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Abstract

This thesis addresses two questions related to the title, Quantum Computation,

Markov Chains and Combinatorial Optimisation.

The first question involves an algorithmic primitive of quantum computation,

quantum walks on graphs, and its relation to Markov Chains. Quantum walks have

been shown in certain cases to mix faster than their classical counterparts. Lifted

Markov chains, consisting of a Markov chain on an extended state space which is

projected back down to the original state space, also show considerable speedups

in mixing time. We design a lifted Markov chain that in some sense simulates any

quantum walk. Concretely, we construct a lifted Markov chain on a connected graph

G with n vertices that mixes exactly to the average mixing distribution of a quantum

walk on G. Moreover, the mixing time of this chain is the diameter of G. We then

consider practical consequences of this result.

In the second part of this thesis we address a classic unsolved problem in com-

binatorial optimisation, graph isomorphism. A theorem of Kozen states that two

graphs on n vertices are isomorphic if and only if there is a clique of size n in the

weak modular product of the two graphs. Furthermore, a straightforward corollary

of this theorem and Lovász’s sandwich theorem is if the weak modular product be-

tween two graphs is perfect, then checking if the graphs are isomorphic is polynomial

in n. We enumerate the necessary and sufficient conditions for the weak modular

product of two simple graphs to be perfect. Interesting cases include complete multi-

partite graphs and disjoint unions of cliques. We find that all perfect weak modular

products have factors that fall into classes of graphs for which testing isomorphism

is already known to be polynomial in the number of vertices.

Open questions and further research directions are discussed.





Impact Statement

The work in this thesis is manifestly of a theoretical nature, and as such its foresee-

able impact is largely academic. We answer two different questions lying in similar

domains, with largely differing techniques.

We make a contribution towards a rigorous comparison between quantum walks

and classical random walks. This lets one understand mixing in quantum walks in

terms of classical computational resources. At the time of writing, we are in the

Noisy Intermediate Scale regime of quantum computing (NISQ), where quantum

machines are now becoming available for the public to use, with commensurate cov-

erage in both the scientific and mainstream press. It is important to understand the

capabilities and limitations of quantum computers, so as to not be misleading about

the relationship between classical and quantum computational resources. The work

described here makes this relationship more clear in our chosen context of dynamics

on discrete structures. Quantum walks algorithms continue to enjoy speedups in

relation to their classical counterparts, this work allows us to see why this cannot

be the case for algorithms based on mixing.

The techniques used in this thesis for finding perfect and non-perfect weak mod-

ular products can be applied to understanding of the weak modular product more

generally, which has not been studied in great depth due to its less than favourable

theoretical properties. This work also constitutes one of the first applications of the

strong perfect graph theorem that isn’t ostensibly linked to perfect graphs, via its

application to graph isomorphism. Indeed, the question connecting perfect weak

modular product graphs and isomorphism could well have been posed decades ago,

but the strong perfect graph theorem and computational methods have allowed it

to be answered in practice. This combination of techniques may well prove to be

fruitful for solving other problems in graph theory.
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Chapter 1

Introduction

Random walks are a very general and powerful lens through which to view many

naturally occurring phenomena, and also comprise a potent algorithmic tool for

use in numerous applications. Quantum walks, having been discovered later, are

now enjoying an analogous trajectory, finding themselves used to describe quantum

dynamics acting on discrete structures alongside providing algorithmic utility when

deployed on a quantum computer. Both classical and quantum random walks can be

used to infer properties of the graphs they act on. One of the most basic questions

one can ask about two different graphs is that of isomorphism: are their topolo-

gies the same? This question, being simple to formulate, has nonetheless resisted

being fully understood by computational complexity theorists, in contrast to the

overwhelming majority of other well-known combinatorial optimisation problems.

In this thesis we shall investigate in detail the interplay between quantum and

classical random walks. We will also formulate a new angle of attack for the question

of determining isomorphism of two graphs, providing more insight into this problem.

The results are primarily mathematical, that is, they are given as theorems and

proofs. There are a number of numerical experiments; indeed, many of the proofs

in Chapter 4 are computer-assisted. We attempt to make clear the relationship

between the mathematical models being used and their correspondence with real-

world phenomena.

Some remarks on the structure of the thesis: for the remainder of this chapter

we introduce the research questions the thesis seeks to answer, summarise our con-

tributions and introduce the necessary notation for the remainder of the text. In

Chapter 2, we review the literature surrounding the thesis topics which is necessary
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to understand the main results in context. Chapters 3 and 4 present the main results

of the thesis. In Chapter 5 we conclude with a critical analysis of the results and

future research directions. To Appendix A we relegate proofs deemed to intrude

excessively on the main text.

1.1 Research questions
This thesis focuses on answering two main questions.

Research Question 1 (Lifted Markov chains and quantum walks) Which compu-

tational resources are required for a classical random walk to replicate the mixing

dynamics of a quantum walk?

Research Question 2 (Graph products and isomorphism) Can we use easy in-

stances of NP-hard problems to make progress on the NP-intermediate problem

GraphIsomorphism, which has thus far eluded a polynomial-time algorithm?

We address Research Questions 1 and 2 in Chapters 3 and 4 respectively.

For the first question, we are interested in designing a classical random walk

that can in some sense simulate a quantum walk, that is, if a given quantum walk

mixes to a distribution π, is there always a classical random walk that mixes to π?

If there is, how long does it take to mix? How much computation time and memory

is required to derive the walk parameters?

The second question asks if there is a “roundabout” route for solving GraphI-

somorphism: we know that GraphIsomorphism ∈ NP. Can we show that it lies

in the “easy” subset of NP by showing that it maps to the polynomial-time solv-

able instances of a particular NP-hard problem? If not, what do we learn about

GraphIsomorphism?

1.2 Thesis contribution
Our response to Research Question 1 is the following: For a graph G on n vertices

• We provide a classical stochastic process (called a lifted Markov chain) that

mixes to any target distribution π over the vertices of G that has all positive el-

ements, using the minimum possible number of timesteps. This builds on prior

work, which we extend to a rigorous proof of correctness and more algorithmic

focus, namely full accounting of the required computational resources.
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• More precisely, we show that this construction requires O(n2D(G)) memory

and O(n4D(G)) time to compute, where D(G) is the diameter of G and G has

n vertices.

• We show that for any quantum walk on an arbitrary connected graph, the

average mixing distribution has all positive elements and so can be sampled

from by this construction.

Our contribution to Research Question 2 takes the form:

• Following Kozen [Koz78], we formulate GraphIsomorphism as an instance

of an NP-hard problem: finding the clique number of a product graph derived

from the candidate graphs. We observe that for perfect graphs, finding the

clique number is polynomial-time.

• Combining the previous two observations, we have that GraphIsomor-

phism is efficiently solvable for graphs with a perfect product. This defines an

approach for GraphIsomorphism in certain restricted cases. We enumerate

all perfect and non-perfect instances of this product graph to show when this

proposed approach is efficient.

• We make comparisons with other GraphIsomorphism algorithms in the lit-

erature for the instances with a perfect product.

1.3 Preliminaries and notation
Much of the notation (for quantum information theory in particular) we use is

taken from [Wat18]. We write the set of natural numbers N = {1,2, . . .}. The set

of nonnegative (resp. nonpositive) in integers is Z+ (resp. Z−). The set [k] :=

{1,2, . . . ,k} for k ∈ N. The sets of real and complex numbers are denoted by R

and C respectively, and are extended to the fields when equipped with the usual

operations of addition and multiplication. We shall use the symbol F in place of R

and C to avoid repeating definitions. We denote by Fd the vector space over F with

d ∈ N elements, equipped with the inner product 〈 · , · 〉, acting as

〈x,y〉=
d∑
i=1

(x[i])∗y[i],
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where x,y ∈ Fd, z∗ the complex conjugate of z ∈ C and x[i] is the ith element of x.

We shall exclusively use finite-dimensional vector spaces in this thesis. Following

Watrous [Wat18] we shall refer to Cd (resp. Rd) as a complex (resp. real) Euclidean

space, thus emphasising the difference from the more general notion of Hilbert space

often employed in the quantum community1. Often, such a space is denoted by H as

appropriate. We will represent a vector x ∈ Fd as a column vector. The ith standard

basis vector of Fd is denoted by ei. The function δji is the Kronecker delta, whence

δji = 1 if and only if i= j and zero otherwise. The vector 1d is the all-ones (column)

vector with d elements.

The conjugate transpose of x∈Fd, x†, is a row vector2 that transforms according

to the rules of matrix multiplication, for instance x†y = 〈x,y〉. We shall denote the

set of d-dimensional row vectors over F by (Fd)∗.

The `p norm of a vector x ∈ Fd is written as

‖x‖p =
(

d∑
i=1
|x[i]|

)1/p

,

where |z| is the modulus of z ∈ C. The `2 norm is commonly referred to as the

Euclidean norm and ‖x‖22 = 〈x,x〉 for x ∈ Fd. The unit sphere in Fd, S(Fd), is

the set of unit vectors S(Fd) :=
{
u ∈ Fd

∣∣∣‖u‖2 = 1
}
. The span of a set of vectors

S = {v1, . . . ,vk} is defined as

span(S) =
{

k∑
i=1

ξivi

∣∣∣∣∣vi ∈ S, ξi ∈ F
}
.

The set L(Fd) is the set of linear operators on Fd (i.e. d× d matrices with

elements from F). We denote the application of an operator A ∈ L(Fd) to a vector

x ∈ Fd by Ax. We denote the transpose of A by AT. The d×d identity matrix is

denoted by Id, or simply I if the dimension is clear from context. The conjugate

transpose of a matrix A is denoted by A†. A matrix A is hermitian if A† = A. We

denote the set of d×d hermitian matrices by Herm(Fd). Observe that Herm(Rd) is
1A Hilbert space is a vector space with an inner product, not limited to finite dimensions.

Moreover, it is required to be complete, a technical condition already satisfied by the spaces Fd. To
avoid trouble we will use Watrous’ nomenclature of complex Euclidean spaces.

2Formally, x† is the linear functional that maps x ∈ Fd to 1 and is an element of the algebraic
dual space of Fd, usually denoted by (Fd)∗. This more abstract interpretation of x† is not needed
for this thesis.



1.3. Preliminaries and notation 23

the set of symmetric matrices, that is, A=AT for any A∈Herm(Rd). The set U(Fd)

is the set of unitary operators on Fd, that is, U ∈U(Fd) if and only if U ∈ L(Fd) and

U †U = Id. Observe that U(Rd) is the set of orthogonal matrices. The set Pos(Fd) is

the set of positive semidefinite operators on Fd, that is, the set

Pos(Fd) =
{
X ∈Herm(Fd)

∣∣∣〈y,Xy〉 ≥ 0 for all y ∈ Fd
}
,

where the field F is usually clear from context. We write A � B for A,B ∈ L(Fd)

if A−B ∈ Pos(Fd). The trace of an operator A ∈ L(Fd), Tr(A), is the sum of its

diagonal elements. The set Stoch(Rd) is the set of row-stochastic matrices, the

matrices whose rows sum to unity and whose elements are all nonnegative. The

set DStoch(Rd) is the set of doubly-stochastic matrices, the row-stochastic matrices

whose columns also sum to unity. The operator norm of a matrix X ∈ L(Fd), ‖X‖,
is given by

‖X‖ := sup
{
‖Ax‖2
‖x‖2

∣∣∣∣∣x ∈ Fd, x 6= 0
}
.

Where applicable, we write the space of linear operators from Fn to Fm as L(Fn,Fm)

and do the same, mutatis mutandis, for other sets of operators. Concretely, an

element of L(Fn,Fm) is an m× n matrix. The column space of a matrix is the

span of its columns. The tensor product, or Kronecker product, of the matrices

A ∈ L(Fm,Fn), B ∈ L(Fp,Fq), denoted by A⊗B is the mp×nq block matrix

A⊗B :=


A[1,1] ·B · · · A[1,n] ·B

... . . . ...

A[m,1] ·B · · · A[m,n] ·B

.

A graph G = (V (G),E(G)) consists of a set V (G) of n vertices and a set of

edges E(G) ⊆ {{x,x′} : x,x′ ∈ V (G), x 6= x′}. A directed graph G, or digraph for

short, has directed edges or arcs, that is, E(G) ⊆ V (G)× V (G). Note that we

will allow self-loops of the form (x,x) for x ∈ V (G) in the case of directed graphs.

We write x ∼ y to denote that vertices x and y are neighbours, that is, they are

connected by an edge. We denote by G the complement of G, whence V (G) = V (G)

and x ∼ x′ in G if and only if x 6∼ x′ in G and x 6= x′. The union of graphs G

and H is the graph G∪H with vertex set V (G∪H) = V (G)∪V (H) and edge set
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E(G∪H) =E(G)∪E(H). The disjoint union of graphs G and H is the graph G]H
with vertex set V (G]H) = V (G)]V (H) and edge set E(G]H) = E(G)]E(H).

The graph G]H is to be interpreted as the graphs G and H drawn next to one

another. For a graph G, we denote the disjoint union of k copies of G by kG.

A graph G′ is a subgraph of another graph G, G′ ⊆ G , if and only if V (G′) ⊆
V (G), and

E(G′)⊆ E(G) and for all {x,x′} ∈ E(G′), x,x′ ∈ V (G′). (1.1)

Suppose we have a subset of the vertices U ⊆ V (G). An induced subgraph of G,

G[U ], is the graph with vertex set V (G[U ]) = U and edge set

{{x,x′} ∣∣x,x′ ∈ U, {x,x′} ∈ E(G)
}
. (1.2)

We say G[U ] is induced by U ⊆ V (G).

A graph is called k-regular if every vertex has k neighbours, where k ∈
[|V (G)−1|]. We call G a symmetric directed graph if (x,y) ∈E(G)⇔ (y,x) ∈E(G)

for all x,y ∈ V (G) and say that x and y are adjacent. We denote by x ∼ y the

adjacency of two vertices x, y. The neighbourhood of a vertex, N(x), is the set

of all its neighbours. Moreover, the neighbourhood NG(X) of a subset of vertices

X ⊆ V (G) is the union of the neighbourhoods of the vertices in X, minus elements

of X themselves, that is,

NG(X) = {y |y ∈N(x), x ∈X, y 6∈X}.

We omit the subscript when the relevant graph is clear from context. A path between

vertices x and y is sequence of vertices beginning with x and finishing with y such

that each vertex in the path is distinct and successive vertices are adjacent. A walk

between vertices x and y is a path that can repeat vertices. A cycle is a path that

starts and ends at the same vertex. A circuit is a walk that starts and ends at the

same vertex. A graph is acyclic if it contains no cycle as a subgraph.

A graph is connected if there is a path between any two distinct vertices. A

connected component of a graph G is a subgraph that is connected, and is maximal
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with respect to this property; no additional edges or vertices from G can be included

in the subgraph without breaking its property of being connected. A digraph is

strongly connected if there is a directed path between every ordered pair of vertices.

A tree is an undirected graph in which any two vertices are connected by exactly

one path, or equivalently a graph that is connected and acyclic. A spanning tree T

of an undirected graph G is a subgraph that is a tree including all of the vertices of

G, with minimum possible number of edges.

The distance, d(u,v), between the nodes u and v in G is the shortest length

path between them. The diameter of G, D(G), is the greatest distance between any

pair of vertices in G, or rather

D(G) := max
u,v∈V (G)

d(u,v). (1.3)

A weak homomorphism ϕ : G → H is a map ϕ : V (G) → V (H) for which

{u,v} ∈ E(G) implies either {ϕ(u),ϕ(v)} ∈ E(H) or ϕ(u) = ϕ(v). Recall that a

homomorphism is a map from G to H satisfying only the first condition.

Let Ω be a sample space. The probability of an event ω ∈ Ω is denoted by

Pr(ω). The conditional probability of an event ω ∈ Ω given ν ∈ Ω is denoted by

Pr(ω |ν). A probability distribution over a finite sample space Ω is represented by

a row vector p ∈ R|Ω|∗. We denote the set of all probability distributions over Ω by

∆(Ω). We take a random variable3 X over Ω with distribution p ∈∆(Ω) simply to

mean a variable whose value is randomly distributed according to p.

For the functions f,g : R→ R, we write f(x) = O(g(x)) if and only if f(x) is

at most a constant multiple of g(x) as x→∞. Similarly, we write f(x) = Ω(g(x))

if g(x) = O(f(x)). Intuitively, f(x) = O(g(x)) means that g asymptotically upper

bounds f and f(x) = Ω(g(x)) means that g asymptotically lower bounds f . We write

f(x) = Θ(g(x)) if and only if f(x) =O(g(x)) and f(x) = Ω(g(x)).

We will require some basic notions from computational complexity theory as a

reference, a complete introduction is given in [AB09]. The computational complexity

class P is the set of all decision (yes/no) problems that can be solved by a deter-

ministic Turing machine using a polynomial amount of computation time. The class

NP is the set of decision problems, for which a solution is verifiable in polynomial
3The modern measure-theoretic definition of a random variable will not be needed in this thesis.
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time. This set of problems are in practise computationally hard to solve, that is,

superpolynomial in the input size. It is widely believed [Aar16], and there is much

evidence to suggest that, P 6= NP. If a computational problem is NP-hard, it is at

least as difficult to solve as any problem in NP, modulo polynomial-time reductions.

If a problem is NP-complete, it is both NP-hard and contained in NP.



Chapter 2

Background

In this section we present the necessary precursory material for the thesis contribu-

tions in Chapters 3 and 4, namely a review of the surrounding literature.

2.1 Quantum computation

In this section, we introduce gate-model quantum computation, the most popular

model for quantum computing theory. For a complete introduction to quantum com-

puting we refer the reader to [NC10]. We note that the content of thesis sits squarely

within the theory of quantum computation, ignoring experimental or implementation

considerations. There are currently many avenues being explored for implementing

gate-model quantum computers, each with their own strengths and weaknesses. At

the time of writing, machines based on superconducting qubits [DWM04] are con-

sidered to have made the most progress, although there are many other approaches,

including but not limited to: trapped ions [CZ95], linear optics [KLM01] and donor

qubits in silicon [Kan98]. A good entry point for this research at the time of writing

can be found at [NAoSM19]. There are many other models of quantum computation

that have received attention in the literature that are polynomially equivalent to the

gate model, such as adiabatic quantum computation [AvDK+08] and measurement

based quantum computation [RBB03].

2.1.1 Quantum Mechanics and the Gate Model

The fundamental unit of information is the bit, which takes the values 0 and 1. In

the circuit model of classical computing, the input is a classical bit string which

through the application of a circuit is transformed to an output bit string. The

circuit consists of a finite number of classical gates picked from a universal gate set
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such as {nand}.

In quantum computing the fundamental unit of information is a qubit, which is

represented 1 by a two-dimensional unit (column) vector from S(C2). A qubit state

|ψ〉 is given by |ψ〉= α0|0〉+α1|1〉, such that α0,α1 ∈ C and |α0|2 + |α2
1|= 1, where

|0〉 and |1〉 are the basis vectors of C2.

At this point we have introduced the Dirac bra-ket notation for quantum states,

which we shall use only when a vector from Cd is explicitly representing a quantum

state. Ordinary vectors will have no such designation. Note that otherwise we treat

a vector |ψ〉 ∈ Cd exactly the same as a vector ψ ∈ Cd, the notation merely serves

as a reminder of the intended interpretation of the vector at hand. We shall denote

by 〈ψ| the conjugate-transpose of the state vector |ψ〉.

Multiple qubits are combined using the tensor product, that is, for two qubits

separately in states |φ〉 , |ψ〉, their joint state is given by |φ〉⊗ |ψ〉. Thus, an n-qubit
quantum state can be expressed as a vector in S(C2n)

|ψ〉=
∑

i1,...,in

αi1...in |i1 . . . in〉, (2.1)

where ik ∈ {0,1},
∑
i1...in |αi1...in |2 = 1 and |i1 . . . in〉 ≡ |i1〉⊗ · · · ⊗ |in〉. We call the

basis {|i1 . . . in〉 | ik ∈ {0,1}} the computational basis, as each basis vector is described

by a string of n bits.

There are two types of operation we can perform on a d-dimensional quantum

state: unitary operators and measurements. A unitary operator U ∈ U(Cd) has the

property that UU † = U †U = Id, i.e. its inverse is given by the hermitian conjugate.

Furthermore, this implies that the operator is norm-preserving, that is, unitary

operators map quantum states to quantum states. A unitary operator on n qubits

can be expressed as matrix of dimension 2n× 2n. Moreover, we have that unitary

operators are closed under composition. Often, especially when describing physical

systems, unitary dynamics are generated by a Hamiltonian H ∈ Herm(Cd), that

is, U = eiHt, where t ∈ [0,∞] represents time passed and matrix exponentiation is

defined as a power series. A measurement is described by a collection of operators

1Strictly speaking, a qubit state |ψ〉 is the equivalence class of vectors{
|ψ′〉

∣∣ |ψ′〉= eiθ |ψ〉 , θ ∈ [0,2π)
}
, formally called a ray in the complex projective space CP 1.

This more formal description won’t be needed in this thesis, as will become clear shortly.
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{Mm}, where Mm ∈ Herm(C2n) and the index m indicates a given measurement

outcome. The operators Mm satisfy the completeness equation, ∑mM
†
mMm = I2n .

For a quantum state |ψ〉, the probability of measuring outcome m is given by

Pr(m) = 〈ψ|M †mMm |ψ〉 (2.2)

and the resulting quantum state is

Mm |ψ〉√
〈ψ|M †mMm |ψ〉

. (2.3)

The completeness equation encodes the fact that measurement probabilities over all

outcomes sum to unity. A computational basis measurement, {Mx} for x ∈ {0,1}n

consists of the operators Mx = |x〉〈x|, the projectors onto the computational basis

states. Notice from Eq. 2.2 that states differing by a global phase, that is, states that

are equal up to overall multiplication by a complex phase factor eiθ for θ ∈ [0,2π),

are physically indistinguishable since they have the same measurement outcome

probabilities.

In the circuit model of quantum computation, we are given an input x ∈ {0,1}n

which is a classical bit string. The first step is to prepare an m-qubit quantum

input state |ψ〉, where m=O(poly(n)). A unitary operator U is then applied to |ψ〉,
and finally the output state is measured in the computational basis. This returns a

classical bit string y ∈ {0,1}m with probability |〈y|U |ψ〉|2.
This completes the description of the model of quantum computation used in

this thesis, the gate model, which is widely adopted by the quantum algorithms

community. The model is assumed to have no limits on the number of qubits used

and it is assumed that every unitary U ∈U(C2n) is realisable. It is not obvious that

the gate model as described here is physically reasonable. It falls outside of the

scope of this thesis to provide such a justification, but nonetheless I briefly describe

the ongoing research in this area and provide some references for the unconvinced

reader.

2.1.2 Practical Considerations

In practice, a quantum computer will consist of a small set of one and two-qubit

unitary operators, which we call gates, that can be applied to the qubits in the
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machine. A set of quantum gates is said to be universal if any unitary operator

can be approximated ‘well-enough’ using only gates from the set. More precisely, a

set of of one and two-qubit gates S is universal if any unitary operator U can be

decomposed into the sequence, or circuit, ULUL−1 . . .U1, such that ||U−UL . . .U1|| ≤
ε for any ε > 0 and some L ∈ N, where the Uk ∈ S. We call L the depth of the

circuit. There are many such universal gate sets, such as {toffoli, hadamard}, or
{U, cnot |U ∈U(C2)}. A picture of a quantum circuit can be found in Figure 2.4a.

Thus, any arbitrary unitary operator U can be implemented given a universal set of

gates. But can this be done efficiently?

The Solovay-Kitaev theorem (see [NC10, Appendix 3]) guarantees that expo-

nential approximation accuracy can be achieved with a polylogarithmic overhead

on the number of gates used in a computation. This allows us to assume that we

can use any unitary in a quantum computation, without significantly increasing the

runtime complexity of the computation. A quantum algorithm is then specified as

a series of unitaries to be applied to an initial state, with a measurement scheme for

extracting a result from the computation.

Quantum computers are microscopic physical objects, and are thus subject to

myriad sources of noise, regardless of the physical implementation of the qubits,

gates, measurements and architecture. This naturally poses a risk to destroy the

results of any computation. Preskill [Pre13] has shown sufficient conditions on the

noise impinging a given computation for scalable quantum computation to be possi-

ble, contingent on assumptions widely considered to be physically reasonable. The

theory of fault-tolerant quantum computation is well-developed and is still an active

field of research. A good, recent review can be found at [CTV17]. Broadly speaking,

at present there are schemes that allow one to carry out arbitrary quantum com-

putations, but these schemes require significant practical overhead in being carried

out. Reducing this overhead is a core challenge for the field.

2.1.3 Relation to classical computation

There are many quantum algorithms that achieve theoretical superiority over their

classical counterparts, usually in terms of runtime but sometimes also in memory

usage. The two most famous examples are Shor’s algorithm [Sho97] and Grover’s

algorithm [Gro97]. The former is a polynomial time algorithm for factoring integers,
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providing an exponential speedup over the best known classical algorithm and the

latter an algorithm for unstructured search on N elements, with quadratic speedup

over the classical Θ(N) bound. A good overview of quantum algorithms can be

found at [MCvD+16]. We discuss quantum algorithms based on quantum walks in

more detail in Section 2.4.

One can also compare classical and quantum computers from a complexity-

theoretic point of view. The class BQP is defined as the class of decision problems

solvable by a quantum computer in polynomial time, with an error probability of

at most 1/3 for all instances. It is known that P ⊆ BQP and BQP ⊆ PSPACE and

widely conjectured that P⊂BQP, meaning there are likely many problems solvable in

polynomial time on a quantum computer for which a classical computer requires su-

perpolynomial time. In this direction, Bravyi, Gosset and König recently showed the

first unconditional separation between classical and quantum computation [BGK18].

The separation shown is logarithmic, which is still consistent with P = BQP. It is

also widely conjectured that NP 6⊆BQP and BQP 6⊆NP. Thus, a quantum computer

cannot solve NP-complete problems in polynomial time, although one does get a

generic quadratic speedup over brute force search via Grover’s algorithm, taking the

search space as instances to the problem at hand. A survey of quantum complexity

theory can be found at [Wat08].

2.2 Markov chains

Markov first studied the stochastic processes that were eventually given his name

in 1906. In this section we shall define a Markov chain, and discuss its mixing

properties, along with more modern developments.

Consider a directed graph G = (V (G),E(G)) on n ∈ N vertices with vertex

set V (G) = [n] and arc set E(G) ⊆ V (G)× V (G). We can define a discrete-time

Markov chain MG on the vertices of G as follows: Let X(t) be a random vari-

able, where X(t) ∈ V (G), for all t ∈ Z+. The Markov chain MG is the sequence

of states (X(0),X(1), . . .), that additionally satisfies the following properties: i.

The initial state X(0) is selected according to some fixed probability distribution

p(0) ∈ ∆(V (G)). ii. The probability of observing state X(t) is independent of all
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previous states, apart from its immediate predecessor, X(t−1), that is

Pr(X(t) |X(t−1),X(t−2), . . . ,X(0)) = Pr(X(t) |X(t−1))

for all t ∈ Z+. iii. The transition probability between states i, j ∈ V (G),

Pr(X(t+ 1) = i |X(t) = j)> 0 if and only if (i, j) ∈ E(G) and is zero otherwise.

From the above definition, each arc (i, j) in G has an associated transition

probability from vertex i to vertex j. The arc probabilities must be nonnegative

and the sum of the probabilities leaving a given vertex must equal one. These

transition probabilities are listed in the matrix P ∈ Rn×n, where

P [i, j] = Pr(X(t+ 1) = j |X(t) = i) , i, j ∈ [n]. (2.4)

This matrix must satisfy

P [i, j]≥ 0, P1 = 1, P [i, j] = 0 ⇐= (i, j) /∈ E(G). (2.5)

The conditions in Eq. (2.5) state that P must be a row-stochastic matrix with

support only on elements corresponding to arcs in the the graph G.

At a time t ∈ Z+, the distribution over states will be given by the row vector

p(t) = p(0)P t. (2.6)

In other words, X(t) is a random variable distributed according to p(t) = p(0)P t.

We can justify Eq.(2.6) formally by the following claim (we defer the proof to

the appendix (Claim A.1)), which states that the only linear maps taking probability

distributions to probability distributions are stochastic.

Claim 2.1 Let Ω be a finite sample space and suppose P ∈ L(R|Ω|) is a linear map.

Then P maps every distribution π ∈∆(Ω) to another distribution π′ ∈∆(Ω), that

is, π′ = πP , only if P ∈ Stoch(R|Ω|). Moreover, let π′′ = πP ′ for P ′ ∈ Stoch(R|Ω|)

and π ∈∆(Ω). Then, π′′ ∈∆(Ω).

We see that a Markov chain MG on a directed graph G can be completely

characterised by the transition matrix P and the initial distribution over states p(0),



2.2. Markov chains 33

so we shall use the shorthand MG = (P,p(0)).

Definition 2.1. Let G be a digraph. Moreover, let P ∈ Stoch(R|V (G)|) and p(0) ∈
∆(V (G)). We say the tuple MG := (P,p(0)) is a Markov chain over G.

Note that we will use the terms ‘Markov chain’ and ‘random walk’ interchange-

ably. A simple random walk is a Markov chain whose transition probabilities from

any vertex are the same to all of its neighbours. Often a Markov chain starts at a

particular vertex j, in which case p(0) = ej .

2.2.1 Mixing

Suppose we have a Markov chain MG = (P,p(0)) over a finite directed graph G and

a probability distribution on the states of MG, π such that πP = π. Then we call π

a stationary distribution of MG. Indeed, π exists and is unique if MG is irreducible

and aperiodic [LPW09]. Moreover, an irreducible, aperiodic Markov chain always

converges to the stationary distribution, that is, limt→∞ p
(0)P t = π; a result known

as the convergence theorem in the literature. Moreover, all of the elements of π in this

case are strictly positive. Irreducibility of MG is equivalent to saying that the graph

G is strongly connected. The chainMG is aperiodic if there exists some time T0 such

that for all t ≥ T0 and all vertices i, j ∈ V (G), P t[i, j] > 0. A Markov chain that is

irreducible and aperiodic is called ergodic. We say that an irreducible Markov chain

is reversible if for all i, j ∈ Ω the transition matrix satisfies π[i]P [i, j] = π[j]P [j, i].

We now define the ε-mixing time,Mε, of MG, for ε > 0,

Mε = max
p(0)∈P

min
T∈Z+

{
T
∣∣∣∀t≥ T, ∥∥∥p(0)P t−π

∥∥∥
TV
≤ ε
}
, (2.7)

where ‖·‖TV is the total variation distance2 between two distributions π and κ and

P ⊆∆(V (G)) is the allowed domain of initial starting states. Intuitively, the mixing

time is the number of steps it takes for an arbitrary starting state to be ε-close in

total variation distance to the stationary distribution in the worst case. Typically,

P is the set of distributions with all probability mass on one and only one state, i.e.

P = {ei | i ∈ V (G)}. We can do this without loss of generality, since it can be shown

that maxx∈V (G)
∥∥exP t−π∥∥TV = supµ∈∆(V (G))

∥∥µP t−π∥∥TV [LPW09, Exercise 4.1].

2The total variation distance of probability distributions π,κ∈∆(Ω) over finite Ω is ‖κ−π‖TV =
1
2
∑
x∈Ω |π[x]−κ[x]|
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We say that the chain MG has mixed at a time T if
∥∥∥p(0)P T −π

∥∥∥
TV
≤ ε; from

submultiplicativity of the `1-norm the chain will be mixed for all t≥ T . By conven-

tion, we shall often take ε = 1/4. Indeed, from [LPW09, Eq. (4.36)] we can get a

bound for arbitrary 0< ε < 1/4,

Mε ≤
⌈
log2

1
ε

⌉
M1/4. (2.8)

The mixing time is strongly related to a topological property of the Markov

chain called the conductance. We must first define the conductance of a Markov

chain (P,p(0)) on G. For a subset X ⊆ V (G) let π(X) =∑
i∈X π[i], where π is the

stationary distribution under P . The conductance Φ(P ) of P is defined as

Φ(P ) = min
X⊂V (G);π(X)≤ 1

2

∑
i∈X,j 6∈X P [i, j]π[i]

π(X) . (2.9)

Often, the numerator of Eq. (2.9) is referred to as the flow through X and the

denominator as the capacity of X. The conductance gives a measure of how hard it

is to leave a small subset of vertices, minimised over the graph (where by small we

mean fewer than half of the vertices). Given only a graph G and a target stationary

distribution π, the conductance Φ of G towards π is the maximum of Φ(P ) over

all row-stochastic P that satisfy the locality constraints of G and whose unique

stationary distribution is π.

Sinclair provided the following relationship between the conductance and mixing

time [Sin93, Eq. (2.13)]

1−2Φ(P )
2Φ(P ) log 1

ε
≤Mε ≤

2
Φ(P )2

(
log 1

ε
+ log

( 1
miniπ[i]

))
. (2.10)

Observation 2.1. The mixing time of a Markov chain is bounded between Ω(1/Φ)

and O(1/Φ2) (for fixed miniπ[i]).

2.2.2 Markov chain Monte Carlo (MCMC)

Sampling from a desired probability distribution over a given state space is an im-

portant computational task, used in many diverse fields. Markov chain methods

have proven to be widely successful in this domain being used for applications such

as approximating the permanent of a matrix [Sin93], machine learning [AdFDJ03]
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and analysing the performance of distributed systems [MK82]. In practise, many

approaches suffer from a lack of provable upper bounds on the time it takes to draw

samples. One such class of methods is Markov Chain Monte Carlo (MCMC), where

a specific random walk is conducted on the state space of interest for some set num-

ber of timesteps, then the position of the walker is measured. Often the user of

an algorithm in the MCMC framework is unsure if the chain has mixed, that is,

is sampling the walker’s position equivalent to sampling the desired distribution?

More precisely, is the distribution over the vertices close in total variation distance

to the stationary distribution of the Markov chain? In most cases, the answer to

this question is unknown, the practitioner empirically determines a favourable time

to run the chain for, without any theoretical guarantee of closeness to the desired

distribution [KF09]. For a survey of the mathematics of MCMC, see [Dia08].

One of the first and most celebrated algorithms in MCMC is the Metropolis

algorithm, which we briefly describe now. The Metropolis algorithm is a way of tak-

ing a Markov chain and modifying the transition probabilities such that it converges

to any desired stationary distribution π. This modification is called the Metropolis

chain, which is discussed at length in [LPW09, Chapter 3]. Suppose we have a

Markov chain (Ψ,p(0)) and we wish to impose that it mixes to the designed station-

ary distribution π. Can we modify the transition matrix Ψ to accommodate this?

Indeed we can; the resulting chain is the Metropolis chain of Ψ, with transition

matrix elements

P [x,y] =


Ψ[x,y] ·min

{
π[y]
π[x]

Ψ[y,x]
Ψ[x,y] , 1

}
, if y 6= x;

1−∑z:z 6=x

[
Ψ[x,z] ·min

{
π[z]
π[x]

Ψ[z,x]
Ψ[x,z] , 1

}]
, if y = x.

(2.11)

One can easily verify that the chain (P,p(0)) has stationary distribution π. More-

over, the chain will mix to π since it is aperiodic and irreducible by construction,

although we have no guarantees on the mixing time, apart from the loose upper

bound O
(

1
1−λ2

)
, where λ2 is the second largest eigenvalue of the transition matrix

P . In practise the topology of the underlying graph greatly affects the mixing time

so must be chosen with due care.



36 Chapter 2. Background

2.2.3 Fastest mixing Markov chain

It is well known that the mixing time of a reversible, ergodic Markov chain is upper

bounded by the reciprocal of the spectral gap of the transition matrix [LPW09,

Theorem 12.3] This is a monotone function of the second largest eigenvalue modulus

(SLEM) of the transition matrix, P :

µ(P ) = max
i=2,...,n

|λi(P )|= max{λ2(P ),−λn(P )},

where the eigenvalues of P satisfy 1 = λ1(P )≥ λ2(P )≥ ·· · ≥ λn(P )≥−1.

Thus, minimising the SLEM minimises an upper bound on the mixing time.

Boyd et. al. [BDX04] use this insight to define an optimisation problem the Fastest

Mixing Markov Chain Problem (FMMC), whose solution is a symmetric Markov

chain that mixes to the uniform distribution faster than a simple random walk.

minimize
P

µ(P )

subject to P ≥ 0, P1 = 1, P = PT,

P [i, j] = 0, (i, j) /∈ E(G)

(2.12)

Observe that the constraint P = PT means that the Markov chain is symmetric

and thus will necessarily mix to a uniform distribution over the vertices of the

underlying graph. The problem (2.12) can be cast as a semidefinite program and so

is solvable efficiently.

2.3 Lifted Markov chains
Lifted Markov chains are a technique for speeding up the mixing time of certain

Markov chains. The basic idea is to add additional states to each graph that act as

a local memory. One then runs this lifted chain for a specified number of steps, then

collapses back to the original graph. Sampling vertices via the above procedure can

allow one to draw samples from particular distributions faster than from a normal

Markov chain.

Lifting was first introduced by Diaconis, Holmes and Neal [DHN00] for the

particular example of the cycle graph. Chen, Lovász and Pak [CLP99] formalised

lifting for any graph and provided bounds on their mixing. Apers, Sarlette and

Ticozzi [ATS17] broadened the scope of lifted Markov chains by showing that under
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different design scenarios, different mixing bounds apply to liftings. Liftings have

been applied to sampling from Ising models on complete and path graphs [Vuc16],

and considered in the context of continuous Markov chains by Ramanan and

Smith [RS16], with associated mixing bounds given. Lifted Markov chains and

have even been extended by Jung and colleagues [JSS10] to a construction called

a pseudo-lifting, and applied to consensus algorithms. The lifting technique has

even been applied to gradient descent optimisation of a certain restricted class of

objective functions defined on graphs [FB17].

2.3.1 Lifting the cycle graph

We shall first consider the first lifted Markov chain as an example, on the cycle graph.

Here we take the n-cycle, Cn, to be the graph with vertex set V (Cn) = {0, . . . ,n−1}
and arc set {(i, i±1modn) | i ∈ {0, . . . ,n−1}}. Consider the Markov chain MCn on

Cn, that has an arbitrary starting state in V (Cn) and transition probabilities of 1/2

on each arc. It is well known that the mixing time of this Markov chain is quadratic

in n for odd n, i.e.Mε = Θ(n2 log(1/ε)) and is undefined for even n. For the cycle

these transition probabilities are optimal for mixing to the uniform distribution over

all vertices.

We can consider a lift of this chain first considered by Diaconis, Holmes and

Neal, the Diaconis lift [DHN00]. We augment each vertex i ∈ {0, . . . ,n−1} with the

pair of vertices (±1, i) and define the lifted cycle Ccn like so:

V (Ccn) = {(s,k) |k ∈ {0, . . . ,n−1} , s ∈ ±1} and

E(Ccn) =
{
((s′,k±1modn),(s,k))

∣∣k ∈ {0, . . . ,n−1} , s,s′ ∈ ±1
}
.

(2.13)

The transition probabilities of the chain are as follows:

P c[i, j] =


1−1/n, i= (s,k), j = (s,k+smodn);

1/n, i= (s,k), j = (−s,k+smodn);

0, otherwise,

(2.14)

where s∈±1, k ∈ {0, . . . ,n−1}. Figure 2.1 shows the allowed transitions and associ-
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Figure 2.1: Illustration of the lifted Markov chain on Ccn. Each vertex k is lifted to the
pair of vertices (−,k), (+,k). The arrows indicate the outgoing transition
probabilities from the lifted vertices of k. Observe that there is high probability
to maintain the ‘sign’ of the vertices as the walk progresses.

ated probabilities. This chain has been shown to have mixing time to the marginal3

Θ(n) (for fixed ε), displaying a quadratic speedup over the non-lifted chain [DHN00].

This choice of transition probabilities imposes some kind of ‘inertia’ on the walk,

in that if the walker takes a step (anti-)clockwise around the cycle, it is far more

likely to take the next step (anti-)clockwise around the cycle. This inertia allows

the walker to traverse the graph faster, and therefore mix faster.

2.3.2 Lifting design scenarios and mixing

The more contemporary view of lifted Markov chains initiated by Apers, Sarlette

and Ticozzi [ATS17] contextualises lifted Markov chains under a variety of design

scenarios. These scenarios are most efficiently presented in tabular form, which we

give in Table 2.1. The scenarios require certain constraints be imposed on the lifted

Markov chain with respect to the collapsed chain. Bounds on the attainable mixing

times for the various design scenarios are shown in Table 2.2.

It should be noted that the paper by Chen, Lovász and Pak [CLP99] takes place

in the (sImre) context, that is, the bounds on mixing to the marginal are proven for

the case where the lifted chain is irreducible, marginally mixes from any starting

distribution, itself mixes and has matching ergodic flows.

3By mixing time to the marginal, we mean the time for the induced distribution on the collapsed
chain to have converged. A more rigorous definition will be given in Chapter 3.
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Scenario label Description
(s) Lifted chain must marginally mix from any starting distribution.
(S) Can choose the (linear) initialisation map for a lifting.
(i) Invariance of target marginal, that is, once the marginal distribution has

reached the target, the distribution stays the same.
(I) Collapsed chain can reach the target distribution, but then deviate from

this distribution.
(m) Both lifted and collapsed chains mix.
(M) Mixing to the marginal only.
(r) Lifted Markov chain must be irreducible.
(R) Lifted Markov chain is reducible.
(e) Ergodic flows of the lifted chain must match the collapsed chain. The

ergodic flow Q[x,y] for x,y ∈ V (G) is defined as Q[x,y] := π[x]P [x,y], where
π is the stationary distribution.

(eδ) Ergodic flows match to within accuracy δ.
(E) No constraints on ergodic flows of lifted chain.

Table 2.1: Table of lifting design scenarios investigated by Apers, Sarlette and Ticozzi
in [ATS17]. A five letter string, one from each section of the table, denotes a
scenario. For example, the conductance bounds proved by Chen, Lovász and
Pak [CLP99] apply to the scenario sImre. A capital letter corresponds to a
less restrictive design scenario. Omitting letters in the scenario string implies
the union of the upper and lower case scenarios, i.e. the scenario (SIre) ≡
(SImre)∪ (SIMre).

Scenarios Bounds on mixing time
(si) no advantage
(s) ≥ 1/(4Φ)
(se) ≥ 1/(4Φ(P ))
(i) ≥ 1/(8Φ)
(ie) ≥ 1/(8Φ)
(SI) \ (SIre) ≤D(G) + 1
(SIreδ) ≤D(G) + 1

Table 2.2: Bounds on the mixing time for different lifting scenarios proven by [ATS17].
Note that Φ and Φ(P ) are distinct, standing for the graph conductance and
Markov chain conductance respectively. The parameter D(G) is the graph
diameter. Scenarios are given as in Table 2.1.
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2.4 Quantum walks

Quantum walks are the quantum analogue of Markov chains. The basic idea is to

replace the iteration of a stochastic matrix on a probability vector with the iteration

of a unitary matrix on a unit vector in complex Euclidean space. In doing so, the

physical model changes from a walker moving stochastically between the vertices on

a graph to a “quantum” walker moving in superposition over the vertices. Indeed,

the quantum walk phenomenon has even been used to describe certain biological

systems [MRLAG08, ECR+07].

The term quantum random walk was first coined by Aharonov, Davidovich,

and Zagury [ADZ93], and was initially conceived with a view to quantum optics

applications. Coined quantum walks began with Meyer [Mey96a, Mey96b], who

investigated them in the context of quantum cellular automata. He showed that

a one-dimensional quantum cellular automaton which is translationally invariant

and acts only locally4 displays only trivial behaviour in its time evolution. He

also showed that adding an internal spin degree of freedom could be included to

make the evolution nontrivial, and the resulting dynamics could be interpreted a

discretisation of the Dirac equation. This cellular automata picture encouraged

research into quantum walks on a line. Aharonov et al. [AAKV01] framed this

evolution as a quantum walk, renaming the internal state a coin, in reference to a

coin flip in classical random walks. The quantum walk is then defined by a coin

flip followed by a shift or hop to adjacent vertices. The paper by Aharonov et

al. [AAKV01] constituted the first more algorithmic focus on quantum walks; from

this work the field of quantum walks grew into its modern form.

There are many different quantum walks models that have been proposed, anal-

ysed and used for applications. We shall describe a number of the most relevant

models for our purposes. A more comprehensive survey can be found at [VA12] and

a more combinatorial view on various quantum walk models can be found at [GZ17].

2.4.1 Zoology of quantum walks models

Quantum walks broadly fall into two classes, discrete and continuous-time. In this

thesis we will focus mainly on discrete-time walks as they are more amenable to sim-

4The properties of translational invariance and locality are natural assumptions for a reasonable
model of a cellular automaton.
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ulation on a gate-model quantum computer, although one can use generic Hamilto-

nian simulation techniques to simulate a continuous walk. For some time it was not

known whether there was any separation in terms of computational capabilities be-

tween continuous and discrete walks. This question was settled by Ambainis, Kempe

and Rivosh [AKR04], who showed that a set of N items arranged on a grid can be

searched on an N ×N grid in time O(
√
N logN). Childs and Goldstone [CG04]

established earlier that a continuous time walk requires time Ω(N) to carry out the

same task.

We note at this stage that we will not consider open quantum walks [SP19] in

this thesis, which concern quantum walks subject to noise, of which discrete-time and

continuous-time models have been studied. In what follows, we constrain ourselves

to unitary quantum walks.

2.4.2 Continuous Quantum Walks

We begin by defining a complex Euclidean space, HV (G), spanned by basis states

|v〉 : v ∈ V (G) corresponding to the vertices of some graph, G. Concretely,

HV (G) := span(|v〉 |v ∈ V (G)) .

We also have some initial state |Ψ0〉 ∈ HV . A Continuous-Time Quantum

Walk [FG98] over time t is given by exp(iH(G)t) |Ψ0〉, where H(G) is given ele-

mentwise by

H(G)[i, j] =


−γ, vi 6= vj and {vi,vj} ∈ E;

0, vi 6= vj and {vi,vj} /∈ E;

diγ, vi = vj ;

(2.15)

with γ being the transition probability per unit time. A graph G admits perfect state

transfer [Bos03] between vertices v and u at time τ if there exists some α∈C, |α|= 1

such that exp(iH(G)τ) |v〉 = α |u〉. This phenomenon of perfect state transfer does

not occur in non-trivial classical Markov chains5 and constitutes an application

of quantum interference. In [CFG01], a graph is given in which an exponential

5We can see this since submultiplicativity of the `1-norm implies that the distribution of an
ergodic Markov chain monotonically converges to the stationary distribution. By Perron-Frobenius
theory (see main theorem and subsequent remark of [Mac00]) this distribution always has all positive
elements and so cannot be a Euclidean basis vector.
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j = 0 1 2 3 4 5 6 7 8

G4
j = {0, 1, . . . , 2n}

Figure 2.2: The graph G4: Two binary trees of depth n= 4 glued together at their leaves,
with column indices, j = {0,1, . . . ,2n}.

separation is observed between classical and quantum random walks, in the time to

traverse a particular graph. This graph, Gn, consists of two binary trees of depth

n glued together at their leaves. An example, G4, is shown in Fig. 2.2. To be

more precise, the probability of travelling from the root of the first tree to the root

of the second in time polynomial in n is shown to be exponentially faster in the

quantum case. To see this, we group the vertices of Gn into columns indexed by

j ∈ {0,1, . . . ,2n}. Column 0 has just the left root, column 1 contains the adjacent

two vertices and so on. Note that column n contains the 2n vertices in the middle

and column 2n has just the rightmost root. Analysing the classical case requires us

only to keep track of the probabilities of being in a given column. When in the left

tree (0≤ j ≤ n), the probability of moving to the right (column j→ j+ 1) is twice

the probability of moving to the left (column j→ j−1). This means that the walk

quickly moves into the middle of the graph. However, in the right hand tree the

situation is reversed, whereby moving to the right has half the probability of moving

to the left, thus making the time to destination exponential in n. More precisely,

reaching column 2n from column 0 in n steps has probability less than 2−n, meaning

that traversing the graph in a time polynomial in n has a probability exponentially

small in n.

In the quantum case, the symmetries of the Hamiltonian keep the state’s evo-

lution restricted to the 2n+ 1-dimensional subspace spanned by the states |col j〉,
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the uniform superposition over all vertices in column j, that is,

|col j〉= 1√
Nj

∑
v∈column j

|v〉 , where Nj =


2j , 0≤ j ≤ n;

22n−j , n≤ j ≤ 2n.
(2.16)

This evolution is then equivalent to a quantum walk on the path graph, for

which the transition time from root to root is polynomial in n.

2.4.3 Discrete-time quantum walks (DTQW)

We recall the fundamental idea of a quantum walk. The basic idea is to associate

a basis vector of a particular complex Euclidean space to a vertex in a digraph

and then repeatedly enact some unitary dynamics on the complex Euclidean space

that respects the structure of the digraph. In the continuous time case, as seen

in Section 2.4.2, it is straightforward to devise a way of doing this for an arbitrary

graph. When we move from continuous to discrete-time we encounter a fundamental

issue. There are some digraphs that do not support discrete unitary dynamics when

we assign a basis vector to each vertex [Sev05], so for quantum walks to be applicable

to any digraph we must introduce an auxiliary space.

We are thus forced to consider discrete-time dynamics on an extended state

space (relative to HV (G) defined in Section 2.4.2). This was first considered

by Aharonov et. al. [AAKV01] in the coined model, and later in Szegedy’s

model [Sze04].

2.4.3.1 Coined walks

The intuition for a coined walk is as follows: the quantum walker at a particular

vertex flips a unitary ‘coin’ that determines which edge to travel down, then proceeds

in superposition along the edges to the corresponding vertices. This process repeats

until the end of the walk. We now describe this formalism in more detail. The

following construction can be generalised to non-regular digraphs (see for instance,

the construction in [Ken06]), but for simplicity we restrict to the d-regular case.

Suppose we have a d-regular digraph G. Define a complex Euclidean space

associated to the vertices of G, HV (G) = span(|v〉 |v ∈ V (G)). Also define a complex

Euclidean space associated to the coin HC = span(|k〉 |k ∈ [d]). Our quantum walk

acts on the complex Euclidean space HC ⊗HV (G).
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We need two unitary operators to define a coined quantum walk, the coin op-

erator and the shift operator. We introduce the coin first: the coin C ∈ U(HC) is a

unitary operator on HC . A common coin operator is the Hadamard coin, Hd, given

by

Hd = 1√
d

∑
j∈[d]

∑
k∈[d]

ω(j−1)(k−1) |j〉〈k| , (2.17)

where ω := e 2πi
d . We call a coined quantum walk utilising the Hadamard coin a

Hadamard walk.

We need one more piece to define a coined quantum walk, the shift operator S,

for which we use the description of Godsil [GZ17]. First, for each vertex u we must

specify a linear order on its neighbours

fu : {1,2, . . . ,d}→ {v : (u,v) ∈ E(G)}. (2.18)

The vertex fu(j) will be referred to as the jth neighbour of u and the arc (u,fu(j))

the jth arc of u. For each vertex u, the shift operator S maps its jth arc to the jth

arc of fu(j), i.e. S(|j〉⊗ |u〉) = |j〉⊗ |fu(j)〉.

We can now construct one step of a coined quantum walk, described by the

unitary operator U = S · (C ⊗ IHV (G)). An initial state of the walk is some unit

vector |ψ(0)〉 ∈ HC⊗HV (G), typically a basis state |k,v〉 for some k ∈ [d], v ∈ V (G),

where we abbreviate |k〉⊗|v〉 as |k,v〉. The state after t timesteps is |ψt〉=U t |ψ(0)〉.
Thus we can totally characterise a quantum walk by the tuple (U, |ψ(0)〉).

Following Aharonov et. al. [AAKV01]6, we denote by Qt(v|ψ(0)) the probability

of measuring the vertex v at time t of the quantum walk, contingent on the initial

state being |ψ(0)〉. More concretely,

Qt(v|ψ(0)) =
∑
k∈[d]

∣∣∣〈k,v|U t |ψ(0)〉
∣∣∣2. (2.19)

We denote by Qt( · |ψ(0)) the induced probability distribution over the vertices.

In fact, we can define a general quantum walk also, as in [AAKV01]. In this

case we relax the requirement of the exact form that U can take, merely that U

must respect the structure of the digraph. More precisely, for any k,v, the vector

6They use Pt(v|ψ(0)), which we change to avoid notational clashes.
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U |k,v〉 only has support on basis states |k′,v′〉 with v′ ∈N(v)∪{v}, where N(v) is

the neighbourhood of v.

2.4.3.2 Szegedy walks

Szegedy’s model of quantum walks differs in approach from coined walks in a number

of ways, but nevertheless comes under the umbrella of a general walk, introduced at

the end of Section 2.4.3.1. The Szegedy walk has been embraced by the quantum

algorithms community as a subroutine underlying many algorithms, to be discussed

in Section 2.4.3.3. The Szegedy walk is based on the bipartite walk model.

The bipartite walk model is somewhat different to the coined model, and has

following advantages:

• It directly quantises a classical Markov chain.

• This scheme naturally encompasses non-regular graphs.

• The eigenvalues and eigenvectors of the walk operator are fully characterised

in relation to the singular value decomposition of P .

First we introduce a classical bipartite walk. Every non-bipartite walk can be

made bipartite by ‘duplicating’, which is equivalent to a walk on the bipartite double

cover of the original graph (see Figure 2.3). Let X and Y be two finite sets and P ,

Q be matrices describing probabilistic maps from X to Y and Y to X respectively.

Concretely7, P ∈ Stoch(R|Y |,R|X|) and Q ∈ Stoch(R|X|,R|Y |). Since P and Q are

stochastic, we have ∑y∈Y P [x,y] = 1 for every x ∈X and ∑x∈XQ[y,x] = 1 for every

y ∈ Y , and all P [x,y], Q[y,x] are nonnegative. If we have a single P :X →X then

we can build a bipartite walk by imposing that P [x,y] =Q[y,x] for every x,y ∈X,

i.e. by setting Q= PT. Indeed this is how Szegedy proceeds in quantising a classical

transition matrix P .

We quantise the walk (P,Q) by defining the two operators on the complex

Euclidean space

H= span{|x〉|y〉 : x ∈X, y ∈ Y }.

Define the states

|φx〉=
∑
y∈Y

√
P [x,y]|x〉|y〉

7Recall that probability distributions are represented as row vectors and so linear operators act
from the right.
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Figure 2.3: a) The paw graph, and b) its bipartite double cover. The bipartite double
cover of a graph G is the graph G⊗K2, where ⊗ is the graph direct product.

for each x ∈X and

|ψy〉=
∑
x∈X

√
Q[y,x]|x〉|y〉

for each y ∈ Y .

Let A= [φx]x∈X be the matrix composed of column vectors |φx〉 and B= [ψy]y∈Y
be the matrix composed of column vectors |ψy〉. Our walk operator, W , will be the

product of

ref1 = 2AA†− I, ref2 = 2BB†− I.

So we have

W = ref1ref2.

Let C(A) be the column space8 of A and let C(B) be the column space of B. Observe

that A†A = IX , therefore (2AA†− I)A = A. Also, for any |φ〉 ∈ C(A)⊥ we have

(2AA†−I) |φ〉=−|φ〉. Recall that for a subspace V , V ⊥ is the subspace orthogonal

to V . Thus, ref1 and ref2 are reflections about C(A) and C(B) respectively. The

matrix W :=WPQ is the quantisation of a bipartite walk (P,Q).

Szegedy [Sze04] used his construction to strengthen certain quantum search

algorithm results. Namely

• For every symmetric, ergodic Markov chain with transition matrix P the quan-

tum hitting time (appropriately defined) is at most a square root of the classical

one. This holds for an arbitrary target set M ⊆X. This definition of hitting

means a Szegedy walk can detect if a subset of vertices contains a marked
8The column space of a matrix is the span of its columns.
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element quadratically faster than a classical algorithm.

• For every symmetric, ergodic Markov chain with transition matrix that is also

state-transitive (e.g. it comes from a vertex-transitive graph9) and for a single

marked element z, when running the quantised version of P as above the

element z is observed with probability at least |X|/h, where h is the average

hitting time of the classical version of the chain. This corresponds to a speedup

in returning a marked vertex.

2.4.3.3 DTQW-based algorithms

Both the coined model and Szegedy’s model lend themselves to new algorithms based

on searching. Exhaustively listing all of these algorithms lies outside the scope of

this thesis; for clarity we briefly list several notable examples.

In the coined model:

• Element distinctness: LetM,N ∈N such that N <M . Given x1, . . . ,xN ∈ [M ],

does there exist i, j ∈ [N ], i 6= j such that xi = xj? Ambainis provides an

algorithm in [Amb04] solving element distinctness in O(N2/3) time, (compared

to O(N) queries classically) by using a quantum walk on a Johnson graph10.

• Searching on a grid: Find a marked element on a
√
N×
√
N grid. The authors

of [AKR04] use coined walks to solve this problem in O(
√
N logN) time, as

compared with O(N) time for a classical algorithm and using naïve quantum

search.

Szegedy’s model, due to its favourable spectral properties has seen more algo-

rithmic applications, with extensions to overcome its limitations. Magniez, Nayak,

Roland, and Santha extended this model [MNRS11] so that the range of Markov

chains to which Szegedy’s search results apply grew from state-transitive chains

to symmetric, ergodic chains for the searching problem. Later Krovi, Magniez,

Ozols and Roland further developed this model, giving stronger upper bounds on

the algorithm runtime [KMOR10]. Ambainis, Gilyén, Jeffery and Kokainis extend

their method to work for multiple marked vertices [AGJK19]. Recent algorithms
9A graph is vertex-transitive if its automorphism group acts transitively upon its vertices.

10Johnson graphs are a family of undirected graphs defined from systems of sets. The vertices of
the Johnson graph J(n,k) are comprised of the k-element subsets of an n-element set; two vertices
are adjacent if and only if the intersection of the two vertices (subsets) contains (k−1) elements.
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of a different flavour include walks-based Hamiltonian simulation [BN16] and fast-

forwarding a reversible Markov chain [AS18], that is, producing a quantum state

encoding the evolution of a Markov chain in time quadratically smaller than the

time to run the chain.

2.4.3.4 Mixing of Quantum Walks

Much of the discussion of the preceding sections concentrates on hitting times in

quantum walks; we shall now discuss mixing, which is more relevant for this thesis.

Let us consider a quantum walk on the m-regular digraph G. For a quantum walk,

unitarity prevents the state itself from converging, by the following argument: the `2-

norm distance between consecutive states in a quantum walk is constant, as the walk

operator is unitary. Thus the limit limt→∞U
t |ψ(0)〉 does not exist in general, as for

convergence we demand that the distance monotonically decreases with an increasing

number of timesteps. Perhaps more naturally, we can consider the convergence of the

induced probability distribution over the nodes11, Qt( · |ψ(0)). We can see that this

distribution does not converge either, using the following argument from [AAKV01].

As the quantum walk operator U is unitary, it has eigenvalues of the form eiθ. For

any ε > 0, there exists some finite t for which
∣∣∣1− eiθt

∣∣∣ ≤ ε for all eigenvalues θ.

Thus, U t |ψ(0)〉 can be made arbitrarily close in `2-distance to |ψ(0)〉 for infinitely

many times t. Unless U |ψ(0)〉 = |ψ(0)〉, the walk is periodic and Qt( · |ψ(0)) does

not converge.

However, we can talk about the well-defined notion of average mixing. Consider

the Cesàro average of Qt(v|ψ(0)) over the first T timesteps,

QT (v|ψ(0)) = 1
T

T−1∑
t=0

Qt(v|ψ(0)).

The limit limT→∞QT (v|ψ(0)) exists for any v and |ψ(0)〉, see Proposition A.1. We

denote by πqψ(0) the distribution limT→∞QT ( · |ψ(0)), in analogy with classical case

and refer to it as the quantum average mixing distribution of the quantum walk. One

can easily sample from the distribution QT ( · |ψ(0)) using the following procedure.

Choose a time t ∈ {0, . . . ,T −1} uniformly at random, run the quantum walk for t

timesteps, then measure which node the walker is at. The vertex will be distributed

11As defined in Section 2.4.3.1
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according to QT ( · |ψ(0)).

We are now in a position to define the ε-quantum average mixing time,

Mq
ε = max

|ψ(0)〉∈Ψ
min
T∈Z+

{
T
∣∣∣∀t≥ T, ∥∥∥QT ( · |ψ(0))−πqψ(0)

∥∥∥
TV
≤ ε
}
, (2.20)

where Ψ is the allowed set of starting states, typically the basis vectors

{|k,v〉 |k ∈ [m], v ∈ V (G)}.

Examples of quantum mixing. The mixing of a coined quantum walk on the

n-cycle, Cn, was rigorously analysed in [AAKV01]. More concretely they perform

the Hadamard walk on a complex Euclidean space isomorphic to C2⊗Cn. The

basis states for the coin space are {|L〉 , |R〉}, standing for ‘left’ and ‘right’. The coin

operator is C =H2 = 1√
2

[
1 1
1 −1

]
and the shift operator S acts as

S |L,i〉= |L,i−1modn〉 ;

S |R,i〉= |R,i+ 1modn〉 .
(2.21)

It is shown for this walk that the mixing time Mq
ε = O(n log(n) 1

ε3 ), demonstrating

quadratic speedup in mixing as compared with the classical walk on the cycle (for

fixed precision). Interestingly, this speedup is seen in the lifted Markov chain also.

We also note that the inverse polynomial dependence on ε can be made inverse

polylogarithmic using an amplification scheme detailed in [AAKV01].

We briefly list further progress on analysing mixing for particular graphs.

• Ahmadi, Belk, Tamon and Wendler consider mixing of continuous walks on

circulant graph [ABTW03].

• Fedichkin, Solenov and Tamon study mixing of continuous-time walks on the

cycle [FST06].

• Marquezino, Portugal and Donangelo investigate mixing of discrete-time walks

on the hypercube [MPAD08].

• Marquezino, Portugal and Abal study mixing on a 2D lattice embedded on a

torus [MPA10].

• Kieferová and Nagaj examine mixing on necklace graphs [KN12].
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• Chakraborty, Luh and Roland consider mixing of continuous walks on Erdős-

Rényi random graphs [CLR19].

Upper and lower bounds. The bounds on mixing time that have been derived in

the literature usually only hold for particular family of graphs. There has also been

research into general-purpose (but necessarily looser) bounds.

Aharonov and colleagues [AAKV01] prove a general lower bound on the quan-

tum mixing time Mq
ε = Ω(1/Φ), where Φ is the graph conductance, for graphs of

bounded degree. They also provide an upper bound. Godsil and Zhan [GZ17] pro-

vide a more general bound than this upper bound. For completeness, we provide

the proof of the following proposition in Appendix A, Corollary A.1.

Proposition 2.1 (Godsil, Zhan [GZ17, Corollary 9.1]) Suppose the quantum walk

matrix U has spectral decomposition U =∑r eiθrFr, where Fr are the spectral idem-

potents and eiθr the eigenvalues. Then, the quantum average mixing time satisfies

Mq
ε ≤

2|E|
ε

∑
r 6=s

1
|eiθr − eiθs |

2.4.3.5 Implementation on a Quantum Computer

Since a quantum walk consists of a unitary operator U repeatedly applied to an

initial state |ψ(0)〉, it is readily amenable to simulation on a quantum computer

(recall the discussion on implementing arbitrary unitary operators in Section 2.1.2).

Indeed, assigning a computational basis state to each basis state of the walk space

H allows one to simulate a quantum walk on an exponentially large graph. For an

efficient simulation, one needs to efficiently prepare the initial state |ψ(0)〉. Usually
the initial state of interest corresponds to starting on a particular vertex; the typical

encoding of quantum walk states would make this a computational basis state and

so easy to prepare.

2.4.3.6 Universality of quantum walks

Going in the other direction, quantum walks have been shown to be universal

for quantum computation in the discrete [LCE+10] and continuous-time [Chi09]

regimes. More precisely, suppose we are given an input quantum state |ψin〉 and a

circuit C of depth L, such that the computation is in state |ψout〉 having applied C.
One can construct a graph and associated quantum walk such that the state of the
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quantum walk mimics that of the computation, namely, the initial state of the walk

is (appropriately encoded) |ψin〉 and the output state is |ψout〉, and the walk only

requires a number of steps that is a modestly growing function of L.

We briefly describe how this is done in the discrete time case, with the con-

tinuous time case being similar. This universality was originally proved in the

continuous-time case by Childs [Chi09], with a similar construction given for coined

quantum walks by Lovett et al [LCE+10], which we describe below.

The general idea is to first represent the given quantum circuit C using a par-

ticular universal set of gates, namely {T,hadamard,cnot} in a manner similar to

the discussion in Section 2.1.2. These gates are represented by the matrices

T =

1 0
0 eiπ/4

, hadamard = 1√
2

1 1
1 −1

, cnot =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

.

An illustration of this construction is given in Figure 2.4. This circuit representation

is then “expanded” into a representation in which each computational basis state is

represented by a wire, and so circuit elements in the usual quantum circuit repre-

sentation are expanded in this picture. Specific sets of vertices and edges for each

circuit element are used. For each degree-d vertex, a d-dimensional Grover coin G(d)

is used as the coin, where

G(d) :=


2
d · · · 2

d
... . . . ...
2
d · · · 2

d

− Id.

The combination of the four-dimensional Grover coin with a shift enacts perfect

state transfer, allowing one to draw the “wires” in a given circuit. The other circuit

elements are constructed using similar gadgets. A coined walk is carried out for

a number of steps sufficient to “complete the computation”. Measurement at the

output arcs (appropriately normalised) then gives the same output statistics as the

original computation to be simulated. This is made more concrete in Figure 2.4.
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Figure 2.4: Illustration of the universality construction for coined quantum walks. In
panel (a) we see a circuit to be emulated by the quantum walk. A hadamard
operation is performed on qubit 3 followed by two cnot gates. Finally, a
phase gate is applied on qubit 3. In panel (b) we see the equivalent quantum
walk graph. The edges are directed from left to right. For each basis state the
input state amplitude is split equally between the equivalent input arcs. The
boxes marked “H” represent the gadget for the hadamard, which is shown in
panel c). For a vertex of degree d the Grover coin G(d) is used. After running
the quantum walk for the full length of the computation (i.e. enough steps
to traverse the graph from left to right), measuring gives the same output
statistics as the circuit output.
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2.4.4 Quantum walks with memory

Recalling the discussion in Section 2.3, lifted Markov chain can in some sense be

thought of as a random walk with memory, for instance, in the Diaconis lift of

Figure 2.1, the current position of the walker encodes the location of the previous

state at any given timestep with the current state. One might think of extending

this principle to quantum walks. Indeed there is a small literature on this topic,

with notable references [FAJ04, McG10]. The evolution of these walks on the path

graph is studied and compared with classical random walks and coined quantum

walks.

2.5 Combinatorial optimisation
Combinatorial Optimisation [KV12] is the search for an optimum object in a finite

collection of objects. Combinatorial optimisation problems see wide and numerous

applications in industry [PH02, PK03, KPRS09], as well as continuing substantial

theoretical interest [GJ79, AB09].

To solve such problems mathematically we typically describe the finite collec-

tion in some concise representation (usually a graph) and the number of objects is

exponential in the size of the representation (say, Hamiltonian cycles12).

Curiously, most interesting combinatorial optimisation problems are defined on

digraphs, and usually fit into two classes: their decision version is in P, or is NP-

complete. We give two examples:

Problem 2.1. MinimumSpanningTree

Instance: A graph G and edge weights c : E(G)→ R.

Task: Find a spanning tree T in G whose weight c(T ) =∑
e∈E(T ) c(e) is minimum,

or decide that G is not connected.

Problem 2.2. MaxCut

Instance: A graph G and (nonnegative) edge weights c : E(G)→ R+.

Task: Find a cut S in G with maximum total weight c(S) :=∑
e∈S c(e).

Recall that a spanning tree is an acyclic subgraph containing every vertex of

V (G), and a cut S ⊆ E(G) is a collection of edges that if removed from the graph,

12A Hamiltonian cycle is a cycle that visits every vertex in a given graph.
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partition the vertices into two subgraphs, disconnected from one another. The first

problem is solvable in polynomial time whereas the second problem is NP-hard.

There is also the notion of solving a combinatorial optimisation problem ap-

proximately. In this case one doesn’t return an optimal solution, but a solution that

has a value that is within a guaranteed distance to the optimal value. One can

even solve a combinatorial optimisation heuristically, with no success guarantees,

but empirically demonstrated success.

2.5.1 Semidefinite approximations

Many interesting combinatorial optimisation problems are NP-hard, and so there

is no efficient exact solution. Nonetheless, efficient approximation algorithms exist,

with some theoretical guarantee on closeness to the optimal value. One successful

scheme for approximating solutions to combinatorial optimisation is semidefinite

programming (SDP), wherein one forms an SDP whose optimal solution corresponds

to a (not generally optimal) solution of the original problem. The SDP is known as

the SDP relaxation of the original problem. SDPs are well known to be solvable in

polynomial time using interior point methods [BV09]

The first result launching this scheme of research was presented by Goemans

and Williamson [GW95]; they provided a polynomial-time solution to MaxCut with

a cut that is guaranteed to have weight > 0.878 times the optimal solution. Indeed,

there are SDP relaxations that can be applied to general combinatorial optimisation

problems, such as the Lasserre Hierarchy [Las02], with trade-offs between accuracy

and computational complexity. A good survey can be found at [Lau03].

A semidefinite program takes the following form. Let X ∈Pos(Rn) be a positive

semidefinite matrix. To specify a linear function ofX, C : Pos(Rn)→R, we can write

C(X) = C •X :=
n∑
i=1

n∑
j=1

C[i, j]X[i, j] = Tr
(
CTX

)
(2.22)

The SDP then takes the form

minimise C •X,

subject to Ai •X = b[i], i ∈ [m],

X � 0,

(2.23)
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where C and the Ai are symmetric n×n matrices and b[i] is the ith component of

the vector b ∈ Rm. We are thus interested in minimising a linear function over the

cone of positive semidefinite matrices, subject to affine constraints.

There is also the associated Langrangian dual program, given by

maximise
m∑
i=1

b[i]y[i] = bTy

subject to
m∑
i=1

Aiy[i]� C

y ∈ Rm

(2.24)

In general, weak duality holds, that is, C •X ≥ bTy for all X � 0, y ∈ Rm.

Under certain circumstances, equality holds for the optimal (X,y) and this is known

as strong duality.

2.5.2 Markov chain approaches to Combinatorial Optimisation

Markov chains form the theoretical foundation for the metaheuristic approach to

combinatorial optimisation [BR03, BLS13], which see the most widespread use in

industrial applications.

As an illustration, we shall briefly show how to use the Metropolis algorithm

described in Section 2.2.2 to solve combinatorial optimisation problems. We describe

the method outlined in [LPW09, Example 3.2]. Let f be a real-valued function

defined on the vertex set of a graph. The goal is to compute

f? := max
x∈Ω

f(x).

Note that many combinatorial optimisation problems can be cast in to this form,

where |Ω| is exponentially large. Consider for instance the problem of finding a

Hamiltonian cycle in a graph G: one forms a new graph in which each vertex x is a

permutation of the vertices in G, an edge is drawn between permutations x and y

when they are the same up to a pairwise swap of two vertices. Defining

f(x) =


1, x is a Hamiltonian cycle in G

0, otherwise,
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and solving for f? decides if there is a Hamiltonian cycle in G. Similar constructions

can be devised for many other combinatorial optimisation problems.

Problems of this type can be solved using the Metropolis algorithm (see Sec-

tion 2.2.2), in the following manner. Fix some λ≥ 1 and define

πλ(x) = λf(x)

Z(λ) ,

where Z(λ) = ∑
x∈Ωλ

f(x) is the partition function. Then, run the Metropolis al-

gorithm with πλ as the target distribution. Note that we don’t need to compute

Z(λ) which may well consist of exponentially many terms, due to the design of the

Metropolis chain transition probabilities.

We then define the set of solutions Ω? := {x ∈ Ω |f(x) = f?}. Computing the

limit

lim
λ→∞

πλ(x) = lim
λ→∞

λf(x)/λf
?

|Ω?|+∑x∈Ω\Ω? λ
f(x)/λf?

=
1{x∈Ω?}
|Ω?| .

Concretely, this means as λ→∞, the Metropolis chain will converge to a sta-

tionary distribution, uniformly distributed over the global maxima of f . Impor-

tantly, the speed of this convergence is not known in general (apart from a loose

upper bound inverse in the spectral gap), and for the case of NP-hard problems,

must be necessarily superpolynomial unless P = NP.

2.5.3 Quantum Approaches to Combinatorial Optimisation

There has been much research interest in solving combinatorial optimisation prob-

lems on a quantum computer, due to asymptotic improvements in algorithm runtime

found for many computational problems (see Section 2.1.3). For completeness, we

describe some of the approaches below.

2.5.3.1 Quantum Metropolis

There has been much research effort into producing a quantum algorithm with

proven speedup over the Metropolis-Hastings algorithm for sampling from prob-

ability distributions. Since this line of research is not the focus of this thesis, I

merely mention briefly an important result, linking quantum algorithms to MCMC

(Section 2.2.2). See also [Mon15] for more general results in this area.

Typically, the focus is sampling from thermal distributions, that is, probabil-

ities pi = exp(−βEi)/Z, where β is a real-valued parameter known as the inverse
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temperature, Ei is the energy of the ith state and Z := ∑
i exp(−βEi), the parti-

tion function. The end result of this line of research is the algorithm of Yung and

Aspuru-Guzik [YAG12] for sampling from a thermal distribution. The algorithm has

a runtime of O
(

1√
1−λ2

)
, where 1−λ2 is the spectral gap of the associated transition

matrix (in this case, the classical Metropolis chain, see Eq. 2.11).

2.5.3.2 Quantum SDP algorithms

Here we describe the recent algorithm by Brandão and Svore for solving SDPs [BS18].

The algorithm has worst-case running time

O
(
n

1
2m

1
2poly(log(n), log(m),R,1/δ)

)
,

with n and s respectively the dimension and row-sparsity13 of the input matrices, m

the number of constraints, δ the accuracy of the solution and R an upper bound on

the trace of the optimal solution. This gives an unconditional square-root speedup

in both m and n over the best currently known classical methods, while incurring

large polynomial overhead in R and δ.

The authors also show that the algorithm is nearly optimal (in n and m) by

proving a quantum lower bound of Ω(
√
n+
√
m) for solving SDPs with constant s,

R and δ. This is in contrast to the classical lower bound of Ω(n+m).

For a different input model, which we shall go into later, the algo-

rithm offers an exponential speedup over classical methods, with runtime

O
(
poly(log(n), log(m), r,R,1/δ)m 1

2
)
, where r is an upper bound on the rank of

any input matrix.

The algorithm in [BS18] solves SDPs of the form:

max Tr(CX),

∀j ∈ [m] : Tr(AjX)≤ b[j],

X � 0,

(2.25)

min b ·y,
m∑
j=1

Ajy[j]� C,

y ≥ 0,

(2.26)

where the matrices {A1, . . . ,Am,C} are n×n and Hermitian and b ∈ Rm. Eqs. 2.25

and 2.26 represent the primal and dual problems respectively.
13The row-sparsity is the nonzero elements in a row, maximised over all the rows.
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Without loss of generality we can assume that

‖Ai‖ ≤ 1, ∀ i ∈ [m], and ‖C‖ ≤ 1, (2.27)

with ‖·‖ being the operator norm, by normalising the elements of b and optimal

solution appropriately.

Since the algorithm runtime depends intimately on the input and output models,

we shall describe these in a little more detail. The matrices {A1, . . . ,Am,C} and the

vector b ∈ Rm are the input to the algorithm. For b, we assume there is an oracle

PB which acts as

|j,z〉 PB7→ |j,z⊕ b[j]〉 , (2.28)

where j ∈ [m+ 1] and b[j] is given as a truncated bit string representation.

For the {A1, . . . ,Am,C :=Am+1}, there are two input models.

Input Model 1: We have an oracle PA that given the indices j ∈ [m+ 1], k ∈ [n]

and l ∈ [s] computes the bit string representation of the lth non-zero element

of the kth row of Aj , i.e.

|j,k, l,z〉 PA7→ |j,k, l,z⊕Aj [k,fjk(l)〉], (2.29)

with fjk : [r]→ [N ] giving the lth non-zero entry of row k in matrix Aj .

Input Model 2: Assume there is an oracle PA′ which prepares copies of the eigen-

states of the input matrices and the corresponding eigenvalues. More con-

cretely, for i ∈ {0,1, . . . ,n}, let

Ai =
ri∑
l=1

κil

∣∣∣ηil〉〈ηil ∣∣∣ , (2.30)

be the spectral decomposition of Ai, with ri ≤ r. Then we assume PA′ , given
i, l as input, approximates (to accuracy ν > 0) of a copy of quantum state

∣∣ηil〉
and the corresponding eigenvalue κil.

Output: We must note that writing down the full solution (either X or y) will

eliminate any speedup as we need Θ(n) time for this task. Taking this into

consideration, the algorithm’s output provides:
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• An estimate of the optimal objective value.

• An estimate of ‖y‖1 and/or Tr(X).

• Samples from the distribution p := y/‖y‖1 and/or from the quantum state

ρ :=X/Tr(X).

Van Apeldoorn and colleagues have improved the runtime of this algorithm with

significantly reduced polynomial dependence on R, r and δ [vGGdW17, vAG18], un-

der similar input and output models. Recently, van Apeldoorn and Gilyén provided

an application of these methods to computing Nash equilibria of two-player zero-sum

games in sublinear time [vAG19].

There has yet to be a demonstrated unconditional asymptotic speedup of these

methods for a combinatorial optimisation problem, which remains a tantalising open

question.

2.5.3.3 Quantum Approximate Optimisation Algorithm (QAOA)

The Quantum Approximate Optimisation Algorithm (QAOA) [FGG14] of Farhi,

Goldstone and Gutmann is a general method for solving combinatorial optimisation

problems approximately. The approach goes roughly as follows: define unitaries

U(β) and U(γ) parametrised on real values β,γ ∈ [0,2π], that will depend on the

optimisation problem at hand. Then, for an appropriately initialised input state, |s〉
(a uniform superposition over all basis states), apply the evolution

U(βp)U(γp) · · ·U(β1)U(γ1) |s〉 := |γ,β〉 , (2.31)

where we define the length p vectors γ := [γ1 · · ·γp]T and β := [β1 · · ·βp]T. We then

measure in the computational basis and evaluate the cost function operator C. The

expected value of C is given by Fp(γ,β) = 〈γ,β|C |γ,β〉. Defining Mp as the maxi-

mum Fp over all angles, the authors of [FGG14] show that

lim
p→∞

Mp = max
z

C(z) (2.32)

where the z are basis states representing the objects being optimised over.

Finding the optimal γ,β for a given problem efficiently is non-trivial. The

authors demonstrate an efficient scheme for the case when p is fixed. Furthermore,
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they analyse the performance of the algorithm for MaxCut on 2-regular and 3-

regular graphs at fixed p.

In the work [HWO+17], the authors take the general scheme of QAOA and

apply it to 8 specific problems, providing the operators U(β) and U(γ) for each

problem.

The problem of choosing the parameters γ,β efficiently in the general case

remains open. This method lies within the class of heuristics, seen to be applicable

for NISQ machines [OMA+17].

2.5.3.4 Exact Methods

Ambainis and colleagues [ABI+18] develop quantum techniques for dynamic pro-

gramming, a classical technique that has long been used in the solution of com-

binatorial optimisation problems. They demonstrate speedups for the travelling

salesman problem and minimum set cover problems.

Even more recently, Montanaro has derived a quantum algorithm with near

quadratic improvement for branch-and-bound algorithms [Mon19], which are classi-

cally used to exactly solve many combinatorial optimisation problems.

2.5.3.5 Quantum Annealing for Combinatorial Optimisation Prob-

lems

While so far discussion has focused only on gate-model quantum algorithms (with

which this PhD is concerned), one must not forget that for combinatorial optimisa-

tion problems there is a large community of researchers applying quantum annealing

as a heuristic for solving these problems. Indeed this area was the first (and arguably

at the time of writing remains the only) to represent quantum methods being prac-

tically used. The company D-Wave produces commercial quantum annealers such

as its 2X machine [D2X].

Quantum annealing is the finite temperature analogue of adiabatic quantum

computation [FGGS00], which works as follows: A quantum system is prepared

in the known ground state of some Hamiltonian, HB. Then, the Hamiltonian is

interpolated betweenHB andHP , where the ground state ofHP encodes the solution

to some problem of interest. Provided the interpolation is slow enough, the system

remains in its ground state throughout the evolution and ends up in the solution

ground state. The hope is that sampling the state at the end of this evolution



2.5. Combinatorial optimisation 61

returns a state encoding a close to optimal solution. The papers [KXB+16, KYR+17]

demonstrate D-Wave’s recent progress in this area in detail.

2.5.4 The graph isomorphism problem

A combinatorial optimisation problem that provides motivation for a large part of

this thesis is the graph isomorphism problem.

Problem 2.3. GraphIsomorphism

Instance: A graph G and a graph H.

Task: Find bijections ΦV : V (G) → V (H) and ΦE : E(G) → E(H) such that

ΦE({u,v}) = {ΦV (u),ΦV (v)} for all {u,v} ∈ E(G), or decide that G and H are

not isomorphic.

This problem essentially asks if there is a way to permute the vertex labels of

G and H such that their edge sets are the same.

Much of the interest in GraphIsomorphism comes from its unknown com-

plexity status. Indeed, GraphIsomorphism ∈NP and is not known to be NP-hard.

However, it is unlikely that GraphIsomorphism is NP-hard as this would imply col-

lapse of the polynomial hierarchy [GMW91]. On the other hand, there is no general

polynomial-time algorithm for GraphIsomorphism, even after decades of intense

research. Interestingly, the SubgraphIsomorphism problem is NP-complete [GJ79,

GT48]. SubgraphIsomorphism seeks to find an isomorphism between a subgraph

of G and the graph H. It can however be solved in polynomial-time if G is a

forest and H is a tree, but remains NP-complete if G is a tree and H is a for-

est. GraphIsomorphism is the SubgraphIsomorphism problem specialised to

the case |V (G)|= |V (H)| and |E(G)|= |E(H)|.

The current state of the art for solving GraphIsomorphism with proven run-

time complexity is the recent quasipolynomial time algorithm of Babai [Bab15],

whereas the most practically used scheme is the nauty program of McKay and

Piperno [MP14]. Also, there are many classes of graph for which GraphIsomor-

phism admits a proven polynomial-time algorithm, for instance digraphs with a for-

bidden minor [Pon91, Gro10]. This deep result includes planar graphs and graphs

of bounded genus. Conversely, there are certain classes of graphs for which solving

graph isomorphism is as difficult as in the general case, in which case the class is
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described as GraphIsomorphism-complete. For instance, deciding if two bipar-

tite graphs are isomorphic is GraphIsomorphism-complete [UTN05]. Many such

classes can be found in [ZKT85].

Many of the recent advances in GraphIsomorphism, including Babai’s

recent breakthrough [Bab15] and the nauty/traces programs of McKay and

Piperno [MP14] use a group theoretic approach.

A classical approach to graph isomorphism is known as colour refinement. The

1-dimensional version goes as follows: the vertices of the graphs are labelled/coloured

by their degrees. Then, for each iteration every vertex label is extended by the

multiset14 of the labels of its neighbours. The labels are then replaced by their

positions in the lexicographic order of all the occurring labels. The algorithm stops

when the (multi-)set of vertex labels stabilises. The multisets of labels of G and H

are compared to determine if they are isomorphic. A stable colouring can be found

in at most n refinement steps. This can be computed in time O((n+m) logn), where

m is the number of edges [CC82] (note that this method fails for all regular graphs

by construction). This method was extended by Weisfeiler and Lehman [WL68] to

the so-called k-dimensional WL method, which considers k-tuples of vertices. For

a long time it was thought that this method solved GraphIsomorphism but had

not been proven correct. However, Cai, Fürer and Immerman [CFI92] constructed

a family of graphs for which the k-WL method fails to distinguish non-isomorphic

graphs.

2.5.4.1 Quantum approaches to graph isomorphism

As discussed earlier, GraphIsomorphism is NP-intermediate. Another famous

problem that is NP-intermediate is Factoring: the problem of determining the

prime factors of an integer. Indeed, since Shor [Sho97] showed that Factoring ∈
BQP there have been many attempts to find efficient quantum algorithms for

GraphIsomorphism, which we briefly describe below. A good (but incomplete)

survey is given in [Bac10]. This work has so far not been successful in delivering

an efficient solution to GraphIsomorphism but has stimulated further theoretical

and practical developments. The approaches fall into three broad categories.

Hidden subgroup problem. Recall the hidden subgroup problem, as solved by
14A multiset is merely a set with repeated elements allowed.
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Shor’s algorithm [Sho97]: you are given query access to a function f from a

group G to a set S such that f is constant and distinct on an left cosets of an

unknown subgroup H. Find H by querying f . Quantum computers can solve

the hidden subgroup problem in time poly log |G| when the group G is a finite

Abelian group. Indeed, if one can achieve the same for the symmetric group

(which is non-Abelian), this yields a polynomial-time algorithm for GraphI-

somorphism. Attempts to this end have been documented in [CvD10, EH99].

Index Erasure. The approach based on a procedure called index erasure was first

described in print by Aharonov and Ta-Shma [ATS03]. The approach rests on

being able to efficiently prepare the (unnormalised) quantum state

|αG〉=
∑
σ∈Sn
|σ(G)〉, (2.33)

whereG is a graph on n vertices and Sn is the symmetric group over n elements.

The state |αG〉 represents a superposition over all labellings of the graph G for

a suitably defined encoding. For two isomorphic graphs, the two states will be

the same and for non-isomorphic graphs the states will be orthogonal. A simple

circuit (the so-called ‘swap test’) can distinguish these two scenarios. One

might assume that since the uniform distribution over all labellings of a graph

is easy to sample from that it is easy to prepare |αG〉. However, this line of

argument leads to efficient preparation of the state |βG〉=∑
σ∈Sn |σ〉⊗|σ(G)〉.

The task of recovering |αG〉 from |βG〉, that is, “erasing” the index |σ〉 is

called index erasure, in the oracle setting. Lindzey and Rosmanis have recently

proved tight exponential lower bounds on this task [LR19], thereby providing

strong evidence against this line of attack for finding an efficient quantum

algorithm.

Quantum invariants. The final approach considered is a more heuristic one,

where graph invariants are designed according to a quantum physical prin-

ciple. The effectiveness of these methods is hard to prove and has yet to be

conclusively demonstrated as effective for GraphIsomorphism in a practical

way. Papers such as [Rud02, EHSW06, MRS+17] present various proposals.

Indeed, many of these methods can be shown to be equivalent to the k-WL



64 Chapter 2. Background

method for certain k [AIP08, BP09].

Recently, Atserias and colleagues [AMR+19] define the notion of quantum iso-

morphism, inspired by a two-player, non-local game such that classical players can

win with the game with certainty if and only if the graphs G and H are isomorphic.

Quantum isomorphism derives from perfect quantum strategies for this game. The

authors provide examples of quantum isomorphic graphs that are not isomorphic.



Chapter 3

Lifted Markov chains and quantum

walks

In this chapter, we set out to answer Research Question 1, which is restated below

for convenience.

Research Question 1 (Lifted Markov chains and quantum walks) Which compu-

tational resources are required for a classical random walk to replicate the mixing

dynamics of a quantum walk?

The quantum average mixing distribution allows one to study the long-term

behaviour of quantum systems defined on graphs. One may also be interested in

sampling from this distribution as an algorithmic primitive, for use in Markov chain

Monte Carlo for instance. Particularly now in the so-called Noisy Intermediate

Scale [Pre18] (NISQ) era of quantum computation it is important to understand

which distributions quantum computers allow us to sample from efficiently, as this

is seen to be one of the first applications of quantum computers. By the same token

it is also important to know which of these distributions cannot be sampled from

efficiently using classical computation. Indeed, it is widely thought (at the time of

writing) quantum computational supremacy [HM17] will first be demonstrated via

sampling 1.

As discussed in Section 2.4, the quantum average mixing time has been studied

in various levels of generality. Lifted Markov chains, briefly addressed in Section 2.3,

were devised at roughly the same time as quantum walks and were introduced as

a device to speed up the mixing of classical Markov chains, much in the same vein
1Not from the average mixing distribution of a quantum walk however.
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as quantum walks. As such, it is curious that up until the time of conducting this

work there had been no formal comparison made in the literature. We were spurred

on by the work of Apers, Sarlette and Ticozzi [ATS17] on lower bounds on mixing

times for liftings to carry out this comparison. Indeed, at the same time the work

in this chapter was conducted the same authors were concurrently carrying out a

similar comparison themselves [AST18], which we discuss further in Section 3.4.

We will briefly summarise our result, then rigorously define lifting in Section 3.1

as a continuation of the discussion in Section 2.3, followed by the full proof of our

results in Section 3.3.

We construct a lifted Markov chain that mixes to the quantum average mixing

distribution defined in Section 2.4.3.4. We prove that the lifted chain mixes exactly

to this distribution in time equal to the diameter of the graph upon which the

quantum walk takes place. Moreover, we show that computing the lifting takes time

O(n8), where n is the number of vertices in the graph. Intuitively, this means that

a lifted chain can be constructed that simulates the mixing of a quantum walk in a

shorter time it takes to carry out the walk. However, using this lifting only confers

an advantage over the native quantum walk if the quantum walk takes T = Ω(n8)

timesteps, taking into account computation of the transition probabilities. More

precisely, our lifted chain mixes to the average mixing distribution of a quantum

walk of choice; the full result is given in Theorem 3.1 and Corollary 3.1. The

average mixing distribution after T timesteps corresponds to sampling uniformly

at random a time t ∈ {0,1, . . . ,T − 1}, running the quantum walk for t timesteps,

then measuring the position of the walker. This procedure is used as the basis for a

definition of quantum mixing time instead of simply running for T timesteps then

measuring, as the latter process does not converge in the limit of infinite T .

The proof of Theorem 3.1 proceeds in the following manner: we begin with

a quantum walk on the graph G over T timesteps. We then use a lifting defined

by Apers, Ticozzi and Sarlette in [ATS17] which we call the d-lifting, that allows

diameter-time mixing to any probability distribution over the vertices of G with full

support, taking the quantum average mixing distribution as the target distribution.

We further prove that the runtime of computing this lifting is polynomial in n, and

that the quantum average mixing distribution has full support for any quantum walk
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on a connected m-regular graph.

3.1 Lifting: a rigorous definition
A graph Gc is a lift, or lifting, of G if there exists a weak homomorphism c :Gc→G.

Following Apers, Ticozzi and Sarlette [ATS17], we denote by c−1 : V (G)→ 2V (Gc) the

map that takes as input the vertex k ∈ V (G) and outputs the set of nodes j ∈ V (Gc)

for which c(j) = k. The homomorphism c induces a linear map from V (Gc) into

V (G), which we can represent using the matrix C with elements

C[i, j] =


1, if c(j) = i;

0, otherwise,
(3.1)

where i ∈ V (G), j ∈ V (Gc). We can now define a lifted Markov chain.

Definition 3.1. (c-lifted Markov chain) Let G be a finite, directed graph and let

MG = (P,p(0)) be a Markov chain on G. Furthermore, the graph Gc is a lift of G via

the mapping c :Gc→G. A c-lifted Markov chain for MG, M c
G, is the Markov chain

(P c,pc(0)) on Gc whose initial distribution pc(0) satisfies p(0) = pc(0) ·CT.

We note as a direct consequence of Definition 3.1 that the transition matrix

P c satisfies P c[u,v] = 0⇐= {c(u), c(v)} 6∈ E(G)∧ (c(u) 6= c(v)). The lifted Markov

chain M c
G proceeds in the usual way, by repeated application of P c. The probability

distribution over V (G) is given at time t by the marginal p(t) = (pc)(t)CT. We shall

call MG the collapsed chain with respect to the lifted chain M c
G.

The definition of a c-lifting gives some freedom for the form of P c and pc(0),

even for a fixed homomorphism c. Usually, we will specify the graph Gc, transition

matrix P c and initial distribution pc(0) and refer to this specific configuration as the

c-lifting.

Suppose we have a lifted Markov chain M c
G lifted from MG, with the lifted

graph Gc related to G via the homomorphism c. We define the ε-mixing time of the

marginal,Mc
ε, of M c

G, for ε > 0 as

Mc
ε = max

pc(0)∈Pc
min
T∈Z+

{
T
∣∣∣∀t≥ T, ∥∥∥pc(0) · (P c)t ·CT−π

∥∥∥
TV
≤ ε
}
, (3.2)

where π is the stationary distribution of MG, Pc is the set of allowed starting
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distributions of M c
G and C is the linear map induced by the homomorphism c. Note

that Mc
ε ≤Mε for all ε. This comes from the following: we do not set Pc as all

basis states in the lifted state space, ∆(V (Gc)), analogously to the definition ofMε

(indeed, if this were the case we would have equality for all ε). Instead, we are

allowed to choose a mapping from the initial state on the collapsed Markov chain

to an initial state on the lifted chain. The set Pc is then the image of P under

this mapping. The map is chosen so as to prune the ‘bad’ starting states from Pc

and give a faster mixing time of the marginal, yielding the inequality. An important

result of [ATS17] is that for a lifted Markov chain to give any speedup over its coarse-

grained chain for an arbitrary graph, we must be allowed to choose this initialisation

mapping (see Table 2.2, Scenario S).

We shall say for a lifted chain M c
G that the marginal has mixed at a time T

when
∥∥∥pc(0) · (P c)t ·CT−π

∥∥∥
TV
≤ ε. Furthermore, a lifted chain may have a marginal

that has mixed without itself mixing, that is, pc(0) · (P c)t ·CT will converge to π

but pc(0)(P c)t won’t necessarily converge to its stationary distribution, πc; indeed

πc doesn’t even have to exist [ATS17].

In [CLP99], the authors show that for any Markov chain MG, every lifted

Markov chain satisfies

Mc
1/4 ≥

1
2Φ (3.3)

with an upper bound of O
(
log
(

1
miniπi

)
1
Φ

)
in the case of reversible chains, Markov

chains where the flow through any cut X ⊆ V (G) is the same in both directions.

For the bounds above, the proofs show existence of these optimal liftings, but do

not provide an efficient (that is, polynomial-time) procedure to construct the lifting.

The optimal lifting in [CLP99] relies on the solution of an NP-hard problem. Note

also that these bounds hold for the case when Pc is taken as the set of distributions

with all probability mass on any basis state in the lifted space. We have already

seen in Section 2.3 that these bounds can be beaten; in Section 3.2 we will see how.

3.2 A lifting with diameter-time mixing

We now introduce another lift, which we call the d-lifting, due to Apers, Ticozzi

and Sarlette [ATS17]. First, we need the following definition. Let G be a connected,

directed graph. The tensor product, or direct product of graphs G and H, denoted by
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G⊗H, has vertex set V (G)×V (H) and an arc ((i, j),(k, l)) if and only if (i,k)∈E(G)

and (j, l) ∈ E(H).

Proposition 3.1 (d-lifting [ATS17, Theorem 2]) Let MG = (P,p(0)) be a Markov

chain on a connected graph G on n vertices. Moreover, P has stationary distribution

π with all strictly positive elements. Then, there exists a d-lifted Markov chain,Md
G,

on a graph Gd having D(G) ·n2 vertices, for whichMd
ε ≤D(G), where D(G) is the

diameter of G and ε > 0 is arbitrary.

Observation 3.1. The lifted chain’s marginal mixes to π in D(G) timesteps, to

arbitrary precision ε, a remarkable fact.

In their statement of this result in [ATS17], the authors stipulate that this

lift has certain restrictive properties (it belongs to the SiMRE design scenario

of Table 2.1). The first is that the starting distribution for the lift is ini-

tialised according to a particular mapping Dinit : ∆(V (G))→ ∆(V (Gd)) i.e. Pd ={
p(0) · Dinit

∣∣∣p(0) ∈∆(V (G))
}
in the definition of mixing of the marginal (3.2). The

proposition does not contradict the conductance lower bound given in [CLP99] as

discussed earlier, because this is defined for Pc being the set of all probability dis-

tributions over the lifted vertices (or equivalently, distributions with all probability

concentrated at basis states). Indeed, our definition of a lifted chain allows us this

choice, since pd(0) satisfies pd(0) = p(0) · Dinit by construction, where d is the linear

map induced by the lift homomorphism.. The second restriction is that the lifted

chain having a marginal that has mixed does not necessarily imply that the lifted

chain itself has mixed. Since we will only care about the marginal mixing to π, this

is not important for us. We must also allow for the lifted chain to be reducible, that

is, Gd is not a connected graph. Again, this does not concern us.

Now we describe the d-lifting. The lifting rests on the following claim: let G be

a graph on n vertices and let p,p′ ∈∆(V (G)) be probability distributions on V (G).

Then, there is a set of D(G) transition matrices on G, {P (i)}D(G)
i=1 , called a stochastic

bridge such that p′ = pP (1)P (2) · · ·P (D(G)−1)P (D(G)). We shall prove this claim

in Claim 3.1.

To apply the d-lifting, for each vertex of G we create a copy of the graph

G⊗PT , where T = D(G) and Pk is the path graph on k vertices, then take their

disjoint union, giving the graph Gd := ⊎
v0∈V (G)G⊗PT . The vertex set V (Gd) =
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{(t,v0,v) | t ∈ {0,1, . . . ,D(G)−1}, v0,v ∈ V (G)} and d : (t,v0,v) 7→ v. One can think

of a vertex (t,v0,v) as having three registers: a time register, starting vertex and

current vertex registers. We provide an illustrative diagram of the lift in Figure 3.1.

Figure 3.1: Illustration of the d-lifting. For each vertex in V (G) there is a single disjoint
copy of the graph G⊗PD(G). At the bottom right we indicate via shaded ver-
tices d−1(n) for n ∈ V (G). We illustrate the time evolution of a walk starting
at vertex 1 ∈ V (G), whose corresponding starting state in the d-lifted walk is
(t,v0,v) = (0,1,1). The evolution, defined by a stochastic bridge {P (t)

i }
D(G)
t=1

is depicted with multiple copies of G⊗PD(G), one for each t, with the corre-
sponding v vertices boldened. We see that the final distribution is π over the
appropriate vertices, indicated by the green lines capped with boxes. After
t ≥D(G) timesteps, the marginal of the lifted chain has mixed to π and the
dynamics proceed according the collapsed transition matrix P . We also indi-
cate with arrows labelled t, v0 and v the direction in which the lifted vertex
indices (t,v0,v) increase. Self-loops in the drawing are omitted for clarity.

The lifted walk starts by sampling a vertex, X(0), from G according to the

initial distribution p(0). Then, we walk on the X(0)th copy of G⊗PD(G), starting

at the node (0,X(0),X(0)). The transition probabilities are engineered using the
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stochastic bridge such that t increases by one at each timestep and P (t) is applied

to the v space at timestep t. We ensure that the final distribution in the v space

is π, the stationary distribution of the chain MG, by taking p′ = π and p = eX(0)

in Eq. (3.4). Convexity ensures that given an initial distribution of p(0) over the

value of v0, the final distribution of v mixes to π. Marginalising gives us exactly

the marginal distribution π after D(G) timesteps. After D(G) timesteps the walker

stays in the same position. In practise, the stochastic bridge will be attained to

some arbitrary precision δ, so we have that the marginal mixes to π for arbitrary δ.

Concretely, the initialisation map for the d-lifting, Dinit, is

Dinit : p(0) 7→ pd(0) = eT
0 ⊗

∑
v∈V (G)

p(0)[v] · (eT
v ⊗eT

v )

and the lifted transition matrix is given by

P d =
∑

i∈V (G)

D(G)∑
t=1

et−1e
T
t ⊗eieT

i ⊗P (t)
i +eD(G)e

T
D(G)⊗eieT

i ⊗ IV (G)



where P (t)
i is the tth stochastic bridge transition matrix for vertex i. The first term

is propagation through time and the second term is self-loops, ensuring that when

the chain is sampling from π at any time t≥D(G).

3.2.1 Computing the d-lifting

The d-lifting rests on the existence of a stochastic bridge linking two probability

distributions together. In the paper [AST18] there is partial construction of such an

object. We provide a complete, constructive existence proof below.

Claim 3.1 (Stochastic Bridge) Let G be a connected graph on n vertices and let

p ∈∆(V (G)) be a probability distribution on V (G). Then, there is a set of D(G)

transition matrices on G, {P (t)
i }

D(G)
t=1 , called a stochastic bridge such that

p= eiP
(1)
i P

(2)
i · · ·P

(D(G)−1)
i P

(D(G))
i (3.4)

for any i ∈ V (G), where D(G) is the diameter of G.

Claim 3.1 is a direct corollary of the following two lemmas.
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Lemma 3.1 Let G be a graph and p′ ∈∆(V (G)) be a probability distribution over

the vertices of G. Then, for any p(0) = eT
v , v ∈ V (G), there exists a sequence of

probability distributions p(0),p(1), . . . ,p(D(G)−1) of length D(G) such that

∑
v∈X

p(t+1)[v]≤
∑

v∈X∪N(X)
p(t)[v]

for every t ∈ {0,1, . . . ,D(G)− 1}, every subset of vertices X ⊆ V (G) and p′ =

p(D(G)−1).

Lemma 3.2 Let G be a graph and p,p′ ∈∆(V (G)) be probability distributions over

the vertices of G. Moreover, suppose that for every subset of vertices X ⊆ V (G)

∑
v∈X

p′[v]≤
∑

v∈X∪N(X)
p[v].

Then there exists a stochastic matrix P such that p′ = pP .

Lemma 3.2 is proved in [AST18, Lemma 5], taking inspiration from Aaron-

son [Aar05]. We prove Lemma 3.1 by construction and reproduce the proof of

Lemma 3.2 for completeness.

Proof of Lemma 3.1. For a given vertex u, we can find the sequence of probability

distributions taking p0 = eu to pD(G)−1 = π as follows: find a spanning tree Tu of G

and set the vertex u as its root. Orient each of the edges such that for each vertex

the outgoing edges point towards child vertices and the incoming edge comes from

the parent vertex. Attach to each vertex w a chain of vertices with the same label

w deep enough so that there is a leaf having each vertex label in V (G), in such a

way that every path from the root u to each of the leaf nodes is of the same length,

the diameter D(G). We call this modified graph T ′u ; it is still a tree. Moreover, we

denote the tth level of T ′u, `t(T ′u), the set of vertices in V (G) at distance t from the

root u in T ′u. Let the surjection σu : V (T ′u)→ V (G) return the label of the vertex v

in the graph T ′u. Observe that at each level t of T ′u, there is at most one vertex with

the same label, that is, σu(v) 6= σu(v′) for all v,v′ ∈ `t(T ′u), v 6= v′.

As an example, consider the graph G in Figure 3.2, with the spanning tree T1

(rooted at vertex 1) and the related tree T ′1. Let D(v,T ) be the set of descendent

leaves of the vertex v in a tree T . We then set our ‘bridge schedule’ as follows for
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t ∈ {0,1, . . . ,D(G)−2}:

p(t)[w] =


∑
k∈D(v,T ′u)π[σu(k)], v ∈ `t(T ′u), σu(v) = w;

0, otherwise
(3.5)

with pD(G)−1[w] = π[w] for all w ∈ V (G). From Eq. 3.5 we see that p(t+1)[w]≤ p(t)[w]

for all w ∈ V (G), since `t(T ′u)⊆ `t+1(T ′u) and p(t)[w]≥ 0 for all t ∈ {0, . . . ,D(G)−1},
w ∈ V (G). Now consider an arbitrary subset of vertices X ⊆ V (G). Summing over

w ∈X, we have

∑
w∈X

p(t+1)[w]≤
∑
w∈X

p(t)[w]≤
∑

u∈X∪N(X)
p(t)[w],

again using p(t)[w]≥ 0. The result follows.
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Figure 3.2: Illustration of the construction of the graph T ′u for a graph G used in the proof
of Lemma 3.1. First, find a spanning tree Tu of G rooted at vertex u, orienting
the edges from the root to the leaves. Then, modify Tu using the following
procedure: walk through Tu. To each vertex add a chain of vertices with the
same label such that the paths from the root u to every leaf are of the same
length and for every vertex in V (G), there is a leaf in T ′u with the same label.
The resulting graph is T ′u.

Notice that it is possible to ‘prune’ the vertices in the d-lifted state space that do

not occur at the tth level of each T ′u, that is, vertices v ∈ V (T ′u) for which p(t)[σu(v)] =

0. To avoid complications we shall not take this into account in the analysis that
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follows.

For the proof of Lemma 3.2 we will use results from flows over capacitated

networks. An intuitive description of the maximum flow problem is to compute the

maximum amount of a liquid that can flow through a network of pipes, each with

different capacities. We first need the concept of an (s, t)-flow in a directed acyclic

graph before describing the maximum flow problem in detail below. Following Korte

and Vygen [KV12], we are given a directed graph G, arc capacities c : E(G)→ R+

and two specified vertices called the source and sink s, t ∈ V (G). Then, a flow is a

function f :E(G)→R+ with f(e)≤ c(e) for all e ∈E(G). The excess of a flow f at

a vertex v ∈ V (G) is given by

exf (v) :=
∑

e is an outgoing arc from v

f(e) −
∑

e is an incoming arc to v
f(e)

An (s, t)-flow is a flow satisfying exf (s) ≥ 0, exf (t) = −exf (s) and exf (v) = 0 for

all v ∈ V (G) \ {s, t}. The value of an (s, t)-flow is given by value(f) = exf (s). The

maximum-flow problem is defined as follows.

Problem 3.1. MaximumFlow

Instance: A directed graph G, arc capacities c :E(G)→R+ and two specified source

and sink vertices s, t ∈ V (G).

Task: Find an (s, t)-flow of maximal value, f?.

We now have the ingredients to prove Lemma 3.2.

Proof of Lemma 3.2. The proof proceeds by constructing a graph H such that solv-

ing the flow problem on H yields the required transition matrix. We refer the

reader to Figure 3.3 for an illustration of H. We first make two copies of V (G),

named W and W ′ respectively. An arc is drawn from u ∈W to v ∈W ′ if there is

a corresponding edge in G, {u,v} ∈ E(G). Each of these arcs has capacity 1. The

vertices r and s are introduced, with r being the source node and s being the sink

node. For each vertex v ∈W , an arc is drawn from r to v with capacity p[v]. For

each vertex v ∈W ′, an arc is drawn from v to s with capacity p′[v]. If one unit of

flow can be routed from r to s, then the outgoing edges from r and the incoming

edges to s will be at maximum capacity, thus encoding a linear mapping of prob-

ability mass from p to p′. Concretely, when the maximum flow f? = 1 we have
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p′[k] =∑
j∈V (G) f

?((j,k)) =∑
j∈V (G) p[j]P [j,k] where j ∈W and k ∈W ′, from which

we deduce P [j,k] = f?((j,k))/p[j]. From Claim 2.1 we have that P is stochastic as

it is a linear map taking a probability distribution to a probability distribution. It

remains to prove that f? = 1.

The max-flow min-cut theorem [FF56] states that the maximum flow f? that

can be routed from s to r is equal to the minimum cut value of H, cut?, where

the cut-value is the sum of the edge capacities for a cut disconnecting r from s.

Including all of the edges in H connected to r in a cut disconnects the graph and

has a cut value of 1, so cut? ≤ 1. We shall now lower bound cut?. If we include any

of the middle edges from W to W ′ in the cut then the value will be greater than 1,

so the minimum value cut must be some combination of the edges starting at s or

arriving at r. Assume now that we know the optimal cut, and let X ′ ⊆W ′ be the

set of vertices in W ′ connected to s, corresponding to edges that are not part of the

minimum cut, that is, the edges connecting W ′ \X ′ to s belong to the optimal cut.

The set X ⊆W is the set of vertices inW corresponding to the vertices X ′⊆W ′, and
NG(X) = NH(X ′) is the set of vertices in W corresponding to the neighbourhood

of X in G. In order to block all paths from s to r going though W ′ \X ′ without
including any “middle edges” fromW toW ′, we must include every edge going from

from r to (X ∪NG(X)) in the cut. The value of the minimum cut is thus

cut? =
∑

v∈(X∪NG(X))
p[v] +

∑
v∈W ′\X′

p′[v] =
∑

v∈X∪NG(X))
p[v] +

(
1−

∑
v∈X

p′[v]
)
.

Now since we have by assumption that

∑
v∈X

p′[v]≤
∑

v∈X∪N(X)
p[v]

for any subset of vertices X ⊆ V (G), we get

cut? ≥
∑

v∈X∪NG(X))
p[v] +

1−
∑

v∈X∪NG(X))
p[v]

= 1,

and so we have cut? = f? = 1, which yields the result.
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Figure 3.3: Illustration of the graph H used for proving Lemma 3.2. We wish to solve the
(r,s)-flow over the graph shown in the figure, where the capacities are shown
in blue. The sets W and W ′ are copies of V (G). An arc is drawn from u ∈W
to v ∈W ′ if there is a corresponding edge in G, {u,v} ∈ E(G). Each of these
arcs has capacity 1. An arc is drawn from r to each vertex inW , and from each
vertex inW ′ to s. These arcs have capacities taken from p and p′ as indicated.
Solving the maximum flow problem on this graph gives the transition matrix
P such that p′ = pP , where the transition probability from i to j is given by
the optimal flow from i ∈W to j ∈W ′. The sets marked in red, X,X ′,NG(X)
are used in the proof of Lemma 3.2. The red arcs indicate the minimum cut
used in the proof.

3.2.2 Runtime complexity

Having described the stochastic bridge construction in detail, we can prove the

following.

Lemma 3.3 Let MG = (P,p(0)) be a Markov chain on a connected graph G on n

vertices. Moreover, P has stationary distribution π with all strictly positive ele-

ments. Then, computing the transition probabilities of the d-lifted Markov chain,

Md
G requires O(n4D(G)) time, where D(G) is the diameter of G.

Proof. For the d-lifting of a Markov chain on an n vertex graph, we are required

to compute a stochastic bridge corresponding to each vertex, with p′ = π for every

bridge and p= ei for the ith vertex. We require n stochastic bridges, each containing

D(G) n×n transition matrices.

Solving for each transition matrix requires solving a max-flow problem on 2n+2

vertices, where certain flows are given by the ‘schedule’ probabilities (3.5). Comput-

ing the schedule probabilities p(t)[j] for a given vertex i involves finding a spanning
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tree Ti, walking through Ti, appending vertices, then for each t∈ [D(G)−1] summing

up the values of the children. The complexity of this task is O(nD(G)). Taken over

all n stochastic bridges, computing the schedule probabilities takes time O(n2D(G)).

Maximum-flow problems can be solved in time O(|V (G)|3) (see Malhotra,

Pramodh Kumar, Maheshwari [MKM78]), so the total runtime complexity for solv-

ing the max flow problems is O(n4D(G)) as we solve nD(G) max-flow problems on

graphs, each with 2n+ 2 vertices. The overall runtime complexity is the sum of

the complexities for solving the max-flow problems and computing the schedules.

Thus the overall runtime complexity of computing the transition probabilities for

the d-lifting on a graph G with n vertices is O(n4D(G)) , since solving the max-

flow problems dominates the complexity of computing the schedule probabilities

asymptotically.

3.3 Sampling from the quantum average mixing distri-

bution

We can now think about applying the d-lifting to the quantum average mixing distri-

bution. In this way, we will be able to sample from this distribution in diameter-time

(with appropriate pre-computation). We will see the main result in Section 3.3.2.

3.3.1 Computing the quantum average mixing distribution

We work in the coined model of Section 2.4.3.1 and consider an m-regular graph G

on n vertices. The initial state of the walk is denoted by |ψ(0)〉 ∈ S(Cmn), where

a basis state |k,v〉 represents the walker being at vertex v ∈ V (G), with k being a

“pointer” towards a neighbour of v. The walk matrix U ∈U(Cmn) is a unitary matrix

such that U |k,v〉 only has support on basis states |k′,v′〉, where v′ is a neighbour

of v and k′ “points” to a neighbour of v′. We quote a useful identity concerning

the elements of the quantum average mixing distribution of a quantum walk on a

m-regular graph G on n vertices, derived in Proposition A.1.

πqψ(0)[v] =
∑
r

〈ψ(0)|FrDvFr|ψ(0)〉, (3.6)

where Dv ∈ Rmn×mn is the diagonal matrix with a 1 in positions corresponding

to vertex v and zeros elsewhere and the {Fr} are the idempotents of the spectral
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decomposition of U . Thus, knowing the spectral decomposition of U allows us to

compute the quantum average mixing distribution of the walk πqψ(0).

Let us now consider the computational complexity of computing the quantum

average mixing distribution, πqψ(0), using Eq. (3.6). Computing the spectral decom-

position of the transition matrix takes time O((nm)3). Each term F †rDkFr takes

O((nm)2 ·m) since Dk has only m non-zero terms, taken over (mn)2 elements. Tak-

ing 〈ψ(0)| · · · |ψ(0)〉 is an additive O(m2) factor, leaving us at O(n2m3). We then

have that r can range up to nm and we perform the sum for each v ∈ [n] for a total

of O((nm)4). Now, taking m = O(n) we have that computing πq(ψ(0)) requires

runtime O(n8). This gives us the following lemma.

Lemma 3.4 Let (U, |ψ(0)〉) be a coined quantum walk on a m-regular graph

G. Then, computing the quantum average mixing distribution πqψ(0) takes time

O(n4m4) =O(n8).

We will also need the following result concerning the quantum average mixing

distribution.

Lemma 3.5 Let (U, |ψ(0)〉) be a coined quantum walk on a connected m-regular

graph G. Then, every element of the quantum average mixing distribution πqψ(0) is

strictly positive.

Proof. Recall Eq. (3.6), that states πqψ(0)[v] = ∑
r〈ψ(0)|FrDvFr|ψ(0)〉, where Dv =∑

k∈[m] |k,v〉〈k,v| and Fr are the idempotents of the spectral decomposition of U .

Notice that

〈ψ(0)|FrDvFr|ψ(0)〉=
∑
k∈[m]

〈ψ(0)|Fr |k,v〉〈k,v|Fr |ψ(0)〉=
∑
k∈[m]

|〈ψ(0)|Fr |k,v〉|2.

(3.7)

Thus, if πqψ(0)[v] = 0, then ∑r

∑
k∈[m] |〈ψ(0)|Fr |k,v〉|2 = 0 and there exist u ∈ V (G),

j,k ∈ [m] such that ∑r |〈j,u|Fr |k,v〉|2 = 0. This implies that Fr[(j,u),(k,v)] = 0 for

all r and any linear combination of the Fr has a ((j,u),(k,v))-component of zero.

In this case, for every t ∈ N we have 〈j,u|U t |k,v〉= 0. Now this is only true if G is

not connected, as it implies there is no path in G of the form (fv(k), . . . ,w), where

w is the jth neighbour of u satisfying fw(j) = u. By contraposition we infer that G

being connected implies that πqψ(0)[v]> 0 for all v ∈ V (G).
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This result should not be surprising since the limiting distribution of a classical

ergodic Markov chain has strictly positive elements.

3.3.2 Main Result

We now have all of the pieces to prove the main result.

Theorem 3.1 Let (U, |ψ〉) be a coined quantum walk on a connected m-regular

graph G on n vertices. Then there exists a lifted Markov chain on n2D(G) vertices

with marginal that mixes exactly to the quantum average mixing distribution πqψ(0)

after D(G) timesteps, where D(G) is the diameter of G. Computing the transition

probabilities for the lifted Markov chain requires O(n4(m4 +D(G))) time.

Proof. We will use the d-lifting of the Markov chain on G with πqψ(0) as the target

distribution. From Lemma 3.5, πqψ(0) has strictly positive elements, and so satisfies

the conditions for the d-lifting of Proposition 3.1. From Lemmas 3.3 and 3.4 we have

that the runtime of computing πqψ(0) is O(n4m4) and that computing the d-lifting

takes O(n4D(G)) time.

Indeed, we can also generalise this result to a general quantum walk in the

following way.

Corollary 3.1 Let (U, |ψ〉) be a general quantum walk on a connected graph G.

Then there exists a lifted Markov chain on n2D(G) vertices with marginal that mixes

exactly to the quantum average mixing distribution πqψ(0) after D(G) timesteps,

where D(G) is the diameter of G. Computing the transition probabilities for the

lifted Markov chain requires O(n8) time.

Here, we take m = O(n), D(G) = O(n) and notice that the proofs of Lem-

mas 3.5 and 3.4 hold for general quantum walks also.

3.4 Related work
Upon completion of this work I became aware of the extended abstract by Apers,

Sarlette and Ticozzi in [AST17], which presents a similar result to the one proved

here. Their result stated that for any local-stochastic process (a quantum walk is

local-stochastic) that mixes to a distribution π in timeMε (our notation), there is

a lifted chain that mixes to π in timeMε with exponential convergence to arbitrary

total variation distance ε > 0 from π. The proof was not publicly available at that
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time. They have subsequently released the paper [AST18] proving the result. Their

construction is different to the construction presented here, using the notion of am-

plification from randomised algorithms. In the paper [AST18] there is no discussion

of the computational complexity of their constructions; we show that computing the

lifting presented here is a polynomial-time operation.

We discuss further work and open questions in Section 5.3.1.



Chapter 4

Graph Products and Isomorphism

In this chapter we describe our approach to answering Research Question 2. As a

refresher, we state the relevant question we are trying to answer below.

Research Question 2 (Graph products and isomorphism) Can we use easy in-

stances of NP-hard problems to make progress on the NP-intermediate problem

GraphIsomorphism, which has thus far eluded a polynomial-time algorithm?

In Section 2.5.4 we have discussed the history of the GraphIsomorphism prob-

lem and some of the approaches taken in the literature. We proceed in the direction

suggested by Research Question 2, by reducing GraphIsomorphism to solving the

clique problem (which is NP-hard) on the weak modular product of the input graphs.

Solving the clique problem on perfect graphs is polynomial time. This chapter will

contain one the main results of this thesis, namely, the classification of perfect and

non-perfect weak modular product graphs. By making this classification we can then

evaluate this angle of attack for the GraphIsomorphism problem. It is found that

this approach does not lead to a generic efficient algorithm for GraphIsomorphism,

but nonetheless has independent interest.

In Sections 4.1 and 4.2 we present the necessary background to construct the

candidate algorithm, described in Section 4.3. The full classification is then proved

in Section 4.4 followed by discussion in Section 4.5.

In this chapter we consider only finite, simple graphs, i.e. graphs with finite

number of vertices and no self-loops or multiple edges.



82 Chapter 4. Graph Products and Isomorphism

4.1 The Lovász number
In this section much of the presentation follows that in [GW11]. We will first need

some definitions. A clique is a subset of the vertices of a graph such that any two

distinct vertices in the clique are adjacent. An independent set in a graph is a

subset of the vertices such that no two vertices in the subset are adjacent. A proper

colouring of a graph G is an assignment of colours to vertices such that every pair

of adjacent vertices has a different colour. Given a graph G on n vertices, we are

interested in the following quantities:

• The clique number of G, written as ω(G), is the size of the largest clique in G.

• The independence number of G, written as α(G), is the size of the largest

independent set in G.

• The chromatic number of G, written as χ(G), is the minimum number of

colours required to properly colour G.

• The clique cover number of G, written as χ̄(G), is the size of the smallest clique

cover in G, which is the minimum number of vertex disjoint cliques such that

every vertex is in some clique.

Recall that the complement of a graph G, denoted G, is the graph on the same

vertices as G such that two vertices are connected in G if and only if they are not

connected in G.

The following will be useful:

Observation 4.1. Let G be a graph on n vertices. Then,

1. α(G) = ω(G)

2. χ(G) = χ̄(G)

3. ω(G)≤ χ(G)

4. α(G)≤ χ̄(G)

Now we give the definition of a perfect graph, first stated by Berge.

Definition 4.1 (Perfect graphs). A graph G is perfect if ω(G′) = χ(G′) for all

induced subgraphs G′ of G.
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Notable perfect graphs include bipartite graphs, their line graphs, chordal

graphs and interval graphs [GLS93].

Lovász introduced a function ϑ for which α(G) ≤ ϑ(G) ≤ χ̄(G) [Lov79], which

we shall develop here. We begin by developing an SDP relaxation for χ̄(G). We

assign a unit vector vi to each vertex of G. If two vertices are in the same clique of

the minimum clique cover, we demand their vectors to be the same. If two vertices

are not in the same clique, we demand their vectors to be as far apart as possible.

Note that when k vectors are as spread out as far as possible1, the dot product

of any pair of them is − 1
k−1 . This means that if we have a clique cover of size k,

there is an assignment of unit vectors to vertices such that every vertex in a clique

is mapped to the same vector and, if two vertices are not in the same clique, the dot

product of their vectors is − 1
k−1 .

This suggests the following SDP relaxation for the clique cover number:

minimise k

subject to 〈vi,vj〉=− 1
k−1 i, j ∈ V (G), i 6∼ j, i 6= j

〈vi,vi〉= 1 ∀i ∈ V (G)

(4.1)

While this doesn’t follow the standard form of an SDP (2.25), the reader will

note that the constraint implicitly define a standard form SDP, where the Gram

matrix of the set of vectors {v1, . . . ,v|V (G)|} is the optimisation variable. See the

proof of Lemma A.2 for more on this. We can now define the Lovász ϑ function.

Definition 4.2 (Lovász-ϑ). For a graph G, ϑ(G) is the optimal value of the SDP

in (4.1).

We observe here that there are many different, but equivalent formulations for

the Lovász-ϑ function. These are all described and their equality proved in [GLS93,

Section 9.3].

Importantly, we have the following result. We defer the proof to Proposition A.2

in the appendix.

Proposition 4.1 (Sandwich theorem) Let G be a graph. Then, α(G) ≤ ϑ(G) ≤
χ̄(G).

1This is proved rigorously in Corollary A.2, which is omitted here so as to not interrupt the main
text.
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Note that ϑ(G) may not be rational for non-perfect graphs. For example,

χ̄(C5) = 3, α(C5) = 2, and ϑ(C5) =
√

5. So we cannot hope to get the exact optimum

for every graph. However, we can solve the program (4.1) to arbitrary accuracy using

the ellipsoid algorithm [GLS93], resulting in the following result.

Proposition 4.2 For any ε > 0, ϑ(G) can be computed to within ε error in time

poly(n, log 1
ε ).

The polynomial-time computability of the values of the parameters α, ω, χ,

and χ̄ for perfect graphs directly follows from Observation 4.1 since we have that

ω(G)≤ ϑ(G)≤ χ(G), by taking complements we can compute ω(G) = χ(G) for any

perfect G.

Corollary 4.1 For any perfect graph G, α(G), ω(G), χ(G), and χ̄(G) can be com-

puted in polynomial time.

4.1.1 Non-perfect graphs and Lovász number

We can also ask how closely ϑ approximates α for non-perfect graphs. Konyagin

[Kon81] constructed a graph G such that α(G) = 2 and ϑ(G) = Ω(n1/3), which is

the largest that ϑ(G) can be. Alon and Kahale [AK98] generalised this result for

bounded α by proving the following: if α(G) ≤ k, then ϑ(G) ≤ Cn
k−1
k+1 for some

constant C. When α is not bounded, Feige [Fei97] shows that there exists a graph

G such that α(G) = no(1) and ϑ(G) = n1−o(1). Håstad’s results for the hardness

of approximating the clique problem [Hås99] also imply that such a graph must

exist. Kleinberg and Goemans showed that ϑ gives a 2-approximation for the size

of the minimum vertex cover [KG98]. However, this is not very useful as the greedy

algorithm for minimum vertex cover gives a 2-approximation. There are graphs for

which this bound is tight, so we can do no better in general.

In Figure 4.1 we investigate the gap between α, ϑ and χ empirically and it is

found that for the majority of the 1,424,776 graphs tested there is no gap.

4.1.2 Lovász number with a quantum computer?

In light of the discussion of Section 2.5.3.2, one may well think that since the Lovász

number is formulated as an SDP, one can gain a computational speedup in us-

ing a quantum SDP solver. For now, generic solvers cannot achieve this. These

solvers all depend polynomially on a parameter of the SDP at hand called the width.
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Figure 4.1: Numerical experiment to explore the gap between α, ϑ and χ. 1,424,776 graphs
were generated in sage [SAGE] using the graphs() function and their α, ϑ
and χ computed. We see that for the majority of graphs G (approx 1.0×106

out of 1.4×106) we have that α(G) = ϑ(G) or ϑ(G) = χ(G).

In [vGGdW17], the authors show that for a family of SDPs having a property called

combinability, the width is linear in the dimension of the SDP. It follows that the

quantum advantage disappears for these composable SDPs. Indeed, the Lovász-ϑ

family of SDPs is composable and so has no quantum speedup, at least with general

solvers. Perhaps a speedup would be possible with a specialised membership oracle.

4.2 Graph products
A graph product is a binary operation on graphs. Concretely, a graph product takes

two graphs G0 and G1 and outputs a graph H with the following properties:

• The vertex set of H is the Cartesian product of the vertex sets of G0 and G1,

namely, V (H) = V (G0)×V (G1).

• Two vertices (u0,v0), (u1,v1) are connected by an edge if and only if the vertices

u0,u1,v0,v1 satisfy some condition related to the adjacency structure of G0 and

G1. This condition is what differentiates the different graph products.

We call G0 and G1 the factors of the product graph H.
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Graph products have been extensively studied and are of vast theoretical and

practical interest, see, e.g., Hammack, Imrich and Klavžar [HIK11]. A common

problem is to determine how graph invariants such as the independence number

and clique number behave under the action of a particular graph product. For

instance, a famous result of Lovász [Lov79] states that for graphs G and H, ϑ(G�

H) = ϑ(G)ϑ(H), where ϑ( ·) denotes the Lovász number and � is the strong graph

product. More recently, a major open problem in graph theory related to graph

products, Hedetniemi’s conjecture, has been solved by Shitov [Shi19], decades after

the problem was posed. It is straightforward to show that

χ(G⊗H)≤min{χ(G),χ(H)},

where ⊗ is the graph tensor product. It was long conjectured that equality holds

for all G, H. Shitov [Shi19] presented a family of graphs for which the inequality is

strict.

In [HIK11, Section 4.4] there is a full classification of all possible graph products.

We present only the most salient points. There are four graph products that have

received most attention in the literature: the strong graph product, the direct (or

tensor) product, the Cartesian product and the lexicographic. These graph products

are defined as follows.

Definition 4.3 (Direct, Cartesian, strong, lexicographic graph products). Let G

and H be graphs. We now define the following graph products on the vertex set

V (G)×V (H):

• The direct, or tensor product of G and H, denoted by G⊗H, has an edge

{(x,y),(x′,y′)} if and only if {x,x′} ∈ E(G) and {y,y′} ∈ E(H).

• The Cartesian product of G and H, denoted by G � H has an edge

{(x,y),(x′,y′)} if and only if either: x = x′ and {y,y′} ∈ E(H); or y = y′ and

{x,x′} ∈ E(G).

• The strong product of G and H, denoted by G�H has an edge {(x,y),(x′,y′)}
if and only if {(x,y),(x′,y′)} ∈ E(G⊗H)∪E(G�H).

• The lexicographic product of G and H, denoted by G ◦H has an edge
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{(x,y),(x′,y′)} if and only if either: {x,x′} ∈ E(G); or x = x′ and {y,y′} ∈
E(H).

These four graph products are the most studied as they satisfy the following:

they are associative and projections onto the factors are weak homomorphisms2.

Loosely speaking, the second property means that the adjacency structure of the

product graph allows one to approximately infer the adjacency structure of the factor

graphs. A projection onto a factor Πi : G0 ∗G1→ Gi for some graph product ∗ is

a map Πi : V (G0)×V (G1)→ V (Gi) that takes a vertex in the direct product to a

vertex in its factor like so:

Π0 : (x,y) 7→ x, Π1 : (x,y) 7→ y.

A graph product ∗ is associative if it satisfies (G∗H)∗K =G∗ (H ∗K).

One can also consider graph products that do not satisfy these properties. One

such product is the weak modular product, whose adjacency structure also includes

information about non-adjacency in the factor graphs. This product plays a crucial

role in this chapter of the thesis.

4.3 Isomorphism via the weak modular product
The weak modular product (see, e.g., Hammack, Imrich and Klavžar [HIK11]) of

graphs G and H is defined as follows.

Definition 4.4 (Weak modular product). Let G and H be graphs. The weak

modular product of G and H, denoted by G∇H, has vertex set V (G∇H) = V (G)×
V (H) and an edge {(x,y),(x′,y′)} if and only if

1. either {x,x′} ∈ E(G) and {y,y′} ∈ E(H);

2. or {x,x′} ∈ E(G) and {y,y′} ∈ E(H).

The next statement is a direct consequence of the definitions of the weak mod-

ular product and the tensor product.

2Note that the lexicographic product does not satisfy this second property. Projection onto only
the first, but not second, factor is a weak homomorphism.
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Lemma 4.1 For graphs G and H,

G∇H =G⊗H ∪G⊗H. (4.2)

Interestingly, as originally proved by Kozen [Koz78], a clique of a certain size

exists in the product graph if and only if the factors are isomorphic. For completeness

we state and prove Kozen’s theorem, in modern language.

Proposition 4.3 (Kozen [Koz78]). Let G and H be graphs on n vertices. Then

ω(G∇H)≤ n. Moreover, ω(G∇H) = n if and only if G∼=H.

Proof. To see that there is no clique in G∇H larger than n consider the following.

First lay the vertices of G∇H in an n×n grid so that the vertex (x,y) is in the same

row as (x′,y′) if x= x′, and in the same column if y = y′. Then by the definition of

the weak modular product there can be no edges between vertices in the same row

or in the same column. The vertices of an n-clique will thus occupy positions on the

grid such that no two vertices are in the same row or column. No larger clique can

exist since there is no position in the grid where one can place a new vertex such

that it does not share a row or column with any of the vertices already in the clique.

Now suppose there is an n-clique in G∇H. The vertices (x,y) in the clique

represent the bijection x 7→ y for all x∈ V (G), y ∈ V (H), which we denote σ. We can

see that σ is an isomorphism because for all x,x′ ∈ V (G), σ(x)∼ σ(x′) if and only if

x∼ x′, from the definition of the weak modular product. For the converse, suppose

that G ∼= H, with σ : V (G)→ V (H) an isomorphism. Then from the definition of

the weak modular product, we will have the collection of edges

{{(x,σ(x)),(x′,σ(x′))}
∣∣x,x′ ∈ V (G), x′ 6= x

}⊆ E(G∇H).

This collection of edges induces an n-clique in G∇H from the definitions of the

weak modular product and isomorphism. Thus, an n-clique exists if and only if

G∼=H.

Proposition 4.3 shows that for two graphs on n vertices G and H, deciding

if an n-clique exists in G∇H is equivalent to deciding if G ∼= H. The decision

version of finding the clique number of a general graph is NP-complete. Indeed
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in the paper containing Proposition 4.3 [Koz78] Kozen also proved that, under the

same assumptions, deciding if a clique of size (n− ε) exists in G∇H for arbitrary

fixed ε > 0 is NP-complete. This result has largely been ignored in the literature with

reference to graph isomorphism as it provides evidence against an efficient algorithm

for GraphIsomorphism being found via this route.

It is well known that computing the clique number of a perfect graph is

polynomial-time in n for perfect graphs, via Lovász’s sandwich theorem as discussed

in Section 4.1.

Observation 4.2. Let G and H be graphs. If G∇H is perfect, deciding if G∼=H

is polynomial-time in n.

Inspired by Observation 4.2, we evaluate all perfect weak modular product

graphs in the hope it sheds some insight into solvable cases of GraphIsomor-

phism. Note that GraphIsomorphism for perfect graphs is GraphIsomorphism-

complete, since deciding if two bipartite graphs are isomorphic is GraphIsomor-

phism-complete [UTN05] and all bipartite graphs are perfect.

We enumerate all pairs of graphs for which the weak modular product is per-

fect, using theoretical and computational tools that were not available to Kozen

in 1978, most notably the Strong Perfect Graph Theorem [CRST06] amongst oth-

ers. This adds to a tradition of enumerating perfect product graphs; Ravindra and

Parthasarathy [RP77] and Ravindra [Rav78] found all perfect Cartesian, direct and

strong product graphs. We shall prove the following result.

Theorem 4.1 The graph G=G0∇G1 is perfect if and only if one of the following

holds:

1. Gz ∈ {K1,K2,E2}, Gz arbitrary;

2. Gz ∼= P4, Gz ∈ {K1,r,Kr ]K1,P4};

3. Gz ∼= C5, Gz ∈ {P3,K2]E1,P4,C5};

4. Gz ∼=Kr ]Ks, Gz is a disjoint union of stars and cliques;

5. Gz ∼=Km,n, Gz is connected and (P4,cricket,dart,hourglass)-free;

6. Gz ∼=Kn, Gz (odd hole, paw)-free;
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7. Gz ∼= En, Gz (odd antihole, co-paw)-free;

8. Gz, Gz are complete multipartite;

9. Gz, Gz are disjoint unions of cliques;

10. Gz ∼=Kr ]Ks, Gz ∼=Km,n;

for any m,n,r,s,z, where m,n,r,s ∈ N, and z ∈ {0,1}, with its (Boolean) negation

denoted by z.

The remainder of this chapter constitutes the proof and necessary ingredients.

We follow up with discussion in Section 4.5.

4.4 Perfect weak modular products

In this section, we prove Theorem 4.1, namely we enumerate the pairs (G,H) for

which G∇H is perfect. We will need some further definitions and results.

4.4.1 Classes of graphs

We now provide definitions and characterisations of families of graphs that will be

of use later.

We use standard notation for named graphs; for instance, the complete, empty

and path graphs on n vertices are denoted by Kn, En and Pn respectively. A graph

G is said to be H-free if it does not contain H as an induced subgraph. For a named

graph, we prepend the prefix “co-” to denote its complement, e.g., the complement

of a bipartite graph is a co-bipartite graph.

A graph G on n vertices is said to be bipartite if V (G) = V0(G)]V1(G) such

that if x∼ x′ then x ∈ V0(G) and x′ ∈ V1(G) or x ∈ V1(G) and x′ ∈ V0(G), for every

x,x′ ∈ V (G). The sets V0(G) and V1(G) are said to be the partite sets of G. A

complete bipartite graph Km,n, where |V0(G)|=m, |V1(G)|= n, is a bipartite graph

G for which every vertex in V0(G) is connected to every vertex in V1(G). A star is a

complete bipartite graph where at least one of the partite sets has only one vertex.

A complete multipartite graph Kn1,n2,...,nk is defined similarly, with the relaxation

that there are now k ≥ 2 partite sets. Any induced subgraph covering two disjoint

partite sets of a complete multipartite graph is complete bipartite.
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A triangle is the graph K3. A hole is an induced cycle. An antihole is an

induced co-cycle. An odd (anti)hole has an odd number of vertices. The diamond

or K1,1,2, paw or Y , cricket, dart and hourglass graphs are defined in Figure 4.2.

Figure 4.2: Some named graphs.

Observation 4.3. The complements of the diamond, paw, cricket, dart and hour-

glass are respectively: K2]E2, P3]E1, K1,1,2]E1, Y ]E1 and C4]E1.

We will use the following observation many times in the sequel, so often in fact

we will refrain from quoting it.

Observation 4.4. The graph G is H-free if and only if G is H-free.

Lemma 4.2 Let G be nonbipartite and triangle-free. Then, G has an induced odd

cycle of order ≥ 5.

Proof. Since G is not bipartite it contains an odd cycle. Moreover, G is triangle-free

so this odd cycle must have order ≥ 5. Call C the smallest odd cycle in G. Consider

a chord e in C: since C has an odd number of vertices, the subgraph induced on the

union of C and e contains two cycles: an even cycle and an odd cycle. This gives a

contradiction since the odd cycle is smaller than C, but C is the smallest odd cycle

in G. Thus, there is no chord in C and C is an induced subgraph.

Lemma 4.3 A graph G is a disjoint union of cliques if and only if it has no induced

P3.

Proof. Suppose G is the disjoint union of cliques. Then, every induced subgraph

on 3 vertices is either: K3, K2 ]E1, or E3, so clearly is P3-free. Now suppose

G contains P3 as an induced subgraph. Then, we have two vertices in the same

connected component that are not connected, and so G is not the disjoint union of

cliques.
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The following lemma is a direct consequence of the relevant definitions.

Lemma 4.4 A graph G is complete multipartite if and only if its complement is a

disjoint union of cliques.

Corollary 4.2 A graph G is complete multipartite if and only if it is (K2]E1)-free.

Proof. Combine Lemma 4.3 with Lemma 4.4.

Lemma 4.5 Any connected bipartite graph G that is not complete has an induced

P4.

Proof. Let u∈ V0(G) and v ∈ V1(G). The shortest path P (u,v) between u and v has

odd length. If the length of this path is 1 for all pairs (u,v), G is complete bipartite;

else, the length of P (u,v) is 3 or greater for some pair (u,v), and so we have an

induced P2k for some k ≥ 2, proving the lemma.

Lemma 4.6 A complete multipartite graph G is diamond-free if and only if it is a

clique or complete bipartite.

Proof. (⇒) We prove the contrapositive. Suppose G is complete multipartite and

not bipartite and not a clique. G must have at k ≥ 3 partite sets, for if it has two

partite sets it would be complete bipartite. Now if every partite set in G has one

vertex then G ∼= Kk, but G is not a clique by assumption. So, G has an induced

K1,1,2, a diamond.

(⇐) If G is a clique then any induced subgraph on 4 vertices is isomorphic to

K4 6∼=K1,1,2. Bipartite graphs are triangle-free so are trivially diamond-free.

Lemma 4.7 (Paw-free graphs [Ola88, Theorem 1]) A graph G is a paw-free graph

if and only if each component of G is triangle-free or complete multipartite.

Lemma 4.8 If G is connected and (P4,paw)-free, then it is complete multipartite.

Proof. From Lemma 4.7, if G is connected and paw-free, then it is complete multi-

partite or triangle-free. If G is triangle-free then it is bipartite, for otherwise it has

an odd hole, but G is P4-free and every odd hole has an induced P4. So, G must be

bipartite if it is triangle-free. Moreover, since G is P4-free, if it is bipartite then it

is complete bipartite from Lemma 4.5.
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Lemma 4.9 A graph G is a disjoint union of cliques and stars with two or

more connected components if and only if its complement G is connected and

(P4,cricket, dart, hourglass)-free.

Proof. (⇒) If G is a disjoint union of two or more cliques and stars, G is connected,

by the following: suppose G has k ≥ 2 connected components, i.e. V (G) := V1]·· ·]
Vk where the Vi are pairwise disconnected. If we have x ∈ Vi, x′ ∈ Vj for i 6= j, then

x ∼G x′. If x,x′ ∈ Vi, choose any x′′ ∈ Vj for i 6= j and (x,x′′,x′) is a path in G.

Since there is a path between any x,x′ ∈ V (G), G is connected. We have that G is

P4-free, since a disjoint union of cliques is P3-free by Lemma 4.3, disjoint unions of

complete bipartite graphs are P4-free by Lemma 4.5. Thus, G is P4-free as P4 is self-

complementary. Now, G is (cricket, dart, hourglass)-free if and only if G is (K1,1,2]
E1,Y ]E1,C4]E1)-free, which is necessarily true if G is (diamond,paw,K2,2)-free.

This is satisfied when G is a disjoint union of stars and cliques, by considering each

of the connected components piecewise.

(⇐) We prove the contrapositive. Suppose G has one connected compo-

nent. Then, G is disconnected or contains an induced P4, since by [Sei74, Aux.

Thm.], [Ler72], the complement of a connected P4-free graph is disconnected. Now

suppose G has two or more components. If G has an induced paw then it also has an

induced Y ]E1 and so G contains an induced dart by Observation 4.3. If G is paw-

free then G is a disjoint union of complete multipartite graphs by Lemma 4.8. Let

G be paw-free. If G has an induced diamond then it contains an induced K1,1,2]E1

and so G contains an induced cricket. If G has no induced diamond then it is a

disjoint union of cliques and complete bipartite graphs by Lemma 4.6. If G con-

tains an induced K2,2 ∼=C4 then it has an induced C4]E1 and so G has an induced

hourglass by Observation 4.3. We are left with G being the disjoint union of two

or more stars and cliques, in which case G is (P4,cricket, dart, hourglass)-free and

connected, so the result is proven.

Lemma 4.10 Let G be a complete multipartite graph. Then it is connected and

(P4,dart,cricket,hourglass)-free.

Proof. Trivially, G is connected. Now, observe that every induced subgraph of a

complete multipartite graph is complete multipartite. Equivalently, if G has an in-

duced subgraph that is not complete multipartite, G is not complete multipartite.
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If G contains an induced X ∈ {P4,dart,cricket,hourglass}, then we have a contra-

diction, since X is not complete multipartite.

Lemma 4.11 A graph G is (odd-hole, paw)-free if and only if each component of

G is bipartite or complete multipartite.

Proof. (⇒) If G is paw-free then by Lemma 4.7 each component is triangle-free or

complete multipartite. Let X be any triangle-free component of G. Since X is

odd-hole free, X is bipartite by Lemma 4.2.

(⇐) LetX be a given component of G. SupposeX is bipartite. By definition, X

has no odd hole since it contains no odd cycles. Moreover, the paw contains a triangle

as an induced subgraph so it cannot be an induced subgraph of X. Now suppose

X is complete multipartite. Whence, every induced subgraph of X is complete

multipartite also. An induced odd hole or paw in X gives a contradiction, since

neither of these graphs is complete multipartite.

4.4.2 Auxiliary results

We list in this section results that will be used throughout the proof of Theorem 4.1.

Proposition 4.4, the strong perfect graph theorem, will be of particular utility. The

sequel follows directly from definitions.

Lemma 4.12 The product graph G∇H is perfect if and only if G∇H is perfect.

Proposition 4.4 (Strong Perfect Graph Theorem [CRST06]) A graph G is perfect

if and only if it has no odd holes or odd antiholes.

Corollary 4.3 A graph G is perfect if and only if both G and G have no odd holes.

The sequel follows as a corollary of the strong perfect graph theorem, but was

originally proved by Lovász in 1972 [Lov72].

Proposition 4.5 (Weak Perfect Graph Theorem) A graph G is perfect if and only

if G is perfect.

Proposition 4.6 (Cameron, Edmonds and Lovász [CEL86, Theorem 1′ ]) Let G1

and G2 be perfect graphs and G := G1∪G2 be their union with V (G1) = V (G2) =

V (G) . Suppose that for any x,x′,x′′ ∈ V (G), {x,x′} ∈ E(G1) and {x′,x′′} ∈ E(G2)

implies that {x,x′′} ∈ E(G). Then, G is perfect.
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Proposition 4.7 (Ravindra, Parthasarathy [RP77, Theorem 3.2]) The graph G1⊗
G2 is perfect if and only if either

1. G1 or G2 is bipartite, or

2. both G1 and G2 are (odd hole, paw)-free.

Corollary 4.4 The graph G∇Kn is perfect if and only if either: n= 1, n= 2, or G

is (odd hole, paw)-free.

Proof. From definitions, G∇Kn = G⊗Kn. For n = 1 and n = 2, Kn is bipartite.

For n≥ 3, observe that Kn is (odd hole, paw)-free.

4.4.2.1 Imperfect weak modular products

For the proof of Theorem 4.1, we will need to enumerate many pairs of graphs whose

weak modular product is not perfect. The main proof technique used is to find an

offending odd hole or antihole in a given product graph. By the strong perfect graph

theorem (Proposition 4.4), the product is thus not perfect. Lemma 4.13 drastically

reduces the work required.

Lemma 4.13 Suppose X is an induced subgraph of G and Y is an induced subgraph

of H. Then, if X∇Y is not perfect, G∇H is not perfect. Equivalently, if G∇H is

perfect, then X∇Y is perfect.

Proof. We prove the contrapositive statement, that is, G∇H being perfect implies

perfection of X∇Y . Let X = G[A] and Y = H[B], where A,B ⊆ V (G). First, we

claim that G[A]∇H[B] = (G∇H)[A×B], that is, X∇Y is an induced subgraph of

G∇H. By the strong perfect graph theorem (Corollary 4.3) G∇H is perfect and

thus has no odd holes or antiholes; since X∇Y is an induced subgraph of G∇H it

too has no odd holes or antiholes, so is perfect by the same result.

It remains to prove the claim, we do so by showing that the vertex sets and

edge sets of G[A]∇H[B] and (G∇H)[A×B] are identical. Now, V (G[A]∇H[B]) =

V (G[A])×V (H[B]) =A×B. We also have that V ((G∇H)[A×B]) =A×B, so the

vertex sets are identical. For the edge sets, from definitions we have

E(G[A]∇H[B]) =
{{(x,y),(x′,y′)}

∣∣{x,x′} ∈ E(G[A])∧{y,y′} ∈ E(H[B])
}

∪
{
{(x,y),(x′,y′)}

∣∣∣{x,x′} ∈ E(G[A])∧{y,y′} ∈ E(H[B])
} (4.3)
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and

E((G∇H)[A×B]) =
{{(x,y),(x′,y′)}

∣∣{(x,y),(x′,y′)} ∈ E(G∇H)

∧ (x,x′ ∈A)∧ (y,y′ ∈B)}
=
{{(x,y),(x′,y′)}

∣∣{(x,y),(x′,y′)} ∈ E(G∇H)

∧ (x,x′ ∈ V (G[A])
)∧ (y,y′ ∈ V (H[B])

)}
=
{{

(x,x′),(y,y′)
} ∣∣{x,x′} ∈ E(G)∧{y,y′} ∈ E(H)

∧ (x,x′ ∈ V (G[A])
)∧ (y,y′ ∈ V (H[B])

)}
(4.4)

∪{{(x,x′),(y,y′)
} ∣∣{x,x′} ∈ E(G)∧{y,y′} ∈ E(H)

∧ (x,x′ ∈ V (G[A])
)∧ (y,y′ ∈ V (H[B])

)}
=
{{(x,y),(x′,y′)}

∣∣{x,x′} ∈ E(G[A])∧{y,y′} ∈ E(H[B])
}

∪
{
{(x,y),(x′,y′)}

∣∣∣{x,x′} ∈ E(G[A])∧{y,y′} ∈ E(H[B])
}
.

Comparison of Eqs. 4.3 and 4.4 shows that E (G[A]∇H[B]) = E ((G∇H)[A×B]),

proving the claim.

It follows from Lemma 4.13 that if we have graph families ΓX and ΓY such

that every G ∈ ΓX contains an induced X and every H ∈ ΓY contains an induced Y ,

where X∇Y is not perfect, every pair in ΓX ×ΓY has an imperfect weak modular

product. Indeed in the sequel we shall use this observation repeatedly on pairs of

graph families ΓX ×ΓY to rule out non-perfect weak modular products.

For the upcoming results, we require the notion of an augment of a graph.

Definition 4.5 (Augment of a graph). Let G be a graph on n vertices. A graph G′

is an augment of G if |V (G′)|= n+ 1 and G is an induced subgraph of G′.

Lemma 4.14 Let G be a triangle-free augment of C5. Then, G∇P3 is not perfect.

Proof. Figure 4.3 shows the relevant graph products with induced odd holes and

antiholes. The lemma follows from the strong perfect graph theorem.
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P3

G

G ∇ P3

P3

G

G ∇ P3

P3

G

G ∇ P3

Figure 4.3: Weak modular product of G and P3, where G is a triangle-free augment of C5.
An induced odd hole/antihole is denoted by a red, thick line.

Lemma 4.15 Let G be a triangle-free augment of C5. Then, G∇ (K2]E1) is not

perfect.

Proof. Figure 4.4 shows the relevant graph products with induced odd holes and

antiholes. The lemma follows from the strong perfect graph theorem.

K2 � E1

G

G ∇ (K2 � E1)

K2 � E1

G

G ∇ (K2 � E1)

K2 � E1

G

G ∇ (K2 � E1)

Figure 4.4: Weak modular product of G and K2]E1, where G is a triangle-free augment
of C5. An induced odd hole/antihole is denoted by a red, thick line.

Lemma 4.16 Let G be a bipartite augment of P4. Then, G∇P3 is not perfect.

Proof. Figure 4.5 shows the relevant graph products with induced odd holes and

antiholes. The lemma follows from the strong perfect graph theorem.
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P3

G

G ∇ P3

P3

G

G ∇ P3

P3

G

G ∇ P3

P3

G

G ∇ P3

Figure 4.5: Weak modular product of G and P3, where G is a bipartite augment of P4.
An induced odd hole/antihole is denoted by a red, thick line.

Lemma 4.17 Let G be a bipartite augment of P4. Then, G∇ (K2 ]E1) is not

perfect.

Proof. Figure 4.6 shows the relevant graph products with induced odd holes and

antiholes. The lemma follows from the strong perfect graph theorem.

K2 � E1

G

G ∇ (K2 � E1)

K2 � E1

G

G ∇ (K2 � E1)

K2 � E1

G

G ∇ (K2 � E1)

K2 � E1

G

G ∇ (K2 � E1)

Figure 4.6: Weak modular product of G and K2]E1, where G is a bipartite augment of
P4. An induced odd hole/antihole is denoted by a red, thick line.

Lemma 4.18 Let G ∈ {cricket, dart, hourglass}. Then, G∇P3 is not perfect.

Proof. Figure 4.7 shows the relevant graph products with induced odd holes and

antiholes. The lemma follows from the strong perfect graph theorem.
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P3

G

G ∇ P3

P3

G

G ∇ P3

P3

G

G ∇ P3

P3

G

G ∇ P3

P3

G

G ∇ P3

Figure 4.7: Weak modular product of G and P3, where G ∈ {cricket, dart, hourglass}. An
induced odd hole/antihole is denoted by a red, thick line.

Lemma 4.19 Let G ∈ {K1,1,2,Y,P4]E1,K2,2]E1,P5}. Then (K2]E1)∇G is not

perfect.

Proof. Figure 4.8 shows the relevant graph products with induced odd holes and

antiholes. The lemma follows from the strong perfect graph theorem.
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P4 � E1

K
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Y
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2
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1

P5
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∇

(K
2
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1
)

Figure 4.8: Weak modular product of G and K2]E1, where G∈ {K1,1,2,Y,P4]E1,K2,2]
E1,P5}. An induced odd hole/antihole is denoted by a red, thick line.

Lemma 4.20 Let G ∈ {K2]E2,P3]E1,P5,K1,1,2]E1,3K2}. Then P3∇G is not

perfect.



100 Chapter 4. Graph Products and Isomorphism

Proof. Figure 4.9 shows the relevant graph products with induced odd holes and

antiholes. The lemma follows from the strong perfect graph theorem.

3K2

P
3

P3 ∇ 3K2

K1,1,2 � E1

P
3

P3 ∇ (K1,1,2 � E1)

K2 � E2

P
3

P3 ∇ (K2 � E2)

P3 � E1

P
3

P3 ∇ (P3 � E1)

P5

P
3

P3 ∇ P5

Figure 4.9: Weak modular product of G and P3, where G ∈ {K2]E2,P3]E1,P5,K1,1,2]
E1,3K2}. An induced odd hole/antihole is denoted by a red, thick line.

Lemma 4.21 Let G ∈ {2K2,Y,K1,1,2,K2,2}. Then P4∇G is not perfect.

Proof. Figure 4.10 shows the relevant graph products with induced odd holes and

antiholes. The lemma follows from the strong perfect graph theorem.
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4
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2K2
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2
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Figure 4.10: Weak modular product of G and P4, where G ∈ {2K2,Y,K1,1,2,K2,2}. An
induced odd hole/antihole is denoted by a red, thick line.

Lemma 4.22 Let G ∈ {P3]E1,K2]E2}. Then K2,2∇G is not perfect.

Proof. Figure 4.11 shows the relevant graph products with induced odd holes and

antiholes. The lemma follows from the strong perfect graph theorem.

K2 � E2

K
2,

2

K2,2 ∇ (K2 � E2)

P3 � E1

K
2,

2

K2,2 ∇ (P3 � E1)

Figure 4.11: Weak modular product of G and K2,2, where G ∈ {P3 ]E1,K2 ]E2}. An
induced odd hole/antihole is denoted by a red, thick line.

Lemma 4.23 Let G ∈ {K3,2K2,K1,3,K2,2}. Then C5∇G is not perfect.
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Proof. Figure 4.12 shows the relevant graph products with induced odd holes and

antiholes. The lemma follows from the strong perfect graph theorem.

C5

2K
2

2K2 ∇ C5

C5

K
1
,3

K1,3 ∇ C5

C5

K
3

K3 ∇ C5

C5

K
2
,2

K2,2 ∇ C5

Figure 4.12: Weak modular product of G and C5, where G ∈ {K3,2K2,K1,3,K2,2}. An
induced odd hole/antihole is denoted by a red, thick line.

4.4.2.2 Perfect weak modular products

In this section we find perfect weak modular product graphs, using tools from pre-

vious sections, notably Proposition 4.6.

For the next lemma, we require the concept of a line graph. For a graph G, its

line graph L(G) is the graph where V (L(G)) =E(G) and {e1,e2} ∈E(L(G)) if and

only if the edges e1,e2 ∈ E(G) share a vertex in V (G).

Lemma 4.24 Suppose G is a graph containing an induced P3. Then, G∇C5 is

perfect if and only if G ∈ {P3,P4,C5}.

Proof. (⇐) As demonstrated by Figure 4.13 and Table 4.1, C5∇C5 is the line graph

L(M) of the graph M , where M is defined in Figure 4.13. Observe further that

M is bipartite, with partite sets {0,3,5,7,8} and {1,2,4,6,9} using the labelling of

Figure 4.13. It is a well-known result that line graphs of bipartite graphs are perfect,

and so C5∇C5 is perfect. Moreover, since P3 and P4 are induced subgraphs of C5,

P3∇C5 and P4∇C5 are perfect.
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(⇒) We prove the contrapositive. First observe that C5∇K3 is not perfect,

by Corollary 4.4. Let G be triangle-free and suppose G is not bipartite. Then, by

Lemma 4.2 G has an induced odd hole, in which case G contains an induced C5

or an induced P5. In the former case, G∇C5 is perfect only if G ∼= C5, for if G

contains a triangle-free augment of C5, then G∇C5 is not perfect by Lemma 4.14.

In the latter case, from Lemma 4.20 P3∇P5 is not perfect and so C5∇G is not

perfect. Now suppose G is bipartite. Then, by Lemma 4.5 G either has an induced

P4 or is a disjoint union of complete bipartites. In the former case we see G∇C5 is

perfect only if G∇P4, for if G contains a bipartite augment of P4, then G∇P4 is

not perfect by Lemma 4.16. In the latter case, G either contains an induced K2,2

or is a disjoint union of stars. If G contains an induced K2,2, G∇C5 is not perfect

by Lemma 4.23. If G is a disjoint union of stars and G 6∼= P3, G contains either an

induced P3]E1 or an induced K1,3. Then, G∇C5 is not perfect by Lemmas 4.20

and 4.23 respectively.

( · ,1) ( · ,2) ( · ,3) ( · ,4) ( · ,5)
(1, ·) {0,1} {5,6} {2,8} {3,9} {4,7}
(2, ·) {6,7} {0,2} {5,9} {4,8} {1,3}
(3, ·) {2,3} {7,9} {0,4} {1,5} {6,8}
(4, ·) {8,9} {3,4} {1,7} {0,6} {2,5}
(5, ·) {4,5} {1,8} {3,6} {2,7} {0,9}

Table 4.1: Assignment of vertices in C5∇C5 to edges in M , with vertex labels imposed in
Figure 4.13. Two vertices in C5∇C5 are adjacent if and only if the corresponding
edges inM per the table share a common vertex. Thus C5∇C5 ∼=L(M), where
L(M) is the line graph of M .
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9

8

7

6

5

4

3

2

1

0

Figure 4.13: a) The graph C5∇C5 with vertex labelling indicated. b) The graph we denote
by M , with vertex labels. The graph C5∇C5 is isomorphic to the line graph
of M , i.e. C5∇C5 ∼= L(M). The assignment of vertices in C5∇C5 to edges
in M is given by Table 4.1.

It is interesting to note that the graph C5 ∗C5 is not perfect, where ∗ is the

strong, direct, Cartesian or lexicographic product [RP77, Rav78].

Corollary 4.5 The graph C5∇ (K2]E1) is perfect.

Proof. The graph C5∇P3 is perfect taken with Lemma 4.12 and self-complementarity

of C5.
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Lemma 4.25 Let G and H be the disjoint union of cliques. Then, G∇H is perfect.

Proof. We shall proceed by using Proposition 4.6, taking G1 in the theorem state-

ment as G⊗H and correspondingly, G2 as G⊗H. The assumptions of the theorem

are satisfied, namely, G1 and G2 are perfect. This follows from Proposition 4.7, since

G, G, H and H are (odd hole, paw)-free.

Now call G = ⊎k
i Kri and H = ⊎`

jKsj . It remains to show that (x,y) ∼G⊗H
(x′,y′) and (x′,y′) ∼G⊗H (x′′,y′′) implies (x,y) ∼G⊗H∪G⊗H (x′′,y′′) ≡ (x,y) ∼G∇H
(x′′,y′′), where x,x′,x′′ ∈ V (G) and y,y′,y′′ ∈ V (H). Now, denote the subsets of

vertices comprising the cliques in G by Ui respectively, that is, the ith clique of G is

induced on the vertex set Ui. The jth clique of H, Knj , is induced on the vertex set

Vj .

From definitions, we have that (x,y)∼G⊗H (x′,y′) if and only if x ∈ Ui, x′ ∈ Ui,
x 6= x′ for some i ∈ [k], and y ∈ Vj , y′ ∈ Vj , y 6= y′ for some j ∈ [`]. Moreover, we have

that (x,y)∼G⊗H (x′,y′) if and only if x ∈ Ui, x′ ∈ Ui′ for i 6= i′, i, i′ ∈ [k] and y ∈ Vj ,
y′ ∈ Vj′ for j 6= j′, j,j′ ∈ [`].

Suppose the edge {(x,y),(x′,y′)} exists in G⊗H and {(x′,y′),(x′′,y′′)} exists in
G⊗H. We have that x ∈ Ui, x′ ∈ Ui for x 6= x′, x′′ ∈ Uĩ for i 6= ĩ and y ∈ Vj , y′ ∈ Vj
for y 6= y′, y′′ ∈ Vj̃ for j 6= j̃. The vertices x and x′′ are in different cliques, and y

and y′′ are in different cliques. Thus we have that (x,y) ∼G⊗H (x′′,y′′) giving that

(x,y)∼G⊗H∪G⊗H (x′′,y′′), and so G∇H is perfect by Proposition 4.6.

Corollary 4.6 Let G and H be complete multipartite graphs. Then, G∇H is

perfect.

Proof. Take complements and use Lemmas 4.12 and 4.4.

Lemma 4.26 The graph (Kr ]Ks)∇Km,n is perfect.

Proof. Let G = (Kr ]Ks) and H = Km,n. Call the vertices in G comprising the

cliques U0 and U1 respectively, such that V (G) = U0 ]U1. Likewise, for brevity

call the vertices in H comprising the partite sets V0 and V1 respectively, so that

V (H) = V0]V1. From the definition of the weak modular product G∇H, we have

that a vertex (x,y) ∈ Uz1 ×Vz2 is adjacent to a vertex in (x′,y′) ∈ Uz3 ×Vz4 if and

only if x 6= x′, y 6= y′ and either: z1 = z3 and z2 6= z4; or z1 6= z3 and z2 = z4 for

z1,z2,z3,z4 ∈ {0,1}. There are no other edges. Notice that G∇H comprises a
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complete bipartite graph with partite sets U0×V0∪U1×V1 and U0×V1∪U1×V0,

with a perfect matching removed. Since G∇H is bipartite, it is perfect.

We now require a number of auxiliary lemmas to prove Proposition 4.8.

Lemma 4.27 Suppose (Kr ]Ks)∇ (G]K1) and (Kr ]Ks)∇ (H ]K1) are perfect.

Then, (Kr ]Ks)∇ (G]H) is perfect.

Proof. For brevity, we denote (Kr]Ks)∇(G]H) by Λ and V (Λ) by U . We draw the

structure of Λ in Figure 4.14. Observe that U is partitioned into four disjoint subsets

of vertices: V (Kr)×V (G), V (Kr)×V (H), V (Ks)×V (G) and V (Ks)×V (H), which

we respectively denote U1, U2, U3 and U4. Now for the sake of contradiction suppose

Λ is not perfect. Then, by the strong perfect graph theorem it contains an induced

odd hole or antihole, which we call X. The vertices of X, V (X), cannot lie solely in

one partitioned subset of U , for in this case X is an induced subgraph of a perfect

graph and we have a contradiction. Each of the Λ[Ui] is perfect by assumption.

Suppose now X has vertices in two of the partitioned subsets, i.e. V (X) ⊆
Ui ∪Uj for i, j ∈ {1,2,3,4}, i 6= j and V (X) 6⊆ Ui, V (X) 6⊆ Uj . If V (X) ⊆ U1 ∪U2

or V (X) ⊆ U3 ∪U4, then X is an induced subgraph of a disjoint union of perfect

graphs and we have a contradiction. If V (X) ⊆ U1 ∪U3 or V (X) ⊆ U2 ∪U4 then

X is an induced subgraph of (Kr ]Ks)∇G or (Kr ]Ks)∇H respectively, which

are perfect by assumption, yielding a contradiction. We also obtain a contradiction

when V (X)⊆ U1∪U4 or V (X)⊆ U2∪U3, as Λ[U1∪U4] and Λ[U2∪U3] are disjoint

unions of perfect graphs and so Λ[U1∪U4], Λ[U2∪U3] are perfect by the weak perfect

graph theorem, Proposition 4.5.

Assume now that X has vertices lying in three of the partitioned subsets, i.e.

V (X)∩Ui = ∅ for exactly one i ∈ {1,2,3,4}. Furthermore, let i = 4 without loss of

generality, so that V (X)⊆ U1∪U2∪U3. Observe that every vertex of U2 is adjacent

to every vertex of U3 in Λ by definition, and vice versa. Moreover, U2 is adjacent

to every vertex of U1 in Λ and vice versa. Suppose now that at least two vertices of

X lie in U2. By assumption there is at least one vertex of X in each of U3 and U1.

Thus, Λ[V (X)] and Λ[V (X)] both contain a triangle and we have a contradiction

with Corollary 4.3, as neither X nor X are an odd hole. Now suppose only one

vertex of X lies in U2. Thus, X is an induced subgraph of (Kr]Ks)∇ (G]K1) and

we have a contradiction since (Kr ]Ks)∇ (G]K1) is perfect by assumption.
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Finally, assume there is a vertex from X in every partition of U , i.e. V (X)∩
Ui 6= ∅ for every i ∈ {1,2,3,4}. By the pigeonhole principle, there is at least one

j ∈ {1,2,3,4} such that Uj has two or more vertices from X since |X| ≥ 5. Moreover,

for any j there exist j′, j′′ ∈ {1,2,3,4} where j 6= j′, j 6= j′′, j′ 6= j′′ such that every

vertex in Uj is connected to every vertex in Uj′ in Λ and every vertex in Uj is

connected to every vertex in Uj′′ in Λ. By the argument in the previous paragraph,

this contradicts the assumption that X is an odd hole or antihole.

Figure 4.14: Structure of the graph (Kr ]Ks)∇ (G]H) with the vertex set partition
(U1,U2,U3,U4) defined in the proof of Lemma 4.27. Every vertex in U1 is
adjacent to every vertex in U4 and vice versa. Every vertex in U2 is adjacent
to every vertex in U3 and vice versa.

Corollary 4.7 Suppose (Kr]Ks)∇ (G]K1) and (Kr]Ks)∇ (H ]K1) are perfect.

Then, (Kr ]Ks)∇ (⊎k1
i=1G]

⊎k2
i=1H) is perfect for any k1,k2 ∈ N.

Proof. The graph (Kr]Ks)∇E3 ∼=Kr,s⊗K3 by the definition of the weak modular

product, which is perfect by Proposition 4.7. Thus, we have that (G]E2)∇ (Kr ]
Ks)∼= (G]K1]K1)∇ (Kr]Ks) is perfect by Lemma 4.27, and the same argument

applies for (H ]K1]K1)∇ (Kr]Ks). Now inductively apply Lemma 4.27 with the

above and the result follows.

Lemma 4.28 The graph (Kr ]Ks)∇ (K1,m]K1) is perfect.

Proof. For brevity we denote the graph (Kr]Ks)∇(K1,m]K1) by G. Furthermore,

we impose the vertex labelling of Figure 4.15. We show that G satisfies the definition

of a perfect graph, namely that ω(X) = χ(X) for all induced subgraphs X. First,

observe that χ(G) is 3-colourable, according to the colouring in Figure 4.15. Now,

let z ∈ {0,1} and z̄ be its binary complement and let X be an induced subgraph of
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G. Suppose X includes a vertex from Uz×V1,2, a vertex from Uz×V0 and a vertex

from Uz×V1,1. Then X contains a triangle. From inspection of Figure 4.15 one sees

that G is K4-free, so ω(X) = 3 in this case. Moreover, since G has a 3-colouring,

ω(X) = χ(X) = 3. If X contains no three such vertices, we see from Figure 4.15 that

X is bipartite and so ω(X) = χ(X) = 2.

Figure 4.15: a) Illustration of the graphs Kr ]Ks and K1,m ]K1 with vertex labellings
indicated. Illustration of the graph (Kr ]Ks)∇ (K1,m ]K1), with vertex
labelling and a 3-colouring indicated. Each node represents an empty graph
on either r or s vertices. A full line represents a fully bipartite graph induced
over the end nodes and a dashed line represents a complete bipartite graph
with a perfect matching removed.

Proposition 4.8 Let G=Kr]Ks and let H be a disjoint union of stars and cliques.

Then, G∇H is perfect.

Proof. Follows immediately from Corollary 4.7, Lemma 4.28 and Lemma 4.25.

Lemma 4.29 The graph P4∇K1,r is perfect for any r ≥ 1.
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Figure 4.16: Illustration of the graph P4∇K1,r, with r = 3 for concreteness. The sets
{i}×V1 for i∈ {1,2,3,4} each have cardinality r. The subgraphs of P4∇K1,r
induced on the sets {2,4}×V1, {1,3}×V1 and {1,4}×V1 are complete bipar-
tite graphs with a perfect matching removed. The vertex (1,1) is connected
to all vertices in {2}×V1. The vertex (4,1) is connected to all vertices in
{3}×V1. The vertex (3,1) is connected to all vertices in {2}×V1 and {4}×V1.
The vertex (2,1) is connected to all vertices in {1}×V1 and {3}×V1.

Proof. The case r = 1 is trivial by Corollary 4.4. Impose now the vertex labelling

from Figure 4.16. We have drawn P4∇K1,r for r= 3 in Figure 4.16, the result readily

generalises to any r ≥ 2. We now use the strong perfect graph theorem. Observe

that any induced subgraph of P4∇K1,r not including both vertices (3,1) and (2,1)

is bipartite, so is perfect. Thus, any induced subgraph containing an odd hole or

antihole must include either (3,1) or (2,1). Without loss of generality, consider an

odd cycle C = x1,x2, . . . ,x2k+2 (for k≥ 2) starting and beginning at vertex (3,1), i.e.

x1 = x2k+2 = (3,1). Clearly, either x2 ∈ {2}×V1 and x2k+1 ∈ {4}×V1 or x2 ∈ {4}×V1

and x2k+1 ∈ {2}×V1. Then, the vertices {x1,x2,x2k+1} induce a triangle and so

(P4∇K1,r)[C] is not an odd hole. Thus, P4∇K1,r is odd hole-free. Furthermore,

observe that the only neighbour common to x2 and x2k+1 is x1. Thus, there is no

diamond in P4∇K1,r with a degree-2 vertex at (3,1). But every vertex in an odd

antihole on 7 or more vertices is a degree-2 vertex in some diamond, so (3,1) cannot

be a vertex of an odd antihole, and so P4∇K1,r is odd antihole-free.

Corollary 4.8 The graph P4∇ (K1]Kr) is perfect for any r ≥ 1.

Proof. Taking complements, Lemmas 4.29 and 4.12 give the result.

4.4.2.3 Full case analysis

We have finally gathered the required ingredients to prove Theorem 4.1. The proof

constitutes a case analysis over all pairs of finite, simple graphs, which has been split

into Lemmas 4.30—4.42. They are tied up in the proof of Theorem 4.1.

In this subsection we let the binary variable z ∈ {0,1} be arbitrary and z be its

complement. We do this for brevity, so we can make statements such as “Gz∇Gz is
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perfect if and only if Gz has property PA and Gz has property PB, for any z ∈ {0,1}”.
The above statement is equivalent to the statements: “G0∇G1 is perfect if and only

if either: G0 has property PA and G1 has property PB, or G1 has property PA and

G0 has property PB”.
Without further ado, we proceed with the case analysis.

Lemma 4.30 Suppose Gz ∼=Kr]Ks for r+s≥ 3 and Gz is paw-free. Then Gz∇Gz
is perfect if and only if either

1. Gz ∼=K2]E1 and Gz ∼= C5; or

2. Gz ∼=Km]K1 for m ∈ N and Gz ∼= P4; or

3. Gz ∈ {Km,Km,n} for m,n ∈ N; or

4. Gz is a disjoint union of cliques and stars with two or more connected compo-

nents.

Proof. Gz is paw-free, so by Lemma 4.7, it is a disjoint union of complete multipartite

and triangle-free graphs. Moreover, by assumption Gz has an induced K2]E1.

First, suppose that Gz has a triangle-free component X. Moreover, suppose

that X is bipartite and not complete. Then, by Lemma 4.5 X has an induced P4.

Lemma 4.17 states that the weak modular product of a bipartite augment of P4

with K2]E1 is not perfect, so if Gz 6∼= P4, Gz∇Gz is not perfect. Suppose Gz ∼= P4.

If r = 1 or s = 1, then Gz∇Gz ∼= (K1 ]Kn)∇P4 for some n and so is perfect by

Corollary 4.8, giving case (2). If r ≥ 2 and s≥ 2, then Gz has an induced 2K2 and

Gz∇Gz is not perfect by Lemma 4.21.

Suppose now that X is nonbipartite, so has an odd hole by Lemma 4.2. More-

over, suppose the largest hole has length greater than 6. Then, X has an induced P5

and by Lemma 4.19 Gz∇Gz is not perfect. Now suppose that the largest odd hole

in X is a C5. If Gz 6∼= K2 ]E1 then Gz contains either 2K2 or K3 by assumption.

Thus, Gz∇Gz is not perfect by Lemma 4.23. If Gz ∼= (K2]E1), by Corollary 4.5

and Lemma 4.15 Gz∇Gz is perfect if and only if Gz ∼= C5, giving case (1).

Now suppose Gz is a disjoint union of complete multipartite graphs. If Gz has

an induced diamond then Gz∇Gz is not perfect by Lemma 4.19. By Lemma 4.6,

a complete multipartite graph is diamond-free if it is a disjoint union of cliques
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and complete bipartites. Suppose Gz is diamond-free. If Gz is connected, then

Gz ∈ {Km,Km,n} for m,n ∈ N and Gz∇Gz is perfect by Lemmas 4.25 and 4.26,

giving case (3). Now suppose Gz has two or more connected components. If Gz has

an induced K2,2, then Gz∇Gz is not perfect by Lemma 4.19; else Gz is a disjoint

union of stars and cliques, in which case Gz∇Gz is perfect by Proposition 4.8, giving

case (4).

Lemma 4.31 Suppose Gz is a disjoint union of cliques with k connected compo-

nents, where k ∈ N\{2}. Moreover, suppose Gz has an induced P3. Then Gz∇Gz
is perfect if and only if either

1. Gz ∈ {K1,K2}; or

2. Gz ∼=Kr for r ∈ N and Gz is (odd hole, paw)-free; or

3. Gz ∼= Ek and Gz is (odd antihole, co-paw)-free

Proof. Suppose k ≥ 3. If Gz is empty we get case (3) from Corollary 4.4 and

Lemma 4.12. Assume Gz is nonempty. Then, Gz has an induced K2 ]E2 and

Gz∇Gz is not perfect by Lemma 4.20. Now assume k = 1, i.e. Gz ∼= Kr for some

r ∈ N. Then we get cases (1) and (2) from Corollary 4.4.

Lemma 4.32 Suppose Gz is a disjoint union of complete multipartite graphs and

triangle-free graphs. Moreover, suppose that Gz is connected, (P4,cricket, dart,

hourglass)-free and contains an induced paw. Then Gz∇Gz is perfect if and only if

Gz ∼=Km,n.

Proof. Suppose Gz̄ has an induced K2 ]E1. Then, by Lemma 4.19 Gz ∇Gz is

not perfect. Now, assume Gz is (K2 ]E1)-free. By Corollary 4.2, a (K2 ]E1)-

free graph is complete multipartite. Moreover, assume that Gz has an induced

diamond. Gz∇Gz contains Y ∇K1,1,2, so is not perfect by Lemma 4.19 as the paw

contains K2]E1 as an induced subgraph. We now assume Gz is diamond-free, so

is a clique or complete bipartite by Lemma 4.6 and Corollary 4.2. If Gz is a clique,

then from Corollary 4.4 Gz∇Gz is not perfect. If Gz is complete bipartite then

Gz∇Gz is perfect, from taking complements and using Proposition 4.8 along with

Lemmas 4.9 and 4.12.
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Lemma 4.33 Suppose Gz is a disjoint union of complete multipartite graphs and

triangle-free graphs, containing an induced P4. Moreover, suppose that Gz is com-

plete multipartite and contains an induced P3. Then Gz∇Gz is perfect if and only

if either

1. Gz ∼= C5, Gz ∼= P3; or

2. Gz ∼= P4 , Gz ∈ {Kn,K1,n}.

Proof. We denote by X a component of Gz containing an induced P4. Suppose X

is bipartite. By Lemma 4.16, if Gz 6∼= P4 Gz∇Gz is not perfect. We thus assume

Gz ∼= P4. If Gz has an induced diamond, Gz∇Gz is not perfect by Lemma 4.21. In

accordance with Lemma 4.6, we thus let Gz be a clique or complete bipartite. If Gz
is a clique Gz∇Gz is perfect by Corollary 4.4. If Gz is complete bipartite it either

contains K2,2 or is a star. In the former case Gz∇Gz is not perfect by Lemma 4.21;

in the latter case is perfect by Lemma 4.29. This gives us case (2).

We now assume that X is nonbipartite, so by Lemma 4.2 X contains an odd

hole. If the largest odd hole in X has length greater than 6, then X has an induced

P5 and Gz∇Gz is not perfect by Lemma 4.20. We thus assume X contains C5 as

an induced subgraph. By Lemma 4.14, if Gz 6∼= C5, Gz∇Gz is not perfect. Now

let Gz ∼= C5, which contains P4 as an induced subgraph. Recall that Gz is complete

multipartite. If Gz has an induced diamond, Gz∇Gz is not perfect by Lemma 4.21.

With regard to Lemma 4.6, we thus let Gz be complete bipartite since Gz being a

clique contradicts Lemma 4.3. Hence, Gz either contains K2,2 or is a star. In the

former case Gz∇Gz is not perfect by Lemma 4.21. In the latter, if Gz ∼= K1,r for

r≥ 3 then Gz∇Gz is not perfect by Lemma 4.23. C5∇K1,2 is perfect by Lemma 4.24

and we have case (1).

Lemma 4.34 Suppose Gz is a disjoint union of complete multipartite graphs. More-

over, suppose that Gz is complete multipartite. Then Gz∇Gz is perfect if and only

if either

1. Gz ∼=Kn

2. Gz ∼=Kr ]Ks, Gz ∼=Km,n; or

3. Gz and Gz are complete multipartite.
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Proof. If Gz is connected, Gz∇Gz is perfect by Corollary 4.6 and we get case (3).

We now assume Gz has more than one connected component, so from Corollary 4.2

Gz has an induced K2]E1. If Gz has an induced diamond, Gz∇Gz is not perfect

by Lemma 4.19. Suppose now Gz is diamond-free. From Lemma 4.6, Gz is either a

clique or complete bipartite. If Gz is a clique Gz∇Gz is perfect by Corollary 4.4, as

Gz, being a disjoint union of complete multipartites, is (odd hole, paw)-free. This

falls into case (1). If Gz ∼=K1,1 ∼=K2, G∇Gz is perfect by Corollary 4.4, belonging

to case (1). We assume now that Gz ∼= Km,n with m+n ≥ 3, whence Gz has an

induced P3. If Gz has an induced diamond then Gz has an induced K1,1,2]E1, as

it has more than one connected component, in which case Gz∇Gz is not perfect by
Lemma 4.20 (observe that Gz has an induced P3 by Lemma 4.3). Now assume Gz is

a disjoint union of cliques and complete bipartites. If Gz contains an induced P3, it

contains P3]E1 and Gz∇Gz is not perfect by Lemma 4.20. Finally, we let Gz be a

disjoint union of cliques. If Gz ∼=Km]Kn, then Gz∇Gz is perfect by Lemma 4.26;

else Gz has three or more connected components and Gz∇Gz is not perfect, since

Gz contains K2]E2 as an induced subgraph and from Lemma 4.20, P3∇ (K2]E2)

is not perfect. This gives us case (2) and completes the proof.

Lemma 4.35 Suppose Gz has an induced paw. Furthermore, suppose Gz is con-

nected and (P4,cricket, dart, hourglass)-free. Then Gz∇Gz is perfect if and only if

either

1. Gz ∼=Km,n, Gz is connected and (P4,cricket, dart, hourglass)-free; or

2. Gz ∈ {K1,K2}.

Proof. First, suppose that Gz has an induced K2]E1, in which case Gz∇Gz is not
perfect by Lemma 4.19. From Corollary 4.2, a connected (K2 ]E1)-free graph is

complete multipartite. We thus assume Gz is complete multipartite. If Gz ∼= Kn,

we get case (2) from Corollary 4.4. We then let Gz 6∼= Kn for all n ∈ N. Either

Gz has an induced K1,1,2, or is complete bipartite by Lemma 4.6. In the former

case Gz∇Gz is not perfect by Lemma 4.19, using the fact that Y contains K2 ]
E1 as an induced subgraph. In the latter case we have two scenarios: i. Gz is

connected and (P4,cricket, dart, hourglass)-free, in which case Gz ∇Gz is perfect

from Proposition 4.8 taken with Lemmas 4.12 and 4.9. This belongs to case (1). In
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scenario ii. Gz is either disconnected or has an induced P4, cricket, dart or hourglass.

If Gz is disconnected it contains an induced P3 ]E1. Recall that Gz contains an

induced P3 by Lemma 4.3 and the assumption that Gz 6∼=Kn for all n∈N, so Gz∇Gz
is not perfect by Lemma 4.20. If Gz contains any of {P4,cricket, dart, hourglass},
then by Lemmas 4.21 and 4.18 Gz∇Gz is not perfect. This gives us case (1).

Lemma 4.36 Suppose Gz has an induced P3 and Gz ∼= rK2. Then, Gz ∇Gz is

perfect if and only if

1. Gz is a disjoint union of cliques (equiv. Gz is complete multipartite); or

2. Gz ∼=K2 (equiv. Gz ∼= E2); or

3. Gz is a disjoint union of stars and cliques andGz ∼= 2K2 (equiv. Gz is connected

and (P4,cricket, dart, hourglass)-free, Gz ∼=K2,2).

4. Gz ∼=Km,n for m,n ∈N and Gz ∼= 2K2 (equiv. Gz ∼=Km]Kn and Gz ∼=K2,2).

Proof. If Gz is a disjoint union of cliques, we have that Gz and Gz are both complete

multipartite by Lemma 4.4. Corollary 4.6 gives us perfection of Gz∇Gz, case (1).

Now suppose Gz has an induced P3. If r ≥ 3, Gz∇Gz is not perfect by Lemma 4.20

and Lemma 4.12. If Gz ∼=K2, we have case (2) from Corollary 4.4 and Lemma 4.12.

Now suppose Gz ∼= 2K2. If we suppose that Gz is paw-free we have cases (3) and

(4) from Lemma 4.30 and Lemma 4.12. If Gz has an induced paw Gz∇Gz is not

perfect by Lemma 4.20, as Gz has an induced P3]E1 (by Observation 4.3).

Lemma 4.37 Suppose Gz has an induced P3 and is triangle-free. Moreover, suppose

that Gz is a disjoint union of stars with induced P3. Then, Gz∇Gz is perfect if and
only if

1. Gz ∼= C5, Gz ∼= P3 (equiv. Gz ∼=K2]E1); or

2. Gz ∼=Km,n for m,n≥ 2; or

3. Gz is a disjoint union of stars with two or more connected components, Gz ∼=
K1,r (equiv. Gz ∼=K1]Kr); or

4. Gz ∼=K1,r; or

5. Gz ∼= P4, Gz ∼=K1,r (equiv. Gz ∼=K1]Kr) for r ≥ 2.
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Proof. First suppose that Gz is nonbipartite, so by Lemma 4.2 it has an odd hole.

If the largest odd hole in Gz has size seven or larger, then Gz has an induced P5.

By Lemmas 4.3, 4.4 and Corollary 4.2, Gz has an induced P3 if and only if Gz is

disconnected, as Gz is (K2 ]E1)-free only when disconnected. Thus, Gz ∇Gz is

not perfect by Lemma 4.20 if Gz is disconnected. Let Gz be connected. Then,

Gz ∼= Kr ]K1 for some r ≥ 2 and so Gz contains an induced K2]E1. In this case

Gz∇Gz is not perfect by Lemma 4.17 as P5 is a bipartite augment of P4.

Now suppose Gz has an induced C5. If Gz 6∼= C5, then Gz∇Gz is not perfect

by Lemma 4.14. We now let Gz ∼= C5, in which case Gz ∼= C5. If Gz 6∼= K1,2, then

either it contains an induced P3 ]E1, or it contains an induced K1,3. By Lem-

mas 4.20 and 4.23 respectively, Gz∇Gz is not perfect in both cases. If Gz ∼= K1,2,

Gz ∼=K2]E1 and Gz∇Gz is perfect by Corollary 4.5, giving case (1).

Now we suppose Gz is bipartite. Suppose also that it has an induced P4, so has

a connected component that is not complete bipartite by Lemma 4.5. Moreover, Gz
also has an induced P4 since P4 is self-complementary. Now assume that Gz has

two or more connected components, in which case it has an induced P3 ]E1 and

thus Gz has an induced paw by Observation 4.3. Then, Gz∇Gz is not perfect by

Lemma 4.21. Now suppose that Gz is connected, so Gz ∼= K1,r and Gz ∼= Kr ]E1

for r ≥ 2. If Gz 6∼= P4, by Lemmas 4.12 and 4.16 Gz∇Gz is not perfect. If Gz ∼= P4,

Gz ∼= P4 and Gz ∼= Kr ]E1 for r ≥ 2. Thus, Gz∇Gz is perfect by Corollary 4.8,

giving case (5).

Now we suppose Gz is a disjoint union of complete bipartites. First suppose Gz
has an induced K2,2. If it has two or more connected components then Gz contains

an induced K2,2]E1 and Gz∇Gz is not perfect by Lemma 4.19. If Gz is connected,

then Gz ∼= Km,n, Gz ∼= Km ]Kn. By Proposition 4.8 and Lemma 4.12 Gz∇Gz is

perfect, giving case (2). Now let Gz be a disjoint union of stars. Moreover, suppose

Gz has two or more connected components so has induced 2K2; equivalently Gz

has an induced K2,2. Also, let Gz have two or more connected components so has

induced P3 ]E1. From Lemma 4.22 we have that K2,2∇ (P3 ]E1) is not perfect,

and so by Lemma 4.12 Gz∇Gz is not perfect. If Gz is connected Gz ∼= K1 ]Kr,

so by Proposition 4.8 and Lemma 4.12 Gz∇Gz is perfect, giving case (3). Finally,

suppose Gz is connected. Then, Gz ∼=K1,r, Gz ∼=K1]Kr and Gz∇Gz is perfect by
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Proposition 4.8 and Lemma 4.12, giving case (4). This completes the proof.

Lemma 4.38 Let G be a (K2]E2)-free graph such that α(G)≥ 3. Then G∇P3 is

perfect if and only if either: G is connected and (P4,cricket, dart, hourglass)-free;

or G∼= En.

Proof. (⇒) If G ∼= En then G∇P3 is perfect, since En∇P3 ∼= Kn∇ (K2]E1) and

the latter is perfect by Corollary 4.4. Moreover, one can see that if G is connected

and (P4,cricket, dart, hourglass)-free, G∇H is perfect by taking complements and

using Lemmas 4.12 and 4.9 with Proposition 4.8.

(⇐) We prove the contrapositive, namely that G∇P3 is not perfect when G

is a (K2]E2)-free graph with α(G) ≥ 3 that is either disconnected, or contains an

induced P4, cricket, dart or hourglass.

Suppose G is disconnected and nonempty. Then, if G has more than three

connected components, it has an induced K2]E2, a contradiction. So G must have

two components. If both components of G are cliques then α(G) = 2 and we have

a contradiction, so at least one component of G contains a P3 by Lemma 4.3. Now,

since (P3]E1)∇P3 is not perfect from Lemma 4.20, G∇P3 is not perfect.

Now suppose G is connected. For X ∈ {cricket, dart, hourglass}, X∇P3 is not

perfect by Lemma 4.18, so for any G containing induced X, G∇P3 is not perfect.

Finally, suppose that G contains an induced P4. Since P4 is self complementary,

by assumption we have that G is diamond-free, has an induced P4 and ω(G) ≥ 3.

We shall now show that G∇ (K2 ]E1) is not perfect, and the result follows from

Lemma 4.12. To wit, suppose G contains an induced paw. Then, we have that

G∇ (K2 ]E1) is not perfect by Lemma 4.19. Now suppose G is paw-free. From

Lemma 4.7 G is either i. triangle-free or ii. is complete multipartite. Case i.

contradicts the assumption that ω(G) ≥ 3. Case ii. taken with the assumption

that G is diamond-free implies that G is complete bipartite, by Lemma 4.6. But G

contains an induced P4, contradicting Lemma 4.5. Thus G∇(K2]E1) is not perfect

when G is connected, contains an induced P4 and is (K2]E2)-free with α(G) ≥ 3.

The result follows.

Lemma 4.39 Suppose Gz has an induced P3 and contains a triangle. Moreover,

suppose that Gz is a disjoint union of stars with induced P3. Then, Gz∇Gz is perfect
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if and only if Gz is connected and (P4,cricket, dart, hourglass)-free and Gz ∼= K1,r

(equiv. Gz is a disjoint union of stars and cliques and Gz ∼=K1]Kr).

Proof. Suppose Gz has an induced K2]E2. Then, Gz∇Gz is not perfect by Lem-

mas 4.12 and 4.20. Now suppose that Gz is (K2 ]E2)-free. By Lemma 4.12

and Lemma 4.38 Gz ∇Gz is not perfect if Gz is disconnected or contains an in-

duced P4, cricket, dart or hourglass. We thus assume that Gz is connected and

(P4,cricket, dart, hourglass)-free. Now if Gz is connected we have that Gz ∼=K1]Kr

and Gz is a disjoint union of cliques and stars by Lemma 4.9, and so by Proposi-

tion 4.8 Gz∇Gz is perfect.

Now assume Gz is disconnected. If Gz ∼= Kn, then Gz ∼= En contradicting the

assumptions of the lemma. Finally, suppose Gz 6∼= Kn, in which case Gz has an

induced P3 by Lemma 4.3. From assumptions, Gz has an induced P3 ]E1; Lem-

mas 4.12 and 4.20 give that Gz∇Gz is not perfect.

Lemma 4.40 Suppose Gz has an induced P3 and Gz is a disjoint union of complete

bipartites, containing an induced K2,2. Then Gz∇Gz is perfect if and only if Gz
is connected and (P4,cricket, dart, hourglass)-free and Gz ∼= Km,n (equiv. Gz is a

disjoint union of stars and cliques, Gz ∼=Km]Kn).

Proof. Observe that Gz has an induced K2 ]E1. Now suppose Gz has two or

more connected components. Then, Gz has an induced K2,2 ]E1. Thus, by Lem-

mas 4.19 and 4.12 Gz ∇Gz is not perfect. Now suppose Gz is connected, i.e.

Gz ∼= Km,n. Moreover, suppose that Gz is not connected. Either Gz is a dis-

joint union of cliques or has an induced P3 ]E1, by Lemma 4.3. In the former

case, we contradict the assumption that Gz has an induced P3. In the latter case

Lemmas 4.20 and 4.12 give that Gz∇Gz is not perfect.

Now suppose that Gz is connected. If Gz contains an induced P4, Gz ∇Gz
is not perfect by Lemmas 4.21 and 4.12. Let Gz be P4-free. If Gz contains an

induced cricket, dart, or hourglass then by Lemmas 4.18 and 4.12 Gz∇Gz is not

perfect, since K2,2 contains P3. Otherwise, Lemma 4.12 and Proposition 4.8 give

that Gz∇Gz is perfect.

Lemma 4.41 Suppose Gz has an induced P3 and Gz is bipartite with induced P4.

Then Gz∇Gz is perfect if and only if Gz ∼= P4 and Gz ∈ {C5,P4,K1]Ks} (equiv.

Gz ∼= P4 and Gz ∈ {C5,P4,K1,s}).
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Proof. Observe that Gz has an inducedK2]E1. Let us suppose that Gz 6∼=P4. Then,

by Lemmas 4.17 and 4.12 Gz∇Gz is not perfect. Thus, we suppose that Gz ∼= P4.

Suppose that Gz has an induced paw. Then, by Lemmas 4.21 and 4.12 Gz∇Gz is

not perfect. Now let Gz be paw-free, that is, by Lemma 4.7 Gz is a disjoint union

of complete multipartite and triangle-free graphs.

First, assume that Gz has triangle-free component X that is not complete bi-

partite. If X is bipartite, Gz ∇Gz is perfect if and only if Gz ∼= P4, from Lem-

mas 4.16 and 4.12. Now suppose X is nonbipartite. By Lemma 4.2 it contains an

odd hole. If the largest odd hole in X has seven or more vertices, X contains an

induced P5 and so by Lemmas 4.20 and 4.12 Gz∇Gz is not perfect. Now suppose

the largest odd hole in X is a C5. By Lemmas 4.14, 4.24 and 4.12 Gz∇Gz is perfect
if and only if Gz ∼= C5.

Now assume Gz is a disjoint union of complete multipartites and Gz is dis-

connected, for otherwise; by Lemma 4.2 it is (K2 ]E1)-free. However, Gz has an

induced K2 ]E1 by assumption. If Gz has three or more components, it contains

an induced K2]E2, and so by Lemmas 4.20 and 4.12 Gz∇Gz is not perfect. We

thus assume Gz has two connected components. By Lemma 4.6 Gz has an induced

diamond or is a disjoint union of cliques and complete bipartite graphs. In the for-

mer case, Gz∇Gz is not perfect by Lemmas 4.21 and 4.12. We now assume the

latter. If Gz contains K2,2 as an induced subgraph, Gz∇Gz is not perfect by Lem-

mas 4.21 and 4.12. Moreover, if Gz contains a star (that is not also a clique) then it

contains P3 and thus P3]E1, since it has two components. Lemmas 4.20 and 4.12

give us that Gz∇Gz is not perfect in this case. Assume Gz is a disjoint union of

cliques. If Gz contains 2K2, Gz∇Gz is not perfect from Lemmas 4.21 and 4.12.

This leaves Gz ∼=K1]Ks, in which case Gz∇Gz is perfect from Corollary 4.8.

Lemma 4.42 Suppose Gz has an induced P3 and Gz is nonbipartite and triangle-

free. Then, Gz∇Gz is perfect if and only if Gz ∼= C5 and Gz ∈ {K2]E1,P4,C5}
(equiv. Gz ∼= C5 and Gz ∈ {P3,P4,C5}).

Proof. Note that Gz has an induced K2]E1. By Lemma 4.2, Gz has an odd hole. If

the largest odd hole has seven or more vertices, Gz contains an induced P5. Then, by

Lemmas 4.19 and 4.12 Gz∇Gz is not perfect. Now suppose Gz contains an induced

C5. By Lemmas 4.15 and 4.12, Gz∇Gz is not perfect if Gz 6∼= C5. So we assume
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Gz ∼= C5, in which case Gz ∼= C5. Then, Lemmas 4.24 and 4.12 give the result.

Theorem 4.1 (Restated for convenience) The graph G=G0∇G1 is perfect if and

only if one of the following holds:

1. Gz ∈ {K1,K2,E2}, Gz arbitrary;

2. Gz ∼= P4, Gz ∈ {K1,r,Kr ]K1,P4};

3. Gz ∼= C5, Gz ∈ {P3,K2]E1,P4,C5};

4. Gz ∼=Kr ]Ks, Gz is a disjoint union of stars and cliques;

5. Gz ∼=Km,n, Gz is connected and (P4,cricket,dart,hourglass)-free;

6. Gz ∼=Kn, Gz (odd hole, paw)-free;

7. Gz ∼= En, Gz (odd antihole, co-paw)-free;

8. Gz, Gz are complete multipartite;

9. Gz, Gz are disjoint unions of cliques;

10. Gz ∼=Kr ]Ks, Gz ∼=Km,n;

for any m,n,r,s,z, where m,n,r,s ∈ N, and z ∈ {0,1}, with its (Boolean) negation

denoted by z.

Proof. (⇒) We prove the forward direction for each case in turn: Case (1) follows

directly from Corollary 4.4 and Lemma 4.12. For case (2), perfection of P4∇P4

follows as a direct corollary of Lemma 4.24, as C5 contains P4 as an induced sub-

graph. P4∇K1,r and P4∇ (K1]Kr) are perfect by Lemma 4.29 and Corollary 4.8

respectively. Case (3) follows directly from Lemma 4.24 and Corollary 4.5. Proposi-

tion 4.8 gives case (4). Proposition 4.8 taken with Lemmas 4.12 and 4.9 give case (5).

Corollary 4.4 yields (6). For case (7), combine Corollary 4.4 and Lemma 4.12. Corol-

lary 4.6 gives (8). Lemma 4.25 yields (9). Finally, (10) is proven by Lemma 4.26.

(⇐) We show that the weak modular product of any pair of graphs not falling

into cases (1)–(10) is not perfect. First suppose Gz is P3-free. Then, by Lemma 4.3

Gz is a disjoint union of cliques. If Gz is a disjoint union of cliques then we have case

(9). Thus we suppose Gz is not a disjoint union of cliques, so has an induced P3 by
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Lemma 4.3. If Gz has k connected components, where k ∈ N\{2}, by Lemma 4.31,

the only cases where Gz∇Gz is perfect belong to cases (1), (6) and (7). If k = 2,

either Gz ∼= E2, and we have case (1), or Gz is nonempty and contains an induced

K2]E1. If Gz has an induced paw, then Gz∇Gz is not perfect by Lemma 4.19. If

Gz is paw-free then by Lemma 4.30 the only pairs which give a perfect product fall

under cases (3), (2), (10) and (4). This completes the proof for the case when Gz is

P3-free.

Now, suppose Gz contains an induced P3. If Gz is empty we have a perfect

product only under the conditions of case (7) from Lemma 4.12 and Corollary 4.4,

so assume Gz is nonempty. Furthermore, suppose α(Gz) ≥ 3. By Lemma 4.20,

Gz∇Gz is not perfect if Gz has an induced K2]E2, as Gz contains an induced P3.

We thus consider the case when Gz is (K2]E2)-free. By Lemma 4.38, Gz∇Gz is not
perfect if Gz is disconnected or contains an induced P4, cricket, dart, or hourglass.

So we assume Gz is connected and (P4,cricket, dart, hourglass)-free. Now, if Gz has

an induced paw, by Lemma 4.35 the only cases when Gz∇Gz is perfect belong to

cases (5) and (1). We thus assume Gz is paw free, so is a disjoint union of complete

multipartite and triangle-free graphs by Lemma 4.7. If Gz ∼= Kn, it is P3-free by

Lemma 4.3. Then, we have a perfect product if and only if the conditions of case

(6) are satisfied by Corollary 4.4. Suppose Gz has induced P3. Furthermore, if Gz
has an induced paw, by Lemma 4.32 Gz∇Gz is perfect only in case (5). Now let Gz
be paw-free, so by Lemma 4.8 is complete multipartite as it is also P4-free. We now

suppose Gz has a triangle-free component X that is not complete bipartite, and so

has an induced P4 by Lemmas 4.5 and 4.2. We then have Gz∇Gz is perfect only

in cases (3), (1) and (2) from Lemma 4.33. Assume Gz is P4-free, so by Lemma 4.8

is a disjoint union of complete multipartites. Then, from Lemma 4.34 Gz∇Gz is

perfect only in cases (6), (10) and (8). This covers the case when Gz contains an

induced P3 and Gz is nonempty with α(Gz)≥ 3.

We now consider the case when Gz contains an induced P3 and Gz is nonempty

with α(Gz) ≤ 2. If α(Gz) = 1, Gz ∼= Kn and by Corollary 4.4 is perfect if and only

if Gz is (odd hole, paw)-free, falling into case (6). We are left with α(Gz) = 2 or,

equivalently, ω(Gz) = 2. Since ω(Gz) = 2, Gz is triangle-free. Let us first consider

the case when Gz is nonbipartite. Then, by Lemma 4.42 Gz∇Gz is only perfect in
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case (3). Now suppose Gz is bipartite. If Gz contains an induced P4, by Lemma 4.41

Gz∇Gz is only perfect in cases (2) and (3). Thus we suppose Gz is a disjoint union

of complete bipartite graphs, as from Lemma 4.5 these are the only bipartite graphs

that are P4-free. Now suppose Gz has an induced K2,2. Then, by Lemma 4.40,

Gz∇Gz is only perfect in case (4). We thus assume that Gz is a disjoint union of

stars. If Gz ∼= rK2, by Lemma 4.36, Gz∇Gz is only perfect in cases (9), (1), (5) and

(10). Now assume that Gz is a disjoint union of stars with an induced P3. Since Gz
has an induced P3, Gz is nonempty. We then consider three scenarios: i. α(Gz) = 1,

ii. α(Gz) = 2 and iii. α(Gz) ≥ 3. In scenario i., Gz ∼= Kn, yet Gz has an induced

P3 by assumption, contradicting Lemma 4.3. In scenario ii., ω(Gz) = 2 and so Gz
is triangle-free. Lemma 4.37 gives us that Gz∇Gz is only perfect in cases (3), (5),

(4) and (2). Finally, in scenario iii., ω(Gz) ≥ 3 so Gz contains a triangle. From

Lemma 4.39, Gz∇Gz is only perfect in case (4).

This completes the proof as we have enumerated all pairs of graphs.

4.5 Discussion
Theorem 4.1 gives us a characterisation of all pairs of graphs whose weak modular

product is perfect. This induces an algorithm for GraphIsomorphism on these

graphs: compute the Lovász number of the product graph via an SDP solver. If

the computed ϑ > n− δ for some approximation error δ ∈ (0,0.5) then the graphs

are isomorphic; otherwise not. In light of the discussion of Section 4.3, it is nat-

ural to compute a polynomial time upper bound on the runtime of this induced

GraphIsomorphism algorithm and to ask if any of the cases (1)–(10) (as defined

in Theorem 4.1) fall into classes of graphs for which there is no existing efficient

graph isomorphism algorithm.

The current state of the art runtime for computing the approximate value of a

semidefinite program [LSW15] is

Õ
(
n′
(
(n′)2 + (m′)ω +s

))
, (4.5)

where n′ is the number of variables, m′ the number of constraints, s the spar-

sity, ω ∈ [2,2.373) the (still unknown) optimal exponent for matrix multiplication

and Õ denotes that we ignore polylogarithmic factors. Inspection of the Lovász-
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ϑ SDP (4.1) for a graph G gives that n′ = 1
2(|V (G)|(|V (G)|− 1)), m′ =

∣∣∣E(G)
∣∣∣+ 1

and s = maxv∈V (G) |N(v)|. The worst-case values for these quantities, assuming G

has n vertices, are n′ = O(n2), m′ = O(n2) and s = O(n) respectively. Recall that

the algorithm induced by Theorem 4.1 computes ϑ(G∇H), where G and H have n

vertices. This results in an overall worst-case runtime complexity of Õ
(
n4(1+ω)

)
.

We analyse each case of Theorem 4.1 in turn with respect to existing algo-

rithms in the literature, assuming |V (G)|= |V (H)|= n. Cases (1)–(3) admit trivial

constant-time algorithms to check isomorphism. In case (4), there is a simple algo-

rithm: find the connected components, in the case when the disjoint union of stars

and cliques has two connected components, count the neighbours of each vertex

and compare; otherwise the graphs are trivially non-isomorphic. It is well-known

that computing connected components has time complexity O(|V (G)|+ |E(G)|) —

a worst case bound here is O(n2). In case (5), one can use the previous algo-

rithm after taking complements, or, observe that the two graphs in question are

cographs3 and so admit an efficient GraphIsomorphism algorithm [CLB81], again

with O(|V (G)|+ |E(G)|) =O(n2) runtime complexity. Cases (6) and (7) admit triv-

ial algorithms by counting vertex neighbours, at O(n2) cost in runtime. Cases (8)

and (9) are cographs so have an efficient algorithm, as mentioned earlier. Case (10)

is trivial by counting connected components, with O(n2) runtime complexity.

Thus, the technique developed in this chapter does not lead to an algorithm for

GraphIsomorphism on any new graph families, nor does it lead to an improved

runtime-complexity in these cases, since all cases have an algorithm running in time

O(n2), as compared with the bound of Õ
(
n4(1+ω)

)
for the approach deriving from

Theorem 4.1.

3A cograph is a graph for which every connected induced subgraph has diameter at most 2.
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Conclusion

As we approach the end of the thesis, we make some concluding remarks. We briefly

summarise the contributions of the thesis in Section 5.1. In Section 5.2 we present

a critical assessment of the thesis work. Section 5.3 lays out future work to be

undertaken. For convenience we restate the research questions posed in Chapter 1.

Research Question 1 (Lifted Markov chains and quantum walks) Which compu-

tational resources are required for a classical random walk to replicate the mixing

dynamics of a quantum walk?

Research Question 2 (Graph products and isomorphism) Can we use easy in-

stances of NP-hard problems to make progress on the NP-intermediate problem

GraphIsomorphism, which has thus far eluded a polynomial-time algorithm?

5.1 Summary of contributions
In response to Research Question 1 we have seen the following in Chapter 3. For a

graph G on n vertices

• We present a lifted Markov chain whose marginal mixes to any target distri-

bution π over V (G) that has all positive elements in D(G) timesteps, which

is optimal. This builds on prior work, which we extend to a rigorous proof of

correctness and more algorithmic focus.

• We show that this lifted Markov chain has O(n2D(G)) states and requires

O(n4D(G)) time to compute the transition probabilities.

• We show that for any quantum walk on a connected graph, the average mixing

distribution has all positive elements. Thus, the lifted Markov chain described
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above can sample from this distribution.

In Chapter 4 we address Research Question 2:

• Following Kozen [Koz78], we formulate GraphIsomorphism as an instance of

an NP-hard problem: finding the clique number of the weak modular product

of the candidate graphs. We observe that for perfect graphs, finding the clique

number is polynomial-time.

• Combining the previous two observations, we have that GraphIsomor-

phism is efficiently solvable for graphs with a perfect weak modular product.

This leads us to an algorithm for GraphIsomorphism. We enumerate all pairs

of graphs for which the weak modular product is perfect and non-perfect. This

tells us when the algorithm is efficient.

• We compare the algorithm with other GraphIsomorphism algorithms in the

literature, finding that the proposed algorithm covers only cases that already

admit efficient algorithms.

5.2 Critical assessment
We shall now analyse how well the work described in Chapters 3 and 4 addresses

Research Questions 1 and 2.

5.2.1 Lifted Markov chains

Comparing Research Question 1 to the thesis contributions listed in 5.1 we see

that we have a partial answer to the question, since we have a lifted Markov chain

that allows one to sample from the average mixing distribution of a quantum walk.

The result is rigorously proven with explicit bounds on the computational resources

required to compute the lifting. These bounds grow modestly with the graph size.

We make some further comments on the result:

• The proposed scheme allows one to very quickly sample from the quantum

average mixing distribution. If the lifted Markov chain is sampled from mid-

way through its evolution, the sampled distribution has no relation to the

underlying quantum dynamics in following sense: suppose one were to sample

from the lifted Markov chain at time t ∈ {0, . . . ,D(G)}. The probability of
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obtaining a vertex v is not related to either of the probabilities1 Qt(v |ψ(0))

or Qt(v |ψ(0)); the first being the probability of measuring the vertex v after

running the quantum walk for t timesteps having started in state |ψ(0)〉 and
the second being the Cesàro average of this probability. The dynamics of the

lifted chain can be matched to the quantum walk in this way at the price of

the mixing time to the marginal being lower bounded by the quantum average

mixing time [AST18].

• The lifted Markov chain we construct is necessarily non-reversible to achieve

diameter-time mixing. Non-reversible Markov chains are often seen as less

representative of “natural” stochastic dynamics than reversible chains. One

wonders, in light of the lower bounds on mixing times in Table 2.2, how would

demanding a reversible chain affect the results?

• On the other hand, if we wish to leave to the domain of lifted Markov chains,

the construction of the stochastic bridge schedule in Lemma 3.1 suggests a ran-

domised algorithm for sampling from the quantum average mixing distribution

with potentially smaller computational overhead than using the d-lifting.

5.2.2 Graph products and isomorphism

We now examine the contributions listed in Section 5.1 in relation to Research Ques-

tion 2. In terms of answering the question itself, we have acquired some evidence

supporting a negative answer. We have associated GraphIsomorphism to instances

of an NP-hard problem and found the corresponding “easy” instances of GraphI-

somorphism. It was not expected that this would lead to a isomorphism algorithm

for all graphs, due to the problem’s long history of being unsolved. It was hoped

that new families of graphs would be discovered for which GraphIsomorphism is

polynomial. This unfortunately did not come to pass.

The proof of Theorem 4.1 sheds a lot of light onto the weak modular product.

This graph product has not been well-studied, for reasons discussed in Section 4.2.

Using modern tools, such as the sage computational package [SAGE], the ISGCI

graph classes database [ISGCI] and the strong perfect graph theorem [CRST06] we

have been able to understand when this product is perfect and when it is not. To
1defined in Section 2.4.
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quote Paul Seymour [Sey06]: “Perfect graphs have come to be recognised as having a

natural place in the world”. As such it is an important question for graph theorists

is to know whether a given family of graphs is perfect or not.

5.3 Future research
This work raises a number of open questions, a few of which we list here.

5.3.1 Lifted Markov chains

Better bounds. Can we find tighter upper bounds, or even lower bounds on the

preparation time for the d-lifting? Can we find a smaller footprint lifting that

mixes to the marginal in diameter-time, with arbitrary target distribution?

Liftings and hitting times. Having examined the relation of lifting to the quan-

tum mixing time in detail, what about the quantum hitting time? This is

the expected number of timesteps it takes for a quantum walk starting at a

given vertex to hit another ‘target’ vertex. Indeed, most of the useful quantum

walks based algorithms rely on the superiority of the quantum hitting time to

the classical equivalent. I believe that in this case it is impossible for a lift-

ing to convey anything better than a constant speedup relative to a classical

walk, which would give a separation between quantum walks and lifting in this

scenario (in favour of quantum walks). It would be good to investigate this

further.

Non-diffusive behaviour. Liftings have been introduced to mimic diffusive be-

haviour, that is, mixing of quantum walks. It would be interesting to see

if non-diffusive, more “quantum” behaviours could be replicated with lifted

Markov chains. Can one use liftings to engineer perfect state transfer [Bos03]

for instance?

Optimised quantum walks. Can we find a quantum walk that mixes in diameter-

time to some useful distribution? Given the same resources, how do lifted

Markov chains compare with quantum walks for mixing? Concretely, suppose

the register for a lifted Markov chain is the same size as a quantum coin

register, how do they compare in general and specific cases?

Specific walks. The construction presented here uses many nodes to mimic quan-
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tum mixing on an arbitrary connected graph. Can we specialise to quantum

walks with known mixing times? Initial work to this end has been conducted

in [AST18], where a lifted Markov chain on a d-dimensional lattice is found to

have the same mixing time as the equivalent quantum walk.

5.3.2 Graph products and isomorphism

Other easy instances of the clique problem. We have shown that if comput-

ing the maximum clique for a family of graphs Γ is polynomial in the number of

vertices then we have an efficient algorithm for GraphIsomorphism. We have

done this for the case where Γ is the set of perfect graphs. For instance, it is

known that finding maximum cliques in planar graphs is polynomial [PY81]. It

might be useful to investigate planar perfect weak modular products, amongst

other families Γ. We observe that the clique problem is fixed parameter in-

tractable [CHKX06], that is, there is no parameter when fixed that makes the

problem polynomial time. It has also been shown that this problem is hard to

approximate [Hås99].

More reductions from GraphIsomorphism. In this thesis, we have examined

one particular reduction to the clique problem. There are many other NP-

hard problems; indeed since GraphIsomorphism ∈ NP there is a reduction

from isomorphism to any of these problems. One can then examine easy cases

as we have done for the clique problem.

Unclassified perfect product graphs. There are a large number of different

graph products [HIK11], only a small number of which have their perfect

examples enumerated. It would be useful to complete this classification. Per-

haps some of these long-ignored products would be found to have some other

utility as a result of their being perfect.
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Proofs for the sake of completeness

In this appendix we provide proofs that are helpful to the main text, but disrupt

the flow.

A.1 Markov chains and stochastic matrices

Claim A.1 (Claim 2.1 in main text) Let Ω be a finite sample space and suppose

P ∈ L(R|Ω|) is a linear map. Then P maps every distribution π ∈∆(Ω) to another

distribution π′ ∈ ∆(Ω), that is, π′ = πP , only if P ∈ Stoch(R|Ω|). Moreover, let

π′′ = πP ′ for P ′ ∈ Stoch(R|Ω|) and π ∈∆(Ω). Then, π′′ ∈∆(Ω).

Proof. Suppose for the sake of contradiction that there exist x′,y′ ∈ Ω such that

P [x,y] < 0. Now, consider the probability distribution π[y] = δy
′
y . Let π′ = πP .

Then π′[y′]< 0. This contradicts our assumption that π′ ∈∆(Ω), so P [x,y]≥ 0 for

all x,y ∈ Ω. Now, let π ∈ ∆(Ω) and π′ := πP . From assumptions, ∑y∈Ωπ
′[y] =

1. Thus ∑y∈Ω
∑
x∈Ωπ[x]P [x,y] = 1. Now, let π[x] = δx

′
x for some x′ ∈ Ω. Then,∑

y∈ΩP [x,y] = 1. Since we can make x′ arbitrary this implies that ∑y∈ΩP [x,y] = 1

for all x ∈ Ω and so P ∈ Stoch(R|Ω|).

For the second claim, the yth element of πP ′ = π′′ for y ∈ Ω, π′′[y] =∑
x∈Ωπ[x]P ′[x,y]. Now, π′′[y] ≥ 0, since π[x] ≥ 0 and P ′[x,y] ≥ 0 for all x,y ∈ Ω.

Moreover, ∑y∈Ωπ
′′[y] = 1, since

∑
y∈Ω

π′′[y] =
∑
y∈Ω

∑
x∈Ω

π[x]P ′[x,y] =
∑
x∈Ω

π[x]
∑
y∈Ω

P ′[x,y].

Now, ∑y∈ΩP
′[x,y] = 1 for all y ∈ Ω as P is a stochastic matrix, so ∑y∈Ωπ

′′[y] =∑
x∈Ωπ[x] = 1. Thus, πP ′ = π′′ ∈∆(Ω).
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A.2 Quantum average mixing bounds

In this section we shall prove the sequence of results that lead to Proposition 2.1 in

Section 2.4.3.4 of the text. The proofs have been adapted from those of Godsil and

Zhan [GZ17].

Proposition A.1 Let {Fi}i∈[m] be the spectral idempotents of the quantum walk

transition matrix U . Let |ψ(0)〉 be the initial state. For any subset S of the vertices,

the average probability that the quantum walk is on some vertex of S converges to

∑
r

〈ψ(0)|FrDSFr |ψ(0)〉 ,

where DS is the diagonal matrix with ones in elements corresponding to vertices in

S, and zeros in the remaining elements.

Proof. Consider the spectral decomposition of U

U =
∑
r

eiθrFr.

It suffices to show that
1
T

T−1∑
t=0

(U t)†DSU
t

converges to ∑
r

FrDSFr

as T goes to infinity. We have

(U t)∗DSU
t =

(∑
r

e−itθrFr

)
DS

(∑
s

eitθsFr

)

=
∑
r

FrDSFr +
∑
r 6=s

eit(θs−θr)FrDSFs.

Note that for all r and s, the entries in FrDSFr and FrDSFs are constants, and

remain unchanged when we take the average and the limit. Further

1
T

∣∣∣∣∣
T−1∑
t=0

eit(θs−θr)
∣∣∣∣∣= 1

T

∣∣∣∣∣1−eiT (θs−θr)

1−ei(θs−θr)

∣∣∣∣∣≤ 1
T

2∣∣1−ei(θs−θr)∣∣
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which converges to zero as T goes to infinity. Hence the only term that survives in

lim
T→∞

1
T

T−1∑
t=0

(U t)∗DSU
t

is ∑
r

FrDSFr.

Lemma A.1 For a quantum walk with spectral decomposition

U =
∑
r

λrFr,

we have

∑
j

∣∣∣∣∣ 1T
T−1∑
t=0

Qt(j|ψ(0))−
∑
r

〈ψ(0)|FrDjFr |ψ(0)〉
∣∣∣∣∣≤ 2

T

∑
r 6=s

∑
j

√
Fr[j,j]Fs[j,j]
|λr−λs|

.

Proof. First note that for any r and s,

|〈ψ(0)|FrDjFs |ψ(0)〉|= |〈Frej |ψ(0)〉〈Fsej |ψ(0)〉|

≤ |〈Frej |ψ(0)〉| · |〈Fsej |ψ(0)〉|

≤
√
Fr[j,j]‖|ψ(0)〉‖

√
Fs[j,j]‖|ψ(0)〉‖ (Cauchy-Schwarz)

=
√
Fr[j,j]Fs[j,j].

Let λr = eiθr for some θr. By Proposition A.1 for the jth arc,
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∣∣∣∣∣ 1T
T−1∑
t=0

Qt(j|ψ(0))−
∑
r

〈ψ(0)|FrDjFr |ψ(0)〉
∣∣∣∣∣=

∣∣∣∣∣ 1T
T−1∑
t=0

∑
r 6=s

eit(θs−θr) 〈ψ(0)|FrDjFs |ψ(0)〉
∣∣∣∣∣

= 1
T

∣∣∣∣∣∑
r 6=s

(
T−1∑
t=0

eit(θs−θr)
)
〈ψ(0)|FrDjFs |ψ(0)〉

∣∣∣∣∣
= 1
T

∣∣∣∣∣∑
r 6=s

1− eiT (θs−θr)

1− ei(θs−θr)
〈ψ(0)|FrDjFs |ψ(0)〉

∣∣∣∣∣
≤ 1
T

∑
r 6=s

∣∣∣∣∣1− eiT (θs−θr)

1− ei(θs−θr)

∣∣∣∣∣|〈ψ(0)|FrDjFs |ψ(0)〉|

≤ 1
T

∑
r 6=s

2
|eiθs− eiθr | |〈ψ(0)|FrDjFs |ψ(0)〉|

≤ 2
T

∑
r 6=s

√
Fr[j,j]Fs[j,j]
|λr−λs|

.

Summing over all arcs yields the result.

One immediate consequence is that we can bound the mixing time of a quantum

walk by its eigenvalue differences. This is an analogy to Lemma 4.3 in Aharonov

[AAKV01].

Corollary A.1 (Proposition 2.1 in main text) For a `× ` transition matrix U with

spectral decomposition

U =
∑
r

λrFr,

we have

Mε ≤
2`
ε

∑
r 6=s

1
|λr−λs|

.

Proof. Since ∑
r

Fr = I, and F 2
r = Fr

for all r and j we have

0≤ Fr[j,j]≤ 1.



A.3. Lovasz-ϑ semidefinite program 133

Lemma A.1 reduces to

∑
j

∣∣∣∣∣ 1T
T−1∑
t=0

Qt(j|ψ(0))−
∑
r

〈ψ(0)|FrDjFr |ψ(0)〉
∣∣∣∣∣

≤ 2
T

∑
r 6=s

∑
j

√
Fr[j,j]Fs[j,j]
|λr−λs|

≤ 2`
T

∑
r 6=s

1
|λr−λs|

.

Thus for all T such that

T ≥ 2`
ε

∑
r 6=s

1
|λr−λs|

,

the right hand side is bounded above by ε.

A.3 Lovasz-ϑ semidefinite program

A.3.1 Sets of vectors with minimal pairwise inner product

The following results are used to justify the definition of the Lovász-ϑ SDP in Sec-

tion 4.1.

Lemma A.2 Let k,n ∈ N such that k ≤ n+ 1 and let vi, . . . ,vk be unit vectors in

Rn. Then we have

min
vi,...,vk∈S(Rn)

∑
i 6=j
〈vi,vj〉 ≥ −k (A.1)

Proof. We shall formulate the optimisation problem (A.1) as a semidefinite program

then use weak duality to show the bound. Recall that a Gram matrix X of a set

of vectors {v1, . . . ,vk} is the matrix whose entries are given by X[i, j] = 〈vi,vj〉.
Moreover, any n×n symmetric positive semidefinite matrix realises a Gram matrix

for some set of n vectors. We can thus solve (A.1) using the Gram matrix like so:

min
∑
i 6=j

X[i, j]

s.t. X[i, j] =X[j, i] ∀i, j ∈ [k]

X[i, i] = 0 ∀i ∈ [k]

X � 0

(A.2)

where the first line of constraints enforces 〈vi,vj〉 = 〈vj ,vi〉 and the second line en-

forces that 〈vi,vi〉= 1. Rewriting in SDP standard form (2.23) we can cast (A.2) as
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min Tr((Jk− Ik)X) (A.3a)

s.t. Tr((Ei,j−Ej,i)X) = 0 ∀i, j ∈ [k] (A.3b)

Tr(Ei,iX)) = 1 ∀i ∈ [k] (A.3c)

X � 0 (A.3d)

where Jk is the k×k all-ones matrix and Ei,j := eie
T
j . We denote the set of constraints

(A.3b) by B and the set of constraints (A.3c) by C. We can now form the dual

program (See Eq. 2.24 for the standard form).

max
∑
i∈C

y[i]

s.t.
∑
i∈B

y[i](Ei,j−Ej,i) +
∑
i∈C

y[i]Ei,i � Jk− Ik

y ∈ R|B|+|C|.

(A.4)

By weak duality [BV09, Chapter 5], for any feasible (X,y) pair we have Tr(CX)≥
bTy where Tr(CX), bTy are the objective functions of the primal and dual respec-

tively. For feasible X we choose the Gram matrix of any set of k vectors from

S(Rn). For feasible y, we choose the vector with zeros in elements corresponding to

B and negative ones for the elements corresponding to C. The left hand side of the

constraint in (A.4) thus becomes

∑
i∈C

y[i]Ei,i =−Ik,

and so the constraint is satisfied, since Jk = 11T � 0. This gives a dual objective

value of ∑i∈C y[i] =−k, and the result follows from weak duality.

We can now show that the minimum in the problem (A.1) is in fact attained.

We take the following result from [KKMS98, Lemma 4.1]

Lemma A.3 For all positive integers k and n such that k≤ n+1, there exist k unit

vectors in Rn such that the dot product of any distinct pair is −1/(k−1).

Proof. It suffices to prove the lemma for n= k−1. (For other values of n, we make
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the coordinates of the vectors 0 in all but the first k−1 coordinates.) We begin by

proving the claim for n= k. We explicitly provide unit vectors v(k)
1 , . . . ,v

(k)
k ∈Rk such

that
〈
v

(k)
i ,v

(k)
j

〉
=−1/(k−1) for i 6= j. The vector v(k)

i is −
√

1
k(k−1) in all coordinates

except the ith coordinate. In the ith coordinate v(k)
i is

√
k−1
k . It is straightforward

to verify that the vectors are unit length and that their dot products are exactly

− 1
k−1 . As given, the vectors are in a k-dimensional space. Note, however, that the

dot product of each vector with the all-ones vector 1k is 0. Thus, we have that all

k of the vectors lie in a (k−1)-dimensional hyperplane of the k-dimensional space.

This proves the lemma.

By combining Lemmas A.2 and A.3 we are led to the following result.

Corollary A.2 Let k,n ∈ N such that k ≤ n+1 and let vi, . . . ,vk be unit vectors in

Rn. Then we have

min
vi,...,vk∈S(Rn)

∑
i 6=j
〈vi,vj〉=−k, (A.5)

with the minimum being attained by vectors satisfying

〈vi,vj〉=− 1
k−1 for all i 6= j. (A.6)

Proof. By Lemma A.2 we have that minvi,...,vk∈S(Rn)
∑
i 6=j 〈vi,vj〉 ≥ −k. We now

show that the set of vectors from Lemma A.3 saturates this inequality. The sum in

the minimisation has k(k− 1) terms, each of which takes on the value −1/(k− 1),

giving a total of −k. This same set of vectors satisfies Eq. A.6 by construction.

A.3.2 Lovász’s sandwich theorem

We now prove Lovász’s famous “sandwich theorem”.

Proposition A.2 (Proposition 4.1) Let G be a graph. Then, α(G)≤ ϑ(G)≤ χ̄(G).

Proof. As described in the discussion of Section 4.1, any clique cover corresponds

to a feasible solution of the Lovász-ϑ SDP (4.1) with an objective function value

equal to the size of the clique cover. This implies that ϑ(G) ≤ χ̄(G). It remains

to show that α(G) ≤ ϑ(G). Suppose that v1, . . . ,vs are the SDP solution vectors

corresponding to a maximal independent set of size s = α(G) and let v = ∑s
i=1 vi.
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Then vTv ≥ 0. It is also true that

vTv =
(

s∑
i=1

vi

)T( s∑
i=1

vi

)
=

s∑
i=1

vT
i vi+

∑
i 6=j

vT
i vj = s+

∑
i 6=j

vT
i vj .

We thus have that s+∑i 6=j v
T
i vj ≥ 0. There are s(s− 1) terms in the sum, so, by

averaging, there exist some distinct i and j such that

vT
i vj ≥−

s

s(s−1) =− 1
s−1 .

Since vT
i vj =− 1

ϑ(G)−1 by the SDP constraints, α(G) = s≤ ϑ(G). Therefore, we can

conclude that α(G)≤ ϑ(G)≤ χ̄(G).
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