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Abstract. Accurate pressure broadened line profiles of alkali resonance dou-
blets are needed for the modelling of atmospheres of cool stars and for generat-
ing their synthetic spectra in the region 400 - 900 nm. When the lines utterly
dominate their region of the spectrum, it becomes important to represent the
profiles accurately over the whole range from the line centre to the far line
wings. In this paper we examine the theories of spectral line shapes that have
been used and carry out new calculations of the line shapes for the resonance
lines of sodium and potassium broadened by helium.
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1. Introduction

The cool atmospheres of brown dwarfs are characterised by the formation of
molecules and condensates. The highly wavelength dependent opacity of abun-
dant molecules such as water, methane and ammonia dominate the infrared
spectra of these substellar objects, while at shorter wavelengths the spectrum is
shaped by the neutral alkali metals as more refractory elements are sequestered
in condensate species. In particular the sodium and potassium resonance dou-
blets, centered at 0.59 and 0.77 microns respectively, play a unique role in shap-
ing the spectrum between 0.4-1.0 microns. H2 and He are present at high at-
mospheric densities in the range (∼1019 - 1021 cm−3) and they collisionally
broaden the resonance lines at wavenumbers up to ±3000 cm−1 from the line
centre.

Using our state-of-the-art 1D radiative-convective equilibrium model ATMO,
we are developing a grid of model substellar atmospheres and investigating the
impact of Na and K line shapes on predicted brown dwarf spectra. We find that
there are large differences between the various published line shape calculations
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and this can affect the predicted spectra. Most notably these uncertainties occur
in the near-infrared due to the extent of the red wing of the K resonance lines.

Previous calculations have used various theories to obtain line shapes for
alkali resonance lines broadened by helium. In the centre of the line the profile
is Lorentzian, and half-half widths have been obtained for lithium, sodium and
potassium broadened by helium, see Mullamphy et al. (2007), Peach and Whit-
tingham (2009) and Kielkopf et al. (2012). Quasistatic theory has been used by
Burrows and Volobuyev (2003) and Beuc et al. (2018) to describe the behaviour
in the far line wings. A unified theory developed by Allard et al. (1999) is used
by Allard et al. (2003) to obtain line profiles for a wide range of frequencies.

In this paper, an alternative method for obtaining complete line profiles
is described and is applied to the resonance lines of sodium and potassium
broadened by helium.

2. The Hamiltonian for the atom-perturber system

Large quantum chemistry calculations provide very accurate potentials for the
electronic states of atom-atom systems at short and intermediate separations.
This approach is limited to low excited electronic states. The present problems
involve low-energy atom-atom scattering processes for excited electronic states.
Our requirement is for the accurate representation of potentials at medium and
large interatomic separations.

In this work a three-body model is adopted; two atomic cores a and b and
one active electron, i.e. Na+ + He + e− and K+ + He + e−. Atomic units
are used, with lengths in Bohr radii, a0 = 0.0529177209 nm and energies in
Hartrees, Eh = α2mec

2 = 27.211384 eV.

The electron-core interaction is specified by

Va,b(r) = −Z

r
(1 + δ + δ′r) exp(−γr)− z

r
− αa,b

d

2r4
F1(r) , (1)

where r is the electron-core separation, Z + z is the nuclear charge, αa
d and αb

d

are the dipole polarisabilities of the cores a and b and F1(r) is a cutoff factor.
Parameters γ, δ and δ′ are varied to reproduce the positions of known energy
levels for z 6= 0, and phase shifts for scattering for z = 0. The fits also predict
the correct number of nodes in the wave functions, see Peach (1982).

The core-core interaction is given by

Vc(R) ' −z2
a

αb
d

2R4
− z2

b

αa
d

2R4
+ short-range terms , (2)

where R is the separation between the two cores a and b with charges za and
zb respectively. Options considered for the short-range term are:

(a) Use the three-body model itself to generate the potential.
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(b) Use a simple analytic form based on perturbation theory.

Choices (a) and (b) differ only for R ≤ RA + RB where RA and RB are the
mean radii of Na+ and K+.

The three-body interaction is given by

V3(ra, rb,R) ' zb
αa

d

r2
aR2

P1(r̂a · R̂) + za
αb

d

r2
bR2

P1(−r̂b · R̂) (3)

for R large, where ra and rb are the position vectors of the electron relative to
the atomic cores a and b. R = (ra− rb) and P1(r̂ · R̂) is a Legendre polynomial.

On using (1), (2) and (3), the Hamiltonian for the system then becomes

H = −1
2
∇2 + Va(ra) + Vb(rb) + Vc(R) + V3(ra, rb,R) . (4)

A set of atomic basis states on one or both centres is used and the Hamiltonian
matrix diagonalized to obtain the electronic energies.

The principles and problems involved in the construction of the potentials are:
(a) The long-range interactions are based on well-known perturbation theory.
(b) No existing data for the molecules NaHe and KHe are used to fix any variable
parameters.
(c) Positions of virtual states in the electron-core model potentials are sensitive
to the precise fit.
(d) Model potentials can be l-dependent or l-independent.
(e) A different potential may have to be used for ground states, e.g. He(1s2).

3. Theory of spectral line broadening

3.1. Baranger theory

The main references for the discussion that follows are Baranger (1958) and
Peach and Whittingham (2009). The impact theory has been widely used, but
is actually only an approximation to the general theory developed by Baranger
in this his first important paper.

The line profile I(ω) is defined in terms of a correlation function C(s) by

I(ω) = R 1
π

∫ ∞

0

C(s) exp(i∆ωs) ds , (5)

where ω is the angular frequency, ∆ω is the angular frequency separation from
the line centre and s is a time variable.R denotes ’real part of’. Baranger showed
that C(s) can be written as

C(s) = exp[−N g(s)] , (6)
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where N is the perturber density and g(s) is split into two parts, i.e.

g(s) = g1(s) + g2(s). (7)

Only the first term g1(s) is used here as in many circumstances the second term,
g2(s), can be neglected.

We consider the transition niLi → nfLf between states niLiMi and nfLfMf

of the alkali atom. The wave function describing the scattering by a potential
VΛ(r) is given by

ψΛ(r) =
∞∑

l=0

(2l + 1) il exp(iηΛl)
1

k
1
2 r

FΛl(k, r)Pl(k̂ · r̂) , (8)

where Pl(k̂ · r̂) is a Legendre polynomial and the radial functions FΛl(k, r) are
solutions of the equation

[
d2

dr2
− l(l + 1)

r2
− 2MVΛ(r) + k2

]
FΛl(k, r) = 0 . (9)

The potential VΛ(r) and the atom-atom separation r are in atomic units
and M is the reduced mass of the emitter-perturber pair in units of the electron
mass m. The momentum k in atomic units is given by

k =
Mmva0

h̄
, (10)

where v is the relative velocity of the emitter and perturber and a0 is the Bohr
radius. The asymptotic form of FΛl(k, r) is specified by

FΛl(k, r) ' k−
1
2 sin(kr − 1

2
lπ + ηΛl) , (11)

where ηΛl ≡ ηΛl(k) is the elastic scattering phase shift, and as r → 0

FΛl(k, r) ∝ rl+1 . (12)

For the cases considered here, the scattering matrix elements Si and Sf are
given by

Si ≡ 〈lΛi|S|lΛi〉 = exp(2iηΛil) ; Λi = |Mi| (13)

and

Sf ≡ 〈lΛf |S|lΛf 〉 = exp(2iηΛf l) ; Λf = |Mf | . (14)

Then we obtain

N g1(s) = (w + id) s , (15)
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where

w + id = C λ1/2

M3/2

∑

MiMf µ

(
Li 1 Lf

Mi µMf

)2 ∫ ∞

0

exp(−u) du

×
∞∑

l=0

(2l + 1) {i exp[i(ηΛi − ηΛf )]}

× [ 2M

∫ ∞

0

FΛil(k, r)∆V FΛf l(k, r) dr] (16)

and
(

a b c
d e f

)
is a 3-j coefficient.

The quantities introduced here are defined by

∆V = VΛi − VΛf (17)

and

C = N 4
√

π
h̄a0

m
; u =

E

κT
=

λk2

M
; λ =

h̄2

2ma2
0κT

, (18)

where κ is the Boltzmann constant, T is the temperature and E refers to the energy
of the relative motion. All the dimensional information is contained in the factor C. It
then follows from (5), (6), (15) and (16) that w and d are the half-half width and shift
of the Lorentz profile given by

I(ω) =
1

π

w

(∆ω − d)2 + w2
. (19)

3.2. The impact approximation

The well-known impact theory is obtained directly from (16) by replacing the wave
functions FΛil(k, r) and FΛf l(k, r) by their asymptotic forms (11), so that

w + id = C λ1/2

M3/2

∑
MiMf µ

(
Li 1 Lf

Mi µ Mf

)2 ∫ ∞

0

exp(−u) du

×
∞∑

l=0

(2l + 1)
1

2
[1− SiS

∗
f ] . (20)

In addition, if the Born approximation is made, the phase shifts in (11) are calculated
from the expression

tan(ηΛl) = −2Mk

∫ ∞

0

r2VΛ(r) [jl(kr)]2 dr (21)

for all values of l. In (21), jl(kr) is a spherical Bessel function of the first kind where

kr jl(kr) ' sin(kr − 1

2
lπ) (22)

as r →∞, c.f. (11). The Born impact theory is then obtained directly from equations
(13), (14) and (20).
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3.3. The one-perturber approximation

Finally we consider the one-perturber approximation. We define the quantity

P (ω) =

∫ ∞

0

FΛil(ki, r)D(r)FΛf l(kf , r) dr ; D(r) ≡ D(r)

D(∞)
, (23)

where in general, ki 6= kf . The dipole moment for the transition Λi → Λf is D(r),
which tends to a constant, D(∞), as r →∞. Then P (ω) is given by

(k2
i − k2

f ) P (ω) = 2M

∫ ∞

0

FΛil ∆V D FΛf l dr

−
∫ ∞

0

dD
dr

(
FΛil

dFΛf l

dr
− FΛf l

dFΛil

dr

)
dr , (24)

where

(k2
i − k2

f ) =
2mMa2

0

h̄
∆ω . (25)

We now neglect the second term on the right-hand side of (24), as experience shows
that it is negligible compared with the first term. The profile in the line wings is then
given by

L(ω) = [P (ω)]2 (26)

and we obtain

I(ω) ' 1

π

w

∆ω2
; |∆ω| À w , |∆ω| À |d| . (27)

If the ranges of validity of the Baranger theory and the one-perturber approximations
overlap, then the correlation function C(s) can be replaced by

C(s) = 1−N g1(s) (28)

and we can use these equations to obtain a unification of the two profiles L(ω) and
I(ω).

Then the Lorentz profile in (19) is replaced by

I(ω) =
1

π

w(0)

(∆ω − d)2 + w(0)2
w(∆ω)

w(0)
, (29)

where

w(∆ω) = C λ1/2

M3/2

∑
MiMf µ

(
Li 1 Lf

Mi µ Mf

)2 ∫ ∞

0

exp(−u) du

×
∞∑

l=0

(2l + 1) [ 2M

∫ ∞

0

FΛil(ki, r)∆V FΛf l(kf , r) dr]2 , (30)

and

u =
λk2

i

M
. (31)



Sodium and potassium lines in brown dwarf spectra 199

If the wave functions in (30) are replaced by their asymptotic forms and we set
ki = kf , ∆ω = 0. Then in (30) w ≡ w(0) and w(0) is identical with the expression for
w given by (20).

This procedure will be valid for lower perturber densities, but will break down at
high densities when the correlation function C(s) in (6) must be evaluated directly
and the Fourier transform in (5) performed.

4. Results and discussion

Calculations have been completed for the widths of the sodium and potassium reso-
nance lines broadened by helium using the interaction potentials described in earlier
work, see Mullamphy et al. (2007) and Peach (2011). The extensive temperature range
chosen, 100 K ≤ T ≤ 10000 K, serves two purposes. It provides the data required for
the analysis of the spectra of cool stars, but also tests the range of validity of the
various theoretical approximations discussed in this paper.

The main computational issues arise from the slow convergence of the sum over
angular momenta l for the higher temperatures and the associated requirement for a
greater number of points to be chosen for the integration over energy.

The radia1 equation describing the scattering wave function is integrated directly
to determine the exact wave functions and their phase shifts for smaller values of
l, l ≤ l0 say, and the Born approximation is then used to evaluate phase shifts for
l0 < l ≤ lmax. The Born approximation for the scattering amplitude in its closed form
is used to complete the summation up to l = ∞. Careful checks are made to determine
the optimum values of l0 and lmax at each energy.

Our results are shown in Tab. 1-Tab. 4. In Tab. 1 and Tab. 2 the half-half widths,
w(0), and shifts d are shown for the resonance lines of sodium and potassium. The
results for w(0) using the one-perturber and Baranger theories are compared and
there is close agreement over the whole temperature range. In Tab. 3, the present
results for w(0) for sodium and potassium are compared with the earlier close-coupling
calculations of Mullamphy et al. (2007) who use the impact approximation. There is
very close agreement for the sodium lines; the agreement for the potassium lines is
slightly less good, but this can be attributed to the fact that a small modification to
the K-He potential was introduced in the present work.

Finally in Tab. 4, w(∆ω)/N is listed for sodium as a function of wavenumber wnu =
∆ω/(2πc) to demonstrate the asymmetry in the line when the profile is extended out
to the far wings.

5. Conclusions

In the present calculations we have demonstrated that the formalism and the com-
putational techniques that have been developed can be successfully applied to obtain
complete line profiles from the line centre to the line wings for all temperatures and for
the lower perturber densities for which the one-perturber approximation is valid. The
one-perturber term, w(∆ω)/N , is generated for a wide range of values of temperature
T (K) and ∆ω which can then be interpolated to provide input into the atmospheric
models.
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Table 1. w(0)/N and d/N (in units of 10−21MHz m3/atom) for the transition Na

3p2P–3s2S at 589.36 nm

One-perturber Baranger Theory
T (K) w(0)/N w(0)/N d/N

100.0 0.1741 0.1733 -0.0303
200.0 0.2310 0.2306 -0.0343
300.0 0.2713 0.2711 -0.0368
500.0 0.3319 0.3318 -0.0407
700.0 0.3792 0.3791 -0.0433

1000.0 0.4373 0.4372 -0.0457
1500.0 0.5146 0.5146 -0.0483
2000.0 0.5775 0.5775 -0.0502
2500.0 0.6314 0.6314 -0.0517
3000.0 0.6789 0.6789 -0.0529
5000.0 0.8307 0.8307 -0.0570

10000.0 1.0855 1.0855 -0.0622

A grid of model substellar atmospheres is being developed and these new profiles
for the Na and K resonance lines will be incorporated into the models. We also intend to
include the contribution from transitions where the emitter-perturber system occupies
a bound state supported by the initial or final potentials for the molecular states Λi

and Λf . These are known to contribute in the far red wings of the lines considered in
this paper.

Table 2. w(0)/N and d/N (in units of 10−21MHz m3/atom) for the transition K

4p2P–4s2S at 767.83 nm

One-perturber Baranger Theory
T (K) w(0)/N) w(0)/N d/N

100.0 0.1979 0.1979 -0.0325
200.0 0.2713 0.2713 -0.0378
300.0 0.3233 0.3233 -0.0380
500.0 0.3986 0.3986 -0.0359
700.0 0.4551 0.4551 -0.0341

1000.0 0.5222 0.5222 -0.0329
1500.0 0.6101 0.6100 -0.0334
2000.0 0.6819 0.6813 -0.0353
2500.0 0.7446 0.7427 -0.0377
3000.0 0.8012 0.7971 -0.0402
5000.0 0.9861 0.9702 -0.0490

10000.0 1.2808 1.2504 -0.0620
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Table 3. w(0)/N (in units of 10−21MHz m3/atom) aMullamphy et al. (2007), bpresent

work

atom T (K) w(0)/Na w(0)/Nb

Sodium
450.0 0.3167 0.3166
480.0 0.3252 0.3257

1000.0 0.4367 0.4372
2000.0 0.5781 0.5775
3000.0 0.6813 0.6789

Potassium
410.0 0.3463 0.3647

1000.0 0.5032 0.5222
2000.0 0.6799 0.6813
3000.0 0.8109 0.7971

Table 4. w(∆ω)/N (in units of 10−21MHz m3/atom) for the transition Na 3p2P–3s2S

at 589.36 nm at T (K) = 1000 K

wnu(cm−1) w(−∆ω)/N w(+∆ω)/N

0.0 0.4372 0.4372
5.0 0.4392 0.4424

10.0 0.4444 0.4521
15.0 0.4524 0.4662
20.0 0.4631 0.4842
25.0 0.4763 0.5058
50.0 0.5726 0.6507

100.0 0.8494 1.0185
200.0 1.4315 1.7516
300.0 2.1897 2.3863
500.0 3.0461 3.3882

1000.0 5.4202 4.7610
1500.0 7.7315 4.9751
2000.0 9.7106 4.3831
2500.0 12.072 3.3667
3000.0 10.410 2.0039
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