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Abstract—This paper is two folded: in the first part a
result is presented on bounded passivity-based control. This
is applied on a reduced-size building model, in order to
protect it from earthquakes. The second part of this paper
presents an attempt to extend the same methodology towards
bounded backstepping-based control. The key point here are
the Lyapunov function derivative terms: by manipulating their
geometrical shapes, feedback properties follow. On a simple
one-dimensional system, we analyze performance, robustness
and bounded control.

Index Terms—bounded passivity-based control, bounded
backstepping-based control, earthquake engineering.

I. INTRODUCTION

Any real plant has limited actuators. Bounded control is
still, nowadays, an open subject in control systems theory,
with enormous interest concerning industrial applications.
To start with, let us distinguish two types, namely explicit
bounded control, where a saturation block of the type

oyt = max{—1,min{1, u, } } (D

is added in-between controller and plant, as opposed to
implicit bounded control, where this saturation block should
not be necessary. Let us underline that, implicit bounded
control should only hold within a pre-defined framework of
hypotheses. To illustrate this, let us take a simple example,
often met in practice: given a known, simplified, Single-
Input Single-Output (SISO) plant model, together with a set
of constraints on both state variables and control law, we
assume that, a class of feasible controllers can be pursued
analytically. We call them implicit bounded controllers: a
saturation block, placed in-between controller and simplified
model is not necessary. On the other hand, if during con-
troller synthesis constraints are disregarded, for security rea-
sons, a saturation block should be added, prior to validating
feedback behavior and effectuating an a posteriori feedback-
loop properties analysis. The latter situation corresponds
to explicit bounded control. Practical control engineering
solutions can be pursued by using a mix on the two, mainly
for safety concerns, e.g., when we test and validate any
implicit bounded controller on the actual, real plant. Due
to model uncertainties, it might be hard to guarantee that
controller behavior should keep within desired bounds.

In this paper, we are only interested in implicit bounded
control, which is somehow difficult to deal with analyti-
cally and to be generalized, mainly due to more involved
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calculations. State-of-the-art includes: Arstein—Sontag uni-
versal bounded control law in [1], [2, eq. (12.1)-(12.2)], [3,
pp- 113]; universal bounded control law introduced by [4],
[5, Thm. 2.8]; CLF design in [1], [5]; sufficient conditions
for global stabilization for lower-triangular and feedforward
nonlinear systems by means of saturated bounded feedback
controllers in [6]; backstepping in [7], [5, Ex. 2.9]; forward-
ing in [8], [9], [6], [3, Ch. 6.2.5]; Leitmann’s control in [10];
receding horizon control with anti-windup in [11]; model
predictive control in [12]; adaptive control making use of a
special projection operator in [13].

This paper is intended to be reasonably self-contained.
Implicit bounded control is pursued in section II where a
result is given on bounded passivity-based control, and then
in section III where focus is on bounded backstepping-based
control. The paper ends with conclusions in section IV.

II. PART 1. BOUNDED PASSIVITY-BASED CONTROL
A. Preliminaries: recall

In this paper we consider autonomous, affine in control,
nonlinear dynamical systems:

= f(x) +g(x)u
y = h(x)

with x € R”" state-space vector, n € Z~¢; u € R™ is the input
vector, m € Z~¢; y € RP output vector, p € Z~o; f, h and the
columns of g are continuous vector fields.

Definition 1: (ZSD in [14], [15]; [3, pp. 48]) System (2)
is zero-state detectable (ZSD), if, for all t € R>¢ and initial
state xg € R”, the following relation holds

y@®) =0, u(r) =0= ZET x(t)=0 3)
Definition 2: (ZSO in [16, pp. 604]; [15]; [3, pp. 48])

System (2) is zero-state observable (ZS0), if for all t € R>q
and initial state xo € R", the following relation holds

y#)=0,u(t)=0=x(t) =0 “4)

(2a)
(2b)

In other words, the limit disappears when passing from (3)
to (4). ]

Theorem 1: (Passivity and stability, in [14, Thm. 2]; [15,
Thm. 3.2]; [3, Thm. 2.28]) If nominal system (2), with
measured output

y=(LW)" (5)



satisfies both conditions:

1. is passive with a storage function W of class €', radially
unbounded and positive definite

2. is zero-state detectable (ZSD)

then the origin x = 0 can be globally asymptotically stabilized
(GAS) by u = —¢(y); ¢(y) can be any locally Lipschitz
function, such that ¢(0) =0 and yT¢(y) > 0, for any y # 0.
]

Thm. 1 is closely related to [16, Thm. 14.4]. The only dif-
ference resides in ZSD condition which is less conservative
than ZSO.

By the way, on the passage we indicate a typo in [16,
Thm. 14.4]: to ensure global stability referred to, in the body
statement of that theorem and proven immediately after, the
relation yT¢(y) > 0 should appear instead of y'¢(y) > 0,
which holds for the stronger condition of global asymptotic
stability.

B. Main result

1) Theory: Largely inspired by [17] we show the follow-
ing result.

Proposition 1: (Bounded Passivity-Based Control)

The structurally bounded, anti-symmetrical, continuous-
time feedback laws:
Y
u) k ky+yTy
with k; € R-g and k> € R+, and

() = pla)tanh (1)

with p(x) € (0,up4] arbitrarily chosen, both ensure GAS on
any nonlinear, passive system (2) with measured output (5);
upmax € Rso is an application specific upper bound on the
control. (]

(6)

Sketch of proof: We will only analyze (6) herebelow, since
the procedure is the same for both control laws. Straightfor-
wardly apply Thm. 1. The shape of (6) is illustrated in Fig. 1.
Given the definition (5) of y and (6), calculations lead to
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Fig. 1. Structurally bounded control term ii(x;) = —k; — k H_ ki=1;k=1.
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X
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In (7b) the first term LyW < 0 due to passivity property;
the second term is made up of only positive quantities and
the minus sign ensures it is <0 for all ||L,W||. (This second
term in the above relation has similar shape to one of the
curves represented later on, in Fig. 4(a).) Now, by making
sure that L,W # 0, the stronger property of GAS is ensured.

Next, to prove the structural boundedness of (6), let us
notice that limyy_,., u(y) = 0. By imposing i = 0, the upper
and lower bounds for control law (6) can be calculated: this
gives y = v/£ky. Thus, the bounds of the control law:

ki
V) = T <
M( 2) ) ;—kz = UMax

Parameters k| and k, can therefore easily be selected, such
that (8) should hold.

As guideline for the interested reader, we mention that
relation (6), can be extended to form a more general class
of bounded control laws, u(y) = —k; W, with 6 € Z~.

®)

Other feasible alternatives can be constructed in the same
way.

2) Practice: Application to seismically base-isolated
structures. The ability to efficiently protect buildings against
unpredictable earthquakes is an open problem. The concept
of base-isolated structures consists of placing passive, semi-
active or active devices, at the floor (or base) level, such that,
energy transferred to the structure by hazardous earthquakes
effects, can be dissipated (see [18]).
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Fig. 2. Lumped-mass model of a 2DOF seismically isolated structure.
In this paper, we deal exclusively with semi-active control

problem of a base-isolated structure, modeled as a two

degree-of-freedom (2DOF) stable system, with lumped-mass



idealization:

X1 =Xx2
; I | —(cp+cs)xa+csxa . X2
Xy = — — % — —c
2T — (kp +ks)x1 + ksx3 & A ©)
X3 = X4
1

x4 = — [cs(x0 —x4) + ky(x1 —x3)] — %,
mg

In Fig. 2 and system (9), m stands for mass of structure,
while my, is mass of the base. The control device is an ideal
damper with variable damping constant ¢4 € [0, cprax], With
cmax € Rsg; x1, xp are relative position and velocity of my,
with respect to a fixed point attached to structure’s base;
X3, x4 are relative position and velocity of my, with respect
to ground; kg, c¢; are linear-spring stiffness and dumping
constants of mg with respect to my; kp, ¢, are linear-spring
stiffness and dumping constants of m;, with respect to ground.

The problem is to design a stationary feedback law ca(x),
structurally bounded by physical constraints ¢4 € [0, cpqy], in
spite of any a priori unknown, unpredictable, non-stationary
earthquake signal, modeled as base-level relative acceleration
Kq.

Solution: To start with, the control solution that we
propose, consists, in a first phase, to relax a little bit the
structural constraint on control law, into |cs| < cprgy. Then,
we apply straightforwardly Prop. 1 on the bilinear nominal
system (9). By doing so, we will notice that c4 () € [0, carax],
which is what we want.

In the absence of perturbation X (¢), nominal plant model
(9) is naturally GAS at the origin x = 0 and consequently
passive with storage function chosen to be the Hamiltonian
of the system. To recall, the Hamiltonian H(x) of Euler-
Lagrange models like system (9) is the sum of kinetic and
elastic energies:

1 ) X1 1 X
H(x)= 3 [xl X3]M |:X3:| —|—§ [xl X3]K L3:| >0 (10)
where matrices
_|my 0O ko ks —ks _|eptes —cs
e G R el K L

are symmetric positive-definite matrices by construction.
One may notice that

: A X1

H(x)=— [xl x3]C [

J<o
i3

emphasizing energy-loss mechanism is ensured naturally, due
to existing damping. Additive damping c4 is intended to
reinforce this energy-loss mechanism, in the presence of
hazardous earthquake accelerations Xg.

All requirements of Prop. 1 are easy to be verified, with

Y(x) =LV (x) = —if = —x3

and relation (6) leads to bounded control law

2
y X5
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Fig. 3. (a) Semi-active controller results, with ¢4 from (11); (b) ground-
level, total acceleration, seismic excitation signal X, (t). k1 =0.6; ko =0.01

with parameters k; € R-g and k; € R+, adjusted such that
(8) holds. Simulation results of Fig. 3 show that the time-
evolution of control law during earthquake excitation is
within desired constraints cs € [0, cprax]-

C. Summarize

In Part 1 of this paper we have presented one way
to achieve a bounded control on a nonlinear system. The
theoretical result was shown to have practical value on an
earthquake engineering problem.

In order to make the transition towards Part 2 of this paper,
it is important to make a few observations:

o the key to obtaining bounded control was the user-defined
choice for the bounded term in the storage function deriva-
tive (7b)

e the so-called storage functions used in passivity-based
control are actually a generalization of Lyapunov functions

e plant model (9) can be written in lower-triangular form,
which is typical for backstepping

These observations encouraged us to attempt to extend the

same methodology towards bounded backstepping.

III. PART 2. BOUNDED BACKSTEPPING-BASED CONTROL
A. Preliminaries: recall

Definition 3: (CLF in [14]; [3, Def. 3.41]; [5, Def. 2.6];
[10]; [2, Def. 12.1, pp. 313]) Again, we consider au-
tonomous, affine in control, nonlinear dynamical systems:

x=f(x)+gx)u (12)
y=h(x)
with x € R” state-space vector, n € Z=g; u € R™ is input

vector, m € Z~q; y € R? output vector, p € Z~; the con-
tinuous vector fields f and h, together with the columns



of g, are locally Lipschitz in x; and a differentiable (i.e. of
class €1), positive definite and radially unbounded function
V:R" = Rx, we call V a control Lyapunov function (CLF)
for (12), provided that any of the relations hold:

(i) for all |x| # O there exists u, such that

V=20 W e <0 (3
ie., V(x)=LsV(x)+LV(x)u<0

(ii) for all |x| # 0,
LV(x)=0pm = LV(x)<O0 (13b)

Relation (13) translates the global asymptotic stabilization
(GAS) condition at the origin, for controlled nominal system
(12). |

B. Motivation

Backstepping based-control (BBC) (see [7], [5], [4, Ch. 5],
[3, Ch. 6.1], [16, Ch. 14.3], [2, Ch. 12.5]) consists of an
iterated step-by-step procedure, constructing at each ith step,
(i=2,..,n), an augmented Lyapunov function

Vi= Vit + 58

ending at the nth step with a control law and a global CLF. At
each step, a condition of the type (13), translating into V; < 0
is necessary to calculate virtual controls and tracking error
variables €;. This leads to the main question, motivating this
work, namely: Next we will study various shapes of V; terms

How to choose, geometrically, the shape of V; in order to
obtain bounded control ?

and then, we will use them in order to check feedback loop
properties on a simple one-dimensional nonlinear system.
Although the aim of this paper is indeed on bounded control,
here the discussion will be broader (e.g. robustness and
performance).

C. Geometrically shaping Lyapunov function derivatives

In the sequel, Lyapunov function derivatives (LFD) con-
cept is revisited. With present topic, we hope to give an
insight, easy to follow and, to some extent, originally struc-
tured, for the ‘right’ choice of LFD. LFD, let V (x1,x2, ..., ;)
be, are n-dimensional manifolds (i.e. hypersurfaces) in a (n+
1)-dimensional space, with n € Z> being the dimension of
state-space. Next, we intend to show that, from a geometrical
perspective, by manipulating these shapes, one can efficiently
tune behavior of closed-loop system. How many possibilities
do we have? Theoretically, an infinity, provided that (13)
holds. This paper discusses only a few.

Throughout this section, curves in Fig. 4(a) and surfaces
in Fig. 4(b), will serve as simple illustrative, visual guideline.
Some curves correspond to classical choice of LFD terms of
known control techniques, others are not. We will analyze
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(a) in R! state-space. j=1,..,n; ki=1;kj1=3;kjr=1; e=1.3 for saty(-)
and tanh; ().

(b) in R? state-space. i, j=1,..,n; i # j; ki = 1; ki=1, ki1 =15 kio=1;
kj"] = 15; kj"z =1.

Fig. 4. A catalog of feasible choices of LFD terms.

which are the advantages/disadvantages of choosing one or
another, with respect to control system properties (e.g., trade-
off between robustness and performance; boundedness of
control law).

The following functions were used to draw the curves in
Fig. 4(a):

S0
sign(§) ¢ 0 if{=0
-1 if {<0
a(l) & 4 if|¢l<e
€ sign(§) elsewhere
tanhy({) £ tanh({/¢)

with tanh(-) hyperbolic tangent function; parameter € € R-.
Instead of tanh(-), one may use any sigmoid-type functions,
like the error function Erf({) = ﬁ J§ e ds.



In Fig.4(b), the following two LFD terms, part of V, were
represented in blue and red, respectively:

T ki 0 Xi
) _{xi x’} 0 k| |x
J J
nth
Xi
.« _ X; Xj ki,l 0 \/ki>2+xl-2
N \/k,ﬁx% 0 ki X
’ Js 2

kj'2+Xj

with k;, kj, k,’71 and kjjz € Ryp.

Next, the focus is on a simple one-dimensional (n = 1)
case study. Hopefully, ideas are easier to be shared this way,
thus facilitating possible reflection on extensions to higher
order systems defined in R” space, with n > 2.

D. A case study

Given the nominal, nonlinear, dynamical system
. X

X1 = 5

1 +x

+u (14)

we seek stationary control law u, such that GAS is ensured
at the origin x; =0.
Solution. Let us choose the candidate Lyapunov function

Vi(x) = 1xg (15)

To construct a CLF from Vi, (13) should hold. In Fig. 4(a),
we give some feasible choices for Vi, leading to robust vs.
performance and bounded control.

For BBC, the classical, most common choice is this €2
class function, V; = —klx% < 0, with k| € Ry ; it follows that

2
— — xl
1+x%

—k1X1 (16)

u
BBC
which is unbounded by construction, as

Hm |u(x;)]| = +oo
ey | e

On the other hand, the classical, most common choice for
sliding mode control is this € class function, V| = —ki|x|| =
—kix1sign(x;) <0, with k; € R~o; it leads to

2
= — dl
l+x%

— kysign(xy) (17)

u
SMC
which is bounded for this particular system (although this
does not necessarily hold in general); major drawbacks con-
sist of inherent chattering problems (see [16]) and unique-
ness loss of system trajectories. To overcome them, one
can use regularization techniques, e.g., by choosing (see
Fig. 4(a))
(i) Vi = —kyx;tanhy(x;) will lead to (17) with tanh,(-)
instead of sign(-)
(i) Vi = —kjxisaty(x;), resulting in (17) with saty(-) in-
stead of sign(-)

Discussion on feedback properties. For parameter choice
indicated in Fig. 4(a), the former control law (i) is more
robust then (ii) for x;(f) € R, while both are more robust
then (17) for |x1(f)| < 1. When |x;(f9)| > 1, (ii) achieves
better performance then any of the other two. All this
information can easily be read on Fig. 4(a): details are
provided hereafter.

Performance. Roughly speaking, performance increases
as the curve Vi (x;), assimilated to any LFD term illustrated
in Fig. 4(a), approaches the axis of ordinates. The higher
the values of V; (x1), for any fixed x| (this is equivalent to
increasing the value of adjustment parameter k;), the better
nominal system behavior gets, in terms of lower settling time
values, while system trajectories converge faster towards the
origin. It also leads to higher peak values for control law
u, which might be a practical drawback; sensitivity to noise
increases. In order to reduce actuator wear and stress, it might
be better avoided. If the curve Vi(x;) is chosen such that,
it is situated too close to axis of ordinates, one gets into
situations:

e where singularities appear inside control low: e.g. when
choosing V(x) = —ki|x1|?, with y € (0,1), a singularity
will appear at the origin x; = 0;

e where multiple (i.e. non-unique) feedback trajectories are
possible: e.g. when choosing Vi (x1) = —kix!, with y =
4/3, there are two feasible solutions: x; () =0 and x; (1) =
(—%)3/2, for k; = 1 and initial condition x;(0) = 0 (see,
for details, [16, pp. 88])

In R? space, ensuring performance is equivalent to saying

that LFD surface should draw near z-axis. See Fig. 4(b).
Robustness. Robustness should be pursued:

e to achieve ‘moderate’ variations of controller output

e to reduce system sensibility and reactiveness to fast noise
variations; noise might be due, e.g., to (faulty) measure-
ment equipment

Let us come back to Fig. 4(a). Improved robustness prop-
erties of feedback system is achieved, i.e., overall robustness
increases, as Vi (x1) curve furthers the axis of ordinates: for
any fixed x; on the axis of abscissas, lowering Vi (x1).

In Fig. 4(b), robustness increases, as the surface associated
to LFD terms, steps away from z-axis. This figure shows
that, the blue surface is capable to ensure more feedback
system robustness than the red one, around system origin
(x1,x2) = (0,0). While for sufficiently large |x;|, |x2| values,
the contrary holds.

Bounded control. Let us come 2back to system (14); let
(15) be, and choose V| = —kl,lkl;ﬁ <0, with k11 € Rog
and k; 2 € Ry (see Fig. 4(a)); the colntrol law is calculated

2

Mok X1
[

= 1
boulrfded ( 8)

(see Fig. 5). It is structurally bounded, since, as one may
notice, sup, |u(x1)| is finite; also it is worth to notice that,
lim‘x1 [ u(x;) = —1, meaning that controller is not running



to the saturation limit, for large |x;| values, as it would have
been the case, if we explicitly saturated, using (1), any linear-
type or nonlinear controller, like (16). In Fig. 1, we illustrated
graphically only the second term of (18).

Fig. 5. Structurally bounded control (18), ensuring GAS. ky ; = 1; k1o = 1.

E. Summarize

Bounded backstepping has been achieved on a simple
one-dimensional nonlinear system. However, attempts to
generalize this methodology towards n-dimensional systems
have not been successful so far.

F. Further work

This section is intended to be an open discussion. It would
be interesting to know if this methodology consisting on
shaping Lyapunov function derivative terms could lead to
bounded control on other nonlinear control designs. We have
two in mind, briefly introduced hereafter.

Forwarding (see [8], [3, Ch. 6.2], [2, Ch. 12.6]) is another
example of recursive design. At the last step one has built
V(x) which ensures that the non-controlled system x = f(x)
is €' dissipative. Consequently, by calculating V (x) on the
controlled system (12) and properly imposing its shape, the
control law u(x) is extracted.

In sliding mode control (SMC) (see [16]), one needs to
build a stable sliding surface, let us call it 0 = o(x), and let
V(io(x)) = %cr(x)2 be. Once more, a condition of the type
(13) is necessary, i.e. V(o) = 66 < 0 (except at the origin,
on the zero-error manifold o(x) = 0), prior to calculating
the control law. Again, the interest would be here on how to
choose V in order to obtain bounded control?

IV. CONCLUSIONS

In the first part of this paper we have presented a general
result on bounded passivity-based control, that can be applied
to n-dimensional systems. In particular, it was applied to a

common problem arising in earthquake engineering (n = 2).
In the second part of the paper we have presented preliminary
results on bounded backstepping. They were applied on a
one-dimensional system. Hopefully this proposed method-
ology will be extended in the future to higher dimensional
systems and/or other nonlinear control techniques.
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