
rspa.royalsocietypublishing.org

Research
Cite this article: Bosi F, Misseroni D, Dal
Corso F, Bigoni D. 2015 Self-encapsulation, or
the ‘dripping’ of an elastic rod. Proc. R. Soc. A
471: 20150195.
http://dx.doi.org/10.1098/rspa.2015.0195

Received: 19 March 2015
Accepted: 28 May 2015

Subject Areas:
mechanics

Keywords:
self-encapsulation, deployable structures,
elastica, Eshelby-like force

Author for correspondence:
D. Bigoni
e-mail: bigoni@unitn.it

Electronic supplementary material is available
at http://dx.doi.org/10.1098/rspa.2015.0195 or
via http://rspa.royalsocietypublishing.org.

Self-encapsulation, or the
‘dripping’ of an elastic rod
F. Bosi, D. Misseroni, F. Dal Corso and D. Bigoni

DICAM, University of Trento, via Mesiano 77, Trento 38123, Italy

A rod covering a fixed span is loaded at the middle
with a transverse force, such that with increasing
load a progressive deflection occurs. After a certain
initial deflection, a phenomenon is observed where
two points of the rod come in contact with each other.
This is defined as the ‘dripping point’ and is when
‘self-encapsulation’ of the elastic rod occurs. Dripping
seems at a first glance to be impossible and definitely
cannot occur in the presence of ‘ordinary’ constraints
(such as simple supports or clamps) at the ends of
the span. However, the elastica governs oscillating
pendulums, buckling rods and pendant drops, so
that a possibility for self-encapsulation might be
imagined. This phenomenon is indeed demonstrated
(both theoretically and experimentally) to occur when
at least one of the constraints at the ends of the rod
is a sliding sleeve. This mechanical device generates a
configurational force, causing the dripping of the rod,
in a fully elastic set-up.

1. Introduction
Is it possible to load an elastic rod with a transverse force
at midspan between two constraints at fixed distance L
in order to reach a closed deformation loop (figure 1)?
In other words, is self-encapsulation or ‘dripping’ of
an elastic rod possible?1 Although this problem may
seem of academic interest only, it has connections to
micro- or nano-fabrication technologies for deployable
structures used for instance in sensor technology. In
this field of application, self-assembly can be achieved
through magnetic forces [2], while a self-folding spherical

1It is crucial in the statement of the self-encapsulation problem that the
constraints are kept at a fixed distance and that the force is transverse,
otherwise the problem becomes trivial. In fact, it is well known that in
the problem of the buckling of the Euler rod on two movable pins self-
intersecting elastica occur, which is also the case of the problem of the
‘injection’ of an elastic rod analysed in [1].
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Figure 1. Schematics of the self-encapsulation, or the dripping, of an elastic rod. (a) An elastic rod is loaded atmidspanbetween
two constraints at fixed distance L. (b) Self-encapsulation does not occur (as in the case when the two constraints are simple
supports). (c) Self-encapsulation, which may be re-phrased as the ‘dripping of an elastic rod’, occurs. This requires the use of a
‘non-standard’ constraint, such as a sliding sleeve.
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Figure 2. Sketch of the structure showing dripping of an elastic rod. An elastic planar rod, of bending stiffness B, is constrained
with a frictionless sliding sleeve at both ends. The distance between the two constraints, L is fixed, but the rod between the two
constraints has a variable length, function of the transverse load F applied at midspan.

structure—the so-called ‘buckliball’—has been invented [3] and a dynamic self-encapsulation
technique for a thin plate and a rod has already been pointed out [4,5]. In the former case only a
reduction in the volume of a sphere is achieved, while in the latter self-encapsulation is obtained,
but as a result of both dynamic effects and capillary forces, which are related to the presence of
a liquid droplet attached to the rod. Therefore, the self-encapsulation problem as addressed in
this article has never been challenged before and indeed may seem impossible at a first glance.
However, the fact that the differential equation of the elastica not only governs the oscillation of
a simple pendulum and the deflection of an elastic rod, but also the shape of a droplet [6] should
stimulate the belief that dripping of an elastic rod could be possible.

The key point in solving the above-formulated self-encapsulation problem lies in the choice
of the constraints at the ends of the span, namely, a couple of (perfectly smooth) sliding sleeves
(figure 2). In the presence of a bending moment, the sliding sleeve has been shown to generate
an ‘Eshelby-like’ or ‘configurational’ force [7–10], which provides the longitudinal compression
needed to produce dripping. A similar mechanical system has already been studied, but without
considering the configurational force [11,12], and thus dripping has remained undiscovered.

Self-encapsulation is demonstrated (theoretically with a fully nonlinear solution of the elastica
[13,14] and experimentally2 in a qualitative and quantitative way) to occur in the mechanical

2Experiments were obtained on structural models designed and realized at the Instability Lab of the University of Trento
(http://ssmg.unitn.it).

http://ssmg.unitn.it
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Figure 3. The dripping of an elastic rod. Upper part: the progressive formation of a drop (photos taken with a Photron Fastcam
SA5 model 775K-C2 at 10 000 fps). Lower part: the self-encapsulating rod under quasi-static load (photos taken with a Nikon
D200 with a AF Nikkor 18–35 mm). Note the analogy in the shapes of the drop and of the rod.

system shown in figure 2. This structure exhibits a load reversal in the load/deflection diagram,
so that three kinds of experiments were performed to induce the dripping of the rod.

In particular, the experimental verification of the symmetric solution obtained in §2 requires
imposition of the full displacement of the midspan (so that the configurations assumed by
the system are stable and dripping can be obtained without departures from symmetry).
This experiment was performed only in a qualitative way (to produce the photos shown in
figure 3, lower part, where a series of quasi-statically deformed shapes of the rod showing self-
encapsulation is reported and compared with the shapes of a forming drop, upper part), because
it was considered trivial, while experiments were designed not only to confirm the analytical
solution, but also to demonstrate that self-encapsulation is a robust phenomenon, occurring even
when the symmetry conditions on which the solution is based are perturbed. Therefore, other
qualitative experiments were performed taking advantage of the fact that the structure shows a
load reversal, which allows the rod to rest in a certain deformed (unstable) configuration without
any applied external load. In these experiments, this configuration was induced by imposing a
displacement at midspan of the rod and then perturbing it to trigger a spontaneous dynamics
that causes the rod to take the shape of a progressively forming drop, culminating at the dripping
point (self-encapsulation), and continuing with the enlargement of the drop and a break of
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symmetry, as illustrated in the video available in the electronic supplementary material (and also
at http://ssmg.unitn.it). Finally, quantitative (quasi-static) experiments were performed in which
only the vertical displacement at the midspan was imposed with a testing machine (and the
corresponding load measured). In this way, the analytical solution is rigorously followed only
until the force reversal, when the symmetry is broken and an additional force is generated at
the device imposing the displacement, see §3a(i). Even in this case dripping is obtained and
the perturbation induced by the new generated force is shown not to significantly affect the
load/displacement diagram predicted by the symmetric solution. It can be therefore concluded
from the experiments that the analytical solution is fully confirmed and that dripping is a robust
phenomenon that occurs even when the ideal conditions assumed to obtain the analytical solution
are perturbed.

It is important to remark that the self-encapsulation (and also the dripping) occurs in an elastic
and frictionless system, so that all presented structural transformations are fully repeatable and
without hysteresis, opening a new perspective in reversible and tuneable encapsulation.

2. The equilibrium configurations and the self-encapsulation point
Considering symmetric equilibrium configurations, the planar rod constrained by a couple of
sliding sleeves at both ends, figure 2, is here analysed by replacing the left sliding sleeve with a
clamp, figure 4a. The presence of a clamp on the left end is also representative of the quantitative
experimental test described in §3a and performed to measure the Eshelby-like force through a
load cell.

With reference to an inextensible Euler–Bernoulli model for the planar rod, the rotation field
of the rod’s axis θ (s) represents the relevant kinematic field, function of the curvilinear coordinate
s ∈ [0, l̄], where l̄ is the total length of the rod of bending stiffness B, with l̄ ≥ L, where L is the given
distance between the clamp and the sliding sleeve. When a transverse load F is applied at the rod
midspan, the total potential energy W of the elastic system can be written as

W(θ (s), lout) =
∫ lout

0
B

[θ ′(s)]2

2
ds − F

∫ lout/2

0
sin θ (s) ds + V

∫ lout

0
sin θ (s) ds, (2.1)

where a prime denotes the spatial derivative, and lout ∈ [L, l̄) is the length of the deformed elastic
planar rod between the two constraints (the clamp and the sliding sleeve). Note that the rotation
is null within the sliding sleeve, θ (s) = 0 with s ∈ [lout, l̄). The last term in the total potential energy
W represents the work done by the vertical upward reaction V at the sliding sleeve, which has to
be null for unmovable constraint so that

∫ lout

0
sin θ (s) ds = 0, (2.2)

an equation revealing that V acts as a Lagrange multiplier.
The length lout and the rotation field θ (s) satisfy the following geometrical condition expressing

L, the distance between the two constraints,

L =
∫ lout

0
cos θ (s) ds. (2.3)

For a given load F, the equations governing the equilibrium configuration can be obtained
by introducing a small parameter ε to describe the variations θvar(s) and lvar of the equilibrium
configuration in the rotation field θeq(s) and the rod’s length between the two constraints leq as

θ (s, ε) = θeq(s) + εθvar(s) and lout(ε) = leq + εlvar. (2.4)

http://ssmg.unitn.it
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Figure 4. (a) Scheme used to investigate the symmetric solution of the elastic system sketched in figure 2 and loaded at the
midspan with a concentrated transverse force F. Loading the structure generates the compressive configurational forceM2/2B,
acting at the sliding sleeve in the axial direction. Exploiting symmetry, the structure can be divided into four rods of equal
length leq/4 subject to the transverse load F/2 and to the axial configurational force M2/2B. (b) The experimental set-up for
quasi-static experiments comprising elastic rod (1), load cells (2), movable crosshead (3), bilateral roller (4), sliding sleeve (5)
and displacement transducer (6).

A first-order Taylor series expansion of θ (lout) in ε and of the geometrical condition (2.3), together
with the boundary conditions at the sliding sleeve, namely θeq(leq) = 0 and θ (lout) = 0, leads to the
following compatibility equations:

θvar(leq) = −θ ′
eq(leq)lvar, lvar =

∫ leq

0
sin θeq(s)θvar(s) ds. (2.5)

Restricting now attention to symmetric equilibrium configurations (figure 4a; effects of lack of
symmetry are considered in §3a), it follows that V = F/2 and the rotation field has the following
symmetry property

θeq(s) = −θeq(leq − s), for s ∈
[

0,
leq

2

]
, (2.6)

so that, an account of the boundary condition at the clamp θeq(0) = 0 and of the compatibility
condition (2.5)1, yields the first variation of the functional W as

δεW = −
∫ leq/2

0

[
Bθ ′′

eq + F
2

cos θeq(s)
]
θvar(s) ds

−
∫ leq

leq/2

[
Bθ ′′

eq − F
2

cos θeq(s)
]
θvar(s) ds − B

2
θ ′

eq(0)2lvar. (2.7)
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Imposing the vanishing of the first variation of the total potential energy δεW for every admissible
θvar(s) provides the governing equation of the elastica for the deflected rod

Bθ ′′
eq(s) + F

2
cos θeq(s) +

Bθ ′
eq(0)2

2
sin θeq(s) = 0, s ∈

(
0,

leq

2

)

and Bθ ′′
eq(s) − F

2
cos θeq(s) +

Bθ ′
eq(0)2

2
sin θeq(s) = 0, s ∈

(
leq

2
, leq

)
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.8)

subject to the boundary conditions θeq(0) = θeq(leq/2) = θeq(leq) = 0. Assuming the bending
moment M to be proportional to the curvature (M(s) = Bθ ′

eq(s)), the equilibrium equations (2.8)
include the configurational or Eshelby-like force [7]

M2

2B
=

Bθ ′
eq(0)2

2
, (2.9)

which is crucial for achieving self-encapsulation. Of course, the differential problem (2.8) governs
the equilibrium configuration only up to the dripping point, or the self-encapsulation.

Let us restrict the attention to the first half of the deflected rod. By introducing the load
parameter

γ 2 = R
B

, with R =

√√√√(F
2

)2
+
(

M
2B

2
)2

, (2.10)

and the auxiliary angle ψ(s) = θeq(s) + β, where β is the inclination of the resultant R with respect
to the straight undeformed rod’s axis, the differential problem (2.8)1 can be rewritten as

ψ ′′(s) + γ 2 sinψ(s) = 0, s ∈
[

0,
leq

2

]

and ψ(0) =ψ

(
leq

2

)
= β.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.11)

Owing to the symmetry of the equilibrium configuration, the inflection point is located at the
quarter point of the deflected part of the rod (s = leq/4),

θ ′
eq

(
leq

4

)
= 0 and ψ ′

(
leq

4

)
= 0 (2.12)

and, defining the rotation in such a point as θ̂ = θ (leq/4), it follows that ψ(leq/4) = ψ̂ = θ̂ + β, so
that integration of equation (2.11)1 yields

ψ ′(s) = ±γ
√

2(cosψ(s) − cos ψ̂), (2.13)

where the ‘+’ (or ‘−’) sign holds for s ∈ [0, leq/4] (or for s ∈ [leq/4, leq/2]). Introducing the following
change of variables:

η= sin
ψ̂

2
and η sinω(s) = sin

ψ(s)
2

, (2.14)

differential equation (2.13) can be integrated to obtain the relationship between the load
parameter γ and the angles θ̂ and β as

γ leq = 4[K(η) − K(ωβ , η)], (2.15)

where ωβ = arcsin((1/η) sin(β/2)) and K(ωβ , η) is the incomplete elliptic integral of the first
kind. Equation (2.15) contains as unknowns the configurational force M2/2B (present in the
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parameter γ ) and the length of the rod in its reference configuration leq. Inverting equation (2.10),
the former can be expressed as

M2

2B
= 2Bγ 2

(
η2 − sin2 β

2

)
, (2.16)

and the applied load F can be expressed as

F = sgn
[π

2
− θ̂

]
2Bγ 2

√
1 − 4

(
η2 − sin2 β

2

)2
, (2.17)

where the function sgn (defined as sgn[x] = |x|/x ∀ x ∈ Re\0 and sign[0] = 0) has been introduced.
Expression (2.17) for the load F makes evident that F = 0 at θ̂ = π/2, which defines the load

reversal. Equation (2.17) becomes explicit once the equations describing the shape of the elastica
are obtained. In particular, from equation (2.14)2 the rotational field for s ∈ [0, leq/2] can be
obtained as

θeq(s) = 2 arcsin[η sn(γ s + K(ωβ , η), η)] − β, (2.18)

while the axial and transverse positions for s ∈ [0, leq/2] can be calculated from an integration of
the kinematic fields

x1(s) =
∫ s

0
cos θeq(τ ) dτ and x2(s) =

∫ s

0
sin θeq(τ ) dτ , (2.19)

in the form

x1(s) = sinβ
[
−2η
γ

cn(γ s + K(ωβ , η), η) + 2η
γ

cn(K(ωβ , η), η)
]

+ cosβ
{
−s + 2

γ
[E[am(γ s + K(ωβ , η), η), η] − E[am(K(ωβ , η), η), η]]

}

and x2(s) = cosβ
[
−2η
γ

cn(γ s + K(ωβ , η), η) + 2η
γ

cn(K(ωβ , η), η)
]

− sinβ
{
−s + 2

γ
[E[am(γ s + K(ωβ , η), η), η] − E[am(K(ωβ , η), η), η]]

}
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.20)

Employing symmetry (figure 4), the relation x1(leq/4) = L/4 can be written using equation (2.15) as

γ = 4
L

{cosβ[K(ωβ , η) − K(η) + 2[E[am(K(η), η), η] − E[am(K(ωβ , η), η), η]]]

− 2η sinβ[cn(K(η), η) − cn(K(ωβ , η), η)]}, (2.21)

so that the relationship between the dimensionless applied transverse force FL2/B and the
parameters η (function of θ̂ ) and β is finally obtained from equation (2.17) as

FL2

B
= 32 sgn[π/2 − θ̂ ]

√
1 − 4

(
η2 − sin2 β

2

)2
{cosβ[K(ωβ , η) − K(η) + 2[E[am(K(η), η), η]

− E[am(K(ωβ , η), η), η]]] − 2η sinβ[cn(K(η), η) − cn(K(ωβ , η), η)]}2, (2.22)

while the dimensionless configurational force, accounting for expression (2.16), becomes

M2L2

2B2 = 32
(
η2 − sin2 β

2

)
{cosβ[K(ωβ , η) − K(η) + 2[E[am(K(η), η), η]

− E[am(K(ωβ , η), η), η]]] − 2η sinβ[cn(K(η), η) − cn(K(ωβ , η), η)]}2. (2.23)
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Furthermore, the dimensionless length �l/L = leq/L − 1, measuring the amount of elastic rod
slipping into the sliding sleeve, can be calculated, according to equations (2.15) and (2.21), to be

�l
L

= K(η) − K(ωβ , η)
γL

− 1. (2.24)

Finally, the midspan deflection of the structure, w = x2(leq/2), can be written as

w = 1
γ

{2η cosβ cos(ωβ ) + sinβ[2E(ωβ , η) − 2E(η) + K(η) − K(ωβ , η)]}, (2.25)

where γ is defined by equation (2.21). Equations (2.22), (2.23), (2.24) and (2.25) are all functions of
the two parameters η and β, that can be solved from either relations sinβ = F/(2Bγ 2) or cosβ =
M2/(2B2γ 2). Substituting the former expression into the definition of F, equation (2.17), yields

sinβ =
√

1 − 4
(
η2 − sin2 β

2

)2
(2.26)

and therefore, using the double-angle formulae and the change of variable (2.14)1, the two
relations between θ̂ and β follow

sin2

(
θ̂ + β

2

)
= 1

2
and sin2

(
θ̂ + β

2

)
= 2 sin2

(
β

2

)
− 1

2
, (2.27)

where the latter has no physical meaning as it requires θ̂ < 0, whereas the former is simplified in

θ̂ + β = π

2
, (2.28)

showing that for every load F, the resultant R is always perpendicular to the deformed rod’s axis
at s = leq/4.

The loading path of the elastic rod (deformed symmetrically) is reported in figure 5 in terms
of dimensionless applied transverse force FL2/B as a function of the dimensionless length �l/L,
which is the length of rod sliding out of the sleeve, and as a function of the midspan dimensionless
deflection w/L.

From figure 5, it can be noted that:

— the maximum load Fmax is

Fmax ≈ 26.69
B
L2 , (2.29)

while the incorrect result calculated in [11], without considering the configurational force,
is 64B/L2 giving a overestimation of the load-carrying capacity of 2.4 times;

— the structural system displays a softening behaviour, unstable for imposed dead load, so
that a force reversal occurs for�l ≈ 1.19L or, equivalently, when w ≈ 0.83L and θ̂ = 90◦; and

— self-encapsulation or the dripping point is reached when θ̂ ≈ 121.24◦, �l ≈ 5.12L, w ≈
2.38L, FL2/B ≈ −2.24 and M2L2/2B2 ≈ 1.85.

3. The experimental proof of self-encapsulation and dripping
The solution derived in §2 for dripping displays softening and a force reversal, so that it is
unstable for applied dead load at midspan and, to check its validity, vertical displacement
and null horizontal displacement and rotation have to be imposed at midspan. Qualitative
tests of this type were performed at the Instabilities Laboratory of the University of Trento
(http://ssmg.unitn.it/), showing self-encapsulation with shapes of the elastica in close agreement
with the theoretical prediction (figure 3, lower part). However, rather than continuing with this
approach, experiments on proof-of-concept structures were designed (according to the scheme
of figure 4a, in which it is also possible to measure the horizontal force at the clamp) and used
to perform the two types of experiment presented below, both aimed at proving that dripping
is a robust phenomenon, occurring even when the symmetric solution derived in §2 is not fully

http://ssmg.unitn.it/
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Figure 5. Equilibrium path of the structure sketched in the inset subjected to a concentrated transverse load F and deformed
symmetrically. The dimensionless length measuring the amount of elastic rod slipping into the sliding sleeve,�l/L, (a) and
the dimensionless midspan deflection w/l (b) are reported versus the dimensionless applied load FL2/B. The characteristic
points ofmaximum load, load reversal and self-encapsulation aremarked on the curves with the letters A, B and C, respectively.
Deformed shapes of the elastica are reported in the insets.

applicable. The performed tests were quasi-static experiments, in which the vertical displacement
has been imposed at midspan with a testing machine, and dynamic experiments, in which the
elastic rod is brought at the inversion load point and left free of dripping in a dynamical motion
where the mass of the rod plays a role.

(a) Quasi-static experiments
In the quasi-static experiments, only the vertical component of the displacement at midspan of
the system shown in figure 4b is prescribed (horizontal displacement and rotation have left free)
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and the vertical load is measured (together with the horizontal force at the clamp). Under this
condition, the symmetric solution is stable only until the force reversal point, at which a symmetry
breaking is expected to occur.

(i) Equilibrium equations under non-symmetric conditions

For non-symmetric equilibrium configurations, the vertical reaction V is unknown and, in
addition to the variations in the rotation field and in the rod’s length comprised between the
two constraints, equation (2.4), the variation l∗var in the length of the rod l∗eq between the clamp
and the midspan at equilibrium is introduced,

l∗out = l∗eq + εl∗var. (3.1)

From the geometrical constraint
L
2

=
∫ l∗out

0
cos θ (s) ds, (3.2)

the variation l∗var can be obtained as

l∗var = 1
cos θeq(l∗eq)

∫ l∗eq

0
sin θeq(s)θvar(s) ds, (3.3)

so that, from the vanishing of the first variation of the total potential energy, the following
equilibrium equations are obtained:

Bθ ′′
eq(s) + (F − V) cos θeq(s) +

[
Bθ ′

eq(leq)2

2
+ F tan θeq(l∗eq)

]
sin θeq(s) = 0, s ∈ (0, l∗eq)

and Bθ ′′
eq(s) − V cos θeq(s) +

Bθ ′
eq(leq)2

2
sin θeq(s) = 0, s ∈ (l∗eq, leq),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.4)

subject to the boundary conditions θeq(0) = θeq(leq) = 0.
Note that F tan θeq(l∗eq) is a new horizontal force generated at midspan and related to the fact

that the constraint leaves the possibility of horizontal displacement, so that this force shares
similarities with the configurational force provided by the sliding sleeve, which is also related
to the possibility of horizontal free sliding.

When symmetry applies

l∗eq = leq

2
, V = F

2
and θ (l∗eq) = 0, (3.5)

the equilibrium equations (3.4) reduce to equations (2.8) and the ‘extra’ horizontal force vanishes.
After the force reversal in the load/displacement diagram (figure 5), the symmetric

configuration assumed for the solution in §2 is certainly unstable, as an upward force is applied
to the bottom of a rod shaped as a forming drop. When symmetry is broken the equilibrium
equations (3.4) apply, but finding an analytical solution to this problem falls beyond the scopes of
this article. Experiments show that the symmetry breaking occurs in reality without precluding
dripping.

(ii) The design of the structure

The model structure used for the experiments was loaded by imposing with a bilateral roller
(realized with two roller bearings from Misumi Europe, Press-Fit Straight Type, 20 mm in
diameter and 25 mm in length) a prescribed vertical displacement at the midspan (through an
MIDI 10 load frame from Messphysik), while the vertical reaction force F on the roller was
measured with a MT1041-R.C. 500 N load cell (from Mettler; figures 4b and 6).

Tests were performed using three rods of different thickness of the cross section (h =
{1.9; 2.85; 3.85} mm), but having the same length (1600 mm) and width (b = 24.9 mm), and all
made in solid polycarbonate (white 2099 Makrolon UV from Bayer, elastic modulus 2350 MPa).
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(a)

(b)

(c)

Figure6. A sequence of photos during an experiment performedon the structure loaded atmidspanby imposing displacement
with a testingmachine. In the three pictures (a–c) the imposed vertical displacement at themidspan isw = {0.16; 0.26; 0.79}L,
corresponding to the following measured values of load F = {21.54; 25.55; 0.79}B/L2 and lengths�l = {0.06; 0.15; 1.15}L.

In addition to the measure of F, the axial reaction at the clamp (equal to the configurational
force M2/2B when symmetry applies) was measured with a OC-K5U-C3-R.C. 50N load cell (from
Gefran), as well as the midspan deflection w (with the displacement transducer fixed at the load
frame) and the length �l (measuring the amount of the rod slipping into the sleeve), with a
magnetic non-contact displacement transducer GC-MK5 (from Gemac). Data have been acquired
with NI compactRIO system interfaced with Labview 2013 (from National Instruments).

The sleeve in which the rod was free to slide consists of two parts of different length: the lower
part (1250 mm) works as a support for the whole polycarbonate strip modelling the elastic rod,
whereas the upper part (500 mm), is shorter, so that the magnetic displacement transducer can be
accommodated. The lower and the upper surfaces of the sliding sleeve were made using 82 and
32 roller bearings (from Misumi Europe, Press-Fit Straight Type, 20 mm in diameter and 25 mm
in length), respectively.

Three photos taken during an experiment, performed on an elastic rod of cross section
24.9 × 3.85 mm, are reported in figure 6. Experimental results (reported for different thicknesses
of the cross section) are presented in figure 7 in terms of dimensionless applied forces versus
the amount of rod slipping into the sliding sleeve (figure 7a) and the midspan dimensionless
deflection (figure 7b).

The experiments were run up to the dripping point and beyond, through the dripping process
(where the analytical solution presented in §2 is no longer valid). A photo of an experiment at the
dripping point is reported in figure 8. Here a symmetry breaking was encountered at the force
inversion point and was found to grow until and after dripping. However, the lack of symmetry
was so small that it is hardly visible in the photo.

Finally, the configurational force M2/(2B) is reported in figure 9 as a function of the transverse
force F (both forces have been made dimensionless), until the dripping point. The theoretical
solution (figure 9a) shows that the Eshelby-like force can be much higher than the transverse
and dominates the mechanics of the system, as confirmed by the experimental results (figure 9b).
Moreover, there are regions in the graph that show that the configurational force increases when
the applied transverse force decreases.

In conclusion, the comparison between theoretical and experimental results is excellent and
shows the following features.

(i) In all experiments a symmetry breaking was observed to occur after the force reversal;
however, this lack of symmetry has been found not to preclude self-encapsulation and to
be practically negligible on all measured data.
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Figure 7. Dimensionless length�l/L measuring the amount of rod slipping into the sliding sleeve (a) and dimensionless
midspan deflection w/L (b) as functions of the dimensionless transversal load FL2/B: comparison between theoretical (black
curve) and experimental results performed on three rods differing only in the thickness h, h= {1.9; 2.85; 3.85}mm (reported
as blue, red and green curves, respectively). The dripping point is marked. Symmetry breaking was observed to occur at the
force reversal, but the influence on the measured forces is negligible.

(ii) The shape of the predicted symmetric elastica closely resembles that which is visible in
the experiments until symmetry is preserved.

(iii) The experimental load/displacement curve is close to experimental results.
(iv) The predicted load maximum Fmax, force reversal at �l/L ∼ 1.19 (or equivalently w/L ∼

0.83) and softening are all fully validated by the experiments.

(b) Dynamic experiments
Qualitative experiments were performed to definitely substantiate the occurrence of self-
encapsulation under dynamic conditions. In these experiments, the rod was brought to the
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Figure 8. A photo taken at the dripping point during a quasi-static experiment. A symmetry breaking has occurred, although
it is not particularly evident.
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Figure 9. Dimensionless ‘Eshelby-like’ force M2L2/(2B2) versus dimensionless transverse load FL2/B. (a) Theoretical solution;
(b) comparison between theoretical prediction (black curve) and experimental results performed on three rods differing only in
the thickness h, h= {1.9; 2.85; 3.85}mm (reported as blue, red and green curves, respectively). Note the self-encapsulation or
dripping point.
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Figure 10. The dripping of an elastic rod during a dynamic experiment. A series of three photos taken with a Photron Fastcam
SA5 model 775K-C2 at 500 fps.

point of load reversal, where an unstable deformed configuration can be maintained at null
external load (F = 0, corresponding to θ̂ = 90◦). From here an ambient perturbation is always
enough to trigger a dynamics (in which the mass of the rod plays a role) in which the system
spontaneously reaches the dripping point and goes beyond this showing a thickening of the drop.
The experiments were filmed with a Photron Fastcam SA5 model 775K-C2 at 500 fps and one is
presented in the electronic supplementary material. A sequence of photos taken during a dynamic
experiment is shown in figure 10 and can be compared with the analogous photos taken (with a
Nikon D200 mounting a AF Nikkor 18–35 mm) during a quasi-static experiment, figure 3 (lower
part). The comparison between the shapes of the elastic rod during the quasi-static and dynamic
experiments shows that dynamics does not have much effect on the results and that symmetry is
preserved until the self-encapsulation point is reached.

Finally, although the theoretical results are valid only until self-encapsulation occurs, the quasi-
static and dynamic experiments were continued after this instant. Quasi-static and dynamic
experiments showed symmetry breaking without sensible deviations from the results obtained
under the symmetry assumption. Evidence of multiple self-contacts was neither found, nor
expected to occur, while self-intersecting elastica with multiple intersection points can be
envisaged, to be checked with a special experimental setting, not considered here.

4. Conclusion
The problem of self-encapsulation, or ‘dripping’, of an elastic rod has been posed, solved and
validated through quasi-static and dynamic experiments. The results provide a new insight
into the possible design of innovative fabrication micro- and nano-technologies based on
structural folding.

Data accessibility. Calculations were performed using Wolfram’s MATHEMATICA v. 10. Experimental data are
shown in figures 8 and 9 and in the electronic supplementary material.
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