model of all
the interacting scales and elements, which is too costly in many applications, is an open problem to our
knowledge and rarely discussed in literature.

When the solid enters into contact with a rigid wall, the action of the wall on the solid is expressed as a
constraint, giving rise to a variational inequality. In principle there is no longer a fluid between the contacting
solids (“dry contact”). However, the presence of the fluid can not be discarded in this zone, since otherwise
contact could be released in the interior of the contact zone through deformation of the elastic solid, thus
creating a void, without neither fluid nor solid. A solution to this problem is to design a model where a fluid
pressure remains in the contact zone, either on the boundary or in the bulk domain and prevents unphysical
lift off creating vacuum. Our objective in the present work is to consider finite element formulations for
contact between an elastic solid and a rigid wall assuming the existence of such a pressure model.

For the purpose of discussion, and without claiming that these models are optimal, we consider two
simple models of seepage that introduce a fluid pressure in the contact zone. The first is a rather widespread
approach which consists in relaxing the contact condition by introducing a small gap (see e.g. [4, 49]), so
that the contact in the computational model takes place at an ε-distance from the wall (Section 4.1). Thus
allowing for a thin fluid layer to remain. Here ε can be made to go to zero with reduced mesh-size. The
second model consists in allowing the bulk fluid to penetrate into the solid wall in the form of a Navier-Stokes
porous medium model where the permeability is driven to zero with reduced mesh-size (Section 4.2).

Our main objective is then to design a computational method that allows for contact in a consistent
fashion, exploiting the presence of the modelled fluid contact pressure to get a smooth transition from
contact to no contact without the appearance of non-physical inclusions or oscillations (“chattering”). To
this end we study a nonlinear Nitsche-type coupling combining in a unfied way the FSI coupling and the
contact conditions.

4.1 Relaxed contact formulation

The idea of the relaxed formulation is to impose contact using a virtual barrier Γε for the solid at a very
small distance ε to Γw. This may be used for instance when the numerical discretisation of all the scales of
the macroscopic model is unfeasible. We consider two examples.

If the solid has some fine scale structure on an unresolved scale ε, for example due to surface roughness,
it is reasonable to consider that contact already takes place when the distance between the two structures
is O(ε). Since by the modelling assumption the elastic solid can not penetrate into the rigid solid, the total
forces from the fluid captured in the ε-layer and of the rigid solid must be sufficient to prevent penetration.
This gives rise to equation (23), where λ represents the additional force coming from the rigid solid below
Γε that is necessary to prevent penetration.

On the other hand, as noted in the introduction, the continuous formulation does not allow for contact,
when no-slip conditions are used on at least one of the interface and/or the boundary, due to the Navier-
Stokes contact paradox. To reproduce this phenomenon in numerical simulations, an extremely high mesh
resolution in the remaining small fluid layer between solid and rigid wall is typically required, in order to
approximate the fluid tensor σf , which might become singular for h → 0. In many situations, this might
exceed the computational limits and moreover, it is a priori not clear how fine the mesh needs to be. In
principle the condition σs,n = σf,n is valid in the continuous formulation in this situation. As the singular
behaviour of σf,n might however not be accurately captured on coarser grids, it makes sense to re-inforce
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Figure 3: Illustration of the two approaches to include contact. Left : Relaxed contact formulation: Body in
contact with an obstacle line Γε close to Γw. Right : Introduction of an artificial fluid domain ΩCf below Γw.

the fluid force by the contact force [Pγ ]+, if the line Γε is passed, which indicates a failure of the force σf,n
to prevent contact.

In both these situations our idea to impose a virtual barrier Γε for the solid at a very small distance ε
to Γw permits numerical simulations already on reasonably coarse grids. In the numerical examples we will
place the obstacle line at a distance α = ε(h) to Γw, see Figure 3 on the left. We assume that ε(h)→ 0, as
the mesh size h tends to zero. The variational formulation is given by (26), where α = ε(h), i.e.

gα(x2) = gε(h)(x2) = g0(x2)− ε(h).

Besides its simplicity, the main advantages of this contact formulation are:

• The numerical difficulties related to a topology change of the fluid domain are simplified.

• No-slip conditions can be used on both Γ(t) and the lower wall Γw.

4.2 Contact formulation using an artificial fluid

As a second possibility, we add an artificial fluid domain ΩCf below Γw, see the right sketch of Figure 3,

and allow for a small, asymptotically for h → 0 vanishing penetration into ΩCf . For the extension, we use
a Stokes equation in combination with a penalty for the velocity u that drives the penetration to zero with
h→ 0. This can be seen as a porous medium model with asymptotically vanishing permeability.

The variational formulation reads:

Variational Formulation 2. Find u ∈ Vh, p ∈ Qh, d ∈ Wh such that ḋ = ∂td and

ACFSI,∗(u, p, d, ḋ)(v, q, w) + γC ([Pγ(λ, d)]+, w · nw)Γ(t)

= (ff , v)Ωf (t) + (fs, w)Ωs(t)
∀v, q, w ∈ Vh ×Qh ×Wh,

(30)

where in the no-slip case

ACfsi,no-slip(u, p, d, ḋ)(v, q, w) :=
(
∂tu, v

)
Ωf (t)∪ΩCf

+ aCf (u, p; v, q) + γa(u, v)ΩCf
+
(
∂tḋ, w

)
Ωs(t)

+ (σs(d),∇w)Ωs(t)
−
(
Tf (u, p, ḋ), w − v

)
Γ(t)
−
(
ḋ− u, σf (v,−q)n

)
Γ(t)

(31)

and for slip interface conditions

ACfsi,slip(u, p, d, ḋ)(v, q, w) :=
(
∂tu, v

)
Ωf (t)∪ΩCf

+ aCf (u, p; v, q) + γa(u, v)ΩCf
+
(
∂tḋ, w

)
Ωs(t)

+ (σs(d),∇w)Ωs(t)

−
(
Tf (u, p, ḋ) · n, (w − v) · n

)
Γ(t)
−
(

(ḋ− u) · n, nTσf (v,−q)n
)

Γ(t)
.

(32)

Note the presence of the penalty term γa(u, v)ΩCf
within the artificial fluid, where γa := γ0

ah
β for β > 0. The

fluid bilinear form is defined in Ωf (t) ∪ ΩCf

aCf (u, p; v, q) := (σf (u, p),∇v)Ωf (t)∪ΩCf
+ (div u, q)Ωf (t)∪ΩCf

+ S(p, q).
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Remark 1 (Porous medium analogy). The penalisation used in Variational Formulation 2 corresponds to
the so-called penalty approach that is sometimes used for the coupling of free flow and flow through porous
medium [25, 48]. There, the Stokes equations in the fluid part Ωf and the Darcy equations in the porous
medium Ωp (which corresponds to ΩCf ) are formulated simultaneously in the whole domain Ω = Ωf ∪ Ωp in
the spirit of the volume penalty approach

∂tu− µ∆u+∇p+
µ

K
uχΩp = 0, ∇ · u = 0 in Ω,

where K denotes the permeability of the porous medium and χΩp is the characteristic function of the domain
Ωp. In this sense the artificial fluid in our approach can be seen as a porous medium with asymptotically
vanishing permeability K = O(hβ). A mathematical justification of this penalisation has been given by
Angot [3]. Below we will choose the parameter β = 2, which is optimal in terms of the conditioning of
the system. Following the argumentation of Angot a larger choice of β is also reasonable, with an optimal
convergence rate reached for β = 4.

4.2.1 Discussion of the weakly imposed interface conditions: The no-slip case

We have already derived the weakly imposed interface conditions for the no-slip case in Section 3.0.1. Here,
however, we have to consider that the fluid below the contact line is artificial, and we should in particular
make sure that there is no feedback from the artificial fluid to the solid. In other words, we want that the
artificial fluid acts as a slave to the solid during contact. Owing to (29), this naturally motivates the choice
of λ in terms of the numerical stresses.

First, we note that the continuity of velocities (27) is imposed from the fluid side, such that no feedback
to the solid is included from this equation. Considering the contact condition for the normal contact (29),
we obtain

γC(d · nw − g0) + γfsi(ḋ− u) · nw = 0 (33)

when choosing λ = JσnK. Instead of the condition d · nw = g0, this induces an influence from the artificial
velocity u from ΩCf onto the solid displacement. Moreover, if u is driven to zero in ΩCf , ḋ · nw goes to zero
as well, which might prevent the body from releasing from contact. On the other hand, using the jump of
fluxes λ = Jσ̃nK, we obtain the ”pure“ contact condition

d · nw = g0 (34)

as desired.
The weakly imposed tangential contact condition (28) reads

τTwσsn+ γfsiḋ · τw = 0, (35)

when considering that the fluid velocity u is driven to zero asymptotically. As γfsi →∞ for h→ 0, this means
(asymptotically) that the solid is not allowed to slide along the line Γw. While this might seem restrictive at
first sight, this condition is in fact in some sense inherited from the no-slip condition at Γ(t) before contact.
This is due to the continuity of velocities on Γfsi(t) and the fact that the velocity is driven to zero in ΩCf (and
hence on Γw). Moreover, the no-slip condition on the fluid part of Γw implies that the solid can not slide
on the end points xC,1 and xC,2 of the contact interval (see Figure 3, right sketch). Altogether, this shows
in agreement with a number of theoretical works (e.g. Gerard-Varet et al [36]) that the no-slip interface
conditions are not an appropriate model for the case that it comes to contact with an exterior wall.

Remark 2 (Relation of the two contact formulations). The relaxed contact formulation derived in Section 4.1
can also be seen as an extension of the fluid forces σf to a region below the contact line (here Γε), namely
by using the Stokes equations in the extended domain. We will see in the numerical examples below that the
two approaches yield similar results. In this way the use of the relaxed contact formulation might be justified
also in cases, where real contact with the wall is expected. Moreover, it would be enough to use the extension
in the artificial fluid approach only in a small layer of size O(ε).

Remark 3 (Lagrange multiplier formulation). A further possibility would be to keep the Lagrange multiplier
λ in the variational formulation (22)-(23) and to discretise additionally the Lagrange multiplier space, as
in [51, 37] for the pure FSI case. Due to the difficulties concerning the discrete inf-sup stability and the
additional computational effort, we will, however, not consider this alternative in the remainder of this work.
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4.3 Slip conditions

Motivated by the above considerations, we study slip conditions in this section. The arguments that follow
can be applied to the formulations proposed in Sections 3 and 4.

Observe that in the continuous case the discussion of (16)-(17) remains valid in the case of contact with
slip conditions (noting that the tangential stresses vanish on both sides of the fluid-solid interfaces). However,
at the discrete level, care has to be taken to use only the normal component of the numerical stress. Indeed,
in this case the relation (17) becomes

(nT JσnK)n− λnw = 0 on Γ(t), (36)

which yields λ = (nT JσnK)(n · nw) =: Jσn,slipK.
At the discrete level, using the numerical stress this expression translates to

λ = (nT Jσ̃nK)(n · nw) =: Jσ̃n,slipK, (37)

where the jump operator is given by (24). The resulting discrete formulations are given by Variational
Formulation 1 or Variational Formulation 2, respectively, with the respective choice of λ.

4.3.1 Weakly imposed interface conditions: The slip case

Let us consider again which interface conditions are implicitly included in the variational formulation,when
using the numerical stresses (37) for λ. Considering the interface terms with fluid test function v yields as
usual the interface conditions τTσfn = 0 and (ḋ−u) ·n = 0. Let us therefore concentrate on the terms with
the solid test function w

(σsn,w)Γ(t) − (Tf · n,w · n)Γ(t) + γC([P̃γ ]+, w · nw)Γ(t) = 0.

In the case without contact, the last term vanishes and hence we retrieve the standard consistency of Nitsche’s
method for fluid-structure interaction with slip conditions. On the other hand, by developing the solid test
function w in the local basis of Γ(t) we have

(τTσsn,w · τ)Γ(t) + ((nT Jσ̃nK), w · n)Γ(t) + γC([Pγ(d, λ)]+, w · nw)Γ(t) = 0.

Now, we use the identity n = (n · nw)nw + (n · τw)τw to get(
τTσsn,w · τ

)
Γ(t)

+
(
(nT Jσ̃nK), (w · τw)(n · τw)

)
Γ(t)

+
(
(nT Jσ̃nK), (w · nw)(n · nw)

)
Γ(t)

+ γC([Pγ(d, λ)]+, w · nw)Γ(t) = 0.

Hence, in the case of contact by using the definition of Pγ

(τTσsn,w · τ)Γ(t) + ((nT Jσ̃nK), (w · τw)(n · τw))Γ(t) + γC(d · nw − g0, w · nw)Γ(t) = 0. (38)

When it comes to contact, we have in the asymptotic limit τw = τ and n · τw = 0, so that (38) reduces to
the “no-friction” condition τTσsn = 0 and the non-penetration condition d · nw = g0. This is the desired
contact condition, as in the no-slip case, see (34).

We observe that in (38) both the tangential and the normal components (with respect to τw and nw)
have asymptotically vanishing perturbations. It is possible to eliminate the perturbation in the normal
component, from the solid stress term (τTσsn,w · τ)Γ(t), by adding the corresponding term to the definition
of λ, i.e.

λ = Jσ̃n,slipK + (τTσsn)(τ · nw). (39)

In this case the relation (38) takes the form

(τTσsn,w · τw(τ · τw))Γ(t) + ((nT Jσ̃nK), (w · τw)(n · τw))Γ(t) + γC(d · nw − g0, w · nw)Γ(t) = 0.

Testing with w = nw we see that here the non-penetration condition d · nw = g0 is imposed unperturbed for
all h > 0. By moving the perturbation to λ as in (39) it is instead the form Pγ that is perturbed, which
implies a (weakly consistent) perturbation of the contact zone.
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5 Stability

In this work, we will use fitted finite elements, i.e. we assume that both the interface Γ(t) and the wall Γw are
resolved by mesh lines. The approaches presented, however, can be combined with unfitted finite elements
as well, with the only difference that some more stabilisation terms have to be added to the variational
formulation. In order to simplify the presentation, we will concentrate on the fitted case first and discuss
the extension to unfitted finite elements in a remark afterwards.

We will use equal-order finite elements in combination with a pressure stabilisation term Sp(p, q) for the
fluid equations. For the stability analysis, the only requirement on Sp is that it leads to a well-posed discrete
fluid problem. Possibilities include the Brezzi-Pitkäranta stabilisation [10], local projections (LPS) [5],
the pressure-stabilised Petrov-Galerkin approach (PSPG) [46] or the Continuous Interior Penalty method
(CIP) [14]).

In order to present the stability analysis in a general setting, we introduce some further notation splitting
the contact force variable λ into a fluid part λf and a solid part λs, such that λ = λs − λf . For the no-slip
case, we define λs(w) = σs,n(w) and

λf (v, q, w) =

{
σf,n(v, q), if λ = JσnK,
Tf (v, q, w) · n, if λ = Jσ̃nK,

(40)

see (19) and (23). For the slip case, we define λs(w) = σs,n(w)(n · nw) and

λf (v, q, w) =

{
σf,n(v, q)(n · nw), if λ = Jσn,slipK,
(Tf (v, q, w) · n)(n · nw), if λ = Jσ̃n,slipK,

(41)

see (36) and (37).

5.1 Generalised contact formulation

Before we conduct the stability analysis, let us introduce a generalised contact formulation, following the
ideas of Chouly et al. [22]. We have already briefly discussed their ideas for the case of a pure solid with
contact in (15). The generalisation of (15) to the FSI-contact system (Variational Formulation 2) would be
to add the terms

− (γC [Pγ(λ, d)]+ + λ, λ(∂tv, ∂tq, w))Γ(t) . (42)

The time derivatives on the test functions v and q are motivated by the stability analysis below, where we
have to test the variational form with v = u, q = p and w = ∂td, in order to show stability (see also Burman
& Fernández [13]).

On the other hand, the term (42) is not usable within a time-stepping scheme due to the time derivatives
on the test functions. A remedy is to shift the time derivatives to the first integrand (ignoring the boundary
terms), i.e. adding the consistent terms

− (γC [Pγ(λ, d)]+ + λ, λs(w))Γ(t)− (∂t (γC [Pγ(λ, d)]+ + λ) , λf (v, q, w))Γ(t) .

This yields the variational formulation:

Variational Formulation 3. Find u(t) ∈ Vh, p(t) ∈ Qh, d(t) ∈ Wh, such that ḋ = ∂td and

A(u, p, d)(v, q, w) := A∗∗,FSI(u, p, d)(v, q, w) + γC ([Pγ(λ, d)]+, w · nw)Γ(t)−θ (γC [Pγ(λ, d)]+ + λ, λs(w))Γ(t)

−θ (∂t (γC [Pγ(λ, d)]+ + λ) , λf (v, q, w))Γ(t)

= (ff , v)Ωf (t) + (fs, w)Ωs(t)
∀v, q, w ∈ Vh ×Qh ×Wh,

(43)

where A∗∗,FSI is one of the bilinear forms Ano-slip,FSI,Aslip,FSI,ACno-slip,FSI or ACslip,FSI.

5.2 A stability result

In this section, we will investigate stability of the discrete formulation for different values of θ. In particular,
we will show a stability result for the symmetric formulation (θ = 1) and stability up to a specific term in the
general case (including θ = 0). These results correspond to the results that have been obtained by Chouly
et al. [22] for the pure solid case. For the stability analysis, we will assume infinitesimal displacements, i.e.

the sub-domains Ωf and Ωs as well as the interface Γ are fixed. We introduce the notation Ω̃f = Ωf ∪ ΩCf
for the combined fluid and artificial fluid domain and set ΩCf = ∅ for the relaxed approach.
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Theorem 1. Let u, p, d ∈ Vh and ḋ = ∂td. We have the following stability result for the form A defined in
(43), where θ ∈ [−1, 1] and γ0

C sufficiently large

‖u(T )‖2
Ω̃f

+ ‖ḋ(T )‖2Ωs + ‖d(T )‖2H1(Ωs)
+

∫ T

0

(
νf‖∇u‖2Ω̃f + Sp(p, p) + γa‖u‖2ΩCf

)
dt

+

∫ T

0

γfsi‖(ḋ− u) · n‖2Γ dt+ θ
∥∥∥γ−1/2

C λ(T ) + γ
1/2
C [Pγ(λ, d)]+(T )

∥∥∥2

Γ

≤ C
(∫ T

0

A(u, p, d;u, p, ḋ) − (1− θ)γC
(

[Pγ(λ, d)]+, ḋ · nw
)

Γ
dt+ ‖u0‖2Ω̃f

+ ‖ḋ0‖2Ωs + ‖d0‖2H1(Ωs)
+ θ

∥∥∥γ−1/2
C λ0 + γ

1/2
C [Pγ(λ0, d0)]+

∥∥∥2

Γ

)
,

where we have used the abbreviation λ0 := λ(u0, p0, d0). For the no-slip case, the term ‖(ḋ− u) · n‖Γ can be
replaced by ‖(ḋ− u)‖Γ.

Remark 4 (Contact terms). The second line gives us control over the satisfaction of the FSI-contact condi-
tion for θ > 0. In contrast to the work by Chouly et al.[22] for a pure solid problem, we obtain here discrete
stability for θ = 1, for the following positive discrete energy

E(T ) := ‖u(T )‖2
Ω̃f

+ ‖ḋ(T )‖2Ωs + ‖d(T )‖2H1(Ωs)
+
∥∥∥γ−1/2

C λ(T ) + γ
1/2
C [Pγ(λ, d)]+(T )

∥∥∥2

Γ
.

For θ 6= 1 on the other hand, the contact term (1 − θ)γC
(

[Pγ(λ, d)]+, ḋ · nw
)

Γ
appears on the right-hand

side. For θ < 0 we have additionally a negative contribution on the left-hand side. Both issues are directly
inherited from the pure solid mechanical case, see [21]. The last term on the right-hand side vanishes, if we
assume that the contact conditions are fulfilled at initial time, for example if the solid is not in contact with
at t = 0.

Proof. We test (43) with w = ḋ = ∂td, v = u and q = p and integrate in time. We start by deriving a
lower bound for A∗∗,FSI. For the fluid part, we use the techniques from Burman & Fernandez [13], to show
coercivity of the Stokes part including the coupling terms. For the no-slip case, the authors have shown that

aCf (u, p;u, p) + γa(u, u)ΩCf
− (σf (u, p)n, ḋ− u)Γ − (ḋ− u, σf (u,−p)n)Γ + γfsi‖ḋ− u‖2Γ

≥ c
(
νf‖∇u‖2Ω̃f + γfsi‖ḋ− u‖2Γ + Sp(p, p) + γa‖u‖2ΩCf

)
.

Analogously, one can show in the slip-case that

aCf (u, p;u, p) + γa(u, u)ΩCf
− (nTσf (u, p)n, (ḋ− u) · n)Γ − ((ḋ− u) · n, nTσf (u,−p)n)Γ + γfsi‖(ḋ− u) · n‖2Γ

≥ c
(
νf‖∇u‖2Ω̃f + γfsi‖(ḋ− u) · n‖2Γ + Sp(p, p) + γa‖u‖2ΩCf

)
.

Using the symmetry of σs, integration in time and a Korn’s inequality, we obtain for the solid part∫ T

0

(σs(d),∇ḋ)Ωs dt =
1

2

∫ T

0

∂t(σs(d),∇d)Ωs dt =
1

2
((σs(d(T )),∇d(T ))Ωs − (σs(d(0)),∇d(0))Ωs)

≥ c1‖∇d(T )‖2Ωs − c2‖∇d0‖2Ωs .

Moreover, we have∫ T

0

(∂tu, u)Ω̃f
+ (∂tḋ, ḋ)Ωs dt =

1

2

(
‖u(T )‖2

Ω̃f
+ ‖ḋ(T )‖2Ωs − ‖u0‖2Ω̃f − ‖ḋ0‖2Ωs

)
.

Together, we have shown that

‖u(T )‖2
Ω̃f

+ ‖ḋ(T )‖2Ωs + ‖d(T )‖2H1(Ωs)
+

∫ T

0

νf‖∇u‖2Ω̃f + Sp(p, p) + γa‖u‖2ΩCf + γfsi‖ḋ− u‖2Γ dt

≤ C
(∫ T

0

A∗∗,FSI(u, p, d;u, p, ḋ) dt+ ‖u0‖2Ω̃f + ‖ḋ0‖2Ωs + ‖d0‖2H1(Ωs)

)
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Let us now estimate the contact terms. We split the principal contact term into∫ T

0

γC

(
[Pγ(λ, d)]+, ḋ · nw

)
Γ
dt =

∫ T

0

θγC

(
[Pγ(λ, d)]+, ḋ · nw

)
Γ

+ (1− θ)γC
(

[Pγ(λ, d)]+, ḋ · nw
)

Γ
dt.

We have to estimate the terms

θ

∫ T

0

γC

(
[Pγ(λ, d)]+, ḋ · nw

)
Γ︸ ︷︷ ︸

I1

−
(
γC [Pγ(λ, d)]+ + λ, λs(ḋ)

)
Γ︸ ︷︷ ︸

I2

−
(
∂t (γC [Pγ(λ, d)]+ + λ) , λf (u, p, ḋ)

)
Γ︸ ︷︷ ︸

I3

dt

(44)

From the definition of Pγ we can write d · nw = Pγ(λ, d) + γ−1
C λ. Hence, since the lower wall is assumed to

be time independent, we have∫ T

0

I1 dt =γC

∫ T

0

(
[Pγ(λ, d)]+, ∂t(Pγ(λ, d) + γ−1

C λ)
)

Γ
dt

=γC

∫ T

0

(
[Pγ(λ, d)]+, ∂t([Pγ(λ, d)]+ + γ−1

C λ)
)

Γ
dt.

In the second line, we have used that [22]

1

2
∂t[φ]2+ = [φ]+∂t[φ]+ = [φ]+H(φ)∂t[φ]+ = [φ]+∂tφ

where H is the Heaviside function. We insert ±γ−1
C λ and integrate by parts∫ T

0

I1 dt = γC

∫ T

0

(
[Pγ(λ, d)]+ + γ−1

C λ, ∂t([Pγ(λ, d)]+ + γ−1
C λ)

)
Γ
dt

−
∫ T

0

(
λ, ∂t([Pγ(λ, d)]+ + γ−1

C λ)
)

Γ︸ ︷︷ ︸
I4

dt

=
γC
2
‖[Pγ(λ, d)(T )]+ + γ−1

C λ(T )‖20,Γ︸ ︷︷ ︸
DT

− γC
2
‖[Pγ(λ0, d0)]+ + γ−1

C λ0‖20,Γ︸ ︷︷ ︸
D0

−
∫ T

0

I4 dt.

Now the idea is to split the contribution from the term I4 into fluid and solid stresses and to apply integrating
by parts in time (only) in the solid stress contribution. By definition, we have

−
∫ T

0

I4 dt =−
∫ T

0

(
λs(d), ∂t([Pγ(λ, d)]+ + γ−1

C λ)
)

Γ
+
(
λf (u, p, ḋ), ∂t([Pγ(λ, d)]+ + γ−1

C λ)
)

Γ
dt

and, by integrating by parts in the first term of the right-hand side, we have

−
∫ T

0

I4 dt =

∫ T

0

(
λs(ḋ), [Pγ(λ, d)]+ + γ−1

C λ
)

Γ︸ ︷︷ ︸
I5

dt−
(
λs(d(T )), [Pγ(λ, d)(T )]+ + γ−1

C λ(T )
)

Γ︸ ︷︷ ︸
I6

+
(
λs(d0), [Pγ(λ0, d0)]+ + γ−1

C λ0

)
Γ︸ ︷︷ ︸

I7

+

∫ T

0

(
λf (u, p, ḋ), ∂t([Pγ(λ, d)]+ + γ−1

C λ)
)

Γ︸ ︷︷ ︸
I8

dt

The terms I5 and I8 cancel with the terms I2 and I3 in (44). The term I6 is treated in a standard fashion
using Young’s inequality, an inverse inequality and the dissipation provided by DT and the elastic energy
1
2a

s(d(T ), d(T )) for γ0
C sufficiently large. For θ > 0, we estimate

I6 ≥ −γ−1
C ‖λs(d(T ))‖20,Γ −

γC
4
‖[Pγ(λ(T ), d(T ))]+ + γ−1

C λ(T )‖20,Γ

≥ −1

4
‖d(T )‖2H1(Ωs)

− 1

2
DT .
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In the same way, we get the upper bound

I6 ≤
1

4
‖d(T )‖2H1(Ωs)

+
1

2
DT ,

which is needed in the case θ < 0. For I7 we obtain analogously

−1

4
‖d0‖2H1(Ωs)

− 1

2
D0 ≤ I7 ≤

1

4
‖d0‖2H1(Ωs)

+
1

2
D0,

which completes the proof.

Remark 5 (Unfitted finite elements). When using unfitted finite elements [15, 13], additional stabilisation
terms Su and Sd are needed, if the interface Γ(t) is not resolved by mesh lines. Their purpose is to extend

the coercivity of the fluid system from Ωf (resp. Ωs) to the extended domains Ωfh (resp. Ωsh) that consists
of all element T ∈ Th, with a non-empty intersection with the respective sub-domain (T ∩ Ωi 6= ∅). Suitable
“ghost penalty” operators have been defined in Burman [12]. The same stability result as in Theorem 1 can
then be shown with an analogous argumentation.

Remark 6 (Newton convergence). While the symmetric formulation (θ = 1) seems beneficial from the
theoretical point of view, the additional terms in (43) can cause severe difficulties for the non-linear solver.
The reason is that the additional contact terms are not only highly non-linear, but also non-smooth, especially
due to the time derivative acting on the maximum operator ∂t[·]+. In our numerical tests, we were not able
to obtain numerical convergence for different versions of generalised Newton methods [52]. The investigation
of the case θ 6= 1 by means of numerical tests and in particular the construction of a robust non-linear solver
are subject to future research.

6 Numerical Results

In this section, we show some numerical results to analyse and to compare the different contact formulations.
As mentioned in Remark 6, we were not able to obtain results for the generalised contact formulation with
θ 6= 0, due to divergence of the generalised Newton-type methods we have tried. Therefore, we only show
results for θ = 0, where Newton convergence was not an issue, at least when the time step δt was chosen
reasonably small. Following the standard approach for contact in solid mechanics, we could in this case
simply ignore the non-differentiability of the maximum operator when computing the Newton derivatives,
as the term Pγ inside the bracket [·]+ is in practice typically never exactly zero. For all other values of Pγ
the derivatives are well-defined. In the computations made for this paper, the Newton algorithm needed
1-2 iterations per time step to reduce the initial residual by a factor of 10−7, if the contact force was not
getting active during the iteration, and 1-5 iterations per time step in and around the interval of contact.
This makes the method highly competitive in terms of computational costs compared to approaches using
Lagrange multipliers and/or active-sets.

We first give some details in Section 6.1 on the fitted, equal-order finite element discretisation and the
stabilisations we use. Then, in Section 6.2, we study the problem of a virtual obstacle within the fluid
domain introduced in Section 3. The purpose of this example is to isolate the effect of the contact terms
from issues related to discretisation during contact and the topology change in the fluid domain Ωf (t). Then,
we study in Section 6.3 a model problem with contact with the boundary of the fluid domain, where we
compare among other aspects the two contact formulations introduced in Section 4, the different possibilities
to choose the fluxes λ and the effect of slip and no-slip boundary and interface conditions.

6.1 Details on discretisation and stabilisation

For the numerical results in this paper, we will use a monolithic Fully Eulerian approach on a global mesh
Th covering Ω(t). In order to resolve the interface Γ(t) within the discretisation, we use the locally modified
finite element method introduced by Frei & Richter [32]. The idea of this approach is to use a fixed coarse

triangulation T2h of the overall domain Ω = Ω̃f (t) ∪ Γ(t) ∪ Ωs(t) that is independent of the position of
the interface Γ(t). Then, in each time step, this coarse grid is refined once by splitting each so-called
“patch” element in either eight triangles or four quadrilaterals to resolve the interface in at least a linear
approximation, see Figure 4 for an illustration.

The finite element space Vh is then defined as a combination of piece-wise linear and piece-wise bi-linear
finite elements on the patches. It can be guaranteed that a maximum angle condition is fulfilled in each of
the sub-cells, leading to optimal-order interpolation and error estimates [32].
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ΓhΓΩf

Ωs

Figure 4: Left: Fixed triangulation T2h of the domain Ω. Right: Subdivision of the patches P ∈ T2h such
that the interface Γ(t) is resolved in a linear approximation by the discrete interface Γh.

For temporal discretisation, we split the time interval I into m equidistant-distant time intervals Ij =
(tj−1, tj−1 + k] and use a time-stepping scheme that is based on a modified discontinuous Galerkin time

discretisation of lowest order (dG(0)), see Frei & Richter [34]. The displacement-velocity relation ∂td = ḋ is
included by means of the L2-projection

(∂td, z)Ωs(t) − (ḋ, z)Ωs(t) = 0 ∀z ∈ V sh ,

where V sh denotes the (modified) finite element space that is spanned by the degrees of freedom of the
elements in the solid part Ωsh.

The domain affiliation of a point x ∈ Ω(t) is determined by means of the Initial Point Set/Backward
Characteristics method [29, 26], that uses the displacement d(t) in the solid domain and an extension to
Ωf (t) in order to trace back points to their initial position in Ω(0), following the definition (2).

For pressure stabilisation, we use an anisotropic variant of the Continuous Interior Penalty method, see
Frei [31, 30]. In addition, we add the temporal pressure stabilisation term

Spt(p, q) = γpth(pm − pm−1, q)Γ(t)

in each time interval Im. This additional stabilisation is needed, as the mesh Th(tm), and hence the finite
element spaces, change from time-step to time-step. The solution um−1 from the previous time-step tm−1

is therefore not discrete divergence-free with respect to the new mesh Th(tm), which gives rise to pressure
oscillations, see for example Besier & Wollner [7].

All the following results have been obtained using the finite element library Gascoigne 3d [6].

6.2 Virtual obstacle within the fluid domain

We begin by investigating the simplified problem introduced in Section 3. The initial fluid and solid domains
are defined as

Ωf (0) = (0, 1)× (0, 0.5), Ωs(0) = (0, 1)× (0.5, 0.6)

and a lower-dimensional obstacle Γw = (0, 1)×0.25 within the fluid domain. We consider a moving interface
Γ(t), which is resolved using the locally modified finite element method. The sub-domains Ωs(t) and Ωf (t)
and the interface Γ(t) depend on the solid displacement d(t), see (2).

The constraint for the solid displacement is given by

d · nw ≤ 0.25 (=: gα). (45)

We use the elasticity parameters λs = µs = 2 · 106 and the fluid viscosity νf = 1. The structure is pulled
towards the bottom by fluid forces due to a prescribed pressure mean value at the left and right boundary
of the fluid domain ∫

Γf,left

p ds =

∫
Γf,left

P ds,

∫
Γf,right

p ds =

∫
Γf,right

P ds

16



γ0
C = 103

γ0
C = 102

γ0
C = 101

dmin

0.0070.0060.0050.0040.0030.0020.0010

0.25

0.2

0.15

0.1

0.05

0

γ0
C = 103

γ0
C = 102

γ0
C = 101

dmin (zoom)

0.00240.00220.0020.00180.00160.0014

0.002

0.0015

0.001

0.0005

0

−0.0005

γ0
C = 103

γ0
C = 102

γ0
C = 101

Jp

0.0070.0060.0050.0040.0030.0020.0010

400000

300000

200000

100000

0

γ0
C = 103

γ0
C = 102

γ0
C = 101

JPγ
(zoom)

0.00240.00220.0020.00180.00160.0014

300000

200000

100000

0

Figure 5: Top row : ’Minimal distance’ dmin to Γw over time with two contact periods. Left : Total time
interval. Right : Zoom-in at the first contact interval. Bottom left : Pressure functional Jp over time. Bottom
right : Functional JPγ measuring the contact force around the contact interval over time.

where P := 1.3 · 105. We consider the Variational Formulation 1 with no-slip conditions and λ = Jσ̃nK, see
(23), on a Cartesian mesh that consists of 5120 elements and with a small time step δt = 10−5. The Nitsche
constant at the FSI interface is chosen γ0

fsi = 103 and temporal pressure stabilisation with γpt = 10−2 is
used.

To analyse the results, we define the “minimal distance”

dmin := min
x∈Γ(t)

x2 − 0.25

of the interface Γ(t) to Γw. To be precise the term “minimal distance” is only correct before contact, as
dmin gets negative in case of an overlap. Moreover, we define the following functionals in order to analyse
the pressure p and the contact force at the interface Γ(t)

Jp :=
∣∣ ∫

Γ(t)

p ds
∣∣, JPγ := γC

∫
Γ(t)

[Pγ(λ, d)]+ ds.

In Figure 5, we plot these three functionals over time for two contact periods and the contact parameters
γ0
C = 10, 102, 103. In the top left plot, we observe that the solid is pulled down until it reaches Γw at
t ≈ 1.5 · 10−3. After a short contact period, it is released again due to its elastic properties before it reaches
the obstacle for a second time at t ≈ 5 · 10−3.

The contact condition d · nw ≤ 0.25 is only significantly violated for the smallest contact parameter,
where dmin reaches a minimum value of around −8 · 10−4, see the zoom-in around the contact interval on
the top left. This value is more than an order of magnitude smaller than the mesh size in vertical direction
h ≈ 1.4 · 10−2. For the larger values of γ0

C , the minimal value of dmin is even much closer to zero. On the
other hand, we observe that even for the largest value γ0

C = 103, the contact condition is slightly relaxed,
allowing for very small overlaps of solid and contact line.

In the second row of Figure 5, we observe that the pressure shows a peak at the beginning (t ≈ 1.5 · 10−3

and t ≈ 5 · 10−3) of the contact periods, followed by some small oscillations. The peak is caused by the fluid
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Figure 6: Minimal distance dmin to the contact line Γw (left) and mean pressure over the interface Jp (right),
plotted over time with an artificial penalty for the velocity below the virtual obstacle.

dynamics and will be discussed below. The oscillations get smoother for larger values of γ0
C and are barely

visible for γ0
C = 103.

Similarly, the contact force JPγ shows oscillations for γ0
C = 10 and a much smoother behaviour for

γ0
C ≥ 102. Note that this does not contradict the stability result in Theorem 1, where we have assumed that
γ0
C is large enough. The relatively large value for γ0

C that is needed here is due to the anisotropic cells that
appear in some of the time-steps, when using the locally modified finite element method. In the absence of
extreme anisotropies a value of γ0

C ≈ 1 seems to be enough to obtain stable numerical results. The optimal
choice of the contact parameter γC in the context of anisotropic cells is subject to future research.

If γ0
C is chosen large enough, the contact force is roughly of the same size for different γ0

C . This is in
agreement with the observations of Chouly et al. for the case of a pure solid problem [23], who showed that
the consistency of the method makes the choice of the contact parameter much less sensitive compared to a
pure penalty method.

6.2.1 Investigation of the pressure peak

The pressure peak at the beginning of the contact interval can be explained as follows. As the fluid does not
”see“ the obstacle before reaching it, the solid is pulled down towards it without reducing its velocity. At
the moment when the obstacle is reached, its vertical velocity ḋ · nw has to decrease to zero in an instant.
Due to the continuity of velocities, the same happens for the fluid velocity u ·nw at the interface, and due to
the incompressibility constraint the velocity has to change globally in the fluid domain Ωf (t). The pressure
can be seen as a Lagrange multiplier and more specifically as sensitivity of a (jumping) energy functional
with respect to the incompressibility constraint, which explains the peak.

To substantiate this explanation numerically, we add an artificial penalty for the velocity on the sub-
domain Ω0

f below the contact line

Sa(u, v) := γ0
ah
−2(u, v)Ω0

f
.

For γa := γ0
ah
−2 → ∞, the fluid velocity is driven to zero below the obstacle. As this is already the case

before contact, no abrupt changes in the fluid velocity are expected at the moment of the impact. Note that
the problem with γ0

a > 0 is purely artificial, as the pressure mean values are still applied on the whole fluid
boundary, including the boundary of Ω0

f .
In Figure 6 we compare the minimal distance and pressure functionals for computations without penalty

(γ0
a = 0) to results for γ0

a = 10. First, we note that the vertical displacement is significantly influenced by
the penalty, which has to be expected as the fluid dynamics are altered. Contact happens later at t ≈ 0.0022
with the artificial penalty. Moreover, we observe indeed that the initial pressure peak at the time of impact
is significantly reduced for γ0

a = 10.
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Figure 7: Illustration of the contact problem at four time instances on a coarse mesh: t = 0 (top left),
t = 1.2 · 10−3 (top right), t = 2 · 10−3 (bottom left) and t = 2.5 · 10−3 (bottom right). The grey part
corresponds to the structure Ωs(t), the white part is the artificial fluid ΩCf . In the fluid domain Ωf (t), values
of the pressure p are visualised.

6.3 Contact problem

Next, we study a problem, where it comes to real contact with the wall Γw = {(x, y) ∈ Ω, y = 0.25}. At
time t = 0, we define

Ωf (0) := (0, 1)× (0.25, 0.5), Γ(0) := (0, 1)× 0.5, Ωs(0) := (0, 1)× (0.5, 0.6).

Below Γw, we define a fixed artificial fluid domain ΩCf := (0, 1)× (0, 0.25).

We apply again a pressure mean value P on the lateral boundaries Γf,left and Γf,right of the fluid domain
Ωf (t). As the size of Γleft and Γright is smaller and the viscous fluid forces acting against the closure of the
channel are stronger than in the previous example, we have to set a larger pressure force P = 3 · 105 in order
to obtain contact. On the other hand, the contact was never released again in our numerical experiments,
when we used this constant boundary force for all times. Therefore, we decrease P linearly from t = 10−3

on until it reaches zero at t = 1.2 · 10−3. In order to avoid the issues related to no-slip conditions and
contact, we use slip-interface conditions first, i.e. the Variational Formulation 2 with ACslip,FSI. Unless stated
differently, λ is chosen as the jump of numerical stresses Jσ̃n,slipK. Moreover, we use again a Cartesian mesh
that consists of 5120 elements, a time step δt = 10−5 and temporal pressure stabilisation with γpt = 10−2.
Unless explicitly stated, the Nitsche parameters are chosen as γ0

fsi = γ0
C = 103 and the penalty in the artificial

fluid as γ0
a = 102.

The results on a coarser mesh are illustrated in Figure 7 at four time instants. Contact happens after
the pressure on the lateral boundaries is released, as the solid continues moving downwards for some time.
During contact, there is a very small overlap of the solid with the artificial fluid ΩCf . As the overlap is of

order 10−5, it can barely be seen in the bottom left picture. Notice however the triangular cells in ΩCf that
are used only, when a patch is cut by Γ(t).

6.3.1 Comparison of the two contact formulations

First, we compare the two contact strategies derived in Section 4, i.e. the relaxed contact formulation intro-
duced in Section 4.1 with a small gap of size ε(h) = h/10 between the solid and Γw and the strategy using an
artificial fluid derived in Section 4.2. A comparison of the results for dmin, the pressure norm ‖p‖L2(Ωf,mid(t)),
where

Ωf,mid(t) := {x ∈ Ωf (t), 0.4 ≤ x1 ≤ 0.6}
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Figure 8: Comparison of the relaxed and the artificial fluid contact formulation. Top: Minimal distance dmin

to Γw. Right: Zoom-in around the contact interval. Bottom: Pressure norm ‖p‖L2(Ωf ,mid) over the central
part of the fluid domain before contact over time.

denotes the central part of the fluid domain, and the contact force JPγ are shown in Figure 8 on two different
meshes with 5120 and 20480 elements, respectively.

First, we observe from the plots in the top row that the interface stays at a distance to Γw of about
ε ≈ h/10 ≈ 1.4 · 10−3 on the coarser and ε ≈ h/10 ≈ 7 · 10−4 on the finer mesh for the relaxed formulation.
The much smaller overlap with ΩCf in the artificial fluid formulation is not visible, not even in the zoom-in
on the right.

While the curves for dmin look similar in the global picture (left), the zoom-in shows significant differences
already before the impact. The contact happens earlier for the artificial fluid formulation: on the coarser
mesh at time tC,a = 1.87 · 10−3 compared to tC,r = 2.02 · 10−3 for the relaxed formulation. This deviation is
already much smaller on the finer mesh, where tC,r − tC,a = 2 · 10−5. The reason for this deviation is that
in the artificial fluid formulation the wall Γw is only asymptotically for γa → ∞ impermeable for the fluid.
Therefore, in practice, the fluid forces acting against the contact, in particular the pressure p, are smaller for
this formulation. As γa = γ0

ah
−2 →∞ for h→ 0 the difference is significantly reduced on the finer mesh.

To substantiate this explanation, we plot the pressure norm ‖p‖L2(Ωf,mid(t)) over the central part of the
fluid domain Ωf,mid(t) and the time period before the impact in the bottom left figure. The maximum value
of the norm on the coarser mesh at time t = 1.1 · 10−3 is approximately 20.563 for the relaxed formulation
and about 19.065 for the artificial fluid version. On the finer mesh, the pressure values are much closer.
After that time the functional values decrease because the domain Ωf,mid(t) gets smaller.

In the next paragraph, we will study the performance of both contact formulations under mesh refine-
ment.

6.3.2 Convergence under mesh refinement

We solve the same problem on three different meshes with 1.280, 5.120 and 20.480 mesh elements, where
the finer meshes are obtained from the coarsest one by global mesh refinement. The plots of the functionals
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dmin and JPγ as well as the functionals

Jcontact :=

∥∥∥γ1/2
C [Pγ(λ, d)]+ + γ

−1/2
C λ

∥∥∥
Γ(t)

‖λ‖Γ
, Jvel,fsi :=

‖(ḋ− u) · n‖Γfsi(t)

‖u · n‖Γfsi
+ ‖ḋ · n‖Γfsi

measuring the fulfilment of the contact condition and the continuity of velocities on the part Γfsi(t) of Γ(t)
that is not in contact with Γw

Γfsi(t) :=
{
x ∈ Γ(t)

∣∣Pγ(λ, d)(x) ≤ 0
}

are shown in Figure 9 for the artificial fluid formulation and in Figure 10 for the relaxed contact formulation
over time. The quantities ‖ · ‖∗ that are used to scale the functionals are temporal averages of the respective
norms over the interval I = [0, 0.004], computed on the finest grid.

First, we observe for both formulations in the plots on the top left that the contact happens later, the
finer the discretisation is, as the fluid forces which act against the closure of the fluid channel are better
resolved on the finer meshes (see also Figure 8 and the related discussion above).

The curves for the contact force Pγ on the top right of both figures show significant differences between
the two formulations. While the functional values seem to converge for the artificial fluid formulation (if we
neglect the time shift), the contact force gets larger under mesh refinement for the relaxed formulation. The
larger values for the relaxed formulation are due to the presence of the fluid forces σf,n during the whole
contact interval, that are not penalised in this formulation. As a Lagrange multiplier for the incompressibility
constraint, the continuous pressure p gets singular when it comes to contact. The discrete pressure ph gets
larger and larger under mesh refinement in our computations.

On the other hand, the functional Jcontact, that measures the difference between −γ1/2
C [Pγ ]+ and γ

−1/2
C λ

decreases under mesh refinement for both formulations. Besides the differences in the contact force JPγ , the
functional values on each of the mesh levels are actually very similar. The reason must be that the fluid
forces σf,n enter in both λ and [Pγ ]+. We conclude that the increase in the functional JPγ seems not to be
an issue for the contact dynamics.

Both Jcontact and the functional Jvel,fsi are controlled by the stability estimate in Theorem 1 for θ = 1.
Although the parameter θ = 0 is used here, we observe that both functionals decrease with mesh refinement
before and during contact. While the convergence for the contact functional is quite slow, the values of the
velocity functional indicate a convergence order O(hα) with 0.5 ≤ α ≤ 1 for both formulations. Note that
in contrast to the term Jcontact, Jvel,fsi is controlled in the stability estimate in Theorem 1 even with the
pre-factor (γ0

fsiµf )1/2h−1/2.

6.3.3 Flux formulations

Next, we compare the different choices for λ. We show results exemplarily for the artificial fluid formulation
with slip interface conditions. We will compare results using the jump of stresses λ = Jσn,slipK (36), the jump
of the numerical fluxes λ = Jσ̃n,slipK (37) and the extended fluxes λ = Jσ̃n,slipK + τTσsn(τ · nw) (see (39)).
As the results for the latter two choices are nearly identical in this example, we show here only plots for the
jump of stresses and the (non-extended) numerical fluxes. We use the artificial fluid formulation (Variational
Formulation 2) and the previously used mesh with 5120 elements.

In Figure 11, we show the minimal distance dmin to Γw, the contact force JPγ and the integral over the
velocity difference across the contact part ΓC(t) of the interface over time

Jvel,C :=

∫
ΓC(t)

(ḋ− u) · nds, ΓC(t) :=
{
x ∈ Γ(t)

∣∣Pγ(λ, d)(x) ≤ 0
}
.

The fluid velocity u is here artificial as it comes from ΩCf . When choosing λ = Jσ̃n,slipK, we ensure that there
is no feedback from this artificial velocity to the solid, see (34). For the jump of stresses λ = Jσn,slipK, we
obtain a mixture of the solid contact condition and the continuity of normal velocities and a feedback might
result. This follows analogously to the no-slip case, see (29).

In the left sketch of Figure 11, we see that the minimal distance in the stress-based formulation shows
oscillations during the whole contact interval, especially in the second half. The interface jumps back and
forth over the contact line many times. The curve corresponding to the formulation using discrete fluxes
is much smoother. Similarly, the contact force JPγ looks smoother, when the flux formulation is used.
The reason for this behaviour is the mixture of the interface conditions during contact. On the bottom of
Figure 11, we see that the velocity difference Jvel,C shows wild oscillations for the stress formulation, while
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Figure 9: Convergence studies under mesh refinement for the artificial fluid formulation by means of the
following functionals over time: Top left: Minimal distance dmin of Γ(t) to Γw, top right : contact force JPγ ,
Bottom left : Fulfilment of the contact condition Jcontact. Bottom right : Continuity of velocities Jvel,fsi.

it looks much smoother when using Jσ̃n,slipK. As the artificial velocity in ΩCf has no physical meaning, it
is not a drawback that the absolute values of Jvel,C are larger. Due to the feedback of this velocity to the
contact conditions, the oscillations appear in the displacement as well.

On the other hand, we should mention that the oscillations are relatively small. Especially those in dmin

are almost by a factor 103 smaller than the mesh size h ≈ 1.4 · 10−2 in vertical direction in this example and
are therefore still acceptable.

6.3.4 Influence of the contact parameter γ0
C

Next, we study the effect of different contact parameters γ0
C for the artificial fluid formulation and λ = Jσ̃n,slipK

on the mesh with 5120 elements. In Figure 12, we show the ’minimal distance’ dmin (top) and the contact
force JPγ over time for different contact parameters γ0

C . The results are similar to the corresponding results
for the virtual obstacle problem in Figure 5. For the smallest contact parameter γ0

C = 10, the contact
condition is violated throughout the contact interval (dmin < 0). The maximum overlap into the artificial
fluid domain is again approximately by a factor 30 smaller than the mesh size h ≈ 1.4 · 10−2. This violation
gets smaller, the larger the contact parameter is chosen. The instabilities for the smallest parameter are still
much better visible in the contact force JPγ . At time t = 1.89 · 10−3 the functional shows a huge peak, as
the contact condition d · nw ≤ g0 is severely violated and it vanishes from t = 1.94 · 10−3 to t = 1.97 · 10−3,
when the contact is in fact shortly released.

For the larger values γ0
C ≥ 102, the curves are relatively smooth and very similar. Altogether, this shows

again that the assumption “γ0
C sufficiently large” in Theorem 1 is necessary in order to ensure stability.

6.3.5 Slip vs no-slip conditions

Next, we compare the effect of slip- and no-slip boundary and interface conditions in Figure 13. Due to
the difficulties associated with the artificial fluid formulation and no-slip interface and boundary conditions
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Figure 10: Convergence studies under mesh refinement for the relaxed contact formulation by means of the
following functionals over time: Top left: Minimal distance dmin of Γ(t) to Γw, top right : contact force JPγ ,
Bottom left : Fulfilment of the contact condition Jcontact. Bottom right : Continuity of velocities Jvel,fsi.

(see the discussion at the end of Section 4.2), we use the relaxed contact formulation on the mesh with 5120
elements in this paragraph.

We show results for

• Slip conditions on the interface Γ(t) and the lower wall Γw

• A slip condition on Γ(t) and a no-slip condition on Γw

• No-slip conditions on Γ(t) and Γw.

Note that the second option is possible, as for the relaxed contact formulation Γw ∩ Γ(t) = ∅.
We observe that the contact condition (or more precisely the relaxed condition d · nw ≤ gε) is earlier

active, when using slip-conditions: at tC = 1.42 · 10−3 for slip/slip conditions compared to tC = 2.02 · 10−3

for slip interface and no-slip boundary conditions and at tC = 2.23 · 10−3 for no-slip conditions on interface
and boundary. The reason is that the fluid forces, and in particular the pressure, that act against the contact
are larger for no-slip conditions, as the fluid can not “slip” out of the contact zone easily. This can be seen in
the pressure plot on the right. The pressure is considerably larger from t ≈ 5 ·10−4 for the no-slip conditions
until contact is reached for the slip/slip case at tC = 1.42 · 10−3.

As we are allowing for a small gap between the solid and the ground, these results do not contradict the
theoretical results by Gerard-Varet et al [36] discussed in Section 4.3, who showed that (in their configuration
with a rigid body) contact can not happen, when no-slip conditions are used on the interface and/or the
boundary. As discussed in Section 4.1, the basic assumption of the relaxed formulation is that a small or
infinitesimal fluid layer remains during contact. On the contrary, the results confirm that contact is more
likely to happen for slip-conditions, which is in agreement with the theoretical results.
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Figure 11: Comparison of the different possibilities to choose the fluxes λ. Minimal distance dmin to Γw
(top left), contact force JPγ (top right) and velocity difference Jvel,C (bottom) integrated over the contact
part ΓC(t) of Γ(t) over time for computations with λ = Jσn,slipK and λ = Jσ̃n,slipK for the artificial fluid
formulation.

6.3.6 Comparison with an explicit ad hoc approach

The probably simplest possibility to combine the FSI model introduced in Section 2.1 and the contact
approach described in Section 2.2 is to split Γ explicitly in each time-step into a fluid-structure interface
Γfsi(tm−1) and a contact surface ΓC(tm−1) based on the displacement d(tm−1) of the previous time-step and
to use the interface condition (16) on Γfsi(tm−1) and the contact condition (11) on ΓC(tm−1). A strategy of
this type has been used by Hecht & Pironneau [41]. The system of equations reads in the slip case: Find
u ∈ V, p ∈ Q, d ∈ W such that ḋ = ∂td and(

∂tu, v
)

Ωf (t)
+ (σf (u, p),∇v)Ωf (t) + (div u, q)Ωf (t) +

(
∂tḋ, w

)
Ωs(t)

+ (σs(d),∇w)Ωs(t)

−
(
nTσf (u, p)n, (w − v) · n

)
Γfsi(tm−1)

−
(

(ḋ− u) · n, nTσf (v,−q)n
)

Γfsi(tm−1)

+ γfsi

(
(ḋ− u) · n, (w − v) · n

)
Γfsi(tm−1)

+ γC (Pγ(σs,n(d), d), w · nw)ΓC(tm−1)

= (ff , v)Ωf (t) + (fs, w)Ωs(t)
∀v, q, w ∈ V ×Q×W.

(46)

We use the same numerical parameters as for the contact formulations presented in this work.
To compare this approach with the artificial fluid formulation we show the minimal distance to the ground

dmin and the integral over the normal solid stresses over Γ(t) = Γfsi(t) ∪ ΓC(t)

Jσs,n =

∫
Γ(t)

σs,n ds

on the finer mesh with 20480 elements in Figure 14. While the curves for dmin over the total time interval
shown on the top left look similar, a zoom-in on the right shows again that the presence of the artificial
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Figure 12: Parameter studies for the contact parameter γ0
C : Minimal distance of Γ(t) to the wall Γw (Top

left : Total time interval, top right : zoom around the contact interval) and contact force JPγ (bottom) over
time.

fluid leads to an earlier time of impact. Moreover, we observe chattering for the ad-hoc approach at the
beginning of the contact interval, i.e. contact is released twice again before the solid stays in contact with Γw.
The interface jumps back to the fluid domain, with a (relatively small) minimal distance of approximately
1.6 · 10−5.

In fact, the functional dmin is not a good indicator to investigate stability for the ad hoc approach, as
it is zero, as soon as one point of the interface lies on Γw. Note that this is different for the approaches
presented in this work, where the interface can go beyond Γw (or Γε for the relaxed approach). In the actual
computation, the interface oscillates considerably in each time-step and contact is released and renewed
frequently in different points. The functional Jσs,n on the bottom left of Figure 14 serves to get a better
impression of the instabilities during contact. It oscillates throughout the contact interval including a huge
peak at t = 2.32 · 10−3. Moreover, we see that the elastic dynamics after the contact are also significantly
influenced by these instabilities. Compared to the artificial fluid approach the oscillations in the displacement
are significantly larger after contact.

We have also tried to iterate for the splitting into ΓC(t) and Γfsi(t) within each time-step of the ad-hoc
approach, which can be seen as an active-set strategy. This did however not cure the problem, as cycling
between different active sets is not prevented.

7 Conclusions

We have presented two consistent formulations for fluid-structure interactions with contact, both including a
continuous switch between the FSI interface and the contact condition depending on the contact force Pγ . In
contrast to certain penalty approaches, the contact force is physically motivated and included in a consistent
way in the variational formulations. Our numerical results indicate that the two proposed formulations
have better stability properties than the usual ad hoc approaches and no chattering was observed in our
computations.
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Figure 13: Comparison of slip- and no-slip interface/boundary conditions by means of the minimal distance
dmin of the interface Γ(t) to Γw around the contact interval (left) and the L2-norm of the pressure over
a region Ωf,mid(t) around the contact surface before contact (right) over time. Due to the larger pressure
before contact, the impact happens later when using no-slip conditions.

Moreover, we have derived analytically a stability result for a generalised formulation including a pa-
rameter θ ∈ [−1, 1]. As in the pure solid case (Chouly & Hild [19]), this result implies stability for θ = 1
and stability up to a term including the contact force for θ 6= 1. In our computations, we have however not
observed any stability issues for the choice θ = 0 either.

The contact formulations were derived here for the simplified configuration of contact with a fixed and
straight wall and using linear models for the fluid and solid sub-problems. The algorithms can be applied
to more complex contact configurations by using approaches from the literature to compute the projection
and the distances between different surfaces [65, 66, 59]. In particular, the extension to the incompressible
Navier-Stokes equations in the fluid and to non-linear elasticity in the solid can be addressed by combining
the proposed approach with the arguments recently reported in Mlika et al.[55]. Moreover, Coulumb or
Tresca friction can also be incorporated by following Chouly et al. [20, 24].

In our numerical examples, we have studied a two-dimensional model problem on a relatively simple and
smooth geometry. In future, we plan to apply the methods on more complex geometries, including a direct
comparison with experiments, in order to further validate the numerical approach.
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teraction: Modeling, Simulation, Optimization, Lect Notes Comput Sci Eng, pages 110–145. Springer,
2006.

[30] S Frei. Eulerian finite element methods for interface problems and fluid-structure interactions. PhD
thesis, Heidelberg University, 2016. http://www.ub.uni-heidelberg.de/archiv/21590.

[31] S Frei. An edge-based pressure stabilization technique for finite elements on arbitrarily anisotropic
meshes. Int J Numer Methods Fluids, 89(10):407–429, 2019.

[32] S Frei and T Richter. A locally modified parametric finite element method for interface problems. SIAM
J Numer Anal, 52(5):2315–2334, 2014.

[33] S Frei and T Richter. An accurate Eulerian approach for fluid-structure interactions. In S. Frei,
B. Holm, T. Richter, T. Wick, and H. Yang, editors, Fluid-Structure Interaction: Modeling, Adaptive
Discretization and Solvers, Rad Ser Comput Appl Math. Walter de Gruyter, Berlin, 2017.

[34] S Frei and T Richter. A second order time-stepping scheme for parabolic interface problems with moving
interfaces. ESAIM: M2AN, 51(4):1539–1560, 2017.

[35] D Gérard-Varet and M Hillairet. Regularity issues in the problem of fluid structure interaction. Arch
Ration Mech Anal, 195(2):375–407, 2010.

28



[36] D Gerard-Varet, M Hillairet, and C Wang. The influence of boundary conditions on the contact problem
in a 3d Navier-Stokes flow. J Math Pure Appl, 103:1–38, 2015.

[37] A Gerstenberger and WA Wall. An extended finite element method/Lagrange multiplier based approach
for fluid–structure interaction. Comput Methods Applied Mech Eng, 197(19):1699–1714, 2008.

[38] C Grandmont and M Hillairet. Existence of global strong solutions to a beam–fluid interaction system.
Arch Ration Mech Anal, 220(3):1283–1333, 2016.
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